CUBIC GRAPHS AND THE GOLDEN MEAN
GEOFFREY R. GRIMMETT AND ZHONGYANG LI

ABSTRACT. The connective constant p(G) of a graph G is the exponential growth
rate of the number of self-avoiding walks starting at a given vertex. We investigate
the validity of the inequality u > ¢ for infinite, transitive, simple, cubic graphs,
where ¢ := %(1 +1/5) is the golden mean. The inequality is proved for several fam-
ilies of graphs including: (i) Cayley graphs of infinite groups with three generators
and strictly positive first Betti number, and (ii) infinite, transitive, topologically
locally finite (TLF) planar, cubic graphs. Bounds for p are presented for transitive
cubic graphs with girth either 3 or 4, and for certain quasi-transitive cubic graphs.

1. INTRODUCTION

Let GG be an infinite, transitive, simple, rooted graph, and let o,, be the number of
n-step self-avoiding walks (SAWs) starting from the root. It was proved by Hammer-
sley [13] in 1957 that the limit = pu(@) := lim,_o o™ exists, and he called it the
‘connective constant’ of G. A great deal of attention has been devoted to counting
SAWs since that introductory mathematics paper, and survey accounts of many of
the main features of the theory may be found at [1, 17].

A graph is called cubic if every vertex has degree 3, and transitive if it is vertex-
transitive (further definitions will be given in Section 2). Let G, be the set of infinite,
transitive, simple graphs with degree d, and let ;(G) denote the connective constant
of G € G4. The letter ¢ is used throughout this paper to denote the golden mean
¢ = %(1 ++/5), with numerical value 1.618 - - - . The basic question to be investigated
here is as follows.

Question 1.1 ([10]). Is it the case that u(G) > ¢ for G € G3?

This question has arisen within the study by the current authors of the properties
of connective constants of transitive graphs, see [12] and the references therein. The
question is answered affirmatively here for certain subsets of Gz, but we have no
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complete answer to Question 1.1. Note that u(G) > vd—1 > ¢ for G € G; with
d > 4, by [10, Thm 1.1].

Here is some motivation for the inequality u(G) > ¢ for G € Gs. It well known
and easily proved that the ladder graph L. (see Figure 5.1) has connective constant
¢. Moreover, the number of n-step SAWs can be expressed in terms of the Fi-
bonacci sequence (an explicit such formula is given in [22]). It follows that u(G) > ¢
whenever there exists an injection from the set of (rooted) n-step SAWs on LL to the
corresponding set on G. One of the principal techniques of this article is to construct
such injections for certain families of cubic graphs G, including (i) graphs supporting
harmonic functions with certain properties, (ii) graphs supporting transitive graph
height functions (this holds for many Cayley graphs), (iii) infinite, transitive, topo-
logically locally finite (TLF) planar graphs with degree 3.

There are many infinite, transitive, cubic graphs, and we are unaware of a complete
taxonomy. Various examples and constructions are described in Section 4, and the
inequality p > ¢ is discussed in each case. In our search for cubic graphs, no
counterexample has been knowingly revealed. However, there exist cubic graphs for
which the inequality is neither proved nor disproved in this work, and a good example
of this is the Cayley graph G of the Grigorchuk group. Our best lower bound in the
last case is u(G) > 1216 ~ 1.513; see Example 7.3.

A substantial family of cubic graphs arises through the application of the so-called
‘Fisher transformation’ to a d-regular graph. We make explicit mention of the Fisher
transformation here since it provides a useful technique in the study of connective
constants.

This paper is structured as follows. General criteria that imply p > ¢ are presented
in Section 3 and proved in Section 5. In Section 4 is given a list of cubic graphs
known to satisfy u > ¢. Transitive graph height functions are discussed in Section
6, including sufficient conditions for their existence. Upper and lower bounds for
connective constants for cubic graphs with girth 3 or 4 are stated and proved in
Section 7, and these include our best results for the Cayley graph of the Grigorchuk
group. In the final Section 8, it is proved that p > ¢ for all transitive, topologically
locally finite (TLF) planar, cubic graphs.

2. PRELIMINARIES

The graphs G = (V, E) of this paper will be assumed to be connected, infinite, and
simple. We write u ~ v if (u,v) € E. The degree deg(v) of vertex v is the number
of edges incident to v, and G is called cubic if deg(v) = 3 for v € V.

The automorphism group of G is written Aut(G). A subgroup I' < Aut(G) is
said to act transitively if, for v,w € V', there exists v € I' with vv = w. It acts
quasi-transitively if there is a finite subset W C V' such that, for v € V, there exist
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w € W and v € T with yv = w. The graph is called (vertex-)transitive (respectively,
quasi-transitive) if Aut(G) acts transitively (respectively, quasi-transitively).

A walk w on the (simple) graph G is a sequence (wg,ws, ..., w,) of vertices w;
such that n > 0 and e¢; = (w;, w;41) € E for ¢ > 0. Its length |w| is the number of its
edges, and it is called closed if wg = w,. The distance dg(v, w) between vertices v,
w is the length of the shortest walk between them.

An n-step self-avoiding walk (SAW) on G is a walk (wg, w1, ..., w,) of length n > 0
with no repeated vertices. The walk w is called non-backtracking if w; 1 # w;_
for i > 1. A cycle is a walk (wp,ws,...,w,) with n > 3 such that w; # w; for
0 <1< j<nand wy = w,. Note that a cycle has a chosen orientation. The girth
of G is the length of its shortest cycle. A triangle (respectively, quadrilateral) is a
cycle of length 3 (respectively, 4).

We denote by G the set of infinite, connected, transitive, simple graphs with finite
vertex-degrees, and by O the set of such graphs with ‘transitive’ replaced by ‘quasi-
transitive’. The subset of G containing graphs with degree d is denoted G4, and the
subset of G, containing graphs with girth g is denoted G4,. A similar notation is
valid for Qg and Q.

Let 3, (v) be the set of n-step SAWs starting at v € V, and o0, (v) := |3, (v)] its
cardinality. Assume that G is connected, infinite, and quasi-transitive. It is proved
in [13, 14] that the limit
(2.1) p=p(G) = lim o,(v)"", vev,

n—od

exists, and p(G) is called the connective constant of G. We shall have use for the
SAW generating function

Z,(¢) = Z ¢ = Zan(v)cn, veV, (eR.
=0

m a SAW n

from v
We shall sometimes consider SAWSs joining midpoints of edges of G.
There are two (related) types of graph functions relevant to this work. We recall
first the definition of a ‘graph height function’, as introduced in [8] in the context of
the study of connective constants.

Definition 2.1 ([8]). Let G € Q. A graph height function on G is a pair (h, H)
such that:
(a) h:V —Z and h(1) =0,
(b) H is a subgroup of Aut(G) acting quasi-transitively on G such that h is H-
difference-invariant in the sense that

h(av) — h(au) = h(v) — h(u), aeH, u,veV,
(c) forv eV, there exist u,w € Ov such that h(u) < h(v) < h(w).
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q(w)

FIGURE 3.1. An illustration of the notation of equations (3.2)—(3.3).

A graph height function (h,H) of G is called transitive if H acts transitively on G.

The properties of normality and unimodularity of the group H are discussed in
8], but do not appear to be especially relevant to the current work.

Secondly we remind the reader of the definition of a harmonic function on a graph
G = (V,E). A function h : V — R is called harmonic if

1
h(v) = Toa(0) > h(u),  wveV.

u~v

There are occasional references to the Cayley graphs of finitely generated groups
in this paper, and the reader is referred to [11, 12] for background material.

3. GENERAL RESULTS

Let G = (V, E) be a graph. For h: V — R, we define two functions m : V" — V
and M : V — R, depending on h, by
(3.1) m(u) € argmax{h(z) — h(u) : x ~u}, M, = h(m(u)) — h(u), ueV.
There may be more than one candidate vertex for m(u), and hence more than one
possible value for the term M,y,(,), which will appear later.

