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Abstract

The Fisher transformation acts on cubic graphs by replacing each vertex by
a triangle. We explore the action of the Fisher transformation on the set of self-
avoiding walks of a cubic graph. Iteration of the transformation yields a sequence of
graphs with common critical exponents, and with connective constants converging
geometrically to the golden mean.

We consider the application of the Fisher transformation to one of the two
classes of vertices of a bipartite cubic graph. The connective constant of the ensuing
graph may be expressed in terms of that of the initial graph. When applied to the
hexagonal lattice, this identifies a further lattice whose connective constant may be
computed rigorously.

Keywords: self-avoiding walk, connective constant, cubic graph, Fisher transfor-
mation, quasi-transitive graph.
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1 Introduction

A self-avoiding walk (abbreviated to SAW) on a graph G is a path that visits no point
more than once. SAWs were introduced in the chemical theory of polymerization (see
Flory [5]), and their critical behaviour has been studied since by mathematicians and
physicists (see, for example, the book [14] of Madras and Slade). The exponential rate of
growth of the number of SAWs is given by the so-called connective constant µ = µ(G) of
the graph. Only few graphs of interest have connective constants that are known exactly.

We explore the action of the Fisher transformation on the set of SAWs of a cubic
graph G. The transformation maps G to a new graph F (G). We have two sets of results.
First, the connective constants of G and F (G) satisfy a simple functional relation, and in
addition, three of the principal critical exponents are invariant under the transformation.
Secondly, under repeated applications of the Fisher transformation, the graphs converge
to a version of the Sierpinski gasket, and the connective constants converge geometrically
to the golden mean. See Theorems 1 and 2 for formal statements of our results.

Figure 1: Three cubic graphs: the (doubly-infinite) ladder graph L; the hexagonal lattice
H; the bridge graph B3 obtained from Z by joining every alternating pair of consecutive
vertices by 2 parallel edges.

Our second set of results concerns the application of the Fisher transformation to a
bipartite graph G one of whose vertex-sets is cubic. As before, the ensuing connective
constant may be expressed in terms of that of G, and the critical exponents are invariant.
When applied to the hexagonal lattice H (see Figure 1), this yields the lattice H̃ illustrated

in Figure 2. Nienhuis’s proposed value µ(H) =
√

2 +
√

2 has been proved recently by

Duminil-Copin and Smirnov [3], and the value of µ(H̃) may be deduced rigorously from
this, namely as the root of the equation

x−3 + x−4 =
1

2 +
√

2
.

See Theorem 3.
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Section 2 is devoted to basic definitions. The Fisher transformation, and its action on
counts of SAWs, is described in Section 3, and our Theorems 1–3 are stated there. The
proofs of results are found in Sections 4 and 5.

Figure 2: The lattice H̃ derived from the hexagonal lattice H by applying the Fisher
transformation at alternate vertices. Its connective constant µ̃ is the root of the equation
x−3 + x−4 = 1/(2 +

√
2).

In the companion papers [7, 8, 9], we study inequalities for the connective constants
of regular graphs. For an infinite, connected, cubic, quasi-transitive graph G (possibly
with parallel edges), it is elementary that

1 6 µ(G) 6 2. (1)

If such G is vertex-transitive and simple (or non-simple and satisfying a certain condition),
it is proved in [7, Thms 4.1, 4.3] that

√
2 6 µ(G) 6 2, with equalities for the bridge graph

B3 of Figure 1 and the 3-regular tree, respectively.

2 Notation

All graphs studied henceforth in this paper will be assumed infinite, connected, and simple
(in that they have neither loops nor multiple edges). An edge e with endpoints u, v is
written e = 〈u, v〉. If 〈u, v〉 ∈ E, we call u and v adjacent and write u ∼ v. The degree of
vertex v is the number of edges incident to v, denoted deg(v). A graph is called cubic if
all vertices have degree 3. The graph-distance between two vertices u, v is the number of
edges in the shortest path from u to v, denoted dG(u, v).

