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Abstract. We sketch elementary results and open problems in the theory of percolation and
random-cluster models. The presentation is rather selective, and is intended to stimulate interest
rather than to survey the established theory. In the case of the random-cluster model, we include
sketch proofs of basic material such as the FKG inequality and the comparison inequalities.
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1. Introduction

This paper falls naturally into two (related) halves. The first of these is concerned
with the percolation model, and the second with the random-cluster model. The
emphasis throughout is upon unsolved problems which are easy to state; some of
these are chestnuts of varying ages, and some are recent and may be relatively
tractable.

The percolation model is the subject of Sections 2–4, the last of which contains
a selection of open questions. In Section 5 we turn to the random-cluster model of
Fortuin and Kasteleyn, and for this process we present and prove several of the basic
properties in advance of describing in Section 9 some stimulating problems worthy
of resolution.

2. Bond Percolation

Our lattice is the hypercubic lattice L
d, having vertex set Z

d and edge set E
d con-

taining all pairs 〈x, y〉 whose L1 distance

‖y − x‖ =
d

∑

i=1

|yi − xi|

satisfies ‖y − x‖ = 1; for z ∈ Z
d, we write z = (z1, z2, . . . , zd). Throughout we shall

assume that d ≥ 2.

*The author acknowledges support from the Isaac Newton Institute, University of Cambridge,
and from the SERC under grant GR G59981.
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Let 0 ≤ p ≤ 1, and call an edge e (∈ E
d) open with probability p, and closed

otherwise; different edges are designated open or closed independently of one an-
other. Consider the random subgraph of L

d containing the vertex set Z
d and the

open edges only. The connected components of this graph are called open clusters,
and percolation theory is concerned with their sizes and geometry. We write C(x)
for the open cluster containing the vertex x, and C = C(0) for the cluster containing
the origin 0. The number of vertices in C(x) is denoted by |C(x)|.

There is a ‘phase transition’, in the following sense. Define the percolation prob-

ability

θ(p) = Pp(|C| = ∞), (2.1)

where Pp is the associated probability measure, and define the critical probability by

pc = sup{p : θ(p) = 0}. (2.2)

It is a fundamental fact that 0 < pc < 1. The value pc marks a transition from a
subcritical phase (when p < pc, and all open clusters are a.s. finite) to a supercritical
phase (when p > pc, and there exists a.s. an infinite open cluster). The most basic
problem is to understand the nature of the singularity of the process at the point of
phase transition.

Rather than attempt an accurate bibliography, the reader is referred to [22] for
history and references prior to 1989.

3. Some Open Problems for Percolation

3.1. BK Inequality

‘Correlation inequalities’ play an important role in studying percolation, and the
FKG and BK inequalities are fundamental techniques. Whereas the FKG inequality
is rather well understood, there are interesting unresolved questions concerning the
BK inequality.

Consider the probability space (Ω,F , µ) where Ω = {0, 1}E, E being a finite set,
F is the σ-field of all subsets of Ω, and µ is product measure with density p, i.e.,

µ(ω) =
∏

e∈E

{pω(e)(1 − p)1−ω(e)}, ω = (ω(e) : e ∈ E) ∈ Ω. (3.1)

There is a natural partial order on Ω given by ω ≤ ω′ if and only if ω(e) ≤ ω′(e)
for all e ∈ E. An event A in F is called increasing if its indicator function IA is an
increasing function on the partially ordered space (Ω,≤). The FKG inequality (see
[21, 28] and Section 7) states that

µ(A ∩ B) ≥ µ(A)µ(B) for increasing events A,B. (3.2)

The BK inequality provides a converse relation, but with A ∩ B replaced by
another event A ◦ B defined as follows. Let A and B be increasing events. Each ω
(∈ Ω) is specified uniquely by the set K(ω) = {e : ω(e) = 1} of edges with state
1. We define A ◦ B to be the set of all ω for which there exists a subset H of
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K(ω) such that ω′, determined by K(ω′) = H, belongs to A, and w′′, determined
by K(ω′′) = K(ω) \H, belongs to B. We speak of A ◦B as the event that A and B
occur disjointly. The BK inequality ([9]) states that

µ(A ◦ B) ≤ µ(A)µ(B) for increasing events A,B. (3.3)

It is conjectured that such an inequality is valid for all events A and B, so long
as A ◦ B is interpreted correctly. For general events A and B, we define the event
A� B as follows. For ω = (ω(e) : e ∈ E) and K ⊆ E, we define the cylinder event
C(ω,K) by

C(ω,K) = {ω′ ∈ Ω : ω′(e) = ω(e) for e ∈ K}.

We now define A� B to be the set of all ω (∈ Ω) for which there exists K ⊆ E such
that C(ω,K) ⊆ A and C(ω,E \ K) ⊆ B.

Conjecture 3.1. For all events A and B,

µ(A� B) ≤ µ(A)µ(B). (3.4)

This conjecture has as special cases both the FKG and BK inequalities, since
A� B = A ◦ B and A� Bc = A ∩ Bc for increasing events A and B.

