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Dedicated in friendship to Catriona Byrne

Abstract. This celebratory article contains a personal and id-
iosyncratic selection of a few open problems in discrete probabil-
ity theory. These include certain well known questions concerning
Lorentz scatterers and self-avoiding walks, and also some problems
of percolation-type. The author hopes the reader will find some-
thing to leaven winter evenings, and perhaps even a project for the
longer term.
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Personal remarks

The editorial team of Springer Mathematics has become almost fam-
ily for many of us worldwide, with Catriona Byrne at its heart. She
has come to know us better than we know ourselves, always with sym-
pathy, and with an honest and constructive approach to occasionally
challenging areas of professional debate. Through our numerous col-
laborations, she and I have kindled a warm friendship that will persist
into the next phase of our adventures. We wish her many happy years
free from the woes of authors, editors, readers, and publishers.

1. Introduction

Probability has been a source of many tantalising problems over the
centuries, of which the St Petersburg paradox, Fermat’s problem of
the points, and Bertrand’s random triangles feature still in introduc-
tory courses. Whereas the conceptual problems of the past are now
largely resolved, contemporary questions arise frequently where the in-
tuitive apparatus of sub-fields collide. Many prominent problems are
to be found at the conjunction of probability and discrete geometry.
This short and idiosyncratic article summarises some of these. This
account is personal and incomplete, and is to be viewed as a complete
review of nothing. The bibliography is not intended to be complete,
and apologies are extended to those whose work has been omitted.

The questions highlighted here vary from the intriguing to the pro-
found. Whereas some may seem like puzzles with limited consequence,
others will require new machinery and may have far-reaching implica-
tions.

2. Self-avoiding walks

2.1. Origins. Self-avoiding walks were first introduced in the chemi-
cal theory of polymerisation (see [17, 47]), and their properties have
received much attention since from mathematicians and physicists (see,
for example, [7, 23, 43]).

A path in an infinite graph G = (V,E) is called self-avoiding if no
vertex is visited more than once. Fix a vertex v ∈ V , and let Σn(v)
be the set of n-step self-avoiding walks (SAWs) starting at v. The
principal combinatorial problem is to determine how the cardinality
σn(v) := |Σn(v)| grows as n → ∞, and the complementary probability
problem is to establish properties of the shape of a randomly selected
member of Σn(v). Progress has been striking but limited.
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2.2. Asymptotics. It is now regarded as elementary that the so-called
connective constant κ = κ(G), given by

log κ = lim
n→∞

1

n
log σn(v),

exists when G is quasi-transitive, and is independent of the choice of
v. Thus, in this case

σn(v) = κ(1+o(1))n.

The correction term is much harder to understand. We shall not make
precise the concept of a d-dimensional lattice, but for definiteness the
reader may concentrate on the hypercubic lattice Zd.

Conjecture 2.1. For d ≥ 2 there exists a critical exponent γ = γd
such that the following holds. Let G be a d-dimensional lattice. There
exists a constant A > 0 such that1

(2.1) σn ∼ Anγ−1κ(G)n as n → ∞.

Furthermore,

γ =

{
43
32

when d = 2,

1 when d ≥ 4.

See [7, 43] for further discussion and results so far, and the papers
[30, 31] of Hara and Slade when G = Zd with d ≥ 5, for which case
they prove that γ = 1. Of particular interest is the case when G = H,
the hexagonal lattice. By a beautiful exact calculation that verifies
an earlier conjecture of Nienhuis [46] based in conformal field theory,
Duminil-Copin and Smirnov [15] proved that

κ(H) =

√
1 +

√
2.

The proof reveals a discrete holomorphic function that is highly sug-
gestive of a connection to a Schramm–Loewner evolution (see [35]),
namely the following.

Question 2.2. Does a uniformly distributed n-step SAW from the ori-
gin of H converge weakly, when suitably rescaled, to the Schramm–
Loewner random curve SLE8/3?

Progress on this question should come hand-in-hand with a calcula-
tion of the associated critical exponent γ = 43

32
. Gwynne and Miller [28]

have proved the corresponding weak limit in the universe of Liouville
quantum gravity.

1A logarithmic correction is in fact expected in (2.1) when d = 4.
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NENW

Figure 3.1. A NW and a NE mirror. Each is reflective
on both sides.