The automorphism group of the graph G = (V,E) is denoted A = A(G). The graph
G is called quasi-transitive if there exists a finite subset W ⊆ V such that, for v ∈ V
there exists α ∈ A such that αv ∈ W . We call such W a fundamental domain, and shall
normally (but not invariably) take W to be minimal with this property. The graph is
called vertex-transitive (or transitive) if the singleton set {v} is a fundamental domain for
some (and hence all) v ∈ V .
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A walk w on G is an alternating sequence v0e0v1e1 · · · en−1vn of vertices vi and edges
ei such that ei = 〈vi, vi+1〉. We write |w| = n for the length of w, that is, the number of
edges in w.

Let n ∈ N, the natural numbers. An n-step self-avoiding walk (SAW) on G is a walk
containing n edges that includes no vertex more than once. Let σn(v) be the number of
n-step SAWs starting at v ∈ V . It was shown by Hammersley [10] that, if G is quasi-
transitive, there exists a constant µ = µ(G), called the connective constant of G, such
that

µ = lim
n→∞

σn(v)1/n, v ∈ V. (2)

It will be convenient to consider also SAWs starting at ‘mid-edges’. We identify the
edge e with a point (also denoted e) placed at the middle of e, and then consider walks
that start and end at these mid-edges. Such a walk is self-avoiding if it visits no vertex
or mid-edge more than once, and its length is the number of vertices visited.

The minimum of two reals x, y is denoted x ∧ y, and the maximum x ∨ y.

3 Fisher transformation

Let G = (V,E) be a simple graph and let v ∈ V have degree 3. The so-called Fisher
transformation acts on v by replacing it by a triangle, as illustrated in Figure 3. This
transformation has been valuable in the study of the relations between Ising, dimer, and
general vertex models (see [2, 4, 12, 13]), and more recently of SAWs on the Archimedean
lattice denoted (3, 122) (see [6, 11]). In the remainder of this paper, we make use of
the Fisher transformation in the context of SAWs and the connective constant. It will be
applied to cubic graphs, of which the hexagonal and square/octagon lattices are examples.

A

BC

A

BC

v

Figure 3: The Fisher triangulation of the star. Any triangle thus created is called a Fisher
triangle.

It is convenient to work with graphs with well-defined connective constants, and to this
end we assume that G = (V,E) is quasi-transitive and connected, so that its connective
constant is given by (2). We write F (G) for the graph obtained from the cubic graph
G by applying the Fisher transformation at every vertex. The automorphism group of
G induces an automorphism subgroup of F (G). We write φ = 1

2
(
√

5 + 1) for the golden
mean. The next theorem may be known to others.
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Theorem 1. Let G be an infinite, quasi-transitive, connected, cubic graph, and consider
the sequence (Gk : k = 0, 1, 2, . . . ) defined by G0 = G and Gk+1 = F (Gk). Then

(a) The connective constants µk of the Gk satisfy µ−1
k = g(µ−1

k+1) where g(x) = x2 + x3.

(b) The sequence µk converges monotonely to φ, and

−
(

4
7

)k
6 µ−1

k − φ
−1 6

[
1
2
(7−

√
5)
]−k

, k > 1.

Theorem 1 provokes the question of the existence of a graph limit of repeated applica-
tion of the Fisher transformation. It is easily seen that the limiting graph comprises two
copies of the Sierpinski gasket, as illustrated in Figure 4.

Figure 4: Through repeated application of the Fisher transformations to a single edge
with endvertices of degree three, one arrives at a graph comprising two Sierpinski gaskets.

By Theorem 1(b), either µk ↓ φ or µk ↑ φ. The decreasing limit holds if and only
if µ0 > φ. We present no satisfactory characterization of graphs G for which µ(G) > φ
beyond noting that this holds whenever G contains as a subgraph a copy of a graph with
connective constant φ, such as the ladder graph L (or the semi-infinite ladder graph) of

Figure 1. Furthermore, if µ(G) > φ and G̃ is obtained from G by a sequence of Fisher

transformations, then µ(G̃) > φ. We ask whether µ(G) > φ for any infinite, connected,
vertex-transitive, simple, cubic graph G.