In the case p = 1
2 , the conjecture reduces to a counting problem: prove that

2|E||A� B| ≤ |A| · |B| for all events A,B. (3.5)

In a discussion [8] of partial results, it is proved that (3.5) would imply the full
conjecture.

Finally we ask for what probability measures µ is the BK inequality (3.3) valid?

For example, is it valid for the measure which assigns probability
(

|E|
M

)−1
to each of

the sequences ω containing exactly M ones and |E| − M zeros, where M is fixed?

3.2. Smoothness of Percolation Probability

It is known that θ(p) = 0 for p < pc (by definition) and that θ is infinitely differen-
tiable when p > pc. It is a major open problem to prove that θ(pc) = 0, which is
equivalent (via the right continuity of θ) to the statement

θ is continuous at pc. (3.6)

This problem has been settled affirmatively when d = 2, and for the following
discussion we assume that d ≥ 3.

It is known that the critical probability pc of Z
d is the same as the critical

probability pc(H) of the half-space H = Z+ × Z
d−1 ([26]). Furthermore, we know

(see [6]) that H contains no infinite cluster when p = pc. It is therefore required
to rule out the following outlandish possibility: when p = pc there exists a.s. an
infinite open cluster, but this cluster decomposes a.s. into finite clusters whenever
Z

d is sliced into two disjoint half-spaces.
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3.3. Uniqueness of Infinite Cluster

Let N be the number of infinite open clusters. Then, for all p,

either Pp(N = 0) = 1 or Pp(N = 1) = 1 ,

and the easiest proof of this may be found in [13]. It has been asked by Mathew
Penrose whether N has such a property simultaneously for all values of p.

In order to make sense of this question, we introduce a family (X(e) : e ∈ E
d)

of independent random variables each having the uniform distribution on [0, 1]. For
0 ≤ p ≤ 1 we define the vector ηp by

ηp(e) =

{

1 if X(e) < p,

0 if X(e) ≥ p,
(3.7)

and note that P(ηp = 1) = p. We call an edge e p-open if ηp(e) = 1, and p-closed
otherwise. Let Np be the number of infinite p-open clusters. Is it the case that1

P
(

Np ∈ {0, 1} for all p
)

= 1? (3.8)

This is certainly valid when d = 2.

3.4. Critical Exponents

There is a wealth of problems concerning critical exponents and scaling theory, and
these have received ample attention elsewhere (see [22, Chaps. 7, 8] for example).
We confine ourselves here to a few very basic examples of such problems. Those
mentioned here are intended primarily to stimulate interest in the major challenge
to mathematicians to make sense of scaling theory.

It is thought to be the case that θ(p) behaves in the manner of |p − pc|β in the
limit as p ↓ pc, where β is a ‘critical exponent’ whose value depends on the number
of dimensions. No proof is known that

β = lim
p↓pc

{

log θ(p)

log |p − pc|

}

(3.9)

exists. Possibly

a(p)|p − pc|β ≤ θ(p) ≤ b(p)|p − pc|β for p > pc (3.10)

for some functions a and b which are slowly varying as p ↓ pc. There are correspond-
ing conjectures for other macroscopic functions.

The value of β = β(d) should depend on d, and it is conjectured that

β(2) = 5
36 , β(d) = 1 for d ≥ 6. (3.11)

This is part of a large family of conjectures dealing with the cases d = 2 and d ≥ 6.
When d = 2, it is thought that all critical exponents are rational. When d ≥ 6 it is

1This question was answered affirmatively by Ken Alexander during the meeting.



PERCOLATIVE PROBLEMS 73

thought that any given exponent takes its ‘mean-field value’, i.e., the value obtained
when the lattice is replaced by an infinite regular tree. See [27, 34, 38].

The first ‘proof’ that pc = 1
2 when d = 2 utilized the self-duality of the square

lattice. Sykes and Essam [42] established the relation

κ(p) = κ(1 − p) + 1 − 2p (3.12)

where κ(p) = Ep(|C|−1) and Ep is the expectation operator corresponding to Pp.
Assuming that κ has a unique singularity, and that this is at the point pc, then it
follows from (3.12) that pc = 1 − pc and hence pc = 1

2 . Alternative proofs that

pc = 1
2 are now available (see [22, 33]). However it is not ruled out that κ is

infinitely differentiable on [0, 1]. It may be conjectured that κ is twice but not thrice
differentiable at pc.

4.1. Related Problems

4.1. Wind-Tree Problem

Versions of the wind-tree problem have been discussed by Lorenz, Ehrenfest [16], and
Hauge and Cohen [29]. The following version is close to percolation theory. We start
with the square lattice L

2, a bucket of small double-sided mirrors, and a parameter p
taking values in [0, 1]. For each vertex x we perform the following experiment. With
probability p, we pick a mirror from the bucket and place it at the vertex x, in such
a way that a ray of light arriving at x, parallel to any coordinate axis, is reflected
through either 1

2π or 3
2π (measured clockwise), each possibility having probability

1
2 . The remaining probability 1− p is the chance that we do nothing at x. We think
of the mirrors as being random scatterers of light.

