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Abstract

We consider the task of detecting a salient cluster in a sensor network, i.e., an undirected
graph with a random variable attached to each node. Motivated by recent research in en-
vironmental statistics and the drive to compete with the reigning scan statistic, we explore
alternatives based on the percolative properties of the network. The first method is based on
the size of the largest connected component after removing the nodes in the network whose
value is lower than a given threshold. The second one is the upper level set scan test introduced
by Patil and Taillie (2003). We establish their performance in an asymptotic decision theoretic
framework where the network size increases. We make abundant use of percolation theory to
derive our theoretical results and our theory is complemented with some numerical experiments.

Keywords: cluster detection; surveillance; multiple hypothesis testing; scan statistic; largest
open cluster within a box; upper level set scan statistic; connected components; percolation.

1 Introduction

We consider the problem of cluster detection in a network. The network is modeled as a graph
and we assume that a random variable is observed at each node. The task is then to detect a
cluster, i.e., a connected subset of nodes with values that are larger than usual or unusual in
some other way. There is a multitude of applications for which this model is relevant. Examples
include the detection of hazardous materials (Hills, 2001) and target tracking (Li et al., 2002) in
sensor networks (Culler et al., 2004), and disease outbreak detection (Heffernan et al., 2004; Rotz
and Hughes, 2004; Wagner et al., 2001). Pixels in digital images are also sensors so that many
other examples can be found in the rich literature on image processing, with examples such as road
tracking (Geman and Jedynak, 1996) and fire prevention using satellite imagery (Pozo et al., 1997),
and the detection of tumors in medical imaging (McInerney and Terzopoulos, 1996).

After specifying a distributional model for the observations at the nodes and a class of clusters
to be detected, the generalized likelihood ratio test is the first method to come to mind. And,
indeed, it is by far the most popular method in practice, and as such, is given different names in
different fields. The likelihood ratio is known as the scan statistic in spatial statistics (Kulldorff,
1997, 2001) and the corresponding test as the method of matched filters in engineering (Jain et al.,
1998; McInerney and Terzopoulos, 1996). We will use the former, where scanning a given cluster K
means to compute the likelihood ratio for the simple alternative where K is the anomalous cluster.
Various forms of scan statistic have been proposed, mostly differing by the assumptions made on
the shape of the clusters. Most methods assume that the clusters are in some parametric family,
e.g., circular (Kulldorff and Nagarwalla, 1995), elliptical (Hobolth et al., 2002; Kulldorff et al.,
2006) or, more generally, deformable templates (Jain et al., 1998). Sometimes no explicit shape is
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assumed (Duczmal and Assunção, 2004; Kulldorff et al., 2003; Tango and Takahashi, 2005), leading
to nonparametric models.

We consider nonparametric methods based on the percolative properties of the network. The
most basic approach is based on the size of the largest connected component of the graph after
removing the nodes whose values fall under a given threshold. If the graph is a one-dimensional
lattice, after thresholding this corresponds to the test based on the longest run (Balakrishnan and
Koutras, 2002), which Chen and Huo (2006) adapt for path detection in a thin band. This test is
studied in a series of papers (Davies et al., 2010; Langovoy andWittich, 2011) and references therein,
under the name of maximum cluster test. More sophisticated is the upper level set scan statistic
of Patil and Taillie (2003), subsequently developed in the context of ecological and environmental
applications (Patil et al., 2004, 2010, 2006; Patil and Taillie, 2004). In its basic form, it scans over the
connected components of the graph after thresholding. Clearly, both methods are nonparametric
and they depend on a single parameter, the threshold. Patil and Taillie (2003) originally proposed
to scan over all the clusters that are connected components of the graph after thresholding at some
threshold, leading to a parameter-free method.

We compare both methods to the scan statistic in a standard asymptotic decision theoretic
framework (Arias-Castro et al., 2011, 2005; Perone Pacifico et al., 2004; Walther, 2010) where the
network is a square lattice of growing size and the variables at the nodes are assumed independent
and identically distributed for nodes inside (resp. outside) the anomalous cluster. Our theory gener-
alizes to other settings as discussed in Section 7. When there is no anomalous cluster, the variables
are therefore i.i.d., and after thresholding, we have a standard (site) percolation model (Grimmett,
1999). Percolation theory is central to this paper in the analysis of the two methods mentioned
above as they both rely on the connected components after thresholding.

