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Abstract. The connective constant µ(G) of an infinite transitive graph G is the
exponential growth rate of the number of self-avoiding walks from a given origin.
Various properties of connective constants depend on the existence of so-called
‘graph height functions’, namely: (i) whether µ(G) is a local function on certain
graphs derived from G, (ii) the equality of µ(G) and the asymptotic growth rate of
bridges, and (iii) whether there exists a terminating algorithm for approximating
µ(G) to a given degree of accuracy.

Graph height functions are explored here on Cayley graphs of infinite, finitely
presented groups Γ, in which context they are related to integer-valued surjective
homomorphisms on the finite-index subgroups of Γ. We prove that the Cayley
graphs of infinite, finitely generated, elementary amenable groups support graph
height functions, which are in addition harmonic. In contrast, we show that the
Cayley graph of the first Grichorchuk group, which is amenable but not elementary
amenable, does not have a graph height function.

Examples are given of non-amenable groups without graph height functions, of
which one is the Higman group.

This work extends the set of groups for which graph height functions are known
to exist, and resolves in the negative an open question concerning the existence of
height functions on general transitive graphs.

1. Introduction

A self-avoiding walk on a graph G = (V,E) is a path that visits no vertex more
than once. The study of the number σn of self-avoiding walks of length n from a
given initial vertex was initiated by Flory, [8], in his work on polymerization, and this
topic has acquired an iconic status in the mathematics and physics associated with
lattice-graphs. Hammersley and Morton, [18], proved in 1954 that, if G is vertex-
transitive, there exists a constant µ = µ(G), called the connective constant of G, such
that σn = µn(1+o(1)) as n → ∞. This result is important not only for its intrinsic
value, but also because its proof contained the introduction of subadditivity to the
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theory of interacting systems. Subsequent work has concentrated on understanding
polynomial corrections in the above asymptotic for σn (see, for example, [2, 26]),
and on finding exact values and inequalities for connective constants (for example,
[7, 13]).

There are several natural questions about connective constants whose answers
depend on whether or not the underlying graph admits a so-called graph height
function. The first of these is whether µ(G) is a continuous function of the graph
G (see [3, 14]). This so-called locality question has received serious attention also
in the context of percolation and other disordered systems (see [4, 27, 29]), and has
been studied in recent work of the current authors on general transitive graphs, [14],
and also on Cayley graphs of finitely generated groups, [16]. Secondly, when G has
a graph height function, one may define bridge self-avoiding walks on G, and show
that their numbers grow asymptotically in the same manner as σn (see [14]). The
third such question is whether there exists a terminating algorithm to approximate
µ(G) within any given (non-zero) margin of accuracy (see [14, 15]).

Roughly speaking, a graph height function on G = (V,E) is a non-constant func-
tion h : V → Z whose increments are invariant under the action of a finite-index
subgroup of automorphisms (a formal definition may be found at Definition 3.1). It
is, therefore, useful to know which transitive graphs support graph height functions.

A method for constructing graph height functions on a certain class of transitive
graphs is described in [14], and the question is posed there of deciding whether
all transitive graphs support graph height functions. A rich source of interesting
examples of transitive graphs is provided by Cayley graphs of finitely generated
groups, as studied in [16]. It is proved there that the Cayley graphs of finitely
generated, virtually solvable groups support graph height functions, which are in
addition harmonic. The question is posed of determining whether or not the Cayley
graph of the Grigorchuk group possesses a graph height function.

The current work has two principal results, one positive and the other negative.
Firstly, it is proved that every Cayley graph of an infinite, finitely generated, ele-
mentary amenable group supports a graph height function. This extends [16, Thm
5.1] beyond the class of virtually solvable groups. Secondly, it is proved that the
Cayley graph of the Grigorchuk group does not support a graph height function.
This answers in the negative the above question of [14] (see also [16, Sect. 5]). Since
the Grigorchuk group is amenable (but not elementary amenable), possession of a
graph height function is not a characteristic of amenable groups. This is in contrast
with work of Lee and Peres, [23], who have studied the existence of non-constant,
Hilbert space valued, equivariant harmonic maps on amenable graphs.

An ancillary result is the non-existence of a graph height function for the Cayley
graph of two non-amenable groups, namely the Higman group, [21], together with a
variant with similar properties.
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This paper is organized as follows. Relevant notation for groups and graphs is
summarized in Section 2, and three different types of height functions are explained
in Section 3. The class EG of elementary amenable groups is introduced in Section
4. The existence of graph height functions on infinite, finitely generated members of
EG is stated in Theorem 4.1. The Grigorchuk group is defined in Section 5 and the
non-existence of graph height functions thereon is given in Theorem 5.1. Similarly,
the Higman group, together with another ‘Higman-type’ group, is presented and
discussed in Section 6. Theorem 4.1 is proved in Section 7, and Theorems 4.1, 5.1,
6.1, and 6.2 in Sections 8–11.

2. Groups and graphs

The graphs G = (V,E) in this paper are simple, in that they have neither loops nor
multiple edges. The degree deg(v) of vertex v ∈ V is the number of edges incident
to v. We write u ∼ v for neighbours u and v, ∂v for the neighbour set of v, and ∂ev
for set of edges incident to v. The graph is locally finite if |∂v| < ∞ for v ∈ V . An
edge from u to v is denoted 〈u, v〉 when undirected, and [u, v〉 when directed from u
to v.