How many vertices can see the origin? More precisely, we suppose that four
rays of light are emitted along the coordinate axes from a light source placed at the
origin. Let C be the set of vertices which are illuminated by one or more of these
light rays, and let θ(p) be the probability that C is infinite. Clearly θ(0) = 1, and it
is straightforward to see that θ(1) = 0, using a standard result for bond percolation
on L

2. Let
pc(WT) = sup{p : θ(p) > 0}. (4.1)

Is it the case that 0 < pc(WT) < 1?

4.2. Random Orientations

Here is a small problem in two dimensions. Each edge of L
2 is oriented in a random

direction, horizontal edges being oriented eastwards with probability p and west-
wards otherwise, and vertical edges being oriented northwards with probability p
and southwards otherwise. Let η(p) be the probability that there exists an infinite
oriented path starting at the origin. It is not hard to see that η(1

2 ) = 0, and also

that η(p) = η(1 − p). Is it the case that η(p) > 0 if p 6= 1
2?

4.3. Uniqueness for Minimal Spanning Trees

The following question concerning ‘continuous percolation’ has been posed in [5].
Let X = (Xi) be the set of points of a Poisson process in R

d with intensity 1, where
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d ≥ 2. We construct a spanning forest on X in the following way. For each X ∈ X we
define trees tm(X,X), m ≥ 0. Let ξ1 = X and let t1 be the single vertex ξ1. Let t2
be the tree consisting of the vertex ξ1 together with the vertex ξ2 (∈ X\{ξ1}) which
is closest to ξ1, these two vertices being joined by an edge. Having constructed tm−1,
we define tm = tm(X,X) by adding to tm−1 a new edge 〈ξim

, ξm〉 where 1 ≤ im < m
and ξm (∈ X\{ξ1, ξ2, . . . , ξm−1}) is chosen so that the Euclidean distance |ξim

−ξm|
is minimal over all possible edges joining tm−1 to X \ {ξ1, ξ2, . . . , ξm−1}. Finally we
set t(X,X) =

⋃∞
m=1 tm(X,X).

Each point X gives rise to an infinite tree t(X,X). We now use these trees to
make a forest. Let F be the graph with vertex set X, and which has each 〈Xi, Xj〉
as an edge if and only if it is in either t(Xi,X) or t(Xj ,X). It may be seen that F
is a forest, every component of which is an infinite tree.

Aldous and Steele conjecture that F is a.s. a tree, which is to say that F is
a.s. connected. This tempting conjecture might be related to the uniqueness of the
infinite open cluster of percolation.

4.4. Collisions of Random Walks

The following problem arises in the study of collisions of random walks (see [14, 43]).
Let k be a positive integer. Let (Xi, Yi : i ≥ 0) be independent random variables,
each being equally likely to take any of the values 1, 2, . . . , k. We declare the point
(i, j) of Z

2 open if Xi 6= Yj . Let θ(k) be the probability that there is an infinite
open path of L

2 beginning at the origin, each edge of which leads the path either
northwards or eastwards away from the origin. It may be shown that θ(3) = 0. Is it
true that θ(k) > 0 for large k, perhaps for k = 4?

5. The Random-Cluster Model

The random-cluster model is a family of processes which includes percolation, the
Ising and Potts models, and related systems. Its discovery was reported by Fortuin
and Kasteleyn in a series of papers [17, 18, 19, 20, 32] published around 1970, and
it has excited considerable interest recently.

Here are brief descriptions of the Potts and random-cluster models. We start with
a finite graph G = (V,E). The Potts model has sample space ΣV = {1, 2, . . . , q}V ,
where q is an integer satisfying q ≥ 2. A spin vector σ in this sample space has
probability

π(σ) =
1

Z
exp

(

−J
∑

e∈E

(

1 − δσ(e)
)

)

, for σ ∈ ΣV , (5.1)

where δσ(e) is the indicator function of the event that the endpoints of e have the
same spin (see (6.3)), and Z is the normalizing factor. The parameter J describes
the strength of pair-interactions. The random-cluster model is a (random) subgraph
(V, F ) of G, the edge set F being chosen at random according to the probability
mass function

φ(F ) =
1

Z
p|F |(1 − p)|E\F |qk(F ), for F ⊆ E, (5.2)

where k(F ) is the number of components of (V, F ). Here p and q satisfy 0 ≤ p ≤ 1
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and q > 0. The main observation is that the structures of π and φ are closely related,
when the parameters J and p satisfy e−J = 1 − p. Since 0 ≤ p ≤ 1, this requires
J ≥ 0, which is to say that the Potts model must be ferromagnetic. [If J < 0 then
p < 0, and (5.2) defines a signed measure but not a probability measure.]

The random-cluster measures (5.2) form a richer family than the (ferromagnetic)
Potts measures, since they are well defined for all real positive q. There are many
techniques which bear on the study of the random-cluster model. Some of these are
valid for all q, others for q ≥ 1, others for sufficiently large q, and others for integral
values of q. To develop a coherent and cohesive theory of this model is a target of
substantial appeal.

We pursue two targets in the rest of this paper. In Sections 6–8, we summarize
some basic properties of random-cluster models; this material is well known and has
appeared elsewhere (see [4, 15] and the original papers of Fortuin and Kasteleyn).
Finally, in Section 9 we highlight open problems.