The rest of the paper is organized as follows. We formally introduce the framework in Sec-
tion 2 and state some fundamental detection bounds. In Section 3, we describe the standard scan
statistic and state some existing results on its performance showing that it is essentially optimal.
In Section 4, we consider the size of the largest connected component after thresholding. In Sec-
tion 5, we consider the upper level set scan statistic. We briefly discuss implementation issues and
present some numerical experiments in Section 6. Finally, Section 7 is a discussion section where,
in particular, we mention extensions. The proofs are postponed to the Appendix.

2 Mathematical framework and fundamental detection bounds

For concreteness, and also its relevance in signal and image processing, we model the network as
a finite subgrid of the regular square lattice in dimension d, denoted Vm := {1, . . . ,m}d. Our
analysis is asymptotic in the sense that the network is assumed to be large, i.e., m → ∞. To each
node v ∈ Vm, we attach a random variable Xv. For example, in the context of a sensor network,
the nodes represent the sensors and the variables represent the information they transmit. The
random variables {Xv : v ∈ Vm} are assumed to be independent with common distribution in a
certain one-parameter exponential family {Fθ : θ ∈ [0, θ∞)} defined as follows. Let θ∞ > 0, let
F0 be a distribution function with finite non-zero variance σ2

0, and assume the moment generating
function φ(θ) :=

∫
exθ dF0(x) is finite for θ ∈ [0, θ∞). Then Fθ is the distribution function having

density fθ(x) = exp(θx − logφ(θ)) with respect to F0. We will assume further regularity of F0 at
later points in this paper. Note that our results apply to other distributional models as discussed
in Section 7.

Examples of such a family {Fθ : θ ∈ [0, θ∞)} include the following:

• Bernoulli model: Fθ = Ber(pθ), pθ := logit−1(θ + θ0), relevant in sensor arrays where each
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sensor transmits one bit (i.e., makes a binary decision).

• Poisson model: Fθ = Poi(θ + θ0), popular with count data, for example arising in infectious
disease surveillance systems.

• Exponential model: Fθ = Exp(θ0 − θ), e.g., to model response times.

• Normal location model: Fθ = N (θ + θ0, 1), standard in signal and image processing, where
noise is often assumed to be Gaussian.

Let Km be a class of clusters, where a cluster is defined as a subset of nodes which is connected
in the graph. Under the null hypothesis, all the variables at the nodes have distribution F0, i.e.

Hm
0 : Xv ∼ F0, ∀v ∈ Vm.

Under the particular alternative where K ∈ Km is anomalous, the variables indexed by K have
distribution Fθm for some θm > 0, i.e.

Hm
1,K : Xv ∼ Fθm , ∀v ∈ K; Xv ∼ F0, ∀v /∈ K.

We are interested in the situation where the anomalous cluster K is unknown, namely in testing
Hm

0 against Hm
1 :=

∪
K∈Km

Hm
1,K . We illustrate the setting in Figure 1 in the context of the two-

dimensional square grid.

Figure 1: This figure illustrates the setting in dimension d = 2 for a beta model where F0 =
Unif(0, 1) and Fθ = Beta(θ + 1, 1), θ ≥ 0. Left: An instance of the null hypothesis. Middle: An
instance of an alternative with a square cluster. Right: An instance of an alternative with a path.

Let Km denote a cluster class for Vm. For a test T , we define its worst-case risk as

γm(T ) = P(T = 1|Hm
0 ) + max

K∈Km

P(T = 0|Hm
1,K).

A method is formally defined as a sequence of tests (Tm) for testing Hm
0 versus Hm

1 . We say that
a method (Tm) is asymptotically powerless if

lim inf
m→∞

γm(Tm) ≥ 1.

This amounts to saying that, as the size of the network increases, the method (Tm) is not sub-
stantially better than random guessing. Conversely, a method (Tm) is asymptotically powerful
if

lim
m→∞

γm(Tm) = 0.
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We focus on situations where the clusters in the class Km are of same size, increasing with m
but negligible compared to the size of the entire network. We do so for the sake of simplicity, as
more general results could be obtained as in (Arias-Castro et al., 2011, 2005; Perone Pacifico et al.,
2004; Walther, 2010) without additional difficulty. Assuming that the size of the anomalous cluster
is large allows us to state general results applying to a wide range of one-parameter exponential
families (via the Central Limit Theorem). Also, note the following. On the one hand, reliably
detecting a cluster of bounded size is impossible in the Bernoulli model or any other model where
F0 has finite support. On the other hand, detecting a cluster of size comparable to that of the entire
network is in some sense trivial as the simple test based on the total sum

∑
v∈Vm

Xv is optimal up
to a multiplicative constant.