2.3. Self-avoiding walks in a random environment. How does
the sequence (σn) behave when the underlying graph G is random? For
concreteness, we consider here the infinite cluster I of bond percolation
on Z2 with edge-density p > 1

2
(see [20]).

Question 2.3. Does the limit µ(v) := limn→∞ σn(v)
1/n exist a.s., and

satisfy µ(v) = µ(w) a.s. on the event {v, w ∈ I}?

Related discussion, including of the issue of deciding when µ(v) =
pµ(Z2) a.s. on the event {v ∈ I}, may be found in papers of Lacoin
[36, 37]. The easier SAW problem on (deterministic) weighted graphs
is considered in [25].

3. Lorentz scatterers

3.1. Background. The scattering problem of Lorentz [39] gives rise
to the following general question. Scatterers are distributed randomly
about Rd. Light is shone from the origin in a given direction, and is
subjected to reflection at the scatterers. Under what circumstances is
the light ray: (i) bounded, (ii) unbounded, (iii) diffusive? While certain
special cases are understood, the general question remains open. The
problems mentioned here are concerned with aperiodic distributions of
scatterers; the periodic case is rather easier.

3.2. Ehrenfest wind/tree model. The following notorious problem
on the square lattice Z2 has resisted solution for many years. Let
p ∈ [0, 1]. At each vertex of Z2 is placed a mirror with probability
p, or alternatively nothing. Mirrors are plane and two-sided. Each
mirror is designated a north-east (NE) mirror with probability 1

2
, or

alternatively a north-west (NW) mirror. The states of different vertices
are independent. The meanings of the mirrors are illustrated in Figure
3.1.
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Figure 3.2. From the original (dashed) square lattice

Z2 one may construct a diagonal lattice Ẑ2. In fact
there are two such diagonal lattices, and this fact may
be used to obtain some information about the power-law
behaviour of the light ray when p = 1. The Manhat-
tan orientations are not relevant to the usual Ehrenfest
model, but are provided to facilitate the discussion of
Manhattan pinball in Section 3.4.

Light is shone from the origin in a given compass direction, say
north, and it is reflected off the surface of any mirror encountered.
The problem is to decide whether or not the light ray is unbounded.

Question 3.1. Let θ(p) be the probability that the light ray is un-
bounded. For what values of p is it the case that θ(p) > 0?

It is trivial that θ(0) = 1. By considering bond percolation (with
density p/2) on the diagonal lattice of Figure 3.2, and using the fact
that there is no percolation when p = 1, one obtains the less trivial fact
that θ(1) = 0 (see [20]). Very little more is known rigorously about the
answer to Question 3.1.

3.3. Poisson mirrors. Here is version of the wind/tree model in the
two-dimensional continuum R2. Let Π be a rate-1 Poisson process in
R2. Let ϵ > 0, and let µ be a probability measure on [0, π). We possess
an infinity of two-sided, plane mirrors of length ϵ, and we centre one
at each point in Π; the inclination to the horizontal of each mirror is
random with law µ, and different mirrors have independent inclinations.
Think of a mirror as being a randomly positioned, closed line segment
of length ϵ, and let M denote the union of these segments. We call µ
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0

Figure 3.3. Light from the origin is reflected off the mirrors.

degenerate if it is concentrated on a single atom, and shall assume µ is
non-degenerate. See Figure 3.3.

Light is shone from the origin at an angle α to the horizontal. Let Iα
be the indicator function of the event that the light ray is unbounded.
Some convention is adopted for the zero-probability event that the light
strikes an intersection of two or more mirrors.

We may assume that the origin 0 does not lie in M . Let C be the
component of R2 \M containing 0, and let {0 ↔ ∞} be the event that
C is unbounded. It is a standard result of so-called needle percolation
(see [51]) that there exists ϵc = ϵc(µ) ∈ (0,∞) such that

Pµ(0 ↔ ∞)

{
> 0 when ϵ < ϵc,

= 0 when ϵ > ϵc.

(Here and later, the subscript µ keeps track of the choice of µ.) Ob-
viously, on the event that 0 ↮ ∞, we have that Iα = 0 for all α.
Therefore,

Pµ(Iα = 1 for some α) = 0, ϵ > ϵc.

The converse issue is much harder and largely open.

Question 3.2. Suppose µ is non-degenerate.