The automorphism group of G is denoted Aut(G). The subgroup Γ ≤ Aut(G) is
said to act transitively on G if, for u, v ∈ V , there exists α ∈ Aut(G) with α(u) = v.
It acts quasi-transitively if there exists a finite subset W ⊆ V such that, for v ∈ V ,
there exists α ∈ Γ and w ∈ W such that α(v) = w. The graph G is said to be
(vertex-)transitive if Aut(G) acts transitively on V .

Let Γ be a group with generator set S satisfying |S| <∞ and 1 /∈ S, where 1 = 1Γ

is the identity element. We shall assume that S−1 = S, while noting that this was
not assumed in [16]. We write Γ = 〈S | R〉 with R a set of relators (or relations, when
convenient). Such a group is called finitely generated, and is called finitely presented
if, in addition, |R| <∞.

The Cayley graph of the presentation Γ = 〈S | R〉 is the simple graph G = G(Γ, S)
with vertex-set Γ, and an (undirected) edge 〈γ1, γ2〉 if and only if γ2 = γ1s for some
s ∈ S. Thus, our Cayley graphs are simple graphs. See [1, 24] for accounts of Cayley
graphs, and [19] of geometric group theory.

3. Height functions

We review the definitions of the two types of height functions, and introduce a
third type.

Let G be the set of all infinite, connected, transitive, locally finite, simple graphs,
and let G = (V,E) ∈ G. Let H ≤ Aut(G). A function F : V → R is said to be
H-difference-invariant if

(3.1) F (v)− F (w) = F (γv)− F (γw), v, w ∈ V, γ ∈ H.
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Definition 3.1 ([14]). A graph height function on G is a pair (h,H), where H ≤
Aut(G) acts quasi-transitively on G and h : V → Z, such that:

(a) h(1) = 0,
(b) h is H-difference-invariant,
(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) < h(w).

Remark 3.2. By Poincaré’s Theorem for subgroups (see [20, p. 48, Exercise 20]),
it is immaterial whether or not we require H to be a normal subgroup of Aut(G) in
Definition 3.1.

We turn to Cayley graphs of finitely generated groups. Let Γ be a finitely generated
group with presentation 〈S | R〉. As in Section 2, we assume S−1 = S and 1 /∈ S.

Definition 3.3. A group height function on Γ (or on a Cayley graph of Γ) is a
function h : Γ→ Z such that:

(a) h(1) = 0, and h is not identically zero,
(b) if γ = s1s2 · · · sm with si ∈ S, then h(γ) =

∑m
i=1 h(si),

(c) the values (h(s) : s ∈ S) are such that, if s1s2 · · · sn = 1 is a representation
of the identity with si ∈ S, then

∑n
i=1 h(si) = 0.

A necessary and sufficient condition for the existence of a group height function
is given in [16, Thm 4.1]. In the language of group theory, this condition amounts
to requiring that the first Betti number is strictly positive. It was pointed out in
[16, Remark 4.2] that (when the non-zero h(s), s ∈ S, are coprime) a group height
function is simply a surjective homomorphism from Γ to Z.

We introduce a third type of height function, which may be viewed as an interme-
diary between a graph height function and group height function.

Definition 3.4. For a Cayley graph G of a finitely generated group Γ, we say that
the pair (h,H) is a strong graph height function of the pair (Γ, G) if

(i) H E Γ acts on Γ by left multiplication, and [Γ : H] <∞,
(ii) (h,H) is a graph height function.

It is evident that a group height function h (of Γ) is a strong graph height function
of the form (h,Γ), and a strong graph height function is a graph height function.
The assumption in (i) above of the normality of H is benign, as in Remark 3.2.

We recall the definition of a harmonic function. A function h : V → R is called
harmonic on the graph G = (V,E) if

h(v) =
1

deg(v)

∑
u∼v

h(u), v ∈ V.

It is an exercise to show that any group height function is harmonic.
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4. Elementary amenable groups

The class EG of elementary amenable groups was introduced by Day in 1957, [6], as
the smallest class of groups that contains the set EG0 of all finite and abelian groups,
and is closed under the operations of taking subgroups, and of forming quotients,
extensions, and directed unions. Day noted that every group in EG is amenable (see
also von Neumann [28]). An important example of an amenable but not elementary
amenable group was described by Grigorchuk in 1984, [10]. Grigorchuk’s group is
important in the study of height functions, and we return to this in Section 5.

Let EFG be the set of infinite, finitely generated members of EG.

Theorem 4.1. Let Γ ∈ EFG. Any locally finite Cayley graph G of Γ admits a
harmonic, strong graph height function.

We prove a slightly stronger version of this at Theorem 7.1 in Section 7, using
transfinite induction.

The class EFG includes all virtually solvable groups, and thus Theorem 4.1 extends
[16, Thm 5.1]. Since any finitely generated group with polynomial growth is virtually
nilpotent, [17], and hence lies in EFG, its locally finite Cayley graphs admit harmonic
graph height functions.

5. The first Grigorchuk group

The (first) Grigorchuk group is an infinite, finitely generated, amenable group that
is not elementary amenable. We show in Theorem 5.1 that there exists a locally finite
Cayley graph of the Grigorchuk group with no graph height function. This answers
in the negative Question 3.3 of [14] (see also [16, Sect. 3]).