6. Potts and Random-Cluster Processes

Potts and random-cluster processes may be viewed as the two marginal models
obtained in the construction of a certain bivariate model; this was discovered by
Edwards and Sokal [15].

Let G = (V,E) be a finite connected graph with no loops or multiple edges. We
write u ∼ v whenever the two vertices u and v of G are adjacent; in this case the
edge joining u to v is denoted by 〈u, v〉.

Let q be an integer satisfying q ≥ 2. Potts models have realizations in the
set ΣV = {1, 2, . . . , q}V of ‘spin vectors’; a typical realization is an assignment
σ = (σ(u) : u ∈ V ) of an integer from {1, 2, . . . , q} to each vertex. A Potts model
with q = 2 is called an Ising model [31]. Random-cluster processes have realizations
in the set ΩE = {0, 1}E of ‘edge-configurations’. A typical realization is a vector
ω = (ω(e) : e ∈ E) of 0’s and 1’s. Instead of working with the vector ω, it is often
convenient to work with the set

η(ω) = {e ∈ E : ω(e) = 1} (6.1)

of ‘open’ edges.
The two processes referred to above may be constructed on the same sample

space ΣV × ΩE as follows. Let p satisfy 0 ≤ p ≤ 1, and define the probability mass
function µ on ΣV × ΩE by

µ(σ, ω) =
1

Z

∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δσ(e)
}

, (6.2)

where Z is the appropriate normalizing constant, δi,j is the Kronecker delta, and
δσ(e) is given by

δσ(e) =

{

1 if σ(u) = σ(v), where e = 〈u, v〉,
0 otherwise.

(6.3)
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Let us calculate the marginal measures of µ. Summing over all ω ∈ ΩE , we obtain
the marginal mass function π(σ) on ΣV :

π(σ) =
1

Z

∏

e∈E

[

∑

ω(e)=0,1

{

(1 − p)δω(e),0 + pδω(e),1δσ(e)
}

]

(6.4)

=
1

Z

∏

e∈E

{(1 − p) + pδσ(e)} =
1

Z

∏

e∈E

exp{−J(1− δσ(e))}

where J is given by
e−J = 1 − p (6.5)

and satisfies 0 ≤ J ≤ ∞. The mass function π on ΣV is therefore the Potts measure
[41, 46]. The letter π stands for ‘Potts’.

In order to calculate the marginal mass function on ΩE , we rewrite µ(σ, ω) as

µ(σ,w) =
1

Z

{

∏

e:ω(e)=1

pδσ(e)

}{

∏

e:ω(e)=0

(1 − p)

}

(6.6)

=
1

Z
p|η(ω)|(1 − p)|E\η(ω)|I(σ, ω)

where
I(σ, ω) =

∏

e:ω(e)=1

δσ(e) =
∏

e∈η(ω)

δσ(e)

is the indicator function of the event that σ assigns a constant spin to all vertices
in any given component of the graph (V, η(ω)). Summing (6.6) over all σ ∈ ΣV , we
obtain the marginal mass function φ on ΩE given by

φ(ω) =
1

Z
p|η(ω)|(1 − p)|E\η(ω)|qk(ω), (6.7)

where k(ω) is the number of components of (V, η(ω)); this holds since there are
q admissible spin values for each such component. The letter φ in (6.7) stands for
‘Fortuin–Kasteleyn’. The form of φ is particularly attractive for at least two reasons.
First, the formula (6.7) may be used to define a probability measure on ΩE for any

positive value of q; thus, random-cluster processes provide an interpolation of Potts
models to non-integral values of q. Secondly, setting q = 1 we obtain the usual
bond percolation model, in which edges are ‘open’ or ‘closed’ independently of one
another.

Suppose we are studying the Potts model, and are interested in some ‘observable’
f : ΣV → R; a particular example of interest is the ‘two-point function’ δσ(u),σ(v)

for given u, v ∈ V . The mean value of f(σ) satisfies

Eπ(f) =
∑

σ

f(σ)π(σ) =
∑

σ,ω

f(σ)µ(σ, ω) (6.8)

=
∑

ω

F (ω)φ(ω) = Eφ(F )
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where F : ΩE → R is given by

F (ω) =
∑

σ

f(σ)µ(σ |ω) (6.9)

and Eπ and Eφ denote expectation with respect to the appropriate measure. This
piece of formalism, Eπ(f) = Eφ(F ), has substantial value in practice. To see this,
first let us calculate the conditional mass function µ(σ |ω). By (6.6) and (6.7),

µ(σ |ω) = q−k(ω)I(σ, ω), (6.10)

which may be expressed as follows. Conditional on ω, we assign a constant spin to all
vertices in any given component of (V, η(ω)); such spins are equally likely to take any
value 1, 2, . . . , q, and the spins assigned to different components are independent.