Let Qn C Q3 be the set of infinite, cubic, quasi-transitive graphs G with the
following properties: there exists h : V' — R such that h is harmonic and, for v € V|

(32) Mm(u) - Mu < min{Mu7 Mq(v)}>
(3:3) 2Myw) > Mo — My + Min(q(v)),
where ¢(v) is the unique neighbour of v := m(u) other than w and m(v). (The

notation is illustrated in Figure 3.1.) Since h is assumed harmonic, we have M, > 0
for u € V, and hence M, > 0 by (3.2).

Conditions (3.2)—(3.3) will be used in the proof of part (a) of the following theorem.
Less obscure but still sufficient conditions are contained in Remark 3.2, following.
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Theorem 3.1. We have that 1(G) > ¢ if any of the following hold.
(a) G e Q.
(b) G € G3 has a transitive graph height function.

(c) G € Qs , where g > 4, and there exists a harmonic function h on G satisfying
(3.2).

Remark 3.2. Condition (3.2) holds whenever there exists A > 0 and a harmonic
function h : V — R such that, foru eV, A < M, < 2A. Similarly, both (3.2) and
(3.3) hold whenever there exists A > 0 such that, for u € V, 2A < M, < 3A.

Example 3.3. Here are three examples of Theorem 5.1 in action.

(a) The hexagonal lattice supports a harmonic function h with M, = 1.

(b) The Cayley graph of a finitely presented group I' = (S | R) with |S| = 3 has
a transitive graph height function whenever it has a group height function (in
the language of [11], where infinitely many such examples are given). See
Theorem 6.3 for a sufficient condition on a transitive cubic graph to possess
a transitive graph height function.

(¢) The Archimedean lattice [4,6,12] lies in Qs 4 and possesses a harmonic func-
tion satisfying (3.2). This is illustrated in Figure 6.1. See also Remark 8.8.

The proof of Theorem 3.1 is found in Section 5.

4. EXAMPLES OF INFINITE, TRANSITIVE, CUBIC GRAPHS

4.1. Cubic graphs with > ¢. Here are some examples of infinite, cubic graphs,
to many of which Theorem 3.1 may be applied. Each item is prefixed by the part
of the theorem that applies. Most of the examples are transitive, and all are quasi-
transitive.

A. (b) The 3-regular tree has connective constant 2.
B. (a) The ladder graph L (see Figure 5.1) has yu = ¢. This exact value is
elementary and well known; see, for example, [10, p. 184].

C. (a) The hexagonal lattice H has = /2 4+ v/2 > ¢. See [4].

D. (a) It is explained in [9, Ex. 4.2] that the square/octagon lattice [4,8, §]
satisfies p > ¢.

E. (c¢) The Archimedean [4, 6, 12] lattice has connective constant at least ¢. See
Example 3.3(c) and Remark 8.8.

F. (b) The Cayley graph of the lamplighter group has a so-called group height
function, and hence a transitive graph height function. See Example 3.3(b)
and [11, Ex. 5.3].

G. The following examples concern so-called Fisher graphs (see [7] and Section
7). For G € Gs, the Fisher graph Gg (€ Qs) is obtained by replacing each
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vertex by a triangle. It is shown at [7, Thm 1] that the value of u(Gr) may
be deduced from that of u(G), and furthermore that u(Gg) > ¢ whenever
1(G) > o.

H. In particular, the Fisher graph Hy of H satisfies u(Hp) > ¢.

. The Archimedean lattices mentioned above are the hexagonal lattice [6, 6, 6],
the square/octagon lattice [4, 8, 8], together with [4, 6, 12], and Hp = [3, 12, 12].
To this list we may add the ladder graph L = [4,4, oo].

These are examples of so-called transitive, TLF-planar graphs [18], and all
such graphs are shown in Section 8 to satisfy u > ¢.

J. More generally, if G € G; where d > 3, and

—

1
¢r
— <

n(G) ~
¢r+1

then its (generalized) Fisher graph satisfies u(Gg) > ¢. See Proposition 7.5.
Since p < d — 1, the above display can be satisfied only if d < 10.

K. The Cayley graph G of the group I' = (S | R), where S = {a,b,c} and
R = {c% ab,a’}, is the Fisher graph of the 3-regular tree, and hence p(G) > ¢.
The exact value of 1(G) may be calculated by [7, Thm 1] (see also Proposition
7.5(a) and [6, Ex. 5.1]).

We note that the [3,12,12] lattice is a quotient graph of G' by adding the
further relator (ac)®. Since the last lattice has connective constant at least
¢, so does G (see [9, Cor. 4.1]).

L. The Cayley graph G of the group I' = (S | R), where S = {a,b,c} and
R = {a?,b% 2, (ac)?}, is the generalized Fisher graph of the 4-regular tree.
The connective constant 1(G) may be calculated exactly, as in Theorem 7.4,
and satisfies p > ¢.

Since the ladder graph L is the quotient graph of G obtained by adding
the further relator (bc)?, we have by [9, Cor. 4.1] that u(G) > ¢. (see [9)]).

if d = 2r,

4.2. Open questions. Here are two cases, one specific and the other more general,
in which we are unable to show that u > ¢.

A. We are unable to show u(G) > ¢ for the Cayley graph G of the Grigorchuk
group. Our best inequality is pu(G) > 1216 ~ 1.513. See Example 7.3, and
also [12, Sect. 5].

B. Let GG be the Cayley graph of an infinite, finitely generated, virtually abelian
group I' = (S | R) with |S| = 3. Is it generally true that u(G) > ¢? Whereas
such groups are abelian-by-finite, the finite-by-abelian case is fairly immediate
(see Theorem 6.6).
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F1GURE 5.1. The singly infinite ladder graph IL, . The doubly infinite
ladder L extends to infinity both leftwards and rightwards.

A method for constructing such graphs was described by Biggs [2, Sect. 19]
and developed by Seifter [19, Thm 2.2].

5. PROOF OF THEOREM 3.1

Proof of part (a). Let Ly be the singly-infinite ladder graph of Figure 5.1. An ez-
tendable SAW is a SAW starting at 0 that, at each stage, steps either to the right
(that is, horizontally) or between layers (that is, vertically). Note that the first step
of an extendable walk is necessarily horizontal, and every vertical step is followed
by a horizontal step. Let E, be the set of n-step extendable SAWs on L. It is
elementary, by considering the first two steps, that n, = |E,| satisfies the recursion

Nn = Mn—-1 + Nn—2, n Z 3a
whence
(5.1) lim n'/" = ¢.

Let 0 be a root of G = (V,E) € Qy, and let h : V — R be harmonic such that
(3.2)—(3.3) hold. We shall construct an injection f : E,, — ¥,(0), and the claim will
follow.

Definition 5.1. For m = (mg, 71, 72,...) € E,, we let f(7) = (fo, f1, f2,...) be the
n-step walk on G given as follows.
1. We set fo =0 and f, = m(0).
2. If the second edge of m is horizontal (respectively, vertical), we set fo =
m(m(0)) (respectively, fo = q(m(0))).
3. Assume k > 1 and (fo, f1,..., fx) have been defined.
(a) If (mgp_1, ™) is vertical, then (g, Tr41) s horizontal, and we set fr. 1 =

m(fr)-

(b) Assume (mp_1,mx) is horizontal. If (7, Try1) is horizontal (respectively,
vertical), we set fii1 = m(fy) (respectively, fri1 = q(fx)).