We turn to the topic of critical exponents, beginning with a general introduction for
the case when there exists a periodic, locally finite embedding of G into Rd with d > 2.
The case of general G has not not been studied extensively, and most attention has been
paid to the hypercubic lattice Zd. It is believed (when d 6= 4) that there is a power-order
correction, in the sense that there exists Av > 0 and an exponent γ ∈ R such that

σn(v) ∼ Avn
γ−1µn as n→∞, v ∈ V. (3)

Furthermore, the value of the exponent γ is believed to depend on d and not further on
the choice of graph G. When d = 4, (3) should hold with γ = 1 and subject to the
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inclusion on the right side of the logarithmic correction factor (log n)1/4. See [1, 14] for
accounts of critical exponents for SAWs.

Let v ∈ V and

Zv,w(x) =
∞∑
n=0

σn(v, w)xn, w ∈ V, x > 0, (4)

where σn(v, w) is the number of n-step SAWs with endpoints v, w. It is known under
certain circumstances that the generating functions Zv,w have radius of convergence µ−1

(see [14, Cor. 3.2.6]), and it is believed that there exists an exponent η and constants
A′v > 0 such that

Zv,w(µ−1) ∼ A′vdG(v, w)−(d−2+η) as dG(v, w)→∞. (5)

Let Σn(v) be the set of n-step SAWs from v, and write 〈·〉vn for expectation with respect
to uniform measure on Σn(v). Let ‖π‖ be the graph-distance between the endpoints of a
SAW π. It is believed (when d 6= 4) that there exists an exponent ν and constants A′′v > 0
such that

〈‖π‖2〉vn ∼ A′′vn
2ν , v ∈ V. (6)

As above, this should hold for d = 4 with ν = 1
2

and subject to the inclusion of the
correction factor (log n)1/4.

The above three exponents are believed to be related to one another through the
so-called Fisher relation

γ = ν(2− η). (7)

The above discussion is not a suitable basis for a rigorous analysis of the critical
exponents of general graphs. The first reason for this is that the exponents are introduced
via hypotheses (3), (5), (6), and there is no proof of existence. The second is that (5)
depends on the number d of dimensions. It is convenient to work with definitions of
critical exponents that do not depend on an assumption of dimensionality, and thus we
proceed as follows.

Let G be an infinite, connected, quasi-transitive graph with connective constant µ and
fundamental domain W . Let X be the set of edges incident to vertices in W , and let Σ
be the set of SAWs on G starting at mid-edges in X. We define the function

Y (x, y) =
∑
π∈Σ

x|π|

|π|y
, x > 0, y ∈ R,

where the denominator is interpreted as 1 when |π| = 0. For fixed x, Y (x, y) is non-
increasing in y. Let γ = γ(G) ∈ [−∞,∞] be such that

Y (µ−1, y)

{
=∞ if y < γ,

<∞ if y > γ.
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We shall assume that −∞ < γ <∞. It will be convenient at times to assume more about
the number σn of n-step SAWs from mid-edges in X, namely that there exist constants
Ci = Ci(W ) ∈ (0,∞) and a slowly varying function L such that

C1L(n)nγ−1µn 6 σn 6 C2L(n)nγ−1µn, n > 1. (8)

Let

V (z) =
∞∑
n=1

1

n2z+1
〈‖π‖2〉n, z ∈ [−∞,∞], (9)

where 〈·〉n denotes the uniform average over the set Σn of n-step SAWs in Σ. Thus, V (z)
is non-increasing in z, and we let ν = ν(G) ∈ [−∞,∞] be such that

V (z)

{
=∞ if z < ν,

<∞ if z > ν.