As a major application of (6.9), define f : ΣV → R by

f(σ) = δσ(u),σ(v) −
1

q
,

where u and v are two fixed vertices; the term q−1 is the probability that two
independent and equidistributed spins are equal. It follows from (6.9) and (6.10)
that

Eπ(f) = Eφ

(

(1 − q−1)I{u↔v}

)

= (1 − q−1)φ(u ↔ v), (6.11)

where IF denotes the indicator function of an event F (⊆ ΩE), and we write {A ↔
B} for the event there exist a ∈ A (⊆ V ) and b ∈ B (⊆ V ) such that a and b
are in the same component of (V, η(ω)). Equation (6.11) tells us that the two-point
correlation function of the Potts model equals (apart from a constant factor) the
probability of a certain connection in the random-cluster process. Thus, questions
of correlation structure of Potts models become questions of stochastic geometry of
the random-cluster process.

7. Useful Properties

This section contains an account of some of the useful properties of the random-
cluster measure. Most useful is the material of Sections 7.2 and 7.3, which appeared
in the original work of Fortuin and Kasteleyn as well as in [4].

As before, G = (V,E) is a finite simple graph, ΩE = {0, 1}E, 0 ≤ p ≤ 1, and
q > 0. The mass function in question is

φp,q(ω) =
1

Zp,q

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω), ω ∈ ΩE , (7.1)

where

Zp,q =
∑

ω∈ΩE

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω) (7.2)

is the normalizing factor, or ‘partition function’. We write φp,q here to emphasize
the role of the parameters.
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7.1. The Value of q

Whereas the Potts model may be defined for integer values of q only, the random-
cluster measure (7.1) is well defined for all non-negative real values of q. Therefore,
the random-cluster measures enable an interpolation of Potts models to general
values of q (∈ (0,∞)). Indeed in the context of signed measures, φp,q may be
defined even for negative values of q. Henceforth we assume that q ∈ (0,∞).

Professor Kasteleyn has pointed out that the random-cluster model is more gen-
eral than the Potts model in the following additional regard. We saw at (6.8) that,
for every function f of the Potts model, there exists a corresponding function F of
the associated random-cluster process, and furthermore F does not depend on the
value of p (but only on q). The converse is false: in general there may exist functions
F with no corresponding f independent of J .

7.2. FKG Inequality

The measure φp,q satisfies the FKG inequality if and only if q ≥ 1. This fact is not
difficult to prove, and has many applications. Possibly as a result of this fact, there
appears to have been no serious study of the case 0 < q < 1. Before stating this
inequality, we recall some notation.

A function f : ΩE → R is called increasing if f(ω) ≤ f(ω′) whenever ω ≤ ω′; f
is decreasing if −f is increasing. An event F (⊆ ΩE) is called increasing (respec-
tively decreasing) if its indicator function IF is increasing (respectively decreasing).
Finally, we write Ep,q for expectation with respect to φp,q.

Theorem 7.1 (FKG inequality). Suppose that q ≥ 1. If f and g are increasing

functions on ΩE, then

Ep,q(fg) ≥ Ep,q(f)Ep,q(g) . (7.3)

Replacing f and g by −f and −g, we deduce that (7.3) holds for decreasing f
and g, also. Specializing to indicator functions, we obtain that

φp,q(A ∩ B) ≥ φp,q(A)φp,q(B) for increasing events A,B, (7.4)

whenever q ≥ 1. It is not difficult to see that the FKG inequality does not generally
hold when 0 < q < 1.

Proof. A mass function µ on ΩE satisfies the FKG inequality if ([21])

µ(ω ∨ ω′)µ(ω ∧ ω′) ≥ µ(ω)µ(ω′) for all ω, ω′ ∈ ΩE , (7.5)

where ω ∨ ω′ and ω ∧ ω′ are the pointwise maximum and pointwise minimum con-
figurations,

ω ∨ ω′(e) = max{ω(e), ω′(e)}, ω ∧ ω′(e) = min{ω(e), ω′(e)} ;

note that
η(ω ∨ ω′) = η(ω) ∪ η(ω′), η(ω ∧ ω′) = η(ω) ∩ η(ω′).

Substituting µ = φp,q , we see that (7.5) is equivalent to

k(ω ∨ ω′) + k(ω ∧ ω′) ≥ k(ω) + k(ω′) for all ω, ω′, (7.6)
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so long as q ≥ 1. Assume henceforth that q ≥ 1. Inequality (7.6) is easily proved by
induction on |η(ω)∪η(ω′)|, and the rest of the proof may be skipped. Inequality (7.6)
is trivially true if η(ω)∪η(ω′) = ∅. Suppose it is valid for |η(ω)∪η(ω′)| ≤ k. Let ω, ω′

satisfy |η(ω)∪η(ω′)| = k +1; we may assume ω 6= ω′, since (7.6) is trivial otherwise.
Without loss of generality we may assume that there exists e ∈ η(ω) \ η(ω′), and we
write ωe for the configuration ω with e ‘switched off’, i.e.,

ωe(f) =

{

ω(f) if f 6= e

0 if f = e.
(7.7)

From the induction hypothesis,

k(ωe ∨ ω′) + k(ωe ∧ ω′) ≥ k(ωe) + k(ω′). (7.8)

Write Ce for the indicator function of the event that the endpoints of e are in the
same component. Trivially,

