
Chapter 1
Non-coupling from the past

Geoffrey R. Grimmett and Mark Holmes

Abstract The method of ‘coupling from the past’ permits exact sampling from
the invariant distribution of a Markov chain on a finite state space. The coupling
is successful whenever the stochastic dynamics are such that there is coalescence
of all trajectories. The issue of the coalescence or non-coalescence of trajectories
of a finite state space Markov chain is investigated in this note. The notion of the
‘coalescence number’ k(µ) of a Markovian coupling µ is introduced, and results
are presented concerning the set K(P) of coalescence numbers of couplings corre-
sponding to a given transition matrix P.

1.1 Introduction

The method of ‘coupling from the past’ (CFTP) was introduced by Propp and Wil-
son [7, 8, 11] in order to sample from the invariant distribution of an irreducible
Markov chain on a finite state space. It has attracted great interest amongst theo-
reticians and practitioners, and there is an extensive associated literature (see, for
example, [5, 10]).

The general approach of CFTP is as follows. Let X be an irreducible Markov
chain on a finite state space S with transition matrix P = (pi, j : i, j ∈ S), and let π be
the unique invariant distribution (see [4, Chap. 6] for a general account of the theory
of Markov chains).
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Let FS be the set of functions from S to S, and let PS be the set of all irreducible
stochastic matrices on the finite set S. We write N for the set {1,2, . . .} of natural
numbers, and P for a generic probability measure.

Definition 1. A probability measure µ on FS is consistent with P ∈PS, in which
case we say that the pair (P,µ) is consistent, if

pi, j = µ
(
{ f ∈FS : f (i) = j}

)
, i, j ∈ S. (1.1)

Let L (P) denote the set of probability measures µ on FS that are consistent with
P ∈PS.

Let P ∈PS and µ ∈ L (P). The measure µ is called a grand coupling of P.
Let F = (Fs : s ∈ N) be a vector of independent samples from µ , let

�
F t denote the

composition F1 ◦F2 ◦ · · · ◦Ft , and define the backward coalescence time

C = inf
{

t :
�
F t(·) is a constant function

}
. (1.2)

We say that backward coalescence occurs if C < ∞. On the event {C < ∞},
�
FC may

be regarded as a random state.
The definition of coupling may seem confusing on first encounter. The function

F1 describes transitions during one step of the chain from time −1 to time 0, as
illustrated in Figure 1.1. If F1 is not a constant function, we move back one step in
time to −2, and consider the composition F1 ◦F2. This process is iterated, moving
one step back in time at each stage, until the earliest (random) C such that the iterated
function

�
FC is constant. This C (if finite) is the time to backward coalescence.

Propp and Wilson proved the following fundamental theorem.
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Fig. 1.1 An illustration of coalescence of trajectories in CFTP with |S|= 5.

Theorem 1 ([7]). Let P ∈PS and µ ∈L (P). Either P(C < ∞) = 0 or P(C < ∞) =
1. If it is the case that P(C < ∞) = 1, then the random state

�
FC has law π .

Here are two areas of application of CFTP. In the first, one begins with a recipe
for a certain probability measure π on S, for example as the posterior distribution
of a Bayesian analysis. In seeking a sample from π , one may find an aperiodic
transition matrix P having π as unique invariant distribution, and then run CFTP
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on the associated Markov chain. In a second situation that may arise in a physical
model, one begins with a Markovian dynamics with associated transition matrix
P ∈PS, and uses CFTP to sample from the invariant distribution. In the current
work, we shall assume that the transition matrix P is specified, and that P is finite
and irreducible.

Here is a summary of the work presented here. In Section 1.2, we discuss the
phenomena of backward and forward coalescence, and we define the coalescence
number of a Markov coupling. Informally, the coalescence number is the (deter-
ministic) limiting number of un-coalesced trajectories of the coupling. Theorem 3
explains the relationship between the coalescence number and the ranks of prod-
ucts of extremal elements in a convex representation of the stochastic matrix P. The
question is posed of determining the set K(P) of coalescence numbers of couplings
consistent with a given P. A sub-family of couplings, termed ‘block measures’, is
studied in Section 1.4. These are couplings for which there is a fixed set of blocks
(partitioning the state space), such that blocks of states are mapped to blocks of
states, and such that coalescence occurs within but not between blocks. It is shown
in Theorem 4, via Birkhoff’s convex representation theorem for doubly stochastic
matrices, that |S| ∈ K(P) if and only if P is doubly stochastic. Some further results
about K(P) are presented in Section 1.5.