We consider two emblematic classes of clusters, in some sense at the opposite extremes:

• Hypercube detection. Let Km denote the class of hypercubes within Vm of sidelength [mα]
with 0 < α < 1. This class is parametric, with the location of the hypercube being the only
parameter

• Path detection. Let Km denote the class of loopless paths within Vm of length [mα] with
0 < α < 1. This class is nonparametric, in the sense that its complexity (in the information
theoretic sense) is exponential in the length of the paths.

See Figure 1 for an illustration. (Note that a hypercube of sidelength k may be seen as a loopless
path of length kd.) Though we obtain results for both, our main focus is in the setting of hypercube
detection, which is relevant to a wider range of applications, in fact any situation where the task
is to detect a shape that is not filamentary. The situation exemplified in the setting of path
detection may be relevant in target tracking from video, or the detection of cracks in materials in
non-destructive testing. Note that the two settings coincide in dimension one.

We first state fundamental detection bounds for each setting. The following result is standard;
see e.g., (Arias-Castro et al., 2011, 2005). Remember that σ2

0 denotes the variance of F0.

Lemma 1. In hypercube detection, all methods are asymptotically powerless if

lim sup
m→∞

(logm)−1/2mdα/2θm < σ0
√
2d(1− α).

In fact, the conclusions of Lemma 1 apply for a wide variety of parametric classes such as
discs, a popular model in disease outbreak detection (Kulldorff and Nagarwalla, 1995), and also to
nonparametric classes of blob-like clusters; see (Arias-Castro et al., 2011, 2005).

The following result is taken from (Arias-Castro et al., 2008).

Lemma 2. In path detection, in dimension d = 2, all methods are asymptotically powerless if
limm→∞ θm(logm)(log logm)1/2 = 0; and the same is true in dimension d ≥ 3 if lim supm→∞ θm <
θ∗, where θ∗ > 0 depends only on d.

In dimension d ≥ 4, θ∗ may be taken to be the unique solution to

ρφ(2θ)− φ(θ)2 = 0,

where ρ is the return probability of a symmetric random walk in dimension d.
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3 The scan statistic

For a subset of nodes K ⊂ V, let |K| denote its size and define

X̄K =
1

|K|
∑
v∈K

Xv.

Given a cluster class K, we define the (simple) scan statistic as

max
K∈K

√
|K| (X̄K − µ0), (1)

where µ0 is the mean of F0. If µ0 is not available, we may use the grand mean X̄Vm instead.
In Appendix B, we derive this form of scan statistic as an approximation to the scan statistic
of Kulldorff (1997), which is strictly speaking the generalized likelihood ratio and arguably the
most popular version, particularly in spatial statistics. We use this simpler form to streamline our
theoretical analysis.

The test based on the scan statistic, which we called the scan test, is near-optimal in a wide
range of settings (Arias-Castro et al., 2011, 2005; Walther, 2010). In particular, in the context of a
class of hypercubes, and in fact many other parametric classes, this test is asymptotically optimal
to the exact multiplicative constant.

Lemma 3. In hypercube detection, the scan test is asymptotically powerful if

lim inf
m→∞

(logm)−1/2mdα/2θm > σ0
√

2d(1− α).

In the context of a class of paths, the following result states that the scan test detects if θm is
bounded away from zero and sufficiently large. Note that this does not match the order of magnitude
of the lower bound given in dimension d = 2. Let Λ(θ) = logφ(θ) and Λ∗(x) = supθ≥0 [θ x− Λ(θ)] .
(Λ∗ is the rate function of F0 when x ≥ µ0.) The following result is established in (Arias-Castro
et al., 2008).

Lemma 4. In path detection, the scan test is asymptotically powerful if

lim inf
m→∞

θm > θ∗ := (Λ∗ ◦ Λ′)−1(log(2d)).

4 The size of the largest open cluster

We study the test based on the size of the largest connected component after thresholding the
values at the nodes. This test was independently1 considered in a series of papers (Davies et al.,
2010; Langovoy and Wittich, 2011). Our results are seen to sharpen and elaborate on these results.
In particular, we study this test under all three regimes (subcritical, supercritical and critical).

Adapting terminology from percolation theory (Grimmett, 1999), for a threshold t ∈ R, we say
that a subset K ⊂ V is open (at threshold t) if Xv > t for all v ∈ K. Let Sm(t) (resp. SK(t))
denote the size of the largest open cluster within Vm (resp. within K). The analysis of the test
based on Sm(t), which we call the largest open cluster (LOC) test, boils down to bounding the size
of Sm(t) from above, under Hm

0 , and, since Sm(t) ≥ SK(t), bounding the size of SK(t) from below,
under Hm

1,K . Define ξv(t) = I{Xv > t}, which is Bernoulli with parameter pθ(t) := Pθ(Xv > t).