Lemma 5.2. The function f is an injection from E,, to ¥,(0).
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Proof of Lemma 5.2. Since h is harmonic,

(5.2) (h(u) = h(a)) + (h(u) = h(b)) = My,  w€V,
where a, b, ¢ = m(u) are the three neighbours of u. By (3.2) and (5.2),
(5.3) h(q(v)) — h(u) = 2M,, — M,, > 0,

(5.4) h(w) — h(v) = My + M, — M, > 0,

and, by (3.3),

(5.5) h(g(w)) — h(v) = (My — M,) + My@) + (Myw) — My) >0,

for u € V, where v = m(u) and w = m(q(v)). See Figure 3.1.
Let S;, be the statement that

(a) fo, f1,--., fr are distinct, and
(b) if (mg_1,m) is horizontal, then h(fy) > h(f;) for 0 <i <k —1, and
(¢) if (mp_1, m) is vertical, then h(f;) > h(f;) for 0 <i <k — 2.

If Sy, holds for every k, then the f, are distinct, whence f(7) is a SAW. Furthermore,
f(m) # f(r') if @ # 7', and the claim of the lemma follows. We shall prove the Sy
by induction.

Evidently, Sy and S; hold. Let K > 3 be such that S, holds for £k < K, and
consider Sk. Let ¢; = (mg_i_1,mx—;) for 0 <i < K — 1.

1. Suppose first that eq is vertical, so that e; is horizontal. By (5.3) with u =
frx—2 and v = m(fx_2) = frx_1, we have that h(fx) > h(fx_2).

(a) If eq is horizontal, the claim follows by Sk _».

(b) Assume ey is vertical (so that, in particular, K > 4). We need also
to show that h(fx) > h(fx_3). In this case, we take u = fx 4, v =
m(frx—4) = fr_3, and w = m(q(v)) = fx_1 in (5.5), thereby obtaining
that h(frx) > h(fx—3) as required.

2. Assume next that eg is horizontal.

(a) If e; is horizontal, the relevant claims of Sk follow by Sk _; and the fact
that fx = m(frx-1).

(b) If e; is vertical, then ey is horizontal. By (5.4), h(fx) > h(fx—_2), and
the claim follows by Sk_1 and Sk _».

This completes the induction. O
By Lemma 5.2, [3,,(0)| > n,, and part (a) follows by (5.1). O

Proof of part (b). Let G € G3 and let (h,H) be a transitive graph height function.
For w € V, let M = max{h(v) — h(u) : v ~ u} as in (3.1). We have that M > 0
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and, by transitivity, M does not depend on the choice of u. Since h is H-difference-
invariant, the neighbours of any v € V may be listed as vy, v9, v3 where

M ifi=1,
h(v;) —h(v)=¢ —-M ifi=2,
n if 1 = 3,

where 7 is a constant satisfying || < M. By the transitive action of H, we have that
—n € {—=M,n, M}, whence n € {—M,0, M}.

If n = 0, h is harmonic and satisfies (3.2)—-(3.3), and the claim follows by part
(a). If n = M, it is easily seen that the construction of Definition 5.1 results in an
injection from E, to X, (v). If n = —M, we replace h by —h to obtain the same
conclusion. 0J

Proof of part (c). This is a minor variant of the proof of part (a), in which we elim-
inate the appeal to (5.5) in paragraph 1(b). Let T} be the statement that

(a) fo, f1,--., fr are distinct, and
(b) if (mg_1, ™) is horizontal, then h(fy) > h(f;) for 0 <i <k —1, and
(c) if (mp_1, ) is vertical, then h(fy) > h(f;) for 0 <i<k—4andi=Fk —2.
Thus T}, varies from Sy only in the latter’s claim that A(fx) > h(fx_3) in part (c).
The above proof is valid with Sy replaced by Tk, except at the appeal to (5.5) in
paragraph 1(b). In the present case, we argue as follows at the corresponding stage.
Firstly, fx # fix_3 since G has girth at least 4. Secondly, by the equality of (5.5),

h(g(w)) — h(u) = (My — M,) + Mgy + (Mgwy — My) + M,
= (2M, — M,) + (2My) — M,,),

where u = fr_4, v = m(fx-4) = fx—3, w = m(q(v)) = fx-1, and g(w) = fx. By
(3.2), h(fr) > h(fKx—-4), as required. O

6. TRANSITIVE GRAPH HEIGHT FUNCTIONS

By Theorem 3.1(b), the possession of a transitive graph height function suffices
for the inequality p(G) > ¢. It is not currently known which G € G possess graph
height functions, and it is shown in [11] that the Cayley graph of the Grigorchuk
group has no graph height function at all. We pose a weaker question here. Suppose
G € G3 possesses a graph height function (h,H). Under what further condition
does G possess a transitive graph height function? A natural candidate function
g :V — Z is obtained as follows.

Proposition 6.1. Let I' act transitively on G = (V, E) € G; where d > 3. Assume
that (h,H) is a graph height function of G, where H QI and [I' : H] < oo. Let
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v € T be representatives of the cosets, so that U/H = {~;H :i € I}, and let
(6.1) g(v)=> h(yw), wveV.
iel

The function g : V — Z 1is I'-difference-invariant.
Proof. The function g is given in terms of the representatives 7; of the cosets, but its
differences g(v) — g(u) do not depend on the choice of the ~;. To see this, suppose
7 is replaced in (6.1) by some ] € y3H. Since H is a normal subgroup, v = nm
for some 1 € H. The new function ¢’ satisfies

g'(v) = g(v) = h(7iv) — h(1v) = h(nnv) — h(11v),
so that

[g'(v) — ¢'(u)] = [9(v) — g(u)] = [R(nn1v) — h(y1v)] = [R(nyu) — h(yu)] =0,

since n € 'H and h is H-difference-invariant.
We show as follows that g is I'-difference-invariant. Let o € I', and write v = v;n
for some j € I and nn € H. Since I'/H can be written in the form {v,7,H : i € I},

glav) — glau) = Z [h(%vmv) - h(%%‘ﬁu)]
= g(nv) — g(nu)
= g(v) — g(u),

since g is H-difference-invariant. 0

If the function g of (6.1) is non-constant, it follows that (g—g¢(1),T’) is a transitive
graph height function, implying by Theorem 3.1(b) that u(G) > ¢. This is not
invariably the case, as the following example indicates.

Example 6.2. Consider the Archimedean lattice A = [4,6,12] of Figure 6.1. Then
A is transitive and cubic, but it has no transitive graph height function. This is seen
by examining the structure of A. There is a variety of ways of showing pu(A) > ¢,
and we refer the reader to the stronger inequality of Remark 8.8.

Theorem 6.3. Let I' act transitively on G = (V, E) € G3. Let (h,H) be a graph
height function of G, where H < T' and [I' : 'H] < oo. Pick v; € T’ such that
I'/H={yH:iel}, andlet g:V — Z be given by (6.1). If there exists a constant
C < oo such that

(62) dG(’U>7iU) < Ca v e VYa (RS I?
then (g — g(1),T') is a transitive graph height function.
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F1GURE 6.1. The left figure depicts part of the Archimedean lattice
A = [4,6,12]. Potentials may be assigned to the vertices as illus-
trated in the right figure, and the potential differences are duplicated
by translation and reflection (in a horizontal axis). The resulting har-
monic function satisfies (3.2).

Proof. Since (h, H) is a graph height function, there exists v € V such that h(v) >
2C|1|6, where
0 := max{|h(v) — h(u)| : u ~ v}.
By (6.2), g(v) > ¢g(1) a.s required.
Condition (6.2) may be weakened as follows. Let vy € V, and
D(v) = max{dg(v,v;v) : i € 1}, D,, = max{D(v) : dg(vg,v) = m}.
It suffices that there exist vg € V and m > 1 such that
(6.3) (D + Dg)d < m.
The proof is elementary and is omitted. U
Corollary 6.4. Let I' = (S | R) be an infinite, finitely-generated group. Let H I T
be a finite-index normal subgroup, and let (h,H) be a graph height function of the

Cayley graph G (so that it is a ‘strong’ graph height function, see [11]). Pick v; € T’
such that U/H ={yH :i € 1}, and let g : V — 7Z be given by (6.1). If

(6.4) ma [l < oc,

where [;] = {9 g9 : g € T'} is the conjugacy class of v, then (g — g(1),T) is a
transitive graph height function.