1.2 Coalescence of trajectories

CFTP relies upon almost-sure backward coalescence, which is to say that P(C <
∞) = 1, where C is given in (1.2). For given P ∈PS, the occurrence (or not) of
coalescence depends on the choice of µ ∈L (P); see for example, Example 1.

We next introduce the notion of ‘forward coalescence’, which is to be considered
as ‘coalescence’ but with the difference that time runs forwards rather than back-
wards. As before, let P∈PS, µ ∈L (P), and let F = (Fs : s∈N) be an independent
sample from µ . For i ∈ S, define the Markov chain X i = (X i

t : t ≥ 0) by X i
t =

�
F t(i)

where
�
F t = Ft ◦Ft−1◦· · ·◦F1. Then (X i : i∈ S) is a family of coupled Markov chains,

running forwards in time, each having transition matrix P, and such that X i starts in
state i.

The superscript � (respectively, �) is used to indicate that time is running for-
wards (respectively, backwards). For i, j ∈ S, we say that i and j coalesce if there
exists t such that X i

t = X j
t . We say that forward coalescence occurs if, for all pairs

i, j ∈ S, i and j coalesce. The forward coalescence time is given by

T = inf{t ≥ 0 : X i
t = X j

t for all i, j ∈ S}. (1.3)

Clearly, if P is periodic then T = ∞ a.s. for any µ ∈L (P). A simple but important
observation is that C and T have the same distribution.

Theorem 2. Let P ∈PS and µ ∈L (P). The backward coalescence time C and the
forward coalescence time T have the same distribution.
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Proof. Let (Fi : i ∈ N) be an independent sample from µ . For t ≥ 0, we have

P(C ≤ t) = P
(�
F t(·) is a constant function

)
.

By reversing the order of the functions F1,F2, . . . ,Ft , we see that this equals P(T ≤
t) = P(

�
F t(·) is a constant function).

Example 1. Let S = {1,2, . . . ,n} where n ≥ 2, and let Pn = (pi, j) be the constant
matrix with entries pi, j = 1/n for i, j ∈ S. Let F = (Fi : i ∈ N) be an independent
sample from µ ∈L (Pn).

(a) If each Fi is a uniform random permutation of S, then T ≡ ∞ and
�
F t(i) 6=

�
F t( j)

for all i 6= j and t ≥ 1.
(b) If (F1(i) : i ∈ S) are independent and uniformly distributed on S, then P(T <

∞) = 1.

In this example, there exist measures µ ∈L (Pn) such that either (a) a.s. no pairs of
states coalesce, or (b) a.s. forward coalescence occurs.

For g ∈FS, we let
ggg∼ be the equivalence relation on S given by i

ggg∼ j if and only
if g(i) = g( j). For f = ( ft : t ∈ N)⊆FS and t ≥ 1, we write

�
f t = f1 ◦ f2 ◦ · · · ◦ ft ,

�
f t = ft ◦ ft−1 ◦ · · · ◦ f1.

Let kt(
�
f ) (respectively, kt(

�
f )) denote the number of equivalence classes of the re-

lation
�
f t∼ (respectively,

�
f t∼). Similarly, we define the equivalence relation

�
f∼ on S by

i
�
f∼ j if and only if i

�
f t∼ j for some t ∈ N, and we let k(

�
f ) be the number of equiv-

alence classes of
�
f∼ (and similarly for

�
f ). We call k(

�
f ) the backward coalescence

number of
�
f , and likewise k(

�
f ) the forward coalescence number of

�
f . The follow-

ing lemma is elementary.

Lemma 1.

(a) We have that kt(
�
f ) and kt(

�
f ) are monotone non-increasing in t. Furthermore,

kt(
�
f ) = k(

�
f ) and kt(

�
f ) = k(

�
f ) for all large t.

(b) Let F = (Fs : s ∈ N) be independent and identically distributed elements in
FS. Then kt(

�
F) and kt(

�
F) are equidistributed, and similarly k(

�
F) and k(

�
F) are

equidistributed.

Proof. (a) The first statement holds by consideration of the definition, and the sec-
ond since k(

�
F) and k(

�
F) are integer-valued.