Ce(ωe ∨ ω′) ≥ Ce(ωe), (7.9)

since ωe ≤ (ωe ∨ ω′). Adding (7.8) and (7.9), we obtain (7.6), on noting that

k(νe) + Ce(νe) = k(ν) + 1 for ν (∈ ΩE) satisfying ν(e) = 1,

and ωe ∧ ω′ = ω ∧ ω′. �

7.3. Comparison Inequalities

Given two mass functions µ1 and µ2 on ΩE , we say that µ2 dominates µ1, and write
µ1 ≤ µ2, if

∑

ω∈ΩE

f(ω)µ1(ω) ≤
∑

ω∈ΩE

f(ω)µ2(ω)

for all increasing functions f : ΩE → R. One may establish certain domination
inequalities involving the measures φp,q for different values of the parameters p and
q. A principal application of such inequalities is to prove the existence of phase
transition for different values of p and q, for the infinite-volume random-cluster
process (see [4]).

Theorem 7.2 (Comparison inequalities). It is the case that

φp′,q′ ≤ φp,q if q′ ≥ q, q′ ≥ 1, p′ ≤ p, (7.10)

φp′,q′ ≥ φp,q if q′ ≥ q, q′ ≥ 1,
p′

q′(1 − p′)
≥ p

q(1 − p)
. (7.11)

Proof. Since q′ ≥ 1, the measure φp′,q′ satisfies the FKG inequality. The theorem
will follow by applying this inequality with suitable choices of increasing functions.
Note that

φp,q(ω) =
πp′,q′(ω)g(ω)

∑

ω φp′,q′(ω)g(ω)
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where g satisfies

g(ω) =

(

q

q′

)k(ω)
∏

e∈E

(

p

1 − p

/

p′

1 − p′

)ω(e)

=

(

q

q′

)k(ω)+|η(ω)|
∏

e∈E

(

p

q(1 − p)

/

p′

q′(1 − p′)

)ω(e)

.

Now k(ω) is a decreasing function of ω, and k(ω) + |η(ω)| is an increasing function
of ω. Therefore

(a) if q ≤ q′ and p ≥ p′, then g is increasing,

(b) if q ≤ q′ and p/[q(1− p)] ≤ p′/[q′(1 − p′)], then g is decreasing.

Under part (a), if f is increasing, then

Ep,q(f) =
Ep′,q′(fg)

Ep′,q′(g)
≥ Ep′,q′(f)

by the FKG inequality. Under part (b) the inequality is reversed, since f is increasing
and g is decreasing. �

7.4. Rank-Generating Function

The rank-generating function of the simple graph G = (V,E) is the function

WG(x, y) =
∑

E′⊆E

xr(G′)yc(G′), x, y ∈ R,

where r(E′) = |V | − k(G′) is the rank of the graph G′ = (V,E′), and c(G′) =
|E′| − |V |+ k(G′) is the co-rank ; as usual, k(G′) denotes the number of components
of the graph G′. The rank-generating function has various useful properties, and
occurs in several contexts in graph theory; see [11, 44]. The rank-generating function
sometimes crops up in other forms. For example, the function

TG(x, y) = (x − 1)|V |−1WG

(

(x − 1)−1, y − 1
)

is known as the dichromatic (or Tutte) polynomial . The partition function Zp,q =
Zp,q(G), given in (7.2), is easily seen to satisfy

Zp,q(G) = q|V |(1 − p)|E|WG

(

p

q(1 − p)
,

p

1 − p

)

, (7.12)

a relationship which provides a link with other classical quantities associated with
a graph. See [18] also.

7.5. Hypergraphs

Whereas the random-cluster model above is defined on a graph, and corresponding
Potts models have pair interactions, the theory may be extended easily to hyper-

graphs and many-body interactions. We shall not pursue this natural extension here,
but refer the reader to [23] and the references therein.
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8. Infinite-Volume Limits and Phase Transition

In studying random-cluster measures on lattices, we restrict ourselves to the case of
the hypercubic lattice in d dimensions, where d ≥ 2; similar observations are valid
in greater generality. For any subset S of Z

d, we write ∂S for its boundary, i.e.,

∂S = {s ∈ S : 〈s, t〉 ∈ E
d for some t 6∈ S}.

Let Λ be a finite box of L
d, which is to say that

Λ =
d

∏

i=1

[xi, yi]

for some x, y ∈ Z
d; we interpret [xi, yi] as the set {xi, xi + 1, . . . , yi}. The set Λ

generates a subgraph of L
d having vertex set Λ and edge set EΛ containing all 〈x, y〉

with x, y ∈ Λ.
We are interested in the thermodynamic limit (as Λ ↑ Z

d) of the random-cluster

measure on the finite box Λ. Let Ω = {0, 1}E
d

be the set of ‘edge-configurations’
of L

d. Let Ω1
Λ be the subset of Ω containing all ω ∈ Ω for which ω(e) = 1 for

e 6∈ EΛ; similarly define Ω0
Λ as the subset of Ω containing all ω with ω(e) = 0 for

e 6∈ EΛ. One speaks of configurations in Ω1
Λ as having ‘wired’ boundary conditions,

and configurations in Ω0
Λ as having ‘free’ boundary conditions. We now define two

random-cluster measures on L
d. Let 0 < p < 1 and q > 0. For b = 0, 1, define

φb
Λ,p,q(ω) =

1

Zb
Λ

{

∏

e∈EΛ

pω(e)(1 − p)1−ω(e)

}

qk(ω,Λ), ω ∈ Ωb
Λ, (8.1)

where

Zb
Λ =

∑

ω∈Ωb

Λ

{

∏

e∈EΛ

pω(e)(1 − p)1−ω(e)

}

qk(ω,Λ) (8.2)

is the appropriate normalizing constant, and k(ω,Λ) is the number of clusters of
(Zd, η(ω)) which intersect Λ.