Proof. Since dg(g,7v:9) = da(1, 9 vig), condition (6.2) holds by (6.4). O



12 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

Example 6.5. An FC-group is a group all of whose conjugacy classes are finite (see,
for example, [20]). Clearly, (6.4) holds for FC-groups.

We note a further situation in which there exists a transitive graph height function.

Theorem 6.6. Let I' act transitively on G = (V, E) € G4 where d > 3, and let (h, H)
be a graph height function on G. If there exists a short exact sequence 1 — K

2 H— 1 with |K| < oo, then G has a transitive graph height function.
Proof. Suppose such an exact sequence exists. Fix a root vy € V, find v € I" such
that v = vy, and define g(v) := h(5,v0).

Certainly ¢g(vy) = 0 and g is non-constant. It therefore suffices to show that g is
[-difference-invariant. Let u,v € V and find v,+" € I such that yv = 7'u = vy. For
pel,
ﬁmvo) - h(ﬁm’vo)

BoByvo) — h(BpByv0)

9(pv) = g(pu) = h(
(
(Byvo) — h(Byvo) since 3, € H
(

and the proof is complete. 0

7. GRAPHS WITH GIRTH 3 OR 4

We recall the subset G, of G containing graphs with degree d and girth g. Our
next theorem is concerned with Gs 3, and the following (Theorem 7.2) with Gj 4.

Theorem 7.1. For G € Gs3, we have that

(7.1) 11 < p(G) < a2,
where x1,x9 € (1,2) satisfy

1 1 1
7.2 — == —,
(72) ATV

1 1 1
7.3 — + = =-.
(7.3) x3 + xs 2

Moreover, the upper bound xo s sharp.

The bounds of (7.2)—(7.3) satisfy z1 ~ 1.529 and x5 ~ 1.769, so that ¢ € (z1, z2).
The upper bound x5 is achieved by the Fisher graph of the 3-regular tree (see Propo-
sition 7.5 and [6, 7]).
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Theorem 7.2. For G € G3 4, we have that

(74) U1 < M(G) < Y2,
where
(7.5) yy = 1246,

and yo = 1/x where x is the largest real oot of the equation
(7.6) 2v(x + 2% +2°) = 1.
Moreover, the upper bound yo of (7.4) is sharp.

The lower bound of (7.5) satisfies 12!/6 ~ 1.513 < 1.618 ~ ¢. The upper bound
is approximately yo ~ 1.899, and is achieved by the Fisher graph of the 4-regular
tree (see Proposition 7.5). The proofs of Theorems 7.1 and 7.2 are given later in this
section.

Example 7.3 (Grigorchuk graph). The Cayley graph G of the Grigorchuk group,
gwen in [12, Sect. 5], lies in Gs4, and therefore yy < p(G) < yo. We ask if 1(G) > ¢.

The emphasis of the current paper is upon lower bounds for connective constants
of cubic graphs. The upper bounds of Theorems 7.1-7.2 are included as evidence of
the accuracy of the lower bounds, and in support of the unproven possibility that
i > ¢ in each case. We note a more general result (derived from results of [6, 21])
for upper bounds of connective constants as follows.

Theorem 7.4. For G € Gy, where d,g > 3, we have that (1(G) <y where  :=1/y
1s the smallest positive real root of the equation

M, (¢) Ms(6)

(7.7) (d_2)1+M1(C)+1+Mg(C):1’
where
(7.8) M, (¢) = ¢, My(C) =2(C+ 2+ -+ 7).

The upper bound y is sharp, and is achieved by the free product graph F := Ky * Ko
<ok Ky % Zg, with d — 2 copies of the complete graph Ky on two vertices and one
copy of the cycle Z4 of length g.

The extremal graph of this theorem is the (simple) Cayley graph F' of the free
product group (S| R) with S = {ay,as,...,a4 9,0} and R = {a?,a3,...,a3 5,9}

The proofs follow. Let G € G4 where d > 3. The (generalized) Fisher graph G is
obtained from G by replacing each vertex by a d-cycle, as illustrated in Figure 7.1.
The Fisher transformation originated in the work of Fisher [5] on the Ising model.
The connective constants of G and Gy are related as follows.
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FIGURE 7.1. Each vertex of G is replaced in the Fisher graph G by a cycle.

FIGURE 7.2. The entry and exit of a SAW at a Fisher 6-cycle. It
follows either two edges clockwise, or 4 edges anticlockwise.

Proposition 7.5. Let G € G4 where d > 3.
(a) [7, Thm 1] If d = 3,
(7.9) Lyt 1
w(Gr)?  w(Gr)? w(G)

(b) If d = 2r > 4 is even,

2 _ 1
p(Gr)* T u(G)

(7.10)

(c) Ifd=2r+12>5is odd,
1 1 1

(7-11) WGy T a(Ge e S @)

Proof of Proposition 7.5. We use the methods of [7], where a proof of part (a) appears
at Theorem 1. Consider SAWs on G and G that start and end at midpoints of edges.
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Let m be such a SAW on G. When 7 reaches a vertex v of GG, it can be directed
around the corresponding d-cycle C' of Gg. There are d — 1 possible exit points for
C relative to the entry point. For each, the SAW may be redirected around C' either
clockwise or anticlockwise (as illustrated in Figure 7.2). If the exit lies s (< d/2)
edges along C' from the entry, a single step of m becomes a walk of length either s+ 1
or d— s+ 1. Such a substitution is made at each vertex of 7. It is easily checked that
(i) the outcome is a SAW 7’ on Gy, and (ii) by observation of 7/, one may recover
the choices made at each v.

Let Z (respectively, Zr) be the generating function of SAWs from a given midpoint
of G (respectively, Gr). Let d = 2r > 4 (the case of odd d is similar). By adapting
the arguments of [7], we obtain that

(7.12) Z(min{¢* +¢%, ¢+ ¢ 20 < Ze(€), (>0,

The radius of convergence of Z is 1/u(Gr), and (7.10) follows from (7.12) on letting
¢ 7 1/u(Gr) and noting that the minimum in (7.12) is achieved by 2¢"*1. O

Lemma 7.6. Let G = (V,E) € G5 3.

(a) Forv €V, there exists exactly one triangle passing through v.
(b) If each such triangle of G is contracted to a single vertez, the ensuing graph

G’ satisfies G' € Gs.

Proof. (a) Assume the contrary: each u € V lies in two or more triangles. Since
deg(u) = 3, there exists v € V such that (u,v) lies in two distinct triangles, and
we write wy, wy for the vertices of these triangles other than u, v. Since each wj
has degree 3, we have than w; ~ ws. This implies that G is finite, which is a
contradiction.

(b) Let 7 be the set of triangles in G, so that the elements of 7 are vertex-disjoint.
We contract each T' € T to a vertex, thus obtaining the graph G’ = (V', E’). Since
each vertex of G’ arises from a triangle of G, the graph G’ is cubic, and G is the
Fisher graph of G’. Since G is infinite, so is G'.

We show next that G’ is transitive. Let v},v5 € V', and write T; = {a;, b;, ¢;},
1 = 1,2, for the corresponding triangles of G. Since G is transitive, there exists
a € Aut(G) such that a(a;) = ag. By part (a), a(T7) = T. Since o € Aut(G), it
induces an automorphism o’ € Aut(G’) such that o/(v]) = v}, as required.

Finally, we show that G’ is simple. If not, there exist two vertex-disjoint triangles
of G, Ty and T; say, with two edges between their vertex-sets. Each vertex in
these two edges belongs to two faces of size 3 and 4. By transitivity, every vertex
has this property. By consideration of the various possible cases, one arrives at a
contradiction. O
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w
w1 v (1%’

21 29

21 u 22
u

FIGURE 7.3. The two situations in the proof of Lemma 7.7.