(b) This holds as in the proof of Theorem 2.
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1.3 Coalescence numbers

In light of Theorem 2 and Lemma 1, we henceforth consider only Markov chains
running in increasing positive time. Henceforth, expressions involving the word ‘co-
alescence’ shall refer to forward coalescence. Let µ be a probability measure on
FS, and let supp(µ) denote the support of µ . Let F = (Fs : s ∈ N) be a vector of
independent and identically distributed random functions, each with law µ . The law
of F is the product measure µµµ = ∏i∈N µ . The coalescence time T is given by (1.3),
and the term coalescence number refers to the quantities kt(

�
F) and k(

�
F), which we

denote henceforth by kt(F) and k(F), respectively.

Lemma 2. Let µ , µ1, µ2 be probability measures on FS.

(a) Let F = (Fs : s ∈ N) be a sequence of independent and identically distributed
functions each with law µ . We have that k(F) is µµµ-a.s. constant, and we write
k(µ) for the almost surely constant value of k(F).

(b) If supp(µ1)⊆ supp(µ2), then k(µ1)≥ k(µ2).
(c) If supp(µ1) = supp(µ2), then k(µ1) = k(µ2).

We call k(µ) the coalescence number of µ .

Proof. (a) For j ∈ {1,2, . . . ,n}, let q j = µµµ(k(F) = j), and k∗ = min{ j : q j > 0}.
Then

µµµ(k(F)≥ k∗) = 1. (1.4)

Moreover, we choose t ∈ N such that

κ := µµµ(kt(F) = k∗) satisfies κ > 0.

For m ∈N, write Fm = (Fmt+s : s≥ 1). The event Et,m = {kt(Fm) = k∗} depends
only on Fmt+1,Fmt+2 . . . ,F(m+1)t . It follows that the events {Et,m : m ∈ N} are inde-
pendent, and each occurs with probability κ . Therefore, almost surely at least one
of these events occurs, and hence µµµ(k(F) ≤ k∗) = 1. By (1.4), this proves the first
claim.

(b) Assume supp(µ1) ⊆ supp(µ2), and let k∗i be the bottom of the µµµ i-support of
k(F). Since, for large t, µµµ1(kt(F) = k∗1) > 0, we have also that µµµ2(kt(F) = k∗1) > 0,
whence k∗1 ≥ k∗2. Part (c) is immediate.

Whereas k(F) is a.s. constant (as in Lemma 2(a)), the equivalence classes of
�
F∼

need not themselves be a.s. constant. Here is an example of this, preceded by some
notation.

Definition 2. Let f ∈FS where S = {i1, i2, . . . , in} is a finite ordered set. We write
f = ( j1 j2 . . . jn) if f (ir) = jr for r = 1,2, . . . ,n.

Example 2. Take S = {1,2,3,4} and any consistent pair (P,µ) with supp(µ) =
{ f1, f2, f3, f4}, where
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f1 = (3434), f2 = (4334), f3 = (3412), f4 = (3421).

Then k(µ) = 2 but the equivalence classes of
�
F∼ may be either {1,3}, {2,4} or

{1,4}, {2,3}, each having a strictly positive probability. The four functions fi are
illustrated diagrammatically in Figure 1.2.
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Fig. 1.2 Diagrammatic representations of the four functions fi of Example 2. The corresponding
equivalence classes are not µµµ-a.s. constant.

A probability measure µ on FS may be written in the form

µ = ∑
f∈supp(µ)

α f δ f , (1.5)

where α is a probability mass function on FS with support supp(µ), and δ f is the
Dirac delta-mass on the point f ∈FS. Thus, α f > 0 if and only if f ∈ supp(µ). If
µ ∈L (P), by (1.1) and (1.5),

P = ∑
f∈supp(µ)

α f M f , (1.6)

where M f denotes the matrix

M f = (1{ f (i)= j} : i, j ∈ S), (1.7)

and 1A is the indicator function of A.
Let ΠS be the set of permutations of S. We denote also by ΠS the set of matrices

M f as f ranges over the permutations of S.

Theorem 3. Let µ have the representation (1.5), and |S|= n.