Here is the definition of the group in question (see [9, 10, 12]). Let T be the rooted
binary tree with root vertex ∅. The vertex-set of T can be identified with the set of
finite strings u having entries 0, 1, where the empty string corresponds to the root
∅. Let Tu be the subtree of all vertices with root labelled u.

Let Aut(T ) be the automorphism group of T , and let a ∈ Aut(T ) be the automor-
phism that, for each string u, interchanges the two vertices 0u and 1u.

Any γ ∈ Aut(G) may be applied in a natural way to either subtree Ti, i = 0, 1.
Given two elements γ0, γ1 ∈ Aut(T ), we define γ = (γ0, γ1) to be the automorphism
on T obtained by applying γ0 to T0 and γ1 to T1. Define automorphisms b, c, d of T
recursively as follows:

(5.1) b = (a, c), c = (a, d), d = (e, b),

where e is the identity automorphism. The Grigorchuk group is defined as the
subgroup of Aut(T ) generated by the set {a, b, c}.
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Theorem 5.1. The Cayley graph G = (V,E) of the Grigorchuk group with generator
set {a, b, c} satisfies:

(a) G admits no graph height function,
(b) for H E Aut(G) with finite index, any H-difference-invariant function on V

is constant on each orbit of H.

The proof of Theorem 5.1 is given in Section 9. In the preceding Section 8, two
approaches are developed for showing the absence of a graph height function within
particular classes of Cayley graph. In the case of the Grigorchuk group, two reasons
combine to forbid graph height functions, namely, the Cayley group has no auto-
morphisms beyond the action of the group itself, and the group is a torsion group in
that every element has finite order.

Since the Grigorchuk group is amenable, Theorems 4.1 and 5.1 yield that: within
the class of infinite, finitely generated groups, every elementary amenable group
has a graph height function, but there exists an amenable group without a graph
height function. The Grigorchuk group is finitely generated but not finitely presented,
[10, Thm 6.2]. Two Cayley graphs of finitely presented, non-amenable groups are
considered in Section 6, one of which is shown to possess no graph height function.

We ask if there exists an infinite, finitely presented, amenable group with a Cayley
graph having no graph height function. A natural candidate might be the group
Γ = 〈S | R〉 of [11, Thm 1], with

S = {a, c, d, t},
R =

{
a2 = c2 = d2 = (ad)4 = (adacac)4 = 1, t−1at = aca, t−1ct = dc, t−1dt = c

}
.

This finitely presented, amenable HNN-extension of the Grigorchuk group is not
elementary amenable. However, since it contains the free group generated by the
stable letter t, it possesses a group height function. More precisely, the function

h(1) = 0, h(t) = 1, h(t−1) = −1, h(s) = 0 for s ∈ S, s 6= t±1

defines a group height function.

6. The Higman group

The Higman group Γ of [21] is the infinite, finitely presented group with presenta-
tion Γ = 〈S | R〉 where

(6.1)
S = {a, b, c, d, a−1, b−1, c−1, d−1},
R = {a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2}.

This group is interesting since it has no proper normal subgroup with finite index,
and the quotient of Γ by its maximal proper normal subgroup is an infinite, finitely
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generated, simple group. By [16, Thm 4.1(b)], Γ has no group height function. The
above two reasons conspire to forbid graph height functions.

Theorem 6.1. The Cayley graph G = (V,E) of the Higman group Γ = 〈S | R〉 has
no graph height function.

A further group of Higman type is given as follows. Let S be as above, and let
Γ′ = 〈S | R′〉 be the finitely presented group with

R′ = {a−1ba = b2, b−2cb2 = c2, c−3dc3 = d2, d−4ad4 = a2}.
Note that Γ′ is infinite and non-amenable, since the subgroup generated by the set
{a, c, a−1, c−1} is a free group (as in the corresponding step for the Higman group at
[21, pp. 62–63]).

Theorem 6.2. The Cayley graph G = (V,E) of the above group Γ′ = 〈S | R′〉 has
no graph height function.

The proofs of the above theorems are given in Sections 10 and 11, respectively.

7. Proof of Theorem 4.1

We shall prove the following stronger form of Theorem 4.1.

Theorem 7.1. Let Γ ∈ EFG. There exists a normal subgroup H E Γ with 1 <
[Γ : H] < ∞ such that any locally finite Cayley graph G of Γ possesses a harmonic,
strong graph height function of the form (h,H).

Whereas every member of EFG has a proper, normal subgroup with finite index,
it is proved in [22] that there exist amenable simple groups.

We review next the structure of EG. Let EG0 be the class of all groups that are
either finite or abelian (or both), and let O be the class of all ordinals. Let α ∈ O,
α 6= 0, and assume we have defined EGβ for each β ∈ O, β < α. Each α ∈ O is
either a limit ordinal or a successor ordinal. If α is a limit ordinal, we set

(7.1) EGα =
⋃
β<α

EGβ.

If α is a successor ordinal, let EGα be the class of groups which can be obtained from
members of EGα−1 by no more than one operation of extension or directed union.

Theorem 7.2 ([5]). We have that EG =
⋃
α∈O EGα.

Proof of Theorem 7.1. Let EFGα = EFG∩EGα. For α ∈ O, let Hα be the following
statement:

Hα : for β ∈ O, β ≤ α, and Γ ∈ EFGβ, there exists H E Γ such that every locally
finite Cayley graph of Γ admits a harmonic, strong graph height function of
the form (h,H).
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Now, EFG0 is the set of infinite, finitely generated, abelian groups. By [16, Prop.
4.3, Thm 5.2(b)], any locally finite Cayley graph of Γ has a group height function,
and hence a harmonic, strong graph height function of the form (h,Γ). Therefore,
H0 holds, and we turn to the induction step.