(a) Does there exist ϵ′c = ϵ′c(µ) > 0 such that θµ(ϵ) > 0 for ϵ < ϵ′c?
(b) Could it be that ϵ′c(µ) = ϵc(µ)?
(c) In particular, what happens when µ is the uniform measure on

[0, π)?

Let Q be the set of probability measures µ that are non-degenerate
and have support in the rational angles πQ. Suppose µ ∈ Q and
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0 < ϵ < ϵc(µ). Harris [32] has shown the striking fact that, Pµ-a.s.
on the event that 0 ↔ ∞, we have that Iα = 1 for (Lebesgue) almost
every α.

This leads to a deterministic question. Let K be the set of mirror
configurations for which 0 ↔ ∞ but Iα = 0 for all α.

Question 3.3. Is K non-empty?

Harris’s theorem implies in effect that Pµ(K) = 0 when µ ∈ Q and
ϵ ̸= ϵc(µ). Question 3.2(c) hints at the possibility that Pµ(K) = 0 when
µ is the uniform measure on [0, π) and ϵ < ϵ(µ).

Here is a final question concerning diffusivity. Let µ ∈ Q, and denote
by Xα(t) the position at time t of the light ray that leaves the origin
at angle α.

Question 3.4. Is it the case that, on the event Iα, Xα(·) is diffusive?
That is, the limit σ2 := limt→∞ t−1var(Xα(t)) exists in (0,∞), and,
when normalized, Xα(t) is asymptotically normally distributed.

Related work on Lorentz models in the so-called Boltzmann–Grad
limit may be found in [40, 41].

3.4. Manhattan pinball. Here is a variant of the Ehrenfest model
motivated by a problem of quantum localization, [13, Sec. 4.2], [52,

p. 238]. Draw Z2 and the diagonal lattice Ẑ2 as in Figure 3.2; each
edge of Z2 receives its Manhattan orientation as indicated in the figure.
Consider bond percolation with density q on the diagonal lattice. Along

each open edge of Ẑ2 we place a two-sided plane mirror. Light is shone
from the origin along a given one of the two admissible directions, and
it is reflected by any mirror that it encounters (such reflections are
automatically consistent with the Manhattan orientations). Let θ(q)
be the probability that the light ray is unbounded.

Question 3.5. Could it be that θ(q) = 0 for all q > 0?

It follows as in Section 3.2 that θ(q) = 0 for q ≥ 1
2
, and it has been

proved by Li in [38] that there exists ϵ > 0 such that θ(q) = 0 when
q > 1

2
− ϵ. The proof uses the method of enhancements; see [2], [20,

Sect. 3.3].

4. Two stochastic inequalities

4.1. Bunkbed inequality. The mysterious ‘bunkbed’ inequality was
posed by Kasteleyn around 1985 (see [9, Rem. 5], and also [29]). Of
its various flavours, we select the following. Let G = (V,E) be a finite
simple graph. From G we construct two copies denoted G1 = (V1, E1)
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and G2 = (V2, E2). For v ∈ V we write vi for the copy of v lying in
Vi. We now attach G1 and G2 by adding edges ⟨v1, v2⟩ for each v ∈ V .

This new graph is denoted G̃, and it may be considered as the product
graph G×K2 where K2 is the complete graph on two vertices (that is,
an edge). We may think of the Gi as being ‘horizontal’ and the extra
edges as being ‘vertical’.

Each edge of G̃ is declared open with probability p, independently
of the states of other edges. Write Pp for the appropriate product

measure. For two vertices ui, vj of G̃, we write {ui ↔ vj} for the event
that there exists a ui/vj path using only open edges.

Conjecture 4.1. For u, v ∈ V , we have

Pp(u1 ↔ v1) ≥ Pp(u1 ↔ v2).

There is uncertainty over whether this was the exact conjecture of
Kasteleyn. For example, it is suggested in [34] (and perhaps elsewhere)
that Kasteleyn may have made the stronger conjecture that the in-
equality holds even after conditioning on the set T of open vertical
edges.

Some special cases of the bunkbed conjecture have been proved (see
the references in [34], and more recently [50]), but the general question
remains open.

4.2. Negative correlation. Our next problem is quite longstanding
(see [48]) and remains mysterious. In a nutshell it is to prove that
the uniform random forest measure (USF) has a property of negative
association.