Let αW denote the image of W under an automorphism α ∈ A, with incident edges
αX, and let

Zα(x) =
∑

π∈Σ(α)

x|π|,

where Σ(α) is the subset of Σ containing SAWs ending at mid-edges in αX. We hypothe-
size that there exists η = η(G) ∈ [−∞,∞] such that, for any sequence of automorphisms
α satisfying dG(W,αW )→∞,

Zα(µ−1)dG(W,αW )w

{
→ 0 if w < η,

→∞ if w > η.
(10)

The η of (5) should agree with that defined here, subject to the addition of d− 2.
It is easily seen that the values of γ, η, ν do not depend on the choice of fundamental

domain W .
We consider now the effect on critical exponents of the Fisher transformation. Let

W0 be a minimal fundamental domain of G0 := G, with incident edge-set X0 := X as
above. Write W1 = F (W0), the set of vertices of the triangles formed by the Fisher
transformation at vertices in W0, and X1 for the set of edges of G1 incident to vertices in
W1. It may be seen that W1 is a fundamental domain of G1.

Theorem 2. Let G0 be an infinite, quasi-transitive, connected, cubic graph. Assume that
|γ(G0)| <∞ and that η(G1) exists.

(a) The exponents γ, η of G0 and G1 are equal.

(b) Let σn,k be the number of n-step SAWs on Gk from mid-edges in Xk. Assume the
σn,k satisfy (8) for constants Ci,k and a common slowly varying function L. Then
the exponents ν of G0 and G1 are equal.
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Our final result concerns the effect of the Fisher transformation when applied to just
one of the vertex-sets of a bipartite graph. Let G = (V,E) be bipartite with vertex-sets
V1, V2 coloured white and black, respectively. We think of G as a graph together with a
colouring χ, and the coloured-automorphism group Ac = Ac(G) of the pair (G,χ) is the
set of maps φ : V → V which preserve both graph structure and colouring. The coloured
graph is quasi-transitive if there exists a finite subset W ⊆ V such that: for all v ∈ V ,
there exists α ∈ Ac such that αv ∈ W . As before, such a set W is called a fundamental
domain.

Theorem 3. Let G be an infinite, connected, bipartite graph with vertex-sets coloured
black and white, and suppose that the coloured graph G is quasi-transitive, and every
black vertex has degree 3. Let G̃ be obtained by applying the Fisher transformation at each
black vertex.

(a) The connective constants µ and µ̃ of G and G̃, respectively, satisfy µ−2 = h(µ̃−1)
where h(x) = x3 + x4.

(b) Under the corresponding assumptions of Theorem 2, the exponents γ, η, ν are the

same for G as for G̃.

Theorem 3(a) implies an exact value of a connective constant that does not appear to
have been noted previously. Take G = H, the hexagonal lattice with connective constant

µ =
√

2 +
√

2 ≈ 1.84776, see [3]. The decorated lattice H̃ is illustrated in Figure 2,
and has connective constant µ̃ satisfying µ−2 = h(µ̃−1), which may be solved to obtain
µ̃ ≈ 1.75056.

The proofs of Theorems 1–2 and 3 are found in Sections 4 and 5, respectively.

4 Proof of Theorems 1–2

Proof of Theorem 1. Let G0 = (V0, E0) be an infinite, connected, quasi-transitive, cubic
graph. The graph G1 = F (G0) is also quasi-transitive and cubic. It suffices for part (a)
to show that the connective constants µk of the Gk satisfy

g(µ−1
1 ) = µ−1

0 . (11)

By (1), µk ∈ [1, 2] for k = 1, 2.
Let W0 be a minimal fundamental domain of G0, and let X0 be the subset of E0

comprising all edges incident to vertices in W0. Write W1 = F (W0), the set of vertices of
the triangles formed by the Fisher transformation at vertices in W0, and X1 for the set of
edges of G1 incident to vertices in W1. It may be seen that W1 is a fundamental domain
of G1.

It is convenient to work with SAWs that start and end at mid-edges. Note that the
mid-edges of E0 (respectively, X0) may be viewed as mid-edges of E1 (respectively, X1).