Let α ∈ O, α 6= 0, and assume Hβ holds for all β < α. Let Γ ∈ EFGα with α the
smallest such ordinal. There are two cases to consider, depending on whether or not
α is a limit ordinal. If α is a limit ordinal, by (7.1), there exists β ∈ O, β < α, such
that Γ ∈ EFGβ. The claim now follows by Hβ.

We assume for the remainder of this proof that α is a successor ordinal. By
Theorem 7.2, the group Γ ∈ EFGα is obtained from groups in EFGα−1 by exactly
one operation of either extension or directed union. That is, there are two sub-cases
to consider.

(a) There exist N ′,Q′ ∈ EFGα−1 such that N ′ is isomorphic to a normal sub-
group N of Γ, and Q′ ' Q := Γ/N .

(b) There exist a directed set Λ and a family (Sλ : λ ∈ Λ) satisfying
(i) Sλ ∈ EFGα−1,
(ii) Sλ1 ⊆ Sλ2 whenever λ1 ≤ λ2,

(iii) Γ =
⋃
λ∈Λ Sλ.

Assume (a) holds. Since Γ is finitely generated, so is Q.

Suppose Q is infinite. We shall use the fact that Q ∈ EFGα−1. Let S be a finite set of
generators of Γ with S = S−1 and 1 /∈ S, and let G = G(Γ, S) be the corresponding
Cayley graph of Γ. A locally finite Cayley graph GQ of Q may be constructed as
follows. Let

S = {s = sN : s ∈ S},
be the (finite) generator set of Q derived from S. The vertex-set of GQ = GQ(Q,S)
is the set of cosets {v := vN : v ∈ Γ}, and two such vertices v, w are connected by
an edge of GQ if and only if there exist v ∈ v, w ∈ w such that v and w are connected
by an edge in G.

By Hα−1, there exists H E Q, not depending on the choice of S, such that GQ
admits a harmonic, strong graph height function (hQ,H). Let h : Γ→ Z and H ⊆ Γ
be given by

(7.2) h(v) = hQ(v), H =
⋃

γN∈H

γN .

The following lemma completes the proof of this case.

Lemma 7.3. We have that:

(i) H E Γ, and H acts quasi-transitively on G by left-multiplication,
(ii) the pair (h,H) is a harmonic, strong graph height function of G.
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Proof. (i) Since H E Q, we have that (aN )H(aN )−1 = H for a ∈ Γ, whence

(7.3) (aγa−1)N ∈ H whenever a, γ ∈ Γ, γN ∈ H.
It is elementary that, for a ∈ Γ and γ1N , γ2N ∈ H,

(7.4) (aγ1a
−1)N = (aγ2a

−1)N if and only if γ1N = γ2N .
Since H is a group, so is H. For a ∈ Γ, by (7.2)–(7.4),

aHa−1 =
⋃

γN∈H

a(γN )a−1 =
⋃

γN∈H

(aγa−1)N

=
⋃

γN∈H

γN = H.

Therefore, H E Γ. We prove next that [Γ : H] <∞.
Since (hQ,H) is a graph height function, we have that [Q : H] < ∞. Let

W 1,W 2, . . . ,W k be the cosets of H in Q, and let

Wi =
⋃

γN∈W i

γN .

We show next that each Wi is contained in an orbit of H acting on Γ. (Actually the
Wi are the orbits.) It follows that H acts quasi-transitively on G.

Without loss of generality, let u, v ∈ W1. We shall show that there exists ν ∈ H
such that v = νu. Suppose u ∈ aN , v ∈ bN where aN , bN ∈ W 1. There exists
γN ∈ H such that γNaN = bN , which is to say that aN b−1 ∈ H.

There exist ni such that u = an1, v = bn2. Then, u = (an1n
−1
2 b−1)v, and ν :=

a(n1n
−1
2 )b−1 ∈ H by (7.2).

(ii) It is trivial that h(1) = hQ(1) = 0. For γ ∈ H and u, v ∈ Γ, we have

h(γu)− h(γv) = hQ(γu)− hQ(γv)

= hQ(γ u)− hQ(γ v) since N is normal

= hQ(u)− hQ(v) since hQ is H-difference invariant, γ ∈ H
= h(u)− h(v).

Therefore, h is H-difference-invariant.
For v ∈ Γ, there exist s1, s2 ∈ S such that

hQ(v s1) < hQ(v) < hQ(v s2),

whence, since N is a normal subgroup of Γ,

h(vs1) < h(v) < h(vs2).

In conclusion, (h,H) is a strong graph height function of G.
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We show finally that h is harmonic on the Cayley graph G = (V,E). The edges
incident to the vertex labelled γ ∈ Γ have the form 〈γ, γs〉 for s ∈ S. Since hQ
is harmonic on the quotient graph, it suffices to show that the cardinality Ns :=
|∂γ ∩ (γN s)| does not depend on the choice of s ∈ S \N . For s ∈ S \N and n ∈ N ,
γ ∼ γns if and only if ns ∈ S, which is to say that n ∈ s−1S, whence Ns = |S|. �

Suppose Q is finite. Since N ' N ′ ∈ EFGα−1, we have that N ∈ EFGα−1 and
1 < [Γ : N ] < ∞. By Hα−1, there exists H′ E N with [N : H′] < ∞ such that any
locally finite Cayley graph GN of N admits a strong graph height function of the
form (hN ,H′).