(a) We have that

k(µ) = inf
{

rank(M ft M ft−1 · · ·M f1 : f1, f2, . . . , ft ∈ supp(µ), t ≥ 1
}
. (1.8)

(b) There exists T = T (n) such that the infimum in (1.8) is achieved for some t
satisfying t ≤ T .
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Proof. (a) Let F = (Fs : s ∈ N) be drawn independently from µ . Then

Rt := MFt MFt−1 · · ·MF1

is the matrix with (i, j)th entry 1
{
�
F t (i)= j}

. Therefore, kt(F) equals the number of
non-zero columns of Rt . Since each row of Rt contains a unique 1, we have that
kt(F) = rank(Rt). Therefore, k(µ) is the decreasing limit

k(µ) = lim
t→∞

rank(Rt) a.s. (1.9)

Equation (1.8) follows since k(µ) is integer-valued and deterministic.
(b) Since the rank of a matrix is integer-valued, the infimum in (1.8) is attained.

The claim follows since, for given |S| = n, there are boundedly many possible ma-
trices M f .

Let
K(P) =

{
k : there exists µ ∈L (P) with k(µ) = k

}
.

It is a basic question to ask: what can be said about K as a function of P? We first
state a well-known result, based on ideas already in work of Doeblin [2].

Lemma 3. We have that 1 ∈ K(P) if and only if P ∈PS is aperiodic.

Proof. For f ∈FS, let µ({ f}) = ∏i∈S pi, f (i). This gives rise to |S| chains with tran-
sition matrix P, starting from 1,2, . . . ,n, respectively, that evolve independently until
they meet. If P is aperiodic (and irreducible) then all n chains meet a.s. in finite time.

Conversely, if P is periodic and pi, j > 0 then i 6= j, and i and j can never coalesce,
implying 1 /∈ K(P).

Remark 1. In a variety of cases of interest including, for example, the Ising and
random-cluster models (see [3, Exer. 7.3, Sect. 8.2]), the set S has a partial order,
denoted ≤. For P ∈PS satisfying the so-called FKG lattice condition, it is natural
to seek µ ∈L (P) whose transitions preserve this partial order, and such µ may be
constructed via the relevant Gibbs sampler (see, for example, [4, Sect. 6.14]). By the
irreducibility of P, the trajectory starting at the least state of S passes a.s. through
the greatest state of S. This implies that coalescence occurs, so that k(µ) = 1.

1.4 Block measures

We introduce next the concept of a block measure, which is a strong form of the
lumpability of [6] and [4, Exer. 6.1.13].

Definition 3. Let P ∈PS and µ ∈L (P). For a partition S = {Sr : r = 1,2, . . . , l}
of S with l = l(S ) ≥ 1, we call µ an S -block measure (or just a block measure
with l blocks) if
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(a) for f ∈ supp(µ), there exists a unique permutation π = π f of I := {1,2, . . . , l}
such that, for r ∈ I, f Sr ⊆ Sπ(r), and

(b) k(µ) = l.

The action of an S -block measure µ is as follows. Since blocks are mapped a.s.
to blocks, the measure µ of (1.5) induces a random permutation Π of the blocks
which may be written as

Π = ∑
f∈supp(µ)

α f δπ f . (1.10)

The condition k(µ) = l implies that

for r ∈ I and i, j ∈ Sr, the pair i, j coalesce a.s., (1.11)

so that the equivalence classes of
�
F∼ are a.s. the blocks S1,S2, . . . ,Sl . If, as the chain

evolves, we observe only the evolution of the blocks, we see a Markov chain on
I with transition probabilities λr,s = P(Π(r) = s) which, since P is irreducible, is
itself irreducible.

Example 2 illustrates the existence of measures µ that are not block measures,
when |S| = 4. On the other hand, we have the following lemma when |S| = 3. For
P ∈PS and µ ∈L (P), let C = C (µ) be the set of possible coalescing pairs,

C =
{
{i, j} ⊆ S : i 6= j, µµµ(i, j coalesce) > 0

}
. (1.12)

Lemma 4. Let |S|= 3 and P∈PS. If (P,µ) is consistent then µ is a block measure.

Proof. Let S, (P,µ) be as given. If C is empty then k(µ) = 3 and µ is a block
measure with 3 blocks.

If |C | ≥ 2, we have by the forthcoming Proposition 1(a, b) that k(µ)≤ 1, so that
µ is a block measure with 1 block.

Finally, if C contains exactly one element then we may assume, without loss of
generality, that element is {1,2}. By Proposition 1(b), we have k(µ) = 1, whence
a.s. some pair coalesces. By assumption only {1,2} can coalesce, so in fact a.s. we
have that 1 and 2 coalesce, and they do not coalesce with 3. Therefore, µ is a block
measure with the two blocks {1,2} and {3}.