Proof of Theorem 7.1. Since G is the Fisher graph of G’ € G3, by Proposition 7.5(a),
1 1 1

WGE WGP Gy

By [9, Thm 4.1],

V2 < (@) <2,
and (7.1) follows. When G’ is the 3-regular tree T3, we have p(G’') = 2, and the
upper bound is achieved. 0

The following lemma is preliminary to the proof of Theorem 7.2.

Lemma 7.7. Let G = (V,E) € Gy 4. If G is not the doubly infinite ladder graph L,
each v € V belongs to exactly one quadrilateral.

Proof. Let G = (V,E) € G34 and v € V. Assume v belongs to two or more quadri-
laterals. We will deduce that G = L.

By transitivity, there exist two (or more) quadrilaterals passing through every
vertex v, and we pick two of these, denoted C, 1, C, 2. Since v has degree 3, exactly
one of the following occurs (as illustrated in Figure 7.3).

(a) Cp1 and C, 5 share two edges incident to v.
(b) Cy1 and C, 2 share exactly one edge incident to v.

Assume first that Case (a) occurs, and let II, be the property that x € V' belongs
to three quadrilaterals, any two of which share exactly one incident edge of x, these
(;) = 3 edges being distinct.

Let (u,v) and (w,v) be the two edges shared by C,; and C, 5, and write C,; =
(u,v,w, z), © = 1,2. Note that II, occurs, so that II, occurs for every x by transi-
tivity.

Let x be the adjacent vertex of v other than u and w. Note that x ¢ {21, 22} and
x o u,w, since otherwise G would have girth 3. By II,, either x ~ z; or x ~ zj.
Assume without loss of generality that z ~ z;. If x ~ 25 in addition, then G is finite,
which is a contradiction. Therefore, x & z5.
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FIGURE 7.4. Two ways in which two quadrilaterals may be joined by
two edges.

Let y be the incident vertex of z; other than w and w, and note that y ¢
{u,v,w,x, z1,25}. By IL,,, there exists a quadrilateral containing both (y, z2) and
(z2,u). Since u has degree 3, either y ~ 2z, or y ~ v. However, neither is possible
since both zy and v have degree 3. Therefore, Case (a) does not occur.

Assume Case (b) occurs, and write C,; = (u,v,w;, 2;), i = 1,2, for the above two
quadrilaterals passing through v. Let II2 (respectively, II3) be the property that
x € V belongs to two quadrilaterals (respectively, three quadrilaterals), and each
incident edge of z lies in at least one of these quadrilaterals (respectively, every pair
of incident edges of x lie in at least one of these quadrilaterals). Since IT? occurs, by
transitivity 112 occurs for every x € V.

Since (G is infinite, there exists a ‘new’ edge incident to the union of C, ; and C, ».
Without loss of generality, we take this as (z1,z) with x ¢ {u, v, wy,ws, 21,29}. By
Hgl, there exists a quadrilateral of the form (21, z,y, z). Since G is simple with degree
3 and girth 4, and dg(y, 21) = 2, y & {21, u, v, wy, wa}.

We claim that y # z, as follows. If y = z, then II occurs, whence II3 oc-
curs by transitivity. Therefore, there exists a quadrilateral passing through the
two edges (x, z1), (z1,w;), and we denote this (z,z;,w,y’). It is immediate that
y' & {u,v,ws, 25} since G is simple with degree 3 and girth 4, and therefore ' is a
‘new’ vertex. By Hf’ul, Yy ~ wy, and G is finite, a contradiction. Therefore, y # 2,
and hence y is a ‘new’ vertex, and z = w;.

We iterate the above procedure, adding at each stage a new quadrilateral to the
graph already obtained. It could be that the graph thus constructed is a singly
infinite ladder graph with two ‘terminal’ vertices of degree 2. If so, we then turn
attention to these terminal vertices, and use the fact that, by transitivity, there
exists D < oo such that de\.(a,b) < D for every edge e = (a,b) € E. O

Proof of Theorem 7.2. If G =1L, then p = ¢, which satisfies (7.4).

Assume that G # L. Let 7 be the set of quadrilaterals of GG, and recall Lemma
7.7. We contract each element of 7 to a degree-4 vertex, thus obtaining a graph G'.
We claim that

(7.13) G' € G4, and G is the Fisher graph of G'.



18 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

Suppose for the moment that (7.13) is proved. By [9, Thm 4.1}, u(G") > /3, and,
by Proposition 7.5(b),
2 1 1

< <,
G~ @) T V3
which implies p(G) > 121/,

We prove (7.13) next. It suffices that G' = (V',E’) € G4, and G is then auto-
matically the required Fisher graph. Evidently, G’ has degree 4. We show next
that G’ is transitive. Let v}, v5 € V', and write Q; = (a;, b;, ¢;,d;), i = 1,2, for the
corresponding quadrilaterals of G. Since G is transitive, there exists a € Aut(G)
such that a(a;) = as. By Lemma 7.7, a(Q1) = Q2. Since a € Aut(G), it induces an
automorphism o € Aut(G’) such that o/ (v]) = v}, as required.

Suppose that G’ is not simple, in that it has parallel edges. Then there exist two
quadrilaterals joined by two edges, which can occur in either of the two ways drawn
in Figure 7.4. The first is impossible by Lemma 7.7. In the second, u lies in both a
4-cycle and a 5-cycle having exactly one edge in common, whereas v cannot have this
property. This contradicts the fact that G is transitive. In summary, G’ is infinite,
transitive, cubic, and simple, whence G’ € Gs.

For the sharpness of the upper bound, we refer to the proof of the more general
Theorem 7.4, following. 0

Proof of Theorem 7.4. Let G € G4, where d, g > 3, and let F' (€ Gy ) be the given
free product graph. By [21, Thm 11.6], F' covers G. Therefore, there is an injection
from SAWs on G with a given root to a corresponding set on F', whence p(G) < p(F).

By [6, Thm 3.3], u(F') = 1/¢ where ( is the smallest positive real root of (7.7). O

8. TRANSITIVE TLF-PLANAR GRAPHS

8.1. Background and main theorem. There are only few infinite, transitive, cu-
bic graphs that are planar, and each has u > ¢. These graphs belong to the larger
class of so-called TLF-planar graphs, and we study such graphs in this section. The
basic properties of such graphs were presented in [18], to which the reader is referred
for further information.

We use the word plane to mean a simply connected Riemann surface without
boundaries. An embedding of a graph G = (V, E) in a plane P is a function 7 :
V U E — P such that n restricted to V' is an injection and, for e = (u,v) € F, n(e)
is a C'! image of [0,1]. (Later, we consider planar embeddings in which every face is
a regular polygon.) An embedding is (P-)planar if the images of distinct edges are
disjoint except possibly at their endpoints, and a graph is (P-)planar if it possesses
a (P-)planar embedding. An embedding is topologically locally finite (TLF) if the
images of the vertices have no accumulation point, and a connected graph is called
TLF-planar if it possesses a planar TLF embedding. Let 7; denote the class of
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transitive, TLF-planar graphs with vertex-degree d. We shall sometimes confuse a
TLF-planar graph with its TLF embedding. The boundary of S C P is given as
S :=SN7P\S, where T is the closure of T.

The principal theorem of this section is as follows.

Theorem 8.1. Let G € T3 be infinite. Then u(G) > ¢.

The principal methods of the proof are as follows: (i) the construction of an
injection from extendable SAWs on L, to SAWs on G, (ii) a method for verifying
that certain paths on G are indeed SAWs, and (iii) a generalization of the Fisher
transformation of [7].