Since |Γ/H′| = |Γ/N| · |N /H′| < ∞, there exists (by Poincaré’s Theorem for
subgroups) a subgroup H ≤ H′ that is normal in Γ with finite index, that is, H E Γ
and 1 < [Γ : H] < ∞. Choose a locally finite Cayley graph GN of N , and find a
strong graph height function of the form (hN ,H′). Let F : H → Z be the restriction
of hN to H.

Lemma 7.4. The function F is a group height function on the group H.

Proof. As noted in [16, Remark 4.2], a group height function is a homomorphism
from H to Z that is not identically zero. For γ1, γ2 ∈ H,

F (γ1γ2)− F (γ1) = hN (γ1γ2)− hN (γ1)

= hN (γ2)− hN (1) = F (γ2),

since γ1 ∈ H′ and hN is H′-difference invariant. Therefore, F is a homomorphism.
It suffices now to show that F 6≡ 0 on H. Assume the converse, that F ≡ 0 on H.

For γ ∈ Γ, there exists aγ ∈ N such that γ ∈ aγH, so that γ = aγν for ν ∈ H. Since
hN is H-difference-invariant,

(7.5) hN (γ) = hN (aγ) + F (ν) = hN (aγ).

Now |N /H| <∞, so we may restrict consideration to only finitely many aγ. There-
fore, hN (γ) is bounded, which is impossible since hN is a graph height function. We
deduce that F 6≡ 0 on H. �

Let G = G(Γ, S) be a locally finite Cayley graph of Γ. The triple (Γ,H, F ) satisfies
the conditions of [16, Thm 3.5] with H acting by left multiplication, and it follows
that G possesses a harmonic graph height function of the form (h,H).

Assume (b) holds. Let Γ be finitely generated with finite generator set S =
{s1, s2, . . . , sk}. Since Γ =

⋃
λ∈Λ Sλ, there exists λi ∈ Λ such that si ∈ Sλi . Let

L = max{λ1, λ2, . . . , λk}, so that SL = Γ. Then Γ ∈ EFGα−1, which contradicts the
minimality of α. �
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8. Criteria for the absence of height functions

This section contains some observations relevant to proofs of the non-existence of
graph height functions.

Let Γ = 〈S | R〉 where |S| <∞, and let G = (V,E) be the corresponding Cayley
graph. Let Π be the set of permutations of S that preserve Γ up to isomorphism,
and write e ∈ Π for the identity. Thus, π ∈ Π acts on Γ by: for w = s1s2 · · · sm
with si ∈ S, we have π(w) = π(s1)π(s2) · · · π(sm). It follows that Π ⊆ Aut(G).
For γ = g1g2 · · · gn ∈ Γ with gi ∈ S, and π ∈ Π, we define γπ ∈ Aut(G) by
γπ(w) = g1g2 · · · gnπ(w), w ∈ V . Write ΓΠ ⊆ Aut(G) for the subgroup containing all
such γπ, and note that γe operates on G in the manner of γ with left-multiplication.

The stabilizer Stabv of v ∈ V is the set of automorphisms of G that preserve v,
that is,

Stabv = {η ∈ Aut(G) : η(v) = v}.
Proposition 8.1. Suppose Stab1 = Π.

(a) Aut(G) = ΓΠ.
(b) If M E Aut(G) has finite index, the subgroup N = M∩ Γ satisfies N E Γ

and [Γ : N ] <∞.
(c) If G has a graph height function, then it has a strong graph height function.

Proof. Assume Stab1 = Π.
(a) Let η ∈ Aut(G), and write γ = η(1). Then γ−1η ∈ Stab1, which is to say that

γ−1η = π ∈ Π, and thus η = γπ ∈ ΓΠ so that Aut(G) = ΓΠ. Note for future use
that

[Aut(G) : Γ] = |Π| <∞.
(b) Let M E Aut(G) be a finite-index normal subgroup, and let N = {γe : γe ∈
M}. Viewed as automorphisms, we have that γe = γ, and hence N ≤ Γ ≤ Aut(G).
For α ∈ Γ, ν ∈ N , we have that (α−1να)e = α−1(νe)α ∈ M, since M E Aut(G).
Therefore, N E Γ.

Since Γ,M≤ Aut(G) and N = Γ ∩M, we have that

[Aut(G) : N ] ≤ [Aut(G) : Γ] · [Aut(G) :M] <∞,
which implies [Γ : N ] <∞, as required.

(c) Let (h,H) be a graph height function of G. Since H is a finite-index normal
subgroup of Aut(G), by part (b), there exists N ≤ H that is a finite-index normal
subgroup of Γ. Since N ≤ H, h acts on Γ and is N -difference invariant, whence
(h,N ) is a strong graph height function. �

Corollary 8.2. Let Γ = 〈S | R〉 have Cayley graph G satisfying Stab1 = Π.

(a) If Γ has no proper, normal subgroup with finite index, any graph height func-
tion of G is also a group height function of Γ.
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(b) If every element in Γ has finite order, then G has no graph height function.