We show next that, for 1≤ k ≤ |S|, there exists a consistent pair (P,µ) such that
µ is a block measure with k(µ) = k.

Lemma 5. For |S| = n ≥ 2 and 1 ≤ k ≤ n, there exists an aperiodic P ∈PS such
that k ∈ K(P).

Proof. Let S = {Sr : r = 1,2, . . . , l} be a partition of S, and let G ⊆FS be the set of
all functions g satisfying: there exists a permutation π of {1,2, . . . , l} such that, for
r = 1,2, . . . , l, we have gSr ⊆ Sπ(r). Any probability measure µ on FS with support
G is an S -block measure.

Let µ be such a measure and let P be the associated stochastic matrix on S, given
in (1.1). For i, j ∈ S, there exists g∈ G such that g(i) = j. Therefore, P is irreducible
and aperiodic.
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We identify next the consistent pairs (P,µ) for which either k(µ) = |S| or |S| ∈
K(P).

Theorem 4. Let |S|= n≥ 2 and P ∈PS. We have that

(a) k(µ) = n if and only if supp(µ) contains only permutations of S,
(b) n ∈ K(P) if and only if P is doubly stochastic.

Before proving this, we remind the reader of Birkhoff’s theorem [1] (sometimes
attributed also to von Neumann [9]).

Theorem 5 ([1, 9]). A stochastic matrix P on the finite state space S is doubly
stochastic if and only if it lies in the convex hull of the set ΠS of permutation matri-
ces.

Remark 2. We note that the simulation problem confronted by CFTP is trivial when
P is irreducible and doubly stochastic, since such P are characterized as those tran-
sition matrices with the uniform invariant distribution π = (πi = n−1 : i ∈ S).

Proof (Proof of Theorem 4). (a) If supp(µ) contains only permutations, then a.s.
kt(F) = n for every t ∈N. Hence n ∈ K(P). If supp(µ) contains a non-permutation,
then with positive probability k1(F) < n and hence k(µ) < n.

(b) By Theorem 5, P is doubly stochastic if and only if it may be expressed as a
convex combination

P = ∑
f∈ΠS

α f M f , (1.13)

of permutation matrices M f (recall (1.6) and (1.7)).
If P is doubly stochastic, let the α f satisfy (1.13), and let

µ = ∑
f∈ΠS

α f δ f , (1.14)

as in (1.5). Then µ ∈L (P), and k(µ) = n by part (a).
If P is not doubly stochastic and µ ∈L (P), then µ has no representation of the

form (1.14), so that k(µ) < n by part (a).

Finally in this section, we present a necessary and sufficient condition for µ to
be an S -block measure, Theorem 6 below.

Let P ∈PS, and let S = {Sr : r = 1,2, . . . , l} be a partition of S with l ≥ 1. For
r,s ∈ I := {1,2, . . . , l} and i ∈ Sr, let

λ
(i)
r,s = ∑

j∈Ss

pi, j.

Since a block measure comprises a transition operator on blocks, combined with
a shuffling of states within blocks, it is necessary in order that µ be an S -block
measure that

λ
(i)
r,s is constant for i ∈ Sr. (1.15)
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When (1.15) holds, we write

λr,s = λ
(i)
r,s , i ∈ Sr. (1.16)

Under (1.15), the matrix Λ = (λr,s : r,s ∈ I) is the irreducible transition matrix of
the Markov chain derived from P by observing the evolution of blocks, which is to
say that

λr,s = µ(Π(r) = s), r,s ∈ I, (1.17)

where Π is given by (1.10). Since l ∈K(Λ), we have by Theorem 4 that Λ is doubly
stochastic, which is to say that

∑
r∈I

λr,s = ∑
r∈I

∑
j∈Ss

pir , j = 1, s ∈ I, (1.18)

where each ir is an arbitrarily chosen representative of the block Sr. By (1.15), equa-
tion (1.18) may be written in the form

∑
i∈S

∑
j∈Ss

1
|Sr(i)|

pi, j = 1, r,s ∈ I, (1.19)

where r(i) is the index r such that i ∈ Sr. The following theorem is the final result
of this section.

Theorem 6. Let S be a non-empty, finite set, and let S = {Sr : r = 1,2, . . . , l} be a
partition of S. For P∈PS, a measure µ ∈L (P) is an S -block measure if and only
if (1.15), (1.19) hold, and also k(µ) = l.

Proof. The necessity of the conditions holds by the definition of block measure and
the above discussion.

