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Abstract. We prove a version of an assertion of Bourgain, Kahn,
Kalai, Katznelson, Linial concerning influences in general product
spaces, with an extension to the generalized influences of Keller.

1. Statement of result

The following extract is from the abstract of the paper [1], written
by Bourgain, Kahn, Kalai, Katznelson, and Linial (BKKKL).

Let X be a probability space and let f : Xn → {0, 1} be a
measurable map. Define the influence of the k-th variable on
f , denoted by If(k), as follows: For u = (u1, u2, . . . , un−1) ∈
Xn−1 consider the set lk(u) = {(u1, u2, . . . , uk−1, t, uk, . . . , un−1) :
t ∈ X}.

If (k) = Pr(u ∈ Xn−1 : f is not constant on lk(u)).

Theorem 1. There is an absolute constant c1 so that for
every function f : Xn → {0, 1} with Pr(f−1(1)) = p ≤ 1

2
,

there is a variable k so that

If (k) ≥ c1p
logn

n
.

BKKKL gave a proof of the theorem for the special case in whichX is
the unit interval [0, 1] endowed with Lebesgue measure. They included
no indication of the extension to general measure spaces, presumably in
the (mistaken) belief that the relevant measure-theoretic arguments are
widely known. We revisit BKKKL (following [2, 14]) in this short note,
with a description of a proof of a stronger version of their Theorem 1.

Let X = (Ω,F , P ) be a probability space, and let E be a finite set
with |E| = n. We write XE = (ΩE ,FE,P = PE) for the product space.
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The influence of e ∈ E on the event A ∈ FE is defined as

(1.1) IA(e) = PE\{e}
(

{ψ ∈ ΩE\{e} : 0 < P (A ∩ Fψ) < 1}
)

,

where Fψ = {ψ} × Ω, the ‘fibre’ of all ω ∈ XE such that ω(f) = ψ(f)
for f 6= e. For economy of notation, the space X is not listed explicitly
in IA(e).

Remark 1.1. Influence, as defined in (1.1), is never larger than that
given by the BKKKL definition (presented above).

Theorem 1.2. Let A ∈ FE satisfy P(A) ∈ (0, 1). There exists an
absolute constant c ∈ (0,∞) such that

(1.2)
∑

e∈E

IA(e) ≥ cP(A)(1− P(A)) log[1/(2m)],

where m = maxe IA(e).

It is immediate that (1.2) implies the existence of e ∈ E with

(1.3) IA(e) ≥ c′P(A)(1− P(A))
logn

n
,

for some absolute contant c′ > 0. By Remark 1.1, this is stronger than
Theorem 1 of BKKKL.

It is now standard that the conclusion of Theorem 1.2 is valid in the
special case when X = L, where L denotes the Lebesgue space com-
prising the unit interval [0, 1] endowed with the Borel σ-field B[0, 1] and
Lebesgue measure λ. (The relevant history and literature is described
in Section 2. By comment (a) there, the choice of Borel or Lebesgue
σ-field is immaterial.) It suffices, therefore, to prove Theorem 1.3, fol-
lowing.

Following [11], we introduce a more general definition of influence.
LetM be the set of measurable functions h : [0, 1]→ [0, 1]. For h ∈M,
the h-influence of e ∈ E on the event A ∈ FE is defined as

(1.4) IhA(e) = PE\{e}
(

h(P (A ∩ Fψ))
)

,

where µ(f) denotes the expection of f under the probability measure µ.
Thus IhA(e) = IA(e) when h(x) = 1(0 < x < 1), with 1(B) the indicator
function of B. The function h(x) = x(1 − x) has been considered in
[7], and other functions h in [11].

One might define the influence IA(e) via a conditional expectation
rather than the ‘pointwise’ definitions (1.1) and (1.4). With FEe the
sub-σ-field of FE generated by {ω(f) : f 6= e}, (1.4) can be written

IhA(e) = PE\{e}
(

h(P(A | FEe ))
)

.

However, we retain the approach adopted in the prior literature.
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Theorem 1.3. Let h ∈ M and A ∈ FE. There exists a measurable
event B in the Lebesgue product space LE such that λE(B) = P(A),
and IhB(e) = IhA(e) for e ∈ E.