Let G = (V,E) be a finite graph which, for simplicity, we assume
has neither loops nor multiple edges. A subset F ⊆ E is called a forest
if (V, F ) has no cycles. Let F be the set of all forests in G and let Φ be
a random forest chosen uniformly from F . We call Φ edge-negatively
associated if

(4.1) P(e, f ∈ Φ) ≤ P(e ∈ Φ)P(f ∈ Φ), e, f ∈ E, e ̸= f.

Conjecture 4.2. For all graphs G, the random forest Φ is edge-negatively
associated.

One may formulate various forms of negative dependence, amongst
which the edge-negative association of (4.1) is quite weak. One may
conjecture that Φ has a stronger variety of such dependence. Further
discussion may be found in [22, Sec. 3.9] and [48].

Experimental evidence for Conjecture 4.2 is quite strong. A similar
conjecture may be made for uniform measure on the set of F ⊆ E such
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that (V, F ) is connected (abbreviated to UCS). In contrast, uniform
spanning tree (UST) is well understood via the Kirchhoff theory of elec-
trical networks, and further by [16]. USF, UCS, and UST are special
cases of the so-called random-cluster measure with cluster-weighting
factor q satisfying q < 1 (see [22, Sects 1.5, 3.9]).

In recent work, [5, 6], the percolative properties of the weighted
random forest (or ‘arboreal gas’) on Zd have been explored. It turns
that there is a phase transition if and only if d ≥ 3.

5. Randomly oriented square lattice

The following percolation-type problem remains open. Consider the
square lattice Z2 and let p ∈ [0, 1]. Each horizontal edge is oriented
rightward with probability p, and otherwise leftward. Each vertical
edge is oriented upward with probability p, and otherwise downward.
Write Z⃗2 for the ensuing randomly oriented network.

Let θ(p) denote the probability that the origin 0 is the endpoint of

an infinite path of Z⃗2 that is oriented away from 0. The challenge is to
determine for which p it is the case that θ(p) > 0. It is elementary that
θ(0) = 1, and that θ(p) = θ(1− p). It is less obvious that θ(1

2
) = 0 (see

[20, 1st edn]), which is proved via a coupling with bond percolation.
By a comparison with oriented percolation, we have that θ(p) > 0 if
p > p⃗c, where p⃗c is the critical point of oriented percolation on Z2; it is
not difficult to deduce by the enhancement method (see [2], [20, Sect.
3.3]) that there exists p′ ∈ (1

2
, p⃗c) such that θ(p) > 0 when p > p′. It is

believed that p⃗c ∼ 0.64, and proved that p⃗c < 0.6735.

Question 5.1. Is it the case that θ(p) > 0 for p ̸= 1
2
.

It is shown in [21] that, for all p, Z⃗2 is either critical or supercritical
in the following sense: if any small positive density of oriented edges is
added at random, then there is a strictly positive probability that the
origin is the endpoint of an infinite self-avoiding oriented path in the
resulting graph.

6. Enhancements

The technique of so-called enhancements was introduced in [2] to
answer the question “when is the critical point of a disordered system
a strictly monotone function of the parameters of the system?” There
have been numerous applications of this technique, including to perco-
lation [1, 12, 14, 18, 26, 27, 33, 44], the Ising/Potts and random-cluster
models [10, 19], as well as the Lorentz gas [38] and the minesweeper
game [45].
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BR BR

−me1

Bm

me1
π

π−

π+

?

Figure 6.1. By making changes only within BR, can
one replace a non-self-touching path π by a non-touching
pair π−, π+ of paths?

The approach of [2] was to describe a conceptual technique with wide
applicability, illustrated by applications. Some of the graph-theoretic
details of the application to site percolation were omitted, and this
has attracted the attention of the authors of [4] who have identified a
difficulty in the special case of site percolation on Zd with d ≥ 3. The
corresponding step for bond percolation was treated in [20, Chap. 3].

Let d ≥ 2 and let Zd be the set of d-vectors v = (v1, v2, . . . , vd) of
integers. We turn Zd into a graph by adding an edge ⟨v, w⟩ between

any pair v, w ∈ Zd satisfying
∑d

i=1 |vi − wi| = 1.