For k = 0, 1, the partition functions of SAWs on Gk are the polynomials

Zk(x) =
∑
π∈Σk

x|π|, x > 0,
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where the sum is over the set Σk of SAWs starting at mid-edges of Xk. Similarly, we set

Z∗1(x) =
∑
π∈Σ∗

1

x|π|,

where the sum is over the set Σ∗1 of SAWs on G1 starting at mid-edges of X0 and ending
at mid-edges of E0. For k = 0, 1,

Zk(x)

{
<∞ if x < µ−1

k ,

=∞ if x > µ−1
k .

(12)

The following basic argument formalizes a method known already in the special case
of the hexagonal lattice, see for example [6, 11]. Since Σ∗1 ⊆ Σ1, we have

Z∗1(x) 6 Z1(x). (13)

Let N(π) be the number of endpoints of a SAW π ∈ Σ1 that are mid-edges of E0. The
set Σ1 may be partitioned into three sets.

(a) If N(π) = 2, then π contributes to Z∗1 .

(b) π may be a walk within a single Fisher triangle.

(c) If (b) does not hold and N(π) 6 1, any endpoint not in E0 may be moved by one,
two, or three steps along π to obtain a shorter SAW in Σ∗1.

By considering the numbers of SAWs in each subcase of (c), we find that

Z1(x) 6 [1 + 2x+ 2x2 + 2x3]2Z∗1(x) + 6|W0|(1 + x+ x2), (14)

where the last term corresponds to case (b). By (13)–(14),

Z1(x) <∞ ⇔ Z∗1(x) <∞,

so that, by (12),

Z∗1(x)

{
<∞ if x < µ−1

1 ,

=∞ if x > µ−1
1 .

(15)

With a SAW in Σ∗1 we associate a SAW in Σ0 by shrinking each Fisher triangle to a
vertex. Each n-step SAW in Σ0 arises thus from 2n SAWs in Σ∗1, because each triangle
may be circumnavigated in either of 2 directions. Therefore,

Z0(x2(1 + x)) = Z∗1(x), (16)

and (11) follows by (12) and (15).
We turn to Theorem 1(b). By (1), µ−1

0 ∈ [1
2
, 1]. The function g is a bijection from

[1
2
, 1] to [3

8
, 2]. Furthermore, g is strictly convex on [1

2
, 1] with fixed point φ−1. By (11)

applied iteratively, µ−1
k → φ−1 as k → ∞, and the limit is monotone. The bounds on

µ−1
k − φ−1 follow from the facts that g′(1

2
) = 7

4
and g′(φ−1) = 1

2
(7−

√
5).
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Proof of Theorem 2. Let

Yk(x, y) =
∑
π∈Σk

x|π|

|π|y
, Y ∗k (x, y) =

∑
π∈Σ∗

k

x|π|

|π|y
, x > 0, y ∈ R,

where the denominator is interpreted as 1 when |π| = 0. Since Σ∗1 ⊆ Σ1,

Y ∗1 (x, y) 6 Y1(x, y).

Since every SAW in Σ1 \ Σ∗1 either is an extension of a SAW in Σ∗1 at the starting point,
or endpoint (or both), by at most 3 steps, or is a short walk in a single Fisher triangle,

Y1(x, y) 6 7|y|[1 + 2x+ 2x2 + 2x3]2Y ∗1 (x, y) + 6|W0|
(

1 + x+
x2

2y

)
.

Therefore,
Y ∗1 (x, y) <∞ ⇔ Y1(x, y) <∞. (17)

As in the previous proof, any n-step SAW in Σ0 gives rise to 2n SAWs in Σ∗1, and
conversely any SAW in Σ∗1 gives rise to a SAW in Σ0 by shrinking each triangle to a
vertex. For n > 1, the contribution of an n-step SAW π ∈ Σ0 to Y0(x, y) is xn/ny, and to
Y ∗1 (x, y) is

Tn :=
n∑
l=0

(
n

l

)
x2n+l

(2n+ l)y
.