A face of a TLF-planar graph (or, more accurately, of its embedding) is an arc-
connected component of the (topological) complement of the graph. The size k(F)
of a face I’ is the number of vertices in its topological boundary, if bounded; an
unbounded face has size co. Let G = (V,E) € 7; and v € V. The type-vector
[k1, ko, ..., kg of v is the sequence of sizes of the d faces incident to v, taken in cyclic
order around v. Since G is transitive, the type-vector is independent of choice of v
modulo permutation of its elements, and furthermore each entry satisfies k; > 3. We
may therefore refer to the type-vector [ky, ks, ..., k4] of G, and we define

f(G)ZZd:(l—%>,

i=1
with the convention that 1/00 = 0. We shall use the following two propositions.

Proposition 8.2 ([18, p. 2827]). Let G = (V, E) € T3.

(a) If f(G) <2, G is finite and has a planar TLF embedding in the sphere.

(b) If f(G) =2, G is infinite and has a planar TLF embedding in the FEuclidean
plane.

(c) If f(G) > 2, G is infinite and has a planar TLF embedding in the hyperbolic
plane (the Poincaré disk).

Moreover, all faces of the above embeddings are reqular polygons.

There is a moderately extensive literature concerning the function f and the
Gauss—Bonnet theorem for graphs. See, for example, [3, 15, 16].
Proposition 8.3. The type-vector of an infinite graph G € T3 is one of the following:

A. [m,m,m] with m > 6,
B. [m,2n,2n] with m >3 odd, and m™" +n~* < 1
C. [2m,2n,2p] with m,n,p>2 and m™* +n"t+p~ 1 < 1.

Recall that the elements of a type-vector lie in {3,4,...} U {oo}.
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Proof. See [18, p. 2828] for an identification of the type-vectors in 73. The inequalities
on m,n,p arise from the condition f(G) > 2. O

8.2. Proof of Theorem 8.1. Let G € 73 be infinite. By Proposition 8.2, f(G) > 2.
If f(G) = 2 then, by Proposition 8.3, the possible type-vectors are precisely those
with type-vectors [6, 6, 6], [3,12,12], [4,8, 8], [4,6,12], [4,4, o], that is, the hexagonal
lattice [4] and its Fisher graph [7], the square/octagon lattice [9], the Archimedean
lattice [4,6,12] of Examples 3.3(c) and 6.2, and the doubly infinite ladder graph of
Figure 5.1. Each of these has 1 > ¢.

It remains to prove Theorem 8.1 when G € 73 is infinite with f(G) > 2. By
Proposition 8.3, the cases to be considered are:

A. [m,m,m] where m > 6,
B. [m,2n,2n] where m > 3 is odd and m™ +n~! < %,
C. [2m,2n,2p] where m,n,p >2and m™' +n~' +p~! < 1.

These cases are covered in the following order, as indexed by section number.

§83 mln{kz} Z 5, [k‘l, k‘g, k?g] 7é [5,8,8],

68.4. min{k;} =3,

§8.5. [4,2n,2p] wherep>n>4andn™ ! +p~! < %,
§8.6. [4,6,2p| where p > 6,

§8.7. 15,8, 8].

We identify G with a specific planar, TLF embedding in the hyperbolic plane every
face of which is a regular polygon. The proof is similar in overall approach to that
of Theorem 3.1, as follows. Let E,, be the set of extendable n-step SAWs from 0 on
the singly-infinite ladder graph Ly of Figure 5.1. Fix a root v € V, and let ¥,,(v) be
the set of n-step SAWs on G starting at v. We shall construct an injection from E,
to X, (v), and the claim will follow by (5.1).

Consider the alphabet {H, V}. Let W, of the set of n-letter words w in this alpha-
bet, starting with the letter H, and with no pair of consecutive appearances of the
letter V. The set E,, is in one-to-one correspondence with W,,, where H (respectively,
V) denotes a horizontal (respectively, vertical) step on L. In building an element of
¥, (v) sequentially, at each stage there is a choice between two new edges, which, in
the sense of the embedding, we may call ‘right’ and ‘left’. We shall explain how the
word w encodes an element of ¥, (v). The key step is to show that the ensuing paths
on G are indeed SAWs so long as the cumulative differences between the aggregate
numbers of right and left steps remain sufficiently small.

There follow some preliminary lemmas. Let G € 7; be infinite, where d > 3. A
cycle C' of G is called clockwise if its orientation after embedding is clockwise. Let
C be traversed clockwise, and consider the changes of direction at each turn. Since
the vertex-degree is d, each turn is along one of d — 1 possible non-backtracking
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edges, exactly one of which may be designated rightwards and another leftwards (the
other d — 3 are neither rightwards nor leftwards). Let r = r(C) (respectively, | =
[(C)) be the number of right (respectively, left) turns encountered when traversing
C' clockwise, and let

(8.1) p(C) =1r(C) = 1(C).

Lemma 8.4. Let G € T, be infinite with d > 3. Let C be a cycle of G, and let
F =A{F, F, ..., Fs} be the set of faces enclosed by w. There exists F' € F such
that the boundary of F \ F is a cycle of G. The set of edges lying in OF \ C forms
a path.

Proof. Let C be a cycle of G, and let 7' C F be the subset of faces that share
an edge with C. Let I be the (connected) subgraph of G comprising the edges and
vertices of the faces in F”, and let I4 be its dual graph (with the infinite face omitted).
Then 14 is finite and connected, and thus has some spanning tree T" which is non-
empty. Pick a vertex ¢t of T with degree 1, and let F' be the corresponding face.
The first claim follows since the removal of ¢ from T results in a connected sub-tree.
The second claim holds since, if not, the interior of C' is disconnected, which is a
contradiction. 0

Lemma 8.5. Let G € 7, be infinite with d > 3. For any cycle C = (co,¢1, ..., Cp)
of G,

:6+§3M@»-@ if d =3,
(8:2) p(C) 5
>4+ [k(F)—4] ifd>4,

where F = {Fy, Fs, ..., Fy} is the set of faces enclosed by C.

Proof. The proof is by induction on the number s = s(C) of faces enclosed by C. Tt
is trivial when s = 1 that r(C) = k(F}) and [(C) = 0, and (8.2) follows in that case.

Let S > 2 and assume that (8.2) holds for all C' with s(C) < S. Let C =
(co, €1y ... ) be such that s(C') = S, and pick F' € F as in Lemma 8.4. Let 7 be
the path of edges in OF \ C.

Let Cr (respectively, C’) be the boundary cycle of F' (respectively, F \ F'), each
viewed clockwise. We write 7 in the form 7 = (¢q, 91,89, ..., ¢p) where a # b,
; ¢ C. We claim that

(8.3) KU{=MCU+MCM—6 if d =3,

>p(C)+p(Cr)—4 ifd>4.

of which the induction step is a consequence.
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Equation (8.3) follows by two observations.

1. The cycle Cr (respectively, C”) takes a right (respectively, left) turn at each
vertex 1);.
2. Consider the turns at a vertex x € {c,, ¢y }-
(a) Suppose d = 3. At z, Cr takes a right turn, C’ takes a right turn, and
C takes a left turn.
(b) Suppose d > 4. At z, Cr takes a right turn, C’ does not take a left turn,
and C' does not take a right turn. Furthermore, if C’ takes a right turn,
then C does not take a left turn.

The proof is complete. O

Lemma 8.6. Let G € 7, be infinite with type-vector ki, ka, ..., kq|, and let C be a
cycle of G.

(a) If d =3 and min{k;} > 6, then p(C) > 6.

(b) If d = 3 and [ky, k2, k3] = [5,2n, 2n] with n > 5, then p(C) > 5.

(c) If d > 4 and min{k;} > 4, then p(C) > 4.

Proof. (a,c) These are immediate consequences of (8.2).