Suppose conversely that the stated conditions hold. Let Λ = (λr,s) be given by
(1.15)–(1.16). By (1.16) and (1.19), Λ is doubly stochastic. By Theorem 4, we may
find a measure ρ ∈L (Λ) supported on a subset of the set ΠI of permutations of
I, and we let Π have law ρ . Conditional on Π , let Z = (Zi : i ∈ S) be independent
random variables such that

P(Zi = j |Π) =

{
pi, j/λr,s if Sr 3 i, Ss 3 j, Π(r) = s,
0 otherwise.

The law µ of Z is an S -block measure that is consistent with P.

1.5 The set K(P)

We begin with a triplet of conditions.
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Proposition 1. Let S = {1,2, . . . ,n} where n ≥ 3, and let P ∈PS and µ ∈L (P).
Let C = C (µ) be the set of possible coalescing pairs, as in (1.12).

(a) k(µ) = n if and only if |C |= 0.
(b) k(µ) = n−1 if and only if |C |= 1.
(c) If |C | comprises the single pair {1,2}, then P satisfies

n

∑
j=3

p1, j =
n

∑
j=3

p2, j =
n

∑
i=3

(pi,1 + pi,2). (1.20)

Proof. (a) See Theorem 4(a).
(b) By part (a), k(µ)≤ n−1 when |C |= 1. It is trivial by definition of k and C

that, if k(µ)≤ n−2, then |C | ≥ 2. It suffices, therefore, to show that k(µ)≤ n−2
when |C | ≥ 2. Suppose that |C | ≥ 2. Without loss of generality we may assume
that {1,2} ∈ C and either that {1,3} ∈ C or (in the case n ≥ 4) that {3,4} ∈ C .
Let F = (Fs : s ∈ N) be an independent sample from µ . Let M be the Markov time
M = inf{t > 0 :

�
F t(1) =

�
F t(2) = 1}, and write J = {M < ∞}. By irreducibility,

µµµ(J) > 0, implying that k(µ)≤ n−1. Assume that

k(µ) = n−1. (1.21)

We shall obtain a contradiction, and the conclusion of the lemma will follow.
Suppose first that {1,2},{1,3} ∈ C . Let B be the event that there exists i ≥ 3

such that
�
FM(i) ∈ {1,2,3}. On B∩ J, we have k(F)≤ n−2 a.s., since

µµµ(at least 3 states belong to coalescing pairs) > 0.

Thus µ(B∩ J) = 0 by (1.21). On B∩ J, the
�
FM(i), i≥ 3, are by (1.21) a.s. distinct,

and in addition take values in S \ {1,2,3}. Thus there exist n− 2 distinct values
of

�
FM(i), i ≥ 3, but at most n− 3 values that they can take, which is impossible,

whence µ(B∩ J) = 0. It follows that

0 < µµµ(J) = µµµ(B∩ J)+ µµµ(B∩ J) = 0, (1.22)

a contradiction.
Suppose secondly that {1,2},{3,4} ∈ C . Let C be the event that either (i) there

exists i≥ 3 such that
�
FM(i) ∈ {1,2}, or (ii) {

�
FM(i) : i≥ 3} ⊇ {3,4}. On C∩ J, we

have k(F)≤ n−2 a.s. On C∩ J, by (1.21) the
�
FM(i), i≥ 3, are a.s. distinct, and in

addition take values in S \{1,2} and no pair of them equals {3,4}. This provides a
contradiction as in (1.22).

(c) Let F1 have law µ . Write Ai = {F1(i) ∈ {1,2}}, and

M = |{i≤ 2 : Ai occurs}|, N = |{i≥ 3 : Ai occurs}|.

If µ(Ai ∩A j) > 0 for some i ≥ 3 and j 6= i, then {i, j} ∈ C , in contradiction of the
assumption that C comprises the singleton {1,2}. Therefore, µ(Ai∩A j) = 0 for all
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i≥ 3 and j 6= i, and hence

µ(N ≥ 2) = 0, (1.23)
µ(M ≥ 1,N = 1) = 0. (1.24)

By similar arguments,

µ(M < 2,N = 0) = 0, (1.25)
µ(M = 1) = 0. (1.26)

It follows that

µ(N = 1) = µ(N = 1,M = 0) by (1.24)
= µ(M = 0) by (1.25) and (1.23)

= µ(A1∩A2)

= µ(Ar), r = 1,2, by (1.26).