1The authors were not aware of this (unpublished) line of work until M. Langovoy contacted them in the final
stages of this manuscript.

5



The process (ξv(t) : v ∈ Vm) is a site percolation model (Grimmett, 1999). In general, consider a
process (ξv : v ∈ Vm) i.i.d. Bernoulli with parameter p, and let Sm denote the size of the largest
open cluster within Vm. In dimension d = 1, this process may be seen as a sequence of coin tosses
and Sm as the longest heads run in that sequence. In this context, the Erdős–Rényi Law (Erdős
and Rényi, 1970) says that

Sm

logm
→ 1

log(1/p)
, almost surely. (2)

In higher dimensions d ≥ 2, the situation is much more involved. Let pc denote the critical
probability for site percolation in Zd, defined as the supremum over all p ∈ (0, 1) such that the size
of the open cluster at the origin, denoted S, is finite with probability one. (The dependency in d is
left implicit.) We consider the subcritical (p0(t) < pc), supercritical (p0(t) > pc) and near-critical
(p0(t) ≈ pc) cases separately.

4.1 Subcritical percolation

In the subcritical case, where t is such that p0(t) < pc, we are able to obtain precise, rigorous results
on the performance of the test based on Sm(t) in terms of the function ζp implicitly defined as

ζp := − lim
k→∞

1

k
logP (S ≥ k) = − lim

k→∞

1

k
logP (S = k) . (3)

See (Grimmett, 1999, Sec. 6.3). (Again, the dependency in d is left implicit.) As a function of
p ∈ (0, pc), ζp is continuous, and strictly decreasing, with limits ∞ at p = 0 and zero at p = pc (see
Lemma A.1), while ζp = 0 for p ≥ pc. In the Appendix, we include a proof that

Sm

logm
→ d

ζp
, in probability, (4)

for a subcritical threshold p < pc.
The convergence result in (4) may be used to bound Sm(t) under the null by taking p = p0(t).

Under the alternative, if we consider a class of hypercubes, then (4) may also be used to bound
SK(t), since K is a scaled version of Vm.

Theorem 1. In hypercube detection, the test based on Sm(t), with t fixed such that 0 < p0(t) < pc, is
asymptotically powerful if lim infm→∞ θm > θ∗(t), and asymptotically powerless if lim supm→∞ θm <
θ∗(t), where θ∗(t) is the unique solution to ζpθ(t) = αζp0(t).

Notice that, when t is fixed, ζpθ(t) as a function of θ is continuous and strictly strictly decreasing,
by the fact that pθ(t) is continuous and strictly increasing in θ (Brown, 1986, Cor. 2.6, 2.22) and ζp is
continuous and strictly decreasing in p (Lemma A.1). Therefore θ∗(t) in the theorem is well-defined.

If, instead, we consider a class of paths, then (2) may be used to bound SK(t), since K is a
scaled version of the lattice in dimension one. In congruence with (2), we define ζ1p = log(1/p).

Theorem 2. In path detection, the test based on Sm(t), with t fixed such that 0 < p0(t) < pc, is
asymptotically powerful if lim infm→∞ θm > θ+∗ (t), and asymptotically powerless if lim supm→∞ θm <
θ−∗ (t), where θ+∗ (t) (resp. θ

−
∗ (t)) is the unique solution to d ζ1pθ(t) = α ζp0(t) (resp. d ζpθ(t) = α ζp0(t)).

Note that, in dimension d ≥ 2, the result is not sharp, as we always have θ+∗ (t) > θ−∗ (t).
We believe that sharper forms of this result may involve percolation constants that may not be
calculated explicitly, and for this reason we have not pursued this.
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What if we let t = tm → ∞, so that p0(tm) → 0? Then the test based on Sm(tm) is powerless
under some additional conditions on F0. For b, C ≥ 0, consider the following class of approximately
exponential power (AEP) distributions2

AEP(b, C) =
{
F : x−b log F̄ (x) → −C, x → ∞

}
.

(F̄ (x) := 1−F (x) is the survival distribution function ofX ∼ F .) For example, Exp(λ) ∈ AEP(1, λ)
and N (µ, σ2) ∈ AEP(2, 1/(2σ2)), while Poi(λ) behaves roughly as a distribution in AEP(1, C).

Proposition 1. Assume that F0 ∈ AEP(b, C) for some b > 1 and C > 0. In hypercube detection,
the test based on Sm(t) is asymptotically powerless when t = tm → ∞, unless θm → ∞.