This yields a positive answer to the question of Keller, [11, Foot-
note 2], asking whether h-influence inequalities may be extended from
Lebesgue to general spaces.

2. History and literature

The first influence inequality of the type (1.2) was proved in the
important paper [9] by Kahn, Kalai, and Linial. This was followed by
a number of useful papers including BKKKL [1] and Talagrand [16].
The area has been surveyed by Kalai and Safra [10], and also in [5,
Sect. 4.5]. Of more recent work, we mention [11, 12].

Rather than include here a full discussion of influence and sharp
threshold, we draw the attention of the reader to five points.

(a) Equivalence under null sets. Let A, B be events in Ω such that
P(A△B) = 0. By Fubini’s theorem, IA(e) = IB(e) for e ∈ E.
Thus, when working with the definition of (1.1), one may use
either the product σ-field FE or its completion.

(b) Definition of influence. Influence as defined in [1] is generally
unequal for two events that differ by a null set. This observation
provoked the revised definition (1.1), introduced in [5]. Further
notions of influence have been discussed in [7, 11, 12].

(c) Form of inequality. The influence inequality (1.2) is not quite
in the same form as those proved in [1, 9]. The current form
may be found in [3, Thm 3.4] (see also [4, 5]). It is useful when
Russo’s formula is to be deployed (see [5, Sect. 4.7]), and it
makes no assumption of symmetry on the event under study.

(d) General probability spaces. The probability space of greatest
practical value is the Lebesgue space L, since this provides a
coupling of many spaces of importance including the product
spaces for Bernoulli variables. It was implied in [1] that the
Lebesgue case implies the corresponding inequality for an ar-
bitrary product space, and this is proved in the current note.
The weaker assertion for separable spaces was discussed in [5,
Sect. 4.5].

(e) Separable versus non-separable. Many probabilists consider non-
separable spaces of limited interest. The current note was in-
spired by a desire to understand the assertion of [1], to tidy up a
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slightly dark corner of probability theory, and to give a correct
proof for the separable case (cf. [5, Sect. 4.6]).

3. Proof of Theorem 1.3

For probability spaces Xi = (Ωi,Fi, Pi), a mapping φ : Ω1 → Ω2 is
said to be measure-preserving if, for all B2 ∈ F2, the inverse image
B1 = φ−1(B2) is measurable and satisfies P1(B1) = P2(B2). Such a
map φ is said to be measure-preserving from X1 to X2.

Lemma 3.1. Let Xi = (Ωi,Fi, Pi), i = 1, 2, be probability spaces, and
let φ : Ω1 → Ω2 be measure-preserving. Let E be a finite set, and write
Φ for the measure-preserving mapping φE from XE

1
to XE

2
. If B2 ∈ F

E
2

and B1 = Φ−1(B2), then IhB1
(e) = IhB2

(e) for all e ∈ E and h ∈M.

Proof. Let e ∈ E, h ∈ M, B2 ∈ F2, and B1 = Φ−1(B2). For ψ ∈

Ω
E\{e}
i , let Fψ be the fibre

Fψ = {ω ∈ ΩE
i : ω(f) = ψ(f) for f 6= e} ∼= {ψ} × Ωi.

Suppose ν ∈ Ω
E\{e}
1

is such that φE\{e}(ν) = ψ. Since φ is measure-
preserving on each component,

(3.1) P1

(

{ν} × φ−1(B2 ∩ Fψ)
)

= P2(B2 ∩ Fψ), ψ ∈ Ω
E\{e}
2

.

Now {ν} × φ−1(B2 ∩ Fψ) = B1 ∩ Fν , so that, for u ∈ R,

P
E\{e}
1

(

h(P1(B1 ∩ Fν)) > u
)

= P
E\{e}
2

(

h(P2(B2 ∩ Fν)) > u
)

.

We integrate over u ≥ 0 to obtain the claim. �

Lemma 3.2. Let XE be as in Section 1, and let A ∈ FE. There exists
a countably generated sub-σ-field G of F such that A ∈ GE.