Therefore,

µ(N = 1) = µ(Ar) = µ(F1(r)≥ 3) =
n

∑
j=3

pr, j, r = 1,2.

By (1.23),

µ(N = 1) = µ(N) =
n

∑
i=3

µ(Ai) =
n

∑
i=3

(pi,1 + pi,2),

where µ(N) is the mean value of N. This yields (1.20).

The set K(P) can be fairly sporadic, as illustrated in the next two examples.

Example 3. Consider the matrix

P =


1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

 . (1.27)

Since P is doubly stochastic, by Theorem 4(a), there exists µ ∈ L (P) such that
k(µ) = 3 (one may take µ(123) = µ(231) = 1

2 ). By Lemma 3, we have that 1 ∈
K(P), and thus {1,3}⊆K(P). We claim that 2 /∈K(P), and we show this as follows.

Let µ ∈L (P), with k(µ) < 3, so that |C | ≥ 1. There exists no permutation of
S for which the matrix P satisfies (1.20), whence |C | ≥ 2 by Proposition 1(c). By
parts (a, b) of that proposition, k(µ)≤ 1. In conclusion, K(P) = {1,3}.

Example 4. Consider the matrix
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P =


1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2

 . (1.28)

We have, as in Example 3, that {1,4} ⊆ K(P). Taking

µ(1234) = µ(2244) = µ(1331) = µ(2341) = 1
4

reveals that 2 ∈ K(P), and indeed µ is a block measure with blocks {1,2}, {3,4}.
As in Example 3, we have that 3 /∈ K(P), so that K(P) = {1,2,4}.

We investigate in greater depth the transition matrix on S with equal entries. Let
|S|= n≥ 2 and let Pn = (pi, j) satisfy pi, j = n−1 for i, j ∈ S = {1,2, . . . ,n}.

Theorem 7. For n≥ 2 there exists a block measure µ ∈L (Pn) with k(µ) = l if and
only if l | n. In particular, K(Pn)⊇ {l : l | n}. For n≥ 3, we have n−1 /∈ K(Pn).

We do not know whether K(Pn) = {l : l | n}, and neither do we know if there
exists µ ∈L (Pn) that is not a block measure.

Proof. Let n≥ 2. By Lemma 3 and Theorem 4, we have that 1,n∈K(Pn). It is easily
seen as follows that l ∈ K(Pn) whenever l | n. Suppose l | n and l 6= 1,n. Let

Sr = (r−1)n/l +{1,2, . . . ,n/l}
= {(r−1)n/l +1,(r−1)n/l +2, . . . ,rn/l}, r = 1,2, . . . , l. (1.29)

We describe next a measure µ ∈L (Pn). Let Π be a uniformly chosen permutation
of {1,2, . . . , l}. For i ∈ S, let Zi be chosen uniformly at random from SΠ(i), where
the Zi are conditionally independent given Π . Let µ be the block measure governing
the vector Z = (Zi : i ∈ S). By symmetry,

qi, j := µ
(
{ f ∈FS : f (i) = j}

)
, i, j ∈ S,

is constant for all pairs i, j ∈ S. Since µ is a probability measure, Q = (qi, j) has row
sums 1, whence qi, j = n−1 = pi, j, and therefore µ ∈L (Pn). By examination of µ ,
µ is an S -block measure.

Conversely, suppose there exists an S -block measure µ ∈ L (Pn) with corre-
sponding partition S = {S1,S2, . . . ,Sl}with index set I = {1,2, . . . , l}. By Theorem
6, equations (1.15) and (1.19) hold. By (1.15), the matrix Λ = (λr,s : r,s∈ I) satisfies

λr,s =
|Ss|
n

, r,s ∈ I. (1.30)

By (1.19),
|Ss|
|Sr|

= 1, s,r ∈ I,
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whence |Ss|= n/l for all s ∈ I, and in particular l | n.
Let n ≥ 3. We prove next that k(µ) 6= n− 1 for µ ∈L (Pn). Let C = C (µ) be

given as in (1.12). By Proposition 1(b), it suffices to prove that |C | 6= 1. Assume on
the contrary that |C |= 1, and suppose without loss of generality that C contains the
singleton pair {1,2}. With P = Pn, the necessary condition (1.20) becomes

(n−2)
1
n

= (n−2)
2
n
,

which is false when n≥ 3. Therefore, |C | 6= 1, and the proof is complete.
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