Proof. (a) Let (h,M) be a graph height function of G. If Γ satisfies the given
condition then, by Proposition 8.1(b), M ⊇ Γ. Therefore, (h,Γ) is a graph height
function and hence a group height function.

(b) If G has a graph height function, by Proposition 8.1(c), G has a strong graph
height function (h,N ). Assume every element of Γ has finite order. For γ ∈ N with
γn = 1, we have that h(γn) = nh(γ) = 0, whence h ≡ 0 on N .

We now use the argument around (7.5). For γ ∈ Γ, find αγ such that γ ∈ αγN .
Since h is N -difference-invariant, there exists ν ∈ N such that

(8.1) h(γ) = h(αγ) + h(ν) = h(αγ).

Now [Γ : N ] <∞, so we may consider only finitely many choices for αγ. Therefore,
h is bounded on Γ, in contradiction of the assumption that it is a graph height
function. �

9. Proof of Theorem 5.1

The main step is to show that

(9.1) Stab1 = {e},
where e is the identity of Aut(G). Once this is shown, claim (a) follows from Corollary
8.2(b) and the fact that every element of the Grigorchuk group has finite order, [19].
It therefore suffices for (a) to show (9.1), and to this end we study the structure of
the Cayley graph G = (V,E).

It was shown in [25] (see also [12, eqn (4.7)]) that Γ = 〈S | R〉 where S = {a, b, c, d},
R is the following set of relations

1 = a2 = b2 = c2 = d2 = bcd(9.2)

= σk((ad)4) = σk((adacac)4), k = 0, 1, 2, . . . ,

and σ is the substitution

σ :


a 7→ aca,

b 7→ d,

c 7→ b,

d 7→ c.

It follows that the following, written in terms of the reduced generator set {a, b, c}
after elimination of d, are valid relations:

(9.3) 1 = a2 = b2 = c2 = (bc)2 = (abc)4 = (ac)8 = (abcacac)4 = (acab)8 = (ab)16,

(see also [12, Sect. 1]). Note the asymmetry between b and c in that ab (respectively,
ac) has order 16 (respectively, 8).
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Let

Vn = {v ∈ Γ : dist(v,1) = n},
where dist denotes graph-distance on G. Since G is locally finite, |Vn| < ∞. For
η ∈ Stab1, η restricted to Vn is a permutation of Vn. As illustrated in Figure 9.1,

V0 = {1}, V1 = {a, b, c}, V2 = {ab, ac, ba, bc = cb, ca}.

1

a b c

ab ac ba bc = cb ca

Figure 9.1. The subgraph of G on V0 ∪ V1 ∪ V2.

Let η ∈ Stab1, so that η(a) ∈ V1. Since the shortest cycles using the edges 〈1, b〉
and 〈1, c〉 have length 4, and using 〈1, a〉 greater than 4 (see Figure 9.1), we have
that η(a) = a. By a similar argument, we obtain that, for n ≥ 1,

(9.4) η(va) = η(v)a, v ∈ Vn, va ∈ Vn+1,

which we express by saying that η maps a-type edges to a-type edges.
We show next that

(9.5) η(vc) = η(v)c, v ∈ V, η ∈ Stab1,

which is to say that η maps c-type edges to c-type edges. By (9.4)–(9.5), η ∈ Stab1

maps b-type edges to b-type edges also, whence η = e as required. It remains to
prove (9.5).

Assume, in contradiction of (9.5), that there exists v ∈ V , η ∈ Stab1 such that
η(vc) = η(v)b. Since ac has order 8, we have that (ca)8 = 1. Let C be the directed
cycle corresponding to the word v(ca)8; thus, C includes the edge [v, vc〉. Then η(C)
is a cycle of length 16 including the edge [η(v), η(v)b〉. Since C contains exactly 8
a-type edges at alternating positions, by (9.4), so does η(C). Therefore, η(C) has
the form η(v)ba

∏8
i=2(xia), where xi ∈ {b, c} for i = 2, 3, . . . , 8. In particular,

(9.6) ba

8∏
i=2

(xia) = 1, xi ∈ {b, c}, i = 2, 3, . . . , 8.
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The word problem of the Grigorchuk group is solvable (see [10] and [12, Sect. 4]),
in that there exists an algorithm to determine whether or not w = 1 for any given
word w ∈ {a, b, c}∗. By applying this algorithm (see below), we deduce that (9.6)
has no solution. Equation (9.5) follows, and the proof of part (a) is complete.

Finally, here is a short amplification of the analysis of (9.6). The word in (9.6) has
the form b(ay1a)z1(ay2a)z2(ay3a)z3(ay4a), where yi, zj ∈ {b, c}. By (5.1), the effect of
such a word on the right sub-tree T1 is γ1 := ca(c/d)a(c/d)a(c/d)a, where each term
of the form (y/z) is to be interpreted as ‘either y or z’. The effect of γ1 on the left sub-
tree T10 of T1 is γ10 := a(d/b)(a/e)(d/b). If there is an odd number of appearances of
a in γ10, then γ10 is not the identity, and thus we may assume γ10 := a(d/b)a(d/b). It
is immediate that none of the four possibilities is the identity, and the claim follows.

Part (b) holds as follows. Suppose there exists H E Γ, γ ∈ Γ, and a non-constant
H-difference-invariant function F : γH → Z. It is elementary that H is unimodular
and symmetric (see, for example, [15, Sect. 4]). By [16, Thm 3.5] and the comment
near the beginning of [16, Sect. 8], G has a graph height function, in contradiction
of part (a).