Since

C
[x2(1 + x)]n

ny
6 Tn 6 D

[x2(1 + x)]n

ny
,

where C = 2−y ∧ 3−y and D = 2−y ∨ 3−y, we have that

CỸ0(x2(1 + x), y) 6 Ỹ ∗1 (x, y) 6 DỸ0(x2(1 + x), y),

where S̃ denotes the summation S without the n = 0 term. Therefore,

Y ∗1 (x, y) <∞ ⇔ Y0(x2(1 + x), y) <∞.

By (17) and Theorem 1(a), γ(G1) = γ(G0).
Let ‖π‖k be the graph-distance between the endpoints of the walk π on Gk. Assume

|γ| = |γ(G0)| <∞, and write

Vk(z) =
∞∑
n=1

1

n2z+1
〈‖π‖2

k〉n,k, (18)

where 〈·〉n,k denotes the uniform average over the set Σn,k of n-step SAWs of Gk starting
at mid-edges of Xk. Similarly,

V ∗1 (z) =
∞∑
n=1

1

n2z+1

σ∗n,1
σn,1
〈‖π‖2

1〉∗n,1, (19)
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where σ·· = |Σ··|, and 〈·〉∗n,1 averages over the subset Σ∗n,1 of Σn,1 containing n-step SAWs
of G1 that start in X0 and end in E0. We assume there exist constants Ci,k ∈ (0,∞) and
a slowly varying function L such that

C1,kL(n)nγ−1µnk 6 σn,k 6 C2,kL(n)nγ−1µnk , k = 1, 2. (20)

We shall in fact use slightly less than this.
Similarly to the proof of (17), by (19)–(20), there exists C1 <∞ such that

V ∗1 (z) 6 V1(z) 6 C1V
∗

1 (z),

whence
V1(z) <∞ ⇔ V ∗1 (z) <∞. (21)

The contribution of π ∈ Σn,0 to V0(z) is

1

σn,0n2z+1
‖π‖2

0.

As explained previously, π gives rise to 2n SAWs on G1, making an aggregate contribution
of

n∑
l=0

(
n

l

)
1

σ2n+l,1(2n+ l)2z+1
(2‖π‖0)2

to V ∗1 (z). By (20), there exist constants Ci > 0 such that

C2

nγ−1L(n)

n∑
l=0

(
n

l

)(
1

µ1

)2n+l

6
n∑
l=0

(
n

l

)
1

σ2n+l,1

6
C3

nγ−1L(n)

n∑
l=0

(
n

l

)(
1

µ1

)2n+l

.

By Theorem 1(a),
n∑
l=0

(
n

l

)(
1

µ1

)2n+l

=

(
1

µ0

)n
,

so that
C4(2−2z ∧ 3−2z)V0(z) 6 V ∗1 (z) 6 C5(2−2z ∨ 3−2z)V0(z).

Therefore, for |z| <∞,
V ∗1 (z) <∞ ⇔ V0(z) <∞.

By (21), ν(G0) = ν(G1).
Any α ∈ A(G0) acts in a natural way on G1 = F (G0). For k = 0, 1 and α ∈ A, let

Zα,k(x) =
∑

π∈Σk(α)

x|π|, Z∗α,k(x) =
∑

π∈Σ∗
k(α)

x|π|, x > 0,
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where Σk(α) (respectively, Σ∗k(α)) is the set of SAWs of Gk from mid-edges of Xk (re-
spectively, Xk−1) to mid-edges of αXk (respectively, αXk−1). Assume X0 and αX0 are
disjoint. As before,

Z∗α,1(x) = Zα,0(x2(1 + x)) (22)

and, as in (14),

Z∗α,1(x) 6 Zα,1(x) 6 [1 + 2x+ 2x2 + 2x3]2Z∗α,1(x). (23)

By (22) and Theorem 1(a), for w ∈ R,

lim
d0(W0,αW0)→∞

[
Zα,0(µ−1

0 )d0(W0, αW0)w
]

=∞

if and only if

lim
d1(W1,αW1)→∞

[
Zα,1(µ−1

1 )d1(W1, αW1)w
]

=∞,

where dk = dGk
. It follows that η(G0) = η(G1).