4.2 Supercritical percolation

We consider the supercritical regime, where p0(t) > pc. (Note that necessarily d ≥ 2, for pc = 1 in
dimension one.) In this setting too, the size of the largest cluster is well-understood. Let Θp be
the probability that the open cluster at the origin is infinite, and note that Θp > 0 for p > pc, by
the definition of pc. We have with probability one that

Sm

|Vm|
→ Θp;

see (Falconer and Grimmett, 1992, Lemma 2 and proof), (Penrose and Pisztora, 1996, Th. 4),
Pisztora (2006). In fact, (with probability 1 − o(1)) the largest open cluster within Vm is unique,
and the statement above says that it occupies a non-negligible fraction of Vm. With a supercritical
choice of threshold, the LOC test is powerless for any θ if the anomalous cluster is too small,
specifically if α < 1/2 in the setting of hypercube detection. Indeed, we have the following result.

Theorem 3. In hypercube detection, the test based on Sm(t), with t fixed such that pc < p0(t) < 1,
is asymptotically powerful if α ≥ 1/2 and limm→∞ θmm(α−1/2)d = ∞, and asymptotically powerless
if α < 1/2 or if limm→∞ θmm(α−1/2)d = 0.

Thus, for the detection of small clusters, a supercritical LOC test is potentially worthless while
for larger clusters it improves substantially on the performance of a subcritical LOC test. Note
that in the context of path detection, the same arguments show that the LOC test for any choice
of supercritical threshold is asymptotically powerless.

4.3 Critical percolation

If our goal is to choose a threshold t so as to maximize the difference in size for the largest open
cluster under the null and under an alternative, we are necessarily in the neighborhood of the
percolation phase transition, which is to say that |p− pc| is small. (Again, we assume d ≥ 2.) The
percolation model is not fully understood in the critical regime, and this poses a serious obstacle
to a rigorous statistical analysis. See (Grimmett, 1999, Chap. 9) for a general discussion of this
percolation regime. We base our discussion on a paper of Borgs et al. (2001). Let πm(p) denote
the probability that the open cluster at the origin reaches outside the box [−m,m]d and let ξ(p)
denote the correlation length, defined as

1

ξ(p)
:= − lim

m→∞

1

m
log πm(p).

2Sometimes called Subbotin distributions.
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Note that, with ξ defined thus, ξ(p) < ∞ if and only if p < pc. The critical exponent for (subcritical)
correlation length is postulated as

ν := − lim
p↗pc

log ξ(p)

log |p− pc|
.

It is not known for all dimensions that the limit exists, but it is known that 0 < ν < ∞ whenever it
exists. It is shown in (Borgs et al., 2001) that, subject to the existence of this limit together with
other scaling assumptions, when p = pm varies with m,

Sm ≍P

{
logm, if, for some ν ′ > ν, m1/ν′(pm − pc) → −∞,

md, if, for some ν ′ > ν, m1/ν′(pm − pc) → ∞,
(5)

where Xm ≍P Ym means there exists a constant C ∈ (0,∞) such that C−1 ≤ Xm/Ym ≤ C in
probability. The scaling assumptions of (Borgs et al., 2001) are believed to hold if and only if the
number d of dimensions satisfies 2 ≤ d ≤ 6, and they are proved for d = 2. (Borgs et al., 2001) is
directed at bond percolation only, but similar results are expected for site percolation.

It is known that ν = 4/3 for site percolation on the triangular lattice, see (Smirnov and Werner,
2001), and it is believed that this holds for percolation on any two-dimensional lattice. As described
in (Grimmett, 1999, Sect. 10.4), it is believed that ν = 1/2 for d ≥ 6.

Subject to the assumption that (5) holds, we establish the power of the test based on Sm(t)
when choosing t = tm near criticality. We assume that there exists tc such that p0(tc) = pc, and
that p0(t) is a continuous function of t in a neighborhood of tc.

Theorem 4. Let tm ≥ tc be such that pc − p0(tm) ≍ m−1/ν′ for some ν ′ > ν. In hypercube
detection and assuming that (5) holds, the test based on Sm(tm) is asymptotically powerful if
lim infm→∞ θmmα/ν′ is sufficiently large.