A configuration is a element ω of the space Ω := {0, 1}Zd
. The site

percolation model is obtained by choosing ω according to the product
measure Pp on Ω. That said, probability plays no direct role in the
following. We say that a configuration ω ∈ Ω contains a vertex v ∈ Zd

if ω(v) = 1.
A path π of Zd is an alternating sequence . . . , x0, e0, x1, e1, . . . , en−1, xn, . . .

of vertices xi and edges ei such that ei = ⟨xi, xi+1⟩ for all i. The path
π is called non-self-touching if δ(xi, xj) ≥ 2 whenever j − i ≥ 2, where
δ(u, v) denotes the number of edges in the shortest path from u to v.
Two paths with respective vertex-sequences (xi) and (yj) are called
non-touching if each is non-self-touching and, in addition, δ(xi, yj) ≥ 2
for all i, j.

Let e1 = (1, 0, . . . , 0) be the unit vector with 1 in the first position,
and let Bm = [−m,m]d ∩ Zd.
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Question 6.1. Let m ≥ 1 and d ≥ 2. Does there exist R > m such
that the following holds? Let ω ∈ Ω be a configuration that contains a
doubly infinite, non-self-touching path π containing the origin 0. There
exists a configuration ω′ that agrees with ω off BR such that:

(a) ω′ contains a singly infinite path π− with initial vertex −me1
and no other vertex belonging to Bm,

(b) ω′ contains a singly infinite path π+ with initial vertex me1 and
no other vertex belonging to Bm,

(c) the pair (π−, π+) is non-touching.

This is illustrated in Figure 6.1. The motivation for the question is
as follows. Suppose the vertex 0 is pivotal for a certain event E, and
it is proposed to apply an enhancement that has the effect of adding
certain open connections within the inner box Bm. Then, by chang-
ing the configuration within some bounded box BR, one may obtain a
new configuration in which the the enhancement is itself pivotal for E.
By Russo’s formula, this implies the comparability of the two partial
derivatives of Pp,η(A), where η is the probability that any given en-
hancement is ‘activated’. The strict monotonicity of the critical point
follows on integration (see [20, Sec. 3.3] for further details).

It was implicit in the proof of [2, Thm 1] that Question 6.1 has an
affirmative answer for d ≥ 2. The proof is straightforward when d = 2.
A positive answer is proved in [4] when d = 3, and the question seems
to be open for d ≥ 4.
A closely related issue arises in the so-called Burton–Keane [11] proof

of the uniqueness of the infinite percolation cluster. Path-surgery of
the above type may in fact be avoided in the latter context, see [8, 42].

7. Mobile stochastic epidemics

The recent pandemic has inspired a number of mathematical prob-
lems, including the following stochastic model (see [24]). Particles are
placed at time 0 at the points of a rate-1 Poisson process in Rd, where
d ≥ 1. Each particle diffuses around Rd according to a Brownian mo-
tion, independently of other particles. At any given time, each particle
is in one of the states S (susceptible), I (infected), R (removed/dead).

At time 0 there exists a unique particle in state I, and all others are
in state S. The infection/removal rules are as follows.

(a) If an infected particle comes within distance 1 of a susceptible
particle, the latter particle is infected.

(b) An infected particle remains infected for a period of time hav-
ing the exponential distribution with parameter α, and is then
removed.
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We call this the ‘diffusion model’.
Survival is said to occur if, with a strictly positive probability, in-

finitely many particle are ultimately infected. It is proved in [24] that,
when d ≥ 1 and α is sufficiently large, survival does not occur. The
following two questions (amongst others) are left open.

Question 7.1.

(i) When d = 1, could it be that there is no survival for any α > 0?
(ii) When d ≥ 2, does survival occur for sufficiently small α > 0?

In a variant of this problem termed the ‘delayed diffusion model’, a
much fuller picture is known. Suppose, instead of the above, a particle
moves only when it is infected; susceptible particles are stationary.
The answers to Question 7.1(i, ii) are then no and yes, respectively,
and indeed (when d ≥ 2) there exists a critical value αc(d) ∈ (0,∞) of
α marking the onset of survival. The key difference between the two
systems is that the latter model has a property of monotonicity that is
lacking in the former.

The delayed diffusion model is a continuous space/time cousin of the
discrete-time ‘frog model’ of [3] (see also [49]), with the addition with
removal. Further relevant references may be found in [24].
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