10. Proof of Theorem 6.1

We shall prove three statements:

(i) Γ has no group height function,
(ii) Π is the cyclic group generated by the permutation (abcd), with the conven-

tion that η(x−1) = η(x)−1, for η ∈ Π, x ∈ {a, b, c, d},
(iii) Stab1 = Π.

It is proved in [21] that the Higman group has no proper, finite-index, normal sub-
group, and the result follows from the above statements by Corollary 8.2(a).

(i) The absence of a group height function is immediate by [16, Example 6.3].
(ii) Evidently, Π contains the given cyclic group, and we turn to the converse.

Since elements of Π preserve Γ up to isomorphism,

(10.1) η(x−1) = η(x)−1, x ∈ S.

We next rule out the possibility that η(x) = y−1 for some x, y ∈ {a, b, c, d}. Suppose,
for illustration, that η(a) = b−1. By (10.1), the relation a−1ba = b2 becomes bβb−1 =
β2 where β = η(b). The Higman group has no such relation with β ∈ S. In summary,

(10.2) η(x) ∈ {a, b, c, d}, η(x−1) = η(x)−1, x ∈ {a, b, c, d}.

The shortest cycles containing the edge 〈1, a〉, modulo rotation and reversal, arise
from the relations ab2a−1b−1 = 1 and ada−2d−1 = 1 (see Figure 10.2). The first uses
a±1 twice and b±1 thrice, and the second uses a±1 thrice and d±1 twice. Let η ∈ Π,
and suppose for illustration that η(a) = b (the same argument is valid for any η(x),
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x ∈ {a, b, c, d}). By considering the cycles starting 〈1, b〉, 〈1, c〉, 〈1, d〉, and using
(10.2), we deduce that

η(b) = c, η(c) = d, η(d) = a,

and the claim is proved.

x

y

1

x−1

x−1y

y2

Figure 10.1. Part of the Cayley graph of the Baumslag–Solitar group BS(x, y).

(iii) We begin with some observations concerning the Baumslag–Solitar (BS) group
BS(x, y) with presentation 〈x, y, x−1, y−1 | x−1yx = y2〉, of which the Cayley graph
is sketched in Figure 10.1. Edges of the form 〈γ, γx±1〉 have type x, and of the form
〈γ, γy±1〉 type y. By inspection, the shortest cycles have length 5 (see Figure 10.2),
and, for γ ∈ BS(x, y),

for p, q = ±1, the edges 〈γ, γxp〉 and 〈γ, γyq〉 lie in a common 5-cycle,(10.3)

the third edge of any directed 5-cycle beginning [γ, γx〉 has type y,(10.4)

the third edge of any directed 5-cycle beginning [γ, γx−1〉 has type x,(10.5)

every 5-cycle contains two consecutive edges of type y, and not of type x,(10.6)

a type x (respectively, type y) edge lies in 2 (respectively, 3) 5-cycles.(10.7)

Returning to the Higman group, for convenience, we relabel the vector (a, b, c, d)
as (s0, s1, s2, s3), with addition and subtraction of indices modulo 4. Let G be the
Cayley graph of the Higman group Γ = 〈S | R〉, rooted at 1. An edge of G is said
to be of type si if it has the form 〈γ, γs±1

i 〉 with γ ∈ Γ. We explain next how to
obtain information about the types of the edges of G, by examination of G only, and
without further information about the vertex-labellings as elements of Γ.
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1x−1
x

y2x−1y

y−2

x

y

Figure 10.2. Part of one ‘sheet’ of the Cayley graph of BS(x, y).

We consider first the set ∂e1 of edges of G incident to 1. Let e1 = 〈1, v〉, t ∈
{0, 1, 2, 3}, and p ∈ {−1, 1}. Assume that

(10.8) v = spt ,

so that, in particular, e1 has type st. By (10.3), for j = ±1, e1 lies in a 5-cycle of
BS(st−1, st) (respectively, BS(st, st+1)) containing 〈1, sjt−1〉 (respectively, 〈1, sjt+1〉).
On the other hand, by consideration of the relator set R, e1 lies in no 5-cycle including
an edge of type st+2. Therefore, the edges of the form 〈1, s±1

t+2〉 may be identified by
examination of G, and we denote these as g1, g2. There is exactly one further edge
of ∂e1 that lies in no 5-cycle containing either g1 or g2, and we denote this edge as
e2. In summary,

{e1, e2} =
{
〈1, s−1

t 〉, 〈1, st〉
}
, {g1, g2} =

{
〈1, s−1

t+2〉, 〈1, st+2〉
}
.

Having identified the edges of ∂e1 with types st and st+2, we move to the other
endpoint v = spt of e1, and apply the same argument. Let e1, e′1 be the two type-st
edges incident to v.

We turn next to the remaining four edges of ∂e1. Let k be such an edge, and
consider the property: k lies in a 5-cycle of G containing both e1 and e′1. By (10.6)
and examination of the Cayley graphs of the four groups BS(si, si+1), 0 ≤ i < 4, we
see that k has this property if it has type t− 1, and not if it has type t+ 1. Thus we
may identify the types of the four remaining edges of ∂e1, which we write as

{f1, f2} =
{
〈1, s−1

t+1〉, 〈1, st+1〉
}
, {h1, h2} =

{
〈1, s−1

t+3〉, 〈1, st+3〉
}
.