Compared with a subcritical choice of threshold, which requires that θm be bounded away from
zero for the test to have any power as seen in Theorem 1, with a near-critical choice of threshold
the test is able to detect at polynomially small θm. In particular, with a proper choice of threshold,
the test is powerful for θm of order m−α/ν′ with ν ′ > ν. Note that, by Lemma 1, all methods are
asymptotically powerless if θm is of order m−dα/2, implying that α/ν ≤ dα/2. We thus obtain the
inequality ν ≥ 2/d. This may be compared with the scaling relation (Grimmett, 1999, Eq. (9.23))
stating that dν = 2−a where a (< 0) is the percolation critical exponent for the number of clusters
per vertex. It is believed that a = −2

3 when d = 2, and a = −1 when d ≥ 6. Compared with
the performance at supercriticality, the test near-criticality (with a proper choice of threshold) is
superior if (α− 1

2)d < α/ν, which is equivalent to α < (1−a/2)/(1−a). For example, with a = −2
3 ,

the near-critical LOC test is superior when α < 3
4 .

5 The upper level set scan statistic

For a threshold t, let Q(t)
m denote the (random) class of clusters within Vm open at t. Also, let

Q∗
m =

∪
tQ

(t)
m , which is also random. Patil and Taillie (2003) suggest scanning the clusters in

Q∗
m. To ease a rigorous mathematical analysis of its performance, we consider the upper level set

(ULS) scan at a given threshold t, and use the simple scan described in Section 3. Specifically, in
correspondence with (1), we define the (simple) ULS scan statistic at threshold t as

Um(t, km) = max
{√

|K|(X̄K − µ0|t) : K ∈ Q(t)
m , |K| ≥ km

}
, (6)
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where µ0|t (resp. σ
2
0|t) is the the mean (resp. variance) of Xv|Xv > t when Xv ∼ F0, and (km) is

a non-decreasing sequence of positive integers. The ULS scan statistic of Patil and Taillie (2003)
corresponds (in its simple form) to

ULSm = max
t∈R

Um(t, 1)

σ0|t
. (7)

If µ0|t and/or σ2
0|t are not available, we may use their empirical versions based on the Xv that

survive the threshold t. We restrict the scan to clusters of size at least km in order to increase
power, for the behavior of Um(t) is, as we shall see, completely driven by the smallest open clusters
that are scanned, at least when t is subcritical. We divide the rest of our discussion in terms of
subcritical, supercritical and near-critical choices of threshold. We then conclude with a result on
the performance of the ULS scan test across all thresholds.

5.1 Subcritical threshold

We start by describing the behavior of Um(t, km) under the null. Let Fθ|t denote the distribution
of Xv|Xv > t under Fθ, and let µθ|t and Λ∗

θ|t denote its mean and rate function, respectively. Also,

when 0 < β < 1/ζpθ(t), or β = 0 and F0 ∈ AEP(b, C) for some b ≥ 2 and C > 0, let γθ|t(β) :=
γ(Fθ|t, µ0|t, ζpθ(t), β), where γ is the function defined in Lemma A.9. Note that γθ|t(β) can be
computed explicitly in some cases, like the normal location model, and γθ|t(β) ∼ (µθ|t−µ0|t)

2/ζpθ(t)
when θ ↗ θc(t), defined (when it exists) as the solution to pθ(t) = pc.

Lemma 5. Assume that θ ≥ 0 and t is fixed such that 0 < pθ(t) < pc and that km/ logm → dβ for
some β ≥ 0. Then under Fθ on Vm, the following holds in probability:

1. If β > 1/ζpθ(t), then Um(t, km) = 0 for m large enough;

2. If 0 < β < 1/ζpθ(t), then

(logm)−1/2Um(t, km) → (dγθ|t(β))
1/2.

3. If β = 0 and F0 ∈ AEP(b, C) for some b ≥ 1 and C > 0, then

(a) If b ≥ 2, the convergence in Part 2 applies;

(b) If b < 2,

k1/b−1/2
m (logm)−1/bUm(t, km) → (d/C)1/b.

In the last case, where β = 0, the behavior of Um(t) is influenced by the very large deviations
of F ∗k

θ|t for k ≥ km. (The symbol ∗ denotes convolution.) We choose to state a result for AEP
distributions, for which the very large deviations resemble the large deviations.

Based on Lemma 5, we establish the performance of the ULS scan statistic. We start with
arguing that choosing km such that km/ logm → 0 leads to a test that may potentially have less
power than the test based on the largest cluster after thresholding. Indeed, the behavior of the
ULS scan statistic does not depend on θ as long as θ < θc(t).

Proposition 2. Assume that F0 ∈ AEP(b, C) for some b ∈ (1, 2) and C > 0. In hypercube
detection, the test based on Um(t, km), with t fixed such that 0 < p0(t) < pc and km/ logm → 0, is
asymptotically powerless if lim supm→∞ θm < θc(t).
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For example, in the setting just described with d = 1, the ULS scan test has (asymptotically)
no power unless θm → ∞, while the test based on the size of the largest cluster after thresholding
is, by Theorem 1, asymptotically powerful if lim infm→∞ θm is large enough. We therefore choose
a sequence km comparable in magnitude to logm and state the performance of the ULS scan test
in this case.