Proof. Let {Gi : i ∈ I} be the collection of all countably generated
sub-σ-fields of F . Let H be the union of the GEi as i ranges over I.
Then H is a σ-field. Furthermore, H is the smallest σ-field containing
the rectangles

∏

e∈E Fe as the Fe range over F . Therefore, H = FE. If
A ∈ FE , we may pick a ∈ I such that A ∈ GEa . The claim is proved. �

The remainder of the proof conceals a version of the measure-space
isomorphism theorem. In general terms the last states that, subject to
certain assumptions, a measure space may be placed in correspondence
with the Lebesgue space L. The theorem comes in two forms: (i)
there is an isomorphism between the associated measure rings (see,
for example, [6, §40]), and (ii) there is a pointwise bijection between
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certain derived sample spaces (see, for example, [13, Thm 4.7]). Rather
than appealing to a general theorem, we shall construct the required
mappings in an explicit manner requiring no special consideration of
the possible existence of atoms. This may be done either by repeated
decimation of sub-intervals of [0, 1] (as in [15, Sect. 2.2]), or via a
mapping to the Cantor set. We take the second route. See [8, App. A]
for a discussion of measure-space isomorphisms.

For T ⊆ R
d, the Borel σ-field of T is denoted B(T ).

Lemma 3.3. Let A ∈ FE and let G be as in Lemma 3.2. There
exists a probability space Z = (C,B(C), µ) comprising the Cantor set
C endowed with its Borel σ-field and a suitable probability measure,
such that following hold.

(a) There exists a measure-preserving mapping ψ from X to Z.
(b) There exists G ∈ B(CE) such that A = Ψ−1(G), where Ψ = ψE.
(c) There exists a measure-preserving mapping γ from L to Z.

This lemma (and the forthcoming proof of Theorem 1.2) may be
summarized in the diagrams

(3.2) X
ψ

−−−→ Z
γ

←−−− L, A
Ψ

−1

←−−− G
Γ
−1

−−−→ B.

Proof. (a) Let C be the Cantor set comprising all reals of the form
∑∞

k=1
2 · 3−kak as a = (ak : k ∈ N) ranges over {0, 1}N. Thus C is

in one–one correspondence with {0, 1}N. Let G be generated by the
countable family B = (Bk : k ∈ N) of subsets of Ω, and let ψ : Ω→ C
be given by

ψ(x) =

∞
∑

k=1

2 · 3−k1(x ∈ Bk).

Write G′ = {ψ−1(S) : S ∈ B(C)}. We claim that G = G′. Since
Bk ∈ G

′ for all k, we have G ⊆ G′. Conversely, since ψ is a sum of
measurable functions, it is measurable, and hence G′ ⊆ G.

Let µ be the probability measure on (C,B(C)) induced by ψ, that
is µ(S) = P (ψ−1(S)) for S ∈ B(C). By definition of µ, ψ is measure-
preserving from X to Z = (C,B(C), µ).

(b) Let H be the σ-field {Ψ−1(S) : S ∈ B(CE)} on ΩE . By the above,
H = GE . Consequently, A ∈ H, and hence A = Ψ−1(G) for some
G ∈ B(CE).

(c) Define κ : C → [0, 1] by κ(c) = µ(C∩[0, c]). We may take as inverse
the function

γ(y) = inf{c : κ(c) ≥ y}, y ∈ [0, 1].
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Since γ(y) ≤ c if and only if y ≤ κ(c), we have that

γ−1(C ∩ [0, c]) = [0, κ(c)], c ∈ C,

so that

λ
(

γ−1(C ∩ [0, c])
)

= κ(c) = µ(C ∩ [0, c]).

The set {C ∩ [0, c] : c ∈ C} is a π-system that generates B(C), and
hence γ is measure-preserving from L to Z. �

Proof of Theorem 1.2. See (3.2). By Lemmas 3.1 and 3.3(a,b), A and
G have equal measure and influences. Write Γ = γE, and take B =
Γ−1(G) ⊆ [0, 1]E. Since Γ is measure-preserving, G and B have equal
probability and influences. �
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