Having determined the types of edges in ∂e1 (relative to the type t of the initial
edge e1), we move to an endpoint of such an edge other than 1, and apply the same
argument. By iteration, we deduce the types of all edges of G. Let T (k) denote the
type of edge k. It follows from the above that

(10.9) T (k)− T (e1) is independent of t = T (e1),
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with arithmetic on indices, modulo 4.
We explain next how to identify the value of p = p(v) in (10.8) from the graphical

structure of G. Let Si be the subgraph of G containing all edges with type either si or
si+1, so that each component of Si is isomorphic to the Cayley graph of BS(si, si+1).
By (10.4)–(10.5), every directed 5-cycle of BS(st, st+1) starting with the edge [1, st〉
has third edge with type st+1, whereas every directed 5-cycle starting with [1, s−1

t 〉
has third edge with type st. We examine St to determine which of these two cases
holds, and the outcome determines the value of p = p(v).

The above argument is applied to each directed edge [γ, γs±1
i 〉 of G, and the power

of si is thus determined from the graphical structure of G.
Let η ∈ Stab1. By (10.9), the effect of η is to change the edge-types by

T (k) 7→ T (k) + T (η(e1))− t.

Now, η(v) is adjacent to 1 and, by the above, once η(v) is known, the action of η
on the rest of G is determined. Since η ∈ Aut(G), η(v) may be any neighbour w
of 1 with the property that p(w) = p(v). There are exactly four such neighbours
(including v) and we deduce from (10.9) that η lies in the cyclic group generated by
the permutation (s0s1s2s3).

11. Proof of Theorem 6.2

We shall prove three statements:

(i) Γ has no group height function,
(ii) Stab1 = Π where Π = {e},

(iii) Γ has no proper normal subgroup with finite index.

The result follows from these statements by Corollary 8.2(a), and we turn to their
proofs.

(i) The absence of a group height function is immediate by [16, Thm 4.1(b)].
(ii) Let η ∈ Stab1 and γ ∈ Γ. We consider the action of η on directed edges of G.

By inspection of the set R′ of relations, an edge of the type 〈γ, γx〉 lies in shortest
cycles of length 

5, 8 if x = a±1,

5, 7 if x = b±1,

7, 8 if x = c±1,

9, 11 if x = d±1.

Since the four combinations are distinct, it must be that

(11.1) η([γ, γx〉) = [γ′, γ′x±1〉, γ ∈ Γ, x ∈ S,



18 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

where γ′ = η(γ). We show next that

(11.2) η([γ, γx〉) 6= [γ′, γ′x−1〉, γ ∈ Γ, x ∈ S,
which combines with (11.1) to imply η = e as required.

It suffices to consider the case x = a in (11.2), since a similar proof holds in the
other cases. Suppose η([γ, γa〉) = [γ′, γ′a−1〉, and consider the cycle corresponding
to γab−2a−1b−1, that is (γ, γa, γab−1, γab−2, γab−2a−1, γab−2a−1b−1 = γ). By (11.1),
this is mapped under η to the cycle corresponding to γ′a−1b±2a±1b±1. By examining
the relation set R′, the only cycles beginning γ′a−1b±1 with length not exceeding 5
are γ′a−1bab−2 and γ′a−1b−1ab2, in contradiction of the above (since the third step
of these two cycles is a rather than the required b±1).

(iii) Suppose N is a proper normal subgroup of Γ with finite index. The quotient
group Γ/N is non-trivial and finite with generators s = sN , s ∈ S, satisfying

(11.3)
a−1ba = b

2
, b

−2
cb

2
= c2,

c−3dc3 = d
2
, d

−4
ad

4
= a2.

Since Γ/N is finite, each s has finite order, denoted ord(s). It follows from (11.3)
that

(11.4) ord(s) > 1, s = a, b, c, d.

To see this, suppose for illustration that ord(c) = 1, so that c = 1. By the third
equation of (11.3), ord(d) = 1, so that d = 1, and similarly for a and b, implying
that Γ/N is trivial, a contradiction.

By induction, for n ≥ 1,

a−nban = b
2n

, b
−2n

cb
2n

= c2n ,

c−3ndc3n = d
2n

, d
−4n

ad
4n

= a2n ,

whence, by setting n = ord(a), etc,

(11.5)
ord(b)

∣∣ (2ord(a) − 1), ord(c)
∣∣ (2ord(b) − 1),

ord(d)
∣∣ (2ord(c) − 1), ord(a)

∣∣ (2ord(d) − 1),

where u | v means that v is a multiple of u. We shall deduce a contradiction from
(11.4) and (11.5). This is done as in [21], of which we reproduce the proof for
completeness.

Let p be the least prime factor of the four integers ord(s), s ∈ {a, b, c, d}. By
(11.4), p > 1. Suppose that p | ord(a) (with a similar argument if p | ord(s) for some

other parameter s). Then p | 2ord(d) − 1 by (11.5), and in particular p is odd and
therefore coprime with 2. Let r be the multiplicative order of 2 mod p, that is, the
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least positive integer r such that p | 2r − 1. In particular, r > 1, so that r has a
prime factor q. By Fermat’s little theorem, r | p − 1 so that q < p. Furthermore,
r | ord(d) so that q | ord(d), in contradiction of the minimality of p. We deduce that
Γ has no proper, normal subgroup with finite index.
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