Theorem 5. In hypercube detection, the test based on Um(t, km), with t fixed such that 0 < p0(t) <
pc and km/ logm → dβ with 0 < β < 1/ζp0(t), is asymptotically powerful if lim infm→∞ θm >
θ∗(t), and asymptotically powerless if lim supm→∞ θm < θ∗(t), where θ∗(t) is the unique solution to
αγθ|t(β) = γ0|t(β).

Note that θ∗(t) is well-defined by Lemma A.10 and that θ∗(t) < θc as long as α > 0. In any
case, the test based on Um(t, km) with a subcritical threshold t is, in the setting of hypercube
detection, asymptotically powerless when θm → 0, just like the LOC test. In essence, the two tests
are qualitatively comparable in this setting. This is also true in the context of path detection. Let
γ1θ|t(β) denote γθ|t(β) in dimension one.

Theorem 6. In path detection, the test based on Um(t, km), with t fixed such that 0 < p0(t) < pc
and km/ logm → dβ with 0 < β < 1/ζp0(t), is asymptotically powerful if lim infm→∞ θm > θ+∗ (t),
and asymptotically powerless if lim supm→∞ θm < θ−∗ (t), where θ+∗ (t) (resp. θ−∗ (t)) is the unique
solution to αγ1θ|t(β) = γ0|t(β) (resp. αγθ|t(β) = γ0|t(β)).

As in Theorem 2, the result is not as sharp.

5.2 Supercritical threshold

We consider the choice of a supercritical threshold, where t is fixed such that p0(t) > pc. We already
saw in Section 4.2 that the largest open cluster is unique and occupies a non-negligible fraction of
the entire network. This is actually true both under the null and under an alternative. The ULS
scan test based solely on the largest open cluster is comparable to the test based on the grand
mean after thresholding. In turn, assuming t is fixed, this test is asymptotically powerful when
m(α−1/2)dθm → ∞, and asymptotically powerless if α ≤ 1/2 and θm is bounded. (This is easily
seen using Chebyshev’s inequality.) This is comparable to the LOC test at super-criticality.

In general, the ULS scan statistic includes other (smaller) open clusters. The story of the
second largest cluster of supercritical percolation in a box is not yet complete, and for this reason
the behavior of the ULS scan statistic is not fully understood. The difficulty arises through the
possibility that the second largest cluster in Vm might lie at its boundary. Whether or not this
occurs depends on the outcome of a calculation, yet to be done, of energy/entropy type involving
so-called droplets near the boundary of Vm (see, for example, (Bodineau et al., 2001)). In order to
simplify the discussion, we finesse this problem by working where necessary on Vm with toroidal
boundary conditions. That is, whenever we make statements concerning supercritical percolation
on the graph Vm, we may add edges connecting sites on its boundary as follows: when d = 2,
for k = 1, 2, . . . ,m, an additional edge is placed between site (1, k) and site (m, k), and similarly
between (k, 1) and (k,m).

In proving exact asymptotics for test statistics under the null, we shall assume toroidal boundary
conditions. Our results on asymptotic power do not require such exact results but only orders of
magnitude, and these do not need the toroidal assumption. We emphasize that similar exact results
are expected to hold with ‘free’ (that is, without the extra edges) rather than toroidal boundary
conditions. Once the percolation picture is better understood, such results will follow in the same
manner as those presented in this paper. Our results for the torus are valid also if instead we
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discount open clusters that touch the boundary of Vm (details of this are omitted, and the proofs
are essentially the same).

When working on the torus, the second largest cluster is controlled via the following calculation.
It is proved in (Cerf, 2006) that the limit

δp := − lim
k→∞

k−(d−1)/d logP (∞ > S ≥ k) = − lim
k→∞

k−(d−1)/d logP (S = k) , (8)

exists, with 0 < δp < ∞ for all fixed p ∈ (pc, 1). The dependency on d is left implicit.
A result similar to Lemma 5 holds with δp playing the role of ζp and the exponent of logm

changed in places. It turns out that we only need this result when θ = 0. For β > 0 and a
supercritical t, let γ0|t(β) := γ(F0|t, µ0|t, 0, β) defined in Lemma A.9.