5 Proof of Theorem 3

Let G = (V,E) be a coloured bipartite graph satisfying the given assumptions. The

vertices of any SAW on G are alternately black and white. The decorated graph G̃ =
(Ṽ , Ẽ) is obtained from G by replacing each black vertex by a triangle, as illustrated in

Figure 3. The set Ṽ is coloured in the natural way: white vertices remain white, and
vertices of Fisher triangles are coloured black.

Let W be a minimal fundamental domain of G, and let X be the subset of E comprising
all edges incident to vertices in W . Write W̃ = F (W ), the set of vertices of the triangles

formed by the Fisher transformations at black vertices in W , and X̃ for the set of edges
of G̃ incident to vertices in W̃ . It may be seen that W̃ is a fundamental domain for the
coloured graph G̃. Recall that the mid-edges of E may be viewed as a subset of mid-edges
of Ẽ, and thus E may be viewed as a subset of Ẽ.

Let sn be the number of n-step SAWs of G̃ starting at mid-edges in X̃, and let cn be
the number of n-step SAWs of G̃ starting at a mid-edge of X and ending at a mid-edge
of E. It is immediate that

cn 6 sn. (24)

Any SAW counted in sn either lies within a single Fisher triangle, or may be obtained by
a k-step extension (with some k 6 3) at one or both endpoints of some SAW counted in
one of cn, cn−1, cn−2, cn−3. Therefore,

sn 6 cn + 4cn−1 + 8cn−2 + 12cn−3 + 18|W |. (25)

By (2), the limits limn→∞ s
1/n
n and limn→∞ c

1/n
n exist and, by (24)–(25), these limits are

equal.
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A SAW is called even if it has even length. Let E be the set of SAWs on G starting at
mid-edges of X, and let Ee be the subset of E comprising the even SAWs. Let x, y > 0.
Each step of a SAW on G is assigned weight x at a black vertex, and weight y at a white
vertex. Let

Z(x, y) =
∑
π∈E

x|πb|y|πw|,

where |πb| and |πw| are the numbers of black and white vertices visited by π. Similarly,
let

Ze(x, y) =
∑
π∈Ee

(xy)|π|/2. (26)

It is clear by a decomposition of paths that

Ze(x, y) 6 Z(x, y),

Z(x, y)− Ze(x, y) 6 (2x+ 2y)(1 + Ze(x, y)).

Hence,
Ze(x, y) <∞ ⇔ Z(x, y) <∞. (27)

We now introduce a third partition function Z̃, namely of the set Ẽ of SAWs on G̃
starting at the mid-edges of X and ending at mid-edges of E. Each step of such a SAW
traverses two half-edges, and is allocated a weight which depends on these half-edges. Let
p, q, r > 0. Whenever both half-edges belong to Ẽ \E, the weight is p; if one half-edge is

in E and the other in Ẽ \ E, the weight is q; if both half-edges are in E, the weight is r.
Then

Z̃(p, q, r) :=
∑
π∈Ẽ

p|πp|q|πq |r|πr|,

where |πp| is the number of p-steps, etc. By counting edges of the different types,

Z̃(p, q, r) = Z(q2(1 + p), r).

By (27),

Z̃(p, q, r) <∞ ⇔ Ze(q
2(1 + p), r) <∞. (28)

By (26),

Ze(q
2(1 + p), r)

{
<∞ if q2(1 + p)r < µ−2,

=∞ if q2(1 + p)r > µ−2,

whence the radius of convergence of Z̃(x, x, x) =
∑

n>0 cnx
n is the root of the equation

x3(1 + x) =
1

µ2
.

Theorem 3(a) follows. Part (b) is proved in a similar manner to the proof of Theorem 2.
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