(b) Suppose [ki, ko, k3] = [5,2n,2n] with n > 5, and let M = M (C') be the number
of size-2n faces enclosed by a cycle C. We shall prove p(C') > 5 by induction on
M(C). If M =0, then C encloses exactly one size-5 face, and p(C) = 5. Let S > 2,
and assume p(C') > 5 for any cycle C' with M(C) < S.

Let C be a cycle with M (C) = S, and let F' be a size-2n face inside C. Let C’ be
the boundary of the set obtained by removing F' from the inside of C'; that is, C' may
be viewed as the sum of the cycles C' and 0F with addition modulo 2. Then C” may
be expressed as the edge-disjoint union of cycles Cy, Cy, . . ., C, satisfying M (C;) < S
fori=1,2,...,r.

By (8.2) and the induction hypothesis,

r

p(C) =6+ [2n— 6]+ > [p(C;) — 6]
i=1
>2n —r.
Each C; shares an edge with OF, and no two such edges have a common vertex.
Therefore, » < n, and the induction step is complete since n > 5. O

8.3. Proof that u > ¢ when min{k;} > 5 and [ky, ko, k3] # [5,8,8]. This case
covers the largest number of instances. It is followed by consideration of certain
other special families of type-vectors. By Proposition 8.3, it suffices to assume

(8.4) either min{k;} > 6, or [ky, ks, k3] = [5, 2n, 2n| with n > 5.
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As described before Lemma 8.4, we shall construct an injection from the set E, of
n-step extendable SAWs on L, to the set ¥, (v) of SAWs on G starting at v € V.
Let W, be the set of n-letter words in the alphabet {H, V} beginning H and with no
pair of consecutive appearances of V. For w € W,,, we shall define an n-step SAW
m(w) on G, and the map = : W,, — ¥, (v) will be an injection.
Let n > 1 and w = (wywq - - - wy,) € W, so that in particular w; = H. The path
m = w(w) is constructed iteratively as follows. Let (v/,v,0”) be a 2-step SAW of G
starting at some neighbour v’ of v. We assume in the following that the turn in the
path (v/,v,v") is rightwards (the other case is similar). We set 7’(w) = (v/,v,v") if
n = 1. The first letter of w is w; = H, and the second is either T or H, and the
latter determines whether the next turn is the same as or opposite to the previous
turn. We adopt the rule that:
if (wywy) = (HT), the turn is the same as the previous,
(8.5) . : .
if (wywy) = (HH), the turn is the opposite.
For k > 3, the kth turn of 7’ is either to the right or the left, and is either the same
or opposite to the (k — 1)th turn. Whether it is the same or opposite is determined
as follows:

when (wy,_owy_wy) = (HHH), it is opposite,
when (wy_owy_1wy) = (HHV), it is the same,
(8.6) when (wy_owy_wy) = (HVH), it is opposite,
when (wy_owy_ywy) = (VHH), it is the same,

when (wy_swg_jwy) = (VHV), it is opposite.

The ensuing 7’ is clearly non-backtracking. The following claim will be useful in
showing it is also self-avoiding.

Lemma 8.7. For any sub-path of @', the numbers of right turns and left turns differ
by at most 3.

Proof. A sub-path of 7’ corresponds to a sub-word of w. We may assume this sub-
word begins H, since if it begins V then the preceding letter is necessarily H. We
shall prove the statement for the entire path 7’ (with corresponding word w), and the
same proof works for a sub-path. A block is a sub-word B of w of the form VH*V,
where H* denotes k (> 1) consecutive appearances of H. The block B generates k+ 1
turns in 7’ corresponding to the letters H*V, and B is called even (respectively, odd)
according to the parity of k.

(a) If B is odd, then, in the corresponding (k + 1) turns made by 7, the numbers
of right and left turns are equal. Moreover, if the first turn is to the right
(respectively, left), then the last turn is to the left (respectively, right).
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(b) If B is even, the numbers of right and left turns differ by 3. Moreover, the
first turn is to the right if and only if the last turn is to the right, and in that
case there are 3 more right turns than left turns.

Let B be an odd block. By (a), B makes no contribution to the aggregate difference
between the number of right and left turns. Furthermore, the first turn of B equals
the first turn following B (since the last turn of B is opposite to the first, and the
following sub-word HVH results in a turn equal to the first). We may therefore
consider w with all odd blocks removed, and we assume henceforth that w has no
odd blocks.

Using a similar argument for even blocks based on (b) above, the effects of two
even blocks cancel each other, and we may therefore remove any even number of
even blocks from w without altering the aggregate difference. In conclusion, we may
assume that w has the form either H*VH? or H*VH?>"VH® where a > 1, 7 > 1, b > 0.
Each of these cases is considered separately to obtain the lemma. 0

Write 7'(w) = (v/,v = ,v" = x1,...,2,), and remove the first step to obtain a
SAW 7(w) = (v = zg,x1,...,2,). By Lemmas 8.6(a,b) and 8.7, subject to (8.4),
m(w) contains no cycle and is thus a SAW. This is seen as follows. Suppose v =
(i, Tis1,...,x; = x;) is a cycle. The cycle has one more turn than the path, and
hence, by Lemma 8.7, |p(v)| < 4, in contradiction of Lemma 8.6(a,b). Therefore, w
maps W, to ¥, (v). It is an injection since, by examination of (8.5)—(8.6), m(w) #
m(w') if w # w'. We deduce by (5.1) that u(G) > ¢.

The above difference between counting turns on paths and cycles can be overcome
by considering SAWs between midpoints of edges (as in Section 8.7).

8.4. Proof that y > ¢ when min{k;} = 3. Assume min{k;} = 3. By Proposition
8.3 and the assumption f(G) > 2, the type-vector is [3,2n, 2n| for some n > 7. This
G is the Fisher graph of the graph G’ € 73 with type-vector [n,n,n]. By Proposition
7.5(a),
1 n 1 1
u(G)? (G (@)

It is proved in Section 8.3 that u(G') > ¢, and the inequality u(G) > ¢ follows (see
also [7]).

8.5. Proof that p > ¢ for [4,2n,2p] with p > n > 4 and n' +p! < 1.
Let G = (V, E) € 73 be infinite with type-vector [4,2n,2p| where p > n > 4 and
nt+plt< % Note that GG has girth 4, and every vertex is incident to exactly one
size-4 face. Let G’ be the simple graph obtained from G by contracting each size-4
face to a vertex. Then G’ € 7, is infinite with girth n > 4 and type-vector [n, p, n, p].

Recall Lemma 8.6(c).
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Let v € V. As following (8.4), we will construct an injection from W, to %, (v).
An edge of G is called square if it lies in a size-4 face, and non-square otherwise.
Let w = (wywsy---wy,) € W,. We shall construct a non-backtracking n-step path
m = w(w) from v, and then show it is a SAW. If n = 1, set 7m(w) = (v,v’) where
v' ~v. We perform the following construction for k = 2,3,...,n.

1. Suppose (wg_1wy) = (HV). The following edge is always square.

(a) If the edge ex_; of m corresponding to wy_; is square, then the next edge
er of m is square.

(b) Suppose e;_; is non-square. Then the next edge e, is one of the two
possible square edges, chosen as follows. In contracting G to G’, the
path (mg, 7y, ..., mk_1) contracts to a non-backtracking path 7’ on G'.
Find the most recent turn at which 7’ turns either right or left. If, at
that turn, 7’ turns left (respectively, right), the non-backtracking path
7w on G turns left (respectively, right). If no turn of 7’ is rightwards or
leftwards, then 7 turns left.

2. Suppose (wy_1wg) = (HH).

(a) If the edge ex_; of m corresponding to wy_; is square, then the next edge
er of 7 is non-square.

(b) Suppose ej_; is non-square. Then e is one of the two possible square
edges, chosen as follows. In the notation of 1(b) above, find the most
recent turn at which 7’ is to either the right or the left. If at that turn, 7’
turns left (respectively, right), the non-backtracking path 7= on G turns
right (respectively, left). If 7’ has no such turn, then 7 turns right.