Theorem 8.1 (Thermodynamic limit). Suppose q ≥ 1. The weak limits

φb
p,q = lim

Λ↑Zd

φb
Λ,p,q , for b = 0, 1, (8.3)

exist and satisfy φ0
p,q ≤ φ1

p,q.

The limits in (8.3) are to be interpreted along any increasing sequence of finite
boxes, and the weak convergence is in the sense that φb

Λ,p,q(A) → φb
p,q(A) for all

finite-dimensional cylinders A. The assumption that q ≥ 1 is necessary for the
proof, which relies on the validity of the FKG inequality.

One may discuss other boundary conditions, ‘mixed’ conditions which are more
complicated than either wired or free; such conditions are relevant to random-cluster
models arising from Potts models with mixed boundary conditions. We omit a
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detailed discussion here, but note that φ0
p,q and φ1

p,q are the most ‘extreme’ measures
obtainable in the infinite-volume limit, amongst an important subclass of boundary
conditions. Define a random-cluster measure φ on E

d to be a measure with the
property that, conditional on the states of edges lying outside any given finite set E
(⊆ E

d), the states of edges within E satisfy (7.1) on the graph induced by E with
the appropriate boundary condition specifying which endpoints of edges in E are
joined by edges outside E. We write Rp,q for the class of such measures, and note
that every φ ∈ Rp,q satisfies φ0

p,q ≤ φ ≤ φ1
p,q. See [24].

Sketch proof of Theorem 8.1. Let Λ and Λ′ be two finite boxes satisfying Λ ⊆ Λ′,
and let A be the event that all edges e ∈ EΛ′ \ EΛ have state 0. Now φ0

Λ,p,q may be

thought of as the measure φ0
Λ′,p,q conditioned on the event A. Since A is a decreasing

event, we have by the FKG inequality that

φ0
Λ,p,q(·) = φ0

Λ′,p,q(· |A) ≤ φ0
Λ′,p,q(·); (8.4)

a similar argument yields
φ1

Λ,p,q ≥ φ1
Λ′,p,q . (8.5)

By monotonicity, the limits exist in (8.3). [By (8.4) and (8.5), limΛ↑Zd φb
Λ,p,q(B)

exists for any increasing finite-dimensional cylinder B, and for b = 0, 1; such cylinders
generate the appropriate σ-field.] To show that φ0

p,q ≤ φ1
p,q, it suffices that

φ0
Λ′,p,q ≤ φ1

Λ′,p,q . (8.6)

This too follows by the FKG inequality, since φb
Λ′,p,q may be thought of as the

random-cluster measure on a larger region Λ′′ conditioned on the extra edges having
state b; the conditional measure with b = 0 must lie underneath the conditional
measure with b = 1. �

An indicator of phase transition in the Potts model is the ‘magnetization’, defined
as follows. Consider a Potts measure π1

Λ on Λ having ‘1’ boundary conditions, which
is to say that all vertices in the boundary ∂Λ are constrained to have spin value 1.
Let τΛ = π1

Λ(σ(0) = 1)−q−1, the ‘effect’ of these boundary conditions on the spin at
the origin. Passing to the corresponding random-cluster measure φ1

Λ, as in Section
6, we see as in (6.11) that

τΛ = (1 − q−1)φ1
Λ(0 ↔ ∂Λ) . (8.7)

In reaching this conclusion, we have suppressed the reference to parameter values,
and applied (6.11) to the graph obtained from Λ by identifying all vertices in ∂Λ.

We say that phase transition takes place in the Potts model if τ = limΛ↑Zd τΛ

satisfies τ > 0. In studying the random-cluster process, we shall work with the
analogous quantity

θΛ(p, q) = φ1
Λ(0 ↔ ∂Λ) (8.8)

and with the infinite-volume limit

θ(p, q) = lim
Λ↑Zd

θΛ(p, q) ; (8.9)
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this limit exists if q ≥ 1 (see [4, p. 22]). We have that

θ(p, q) = φ1(0 ↔ ∞) ,

the φ1-probability that the origin is in an infinite cluster; in the case q = 1, this
coincides with the ‘percolation probability’ of the percolation model. Using the
comparison inequality (7.10), θ(p, q) is a non-decreasing function of p, and we may
therefore define the critical value

pc(q) = sup{p : θ(p, q) = 0}, for q ≥ 1. (8.10)

How does pc(q) depend on the choice of q? The comparison inequalities imply
that

1

pc(q′)
≤ 1

pc(q)
≤ q′/q

pc(q′)
− q′

q
+ 1 if 1 ≤ q ≤ q′. (8.11)

In particular, since 0 < pc(1) < 1 ([22, p. 14]), we have that 0 < pc(q) < 1 for
all q ≥ 1, implying the existence of a phase transition for all values of q (≥ 1). It
follows that pc(q) is a Lipschitz-continuous and nondecreasing function of q; strict
monotonicity may be shown using the method of [10].