3. Suppose (wi_jwy) = (VH). The edge e,_1 of G corresponding to wy_; must be
square. If the edge previous to e;_; on 7 is square (respectively, non-square),
then 7 continues to a non-square (respectively, square) edge.

We claim the mapping 7 : W,, — ¥, (v) is an injection. By construction, m(w) =
m(w') if and only if w = w’, and, furthermore, m(w) is non-backtracking. It remains to
show that each 7w(w) is a SAW. Let w € W,,, and note that 7(w) is non-backtracking
with at most three consecutive square edges (this occurs on encountering VHV pre-
ceded by a non-square edge). It suffices, therefore, to show that, after contracting
each square face to a vertex, the resulting path 7’(w) on G’ is a SAW.

By considering the different possibilities (illustrated in Figure 8.1), we see that any
right (respectively, left) turn in 7’ is followed (possibly after some straight section) by
a left (respectively, right) turn. Therefore, in any sub-walk v of 7’/(w), the numbers
of right and left turns differ by at most 1. By Lemma 8.6(c) or directly, v cannot
form a cycle. Hence 7'(w) is a SAW, and the proof is complete.

8.6. Proof that > ¢ for [4,6,2p] with p > 6. Let G € 73 be infinite with type-
vector [4,6,2p] where p > 6. (When p = 6, this graph G is drawn in Figure 6.1.)
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HHH HHVH HVHVH HVHH

FiGURE 8.1. The dashed line is the projected SAW on G'. After a
right (respectively, left) turn, the projection either moves straight or
turns left (respectively, right).

Q (o)
\ 4
\ 4
\ V4
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/ v \
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FIGURE 8.2. The graph G with an embedded copy of the graph [p, p, p|.

Associated with G is the graph P := [p,p, p| as drawn in Figure 8.2. Each vertex u
of P lies within some hexagon of G denoted H,. Let u be a vertex of P and let v
be a vertex of H,. Let m = (up = w,uq,...,u,) be a SAW on P from u. We shall
explain how to associate with 7 a family of SAWs on G from v. The argument is
similar to that of the proof of Proposition 7.5.

A hexagon of G has six vertices, which we denote in consecutive pairs according
to approximate compass bearing. For example, py(H) is the pair on the west side
of H, and similarly puyw, Pne, Pe, Pses Psw- For definiteness, we assume that H, has
orientation as in Figure 8.2, and v € pgy(H,), as in Figure 8.3.

Let 3, (u) be the set of n-step SAWs on P from u, the first edge of which is either
north-westwards or eastwards (that is, away from ps,(H,)). Suppose the first step
of the SAW 7 € ¥, (u) is to the neighbour wu; that lies eastwards of u (the other case
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is similar). With the step (u,u;), we may associate any of four SAWs on G from v
to pw(H,, ), namely those illustrated in Figure 8.3. These paths have lengths 2, 3, 5,
6. If u; lies to the north-west of u, the corresponding four paths have lengths 3, 4,
4, 5.

We now iterate the above construction. At each step of 7, we construct a family
of 4 SAWs on G that extend the walk on GG to a new hexagon. When this process is
complete, the ensuing paths on G are all SAWs, and they are distinct.

Let Zp(C) (respectively, Z5(C)) be the generating function of SAWs on P from
u (respectively, on G from v), subject to above starting assumption. In the above
construction, each step of 7 is replaced by one of four paths, with lengths lying in
either (2,3,5,6) or (3,4,4,5), depending on the initial vertex of the segment. Since

C+P+CHE>C+20+C [=E01+07, (R,
we have that

(8.7) Zp(CP(1+0)%) < Za((), (=0
Let z > 0 satisfy
(8.8) P14 2) = #(LP

7
Since 1/p(P) is the radius of convergence of Zp, (8.7) implies z > 1/u(G), which is
to say that

(8.9) n(G) >

As in Section 8.3, u(P) > ¢. It suffices for
(unique) root in (0, 00) of

= W

(G) > ¢, therefore, to show that the

1

¢

satisfies x < 1/¢, and it is easily checked that, in fact, z = 1/¢.

Remark 8.8 (Archimedean lattice A = [4,6,12]). The inequality u(A) > ¢ may be

strengthened. In the special case p = 6, we have that p(P) = \/2 + \/2; see [4]. By
(8.8)(8.9), u(G) > 1.676.

x?’(l + 93)2 =

8.7. Proof that u > ¢ for [5,8,8]. Let G € 73 be infinite with type-vector [5, 8, 8].
Let G’ be the simple graph obtained from G by contracting each size-5 face of G
to a vertex. Note that G’ € 75 is infinite with type-vector [4,4,4,4,4], and recall
Lemma 8.6(c). An edge of G is called pentagonal if it is belongs to a size-5 face, and
non-pentagonal otherwise.

We opt to consider SAWs between midpoints of edges. Let m be the midpoint of
some non-pentagonal edge of G, and let X,,(m) be the set of n-step SAWs on G from
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7 7

Hu| O‘ == -1= 'O ! —>
L 1

FIGURE 8.3. The step (w, w;) on P may be mapped to any of the four
SAWs on G from v, as drawn on the right.

m. We will find an injection from W,, to X,(m). Let w = (wywy -+ - w,) € W,,. We
construct as follows a non-backtracking path m(w) on G starting from m. The first
step of m(w) is (v,v") where v is an arbitrarily chosen midpoint adjacent to m.

For any path 7’ of G’ let p(7’) = r(n")—1(n"), where r(n’) (respectively, [(7’) is the
number of right (respectively, left) turns of 7. Since paths move between midpoints,
this agrees with the previous use of p.

We iterate the following for k = 2,3, ... ,n (cf. the construction of Section 8.5).

1. Suppose (wg_1wy) = (HV). The following edge is always pentagonal.

(a) If the position at time k& — 1 is on a pentagonal edge, the next step of 7
is to the midpoint of the incident pentagonal edge.

(b) Suppose the position is non-pentagonal. On contracting G to G', the
path 7(wyws - - - wg_1) on G, so far, gives rise to a non-backtracking path
" on G'. If p(n’) < 0 (respectively, p(n’) > 0), then the next turn of 7
is to the left (respectively, right).

2. Suppose (wy_jwg) = (HH).

(a) If the position at time k& — 1 is on a pentagonal edge, the next step of
is to the midpoint of the incident non-pentagonal edge.

(b) Suppose the position is non-pentagonal. In the notation of 1(b) above,
if p(7’') < 0 (respectively, p(7’) > 0), then the next turn of 7 is to the
right (respectively, left).

3. Suppose (wi_jwy) = (VH), and note that the current position is necessarily
at the midpoint of some pentagonal edge e;_;. If the precursor of ey is
pentagonal (respectively,

We claim the mapping 7 : W,, — ¥,,(m) is an injection. It is straightforward that
7 is an injection from W, to the set of n-step non-backtracking paths in G from
m, and it suffices to show that any m(w) is a SAW. For w € W,,, at most three
consecutive edges of m(w) are pentagonal. It suffices to show that, after contracting
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s HHVH

FIGURE 8.4. The dashed line is the projected SAW 7/ on G’, assumed
in the figure to satisfy p(7’) > 0. When p(7’) > 0 (respectively,
p(r") < 0), the projection may move leftwards but not rightwards
(respectively, rightwards but not leftwards) at the next pentagon.

each pentagon to a vertex, the ensuing 7’'(w) is a SAW on G’. For any subwalk v of
7'(w), it may be checked (as in the proof of Section 8.5) that the numbers of right
and left turns differ by at most 1. By Lemma 8.6(c) or directly, v cannot form a
cycle. Hence 7'(w) is a SAW, and the proof is complete.
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