9. Open Problems for Random-cluster Processes

9.1. Value of Critical Point

It is unreasonable to expect an exact calculation of the critical point pc(q) in gen-
eral. For certain two-dimensional lattices however, the method of planar duality is
applicable and leads to conjectured values.

Conjecture 9.1. The critical value for the random-cluster process on the square

lattice is

pc(q) =

√
q

1 +
√

q
, q ≥ 1.

This has been proved for q = 1 (percolation), for q = 2 (Ising model), and for
all sufficiently large values of q ([36, 37]). The argument of [30] may possibly be
adapted to prove the conjecture when q ≥ 4. See [7, 45] also.

Corresponding conjectures may be made for certain other two-dimensional lat-
tices, such as the triangular and hexagonal lattices, and also for certain processes in
which the value of p may depend on the inclination of the edge in question. In mak-
ing such conjectures, one uses the method of duality together with the star-triangle
transformation.

9.2. Continuity of Percolation Probability

It is thought that θ(p, q) is continuous at the critical value p if and only if q is
sufficiently small. Since θ is right-continuous, this amounts to deciding whether
θ(pc(q), q) = 0 (‘second order transition’) or θ(pc(q), q) > 0 (‘first order transition’)
for a given value of q.
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Conjecture 9.2. There exists a real Q = Q(d) such that

θ(pc(q), q)

{

= 0 if 1 ≤ q < Q(d)

> 0 if q > Q(d).

Furthermore Q(2) = 4, and Q(d) = 2 for d ≥ 6.

That θ(pc(q), q) > 0 when q is large has been proved in [37]. As remarked in
Section 3.2, it is not even known that θ(pc(1), 1) = 0.

9.3. Exponential Decay

Suppose q ≥ 1. Let τp,q(x, y) be the φ1
p,q-probability of a path joining the vertices x

and y, and denote by en the vertex (n, 0, 0, . . . , 0). We have by the FKG inequality
that

τp,q(0, em+n) ≥ τp,q(0, em)τp,q(em, em+n) ,

whence the correlation length ξ(p, q), defined by

ξ(p, q)−1 = lim
n→∞

{

− 1

n
log τp,q(0, en)

}

(9.1)

exists. Presumably
0 < ξ(p, q) < ∞ if 0 < p < pc(q) , (9.2)

but the finiteness of ξ(p, q) near pc(q) is unproven in general. It is known to hold
for q = 1, 2, and for large values of q ([1, 2, 3, 22, 35, 37, 40]).

By monotonicity, the quantity

µ(q) = lim
p↑pc(q)

ξ(p, q)−1

exists, and it is thought that

µ(q)

{

= 0 if q < Q(d)

> 0 if q > Q(d) ;
(9.3)

once again, the existence of the mass gap (i.e., the fact that µ(q) > 0) has been
proved in [37] for sufficiently large q.

9.4. Uniqueness of Random-Cluster Measures

For given values of p and q, how large is the class Rp,q of random-cluster measures?
It is presumably the case that |Rp,q| = 1 whenever q ≥ 1 and p 6= pc(q), but this is
not proved in general. Furthermore, when p = pc(q), it is presumably the case that
|Rp,q| = 1 if θ(pc(q), q) = 0, and otherwise Rp,q has exactly two extremal measures
{φ0

p,q, φ
1
p,q}.

Partial results are known in the direction of the uniqueness of random-cluster
measures. First, |Rp,q| = 1 if and only if φ0

p,q = φ1
p,q; furthermore ([4])

φ0
p,q = φ1

p,q if θ(p, q) = 0 , (9.4)

so that there is a unique such measure throughout the subcritical phase.
If d = 2 and p 6= pc(q), then the uniqueness follows by exploiting self-duality (see

[24] for a discussion). If d ≥ 3 and q is sufficiently large, then the uniqueness is a
consequence of Pirogov–Sinai theory ([37, 39]).

One may use a general argument based on the convexity of free energy to prove
that |Rp,q| = 1 for all values of p except (at most) countably many ([24, 25]).
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9.5. The Case q < 1

If 0 < q < 1, then the FKG inequality is not valid. In the absence of the consequent
monotonicity, it is no longer clear whether or not there is a phase transition, and
what should be the form of such a transition.

Using an argument based on convexity of free energy (see [24]), one may show that
the edge-density φp(ω(e) = 1) is non-decreasing in p, where φp is any translation-
invariant random-cluster measure with parameters p and q. Increasing events other
than {ω(e) = 1} may not generally have probabilities which are monotonic in p.

The mean-field random-cluster model, when the underlying graph is the complete
graph on n vertices, and p = λ/n, may be solved exactly for all positive values of q,
even q ∈ (0, 1); see [12].
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