Lemma 6. Assume that t is fixed such that pc < p0(t) < 1 and that km/ logm → dβ and

k
(d−1)/d
m / logm → dβ′ for some 0 ≤ β, β′ ≤ ∞. Then under the null, the following holds in

probability on the torus Vm:

1. If β′ > 1/δp0(t), then Um(t, km) = O(1);

2. If 0 ≤ β′ < 1/δp0(t) and β = ∞, then

(logm)−1/2Um(t, km) → σ0|t[2d(1− β′δp0(t))]
1/2,

where σ2
0|t := Var

(
F0|t
)
;

3. If β < ∞, the conclusions of Lemma 5 apply. (Note that ζp0(t) = 0.)

Based on Lemma 6, we obtain the following result on the performance of the ULS scan test at
supercriticality. As before, we restrict ourselves to the case where Um(t, km) is of order (logm)1/2.
We also chose to state a simple result instead of a more precise result with multiple sub-cases. This
result holds irrespective of the type of boundary condition assumed on Vm.

Theorem 7. In hypercube detection, the test based on Um(t, km), with t fixed such that pc < p0(t) <

1 and lim inf km/ logm > 0 and lim sup k
(d−1)/d
m / logm < αd/δp0(t), is asymptotically powerful

(resp. powerless) if

θm

[
m(α−1/2)d + (logm)d/(2d−2)

]
(logm)−1/2 → ∞ (resp. → 0).

We also mention that the equivalent of Theorem 6 holds here as well.

5.3 Critical threshold

If we choose a threshold as described in Section 4.3, and if (5) is true, then the power of the ULS
scan statistic is greatly improved, indeed, as in the case of the LOC test. In fact, one can prove
that Theorem 4 remains valid with S(tm) replaced with Um(tm, km), as long as km = o(m)αd so
that the largest open cluster under the alternative is scanned. This boils down to showing that,
under the null, the ULS scan statistic is at most a power of logm, which we do in Lemma 7 below.
The ULS scan test, however, does not seem to offer any substantial gain in power over the LOC
test, as θm is still required to be large enough to change the regime of the percolation process
within an alternative K from subcritical to supercritical. That said, actually proving this would
require information on the smaller open clusters near criticality, which is scarce (and very difficult
to obtain)—see Borgs et al. (2001) for some partial results and postulates.
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5.4 Across all thresholds

Finally, we discuss the (simple) ULS scan test across all thresholds, as suggested in Patil and
Taillie (2003). So as to take advantage of a phase transition near-criticality, we assume as in
Section 4.3 that there exists tc such that p0(tc) = pc, and that p0(t) is a continuous function of t
in a neighborhood of tc. Also, we assume that (5) holds. In Proposition 2, we saw that scanning
small clusters may lead to a decrease in power. For this reason, and also to facilitate the analysis,
we limit ourselves to clusters of size at least km, i.e., we consider the test based on test based on

ULSm(km) = max
t∈R

Um(t, km)

σ0|t
, (9)

where, for definiteness, Um(t, km) is calculated on the torus Vm when t < tc.
Let Γθ(β) = inft γθ|t(β)/σ

2
0|t where, in congruence with Sections 5.1 and 5.2,

γθ|t(β) =

{
γ(Fθ|t, µ0|t, ζpθ(t), β), t > tc

γ(Fθ|t, µ0|t, 0, β), t < tc,

with γ being the function defined in Lemma A.9. We first establish the behavior of ULSm(km)
under the null.

Lemma 7. Let km = β logm where β > 0, and let tβ be such that d/β ≤ ζp0(tβ) < ∞. Define
η(β) := sup{σ0|t/σ0|s : s ≤ t ≤ tβ}. Then, under F0,

(dΓ0(β))
1/2 ≤ (1 + oP(1))(logm)−1/2ULSm(km) ≤ η(β)(dΓ0(β))

1/2.

If in addition, either σ0|t is non-decreasing in t or F0 has no atoms on (−∞, tβ], then in probability
under F0,

(logm)−1/2ULSm(km) → (dΓ0(β))
1/2.

The term oP(1) denotes a random variable that converges to 0 in probability. See the formal
definition at the start of the appendix. In fact, a result as precise as Lemma 7 is superfluous,
given the behavior of the ULS scan statistic under the alternative at supercriticality and near-
criticality, which is polynomial in m. The next theorem does not require the use of toroidal
boundary conditions.

Theorem 8. In hypercube detection and assuming that (5) holds, the test based on ULSm(km), with
km = [β logm] for some β > 0, is asymptotically powerful if θmmλ → ∞, for some 0 < λ < α/ν
satisfying λ < (α− 1/2)d if α > 1/2.

Hence, scanning all thresholds brings the best performance out. Of course, we only need to select
as thresholds the distinct node values, and in fact, the lower bound on the cluster size imposes an
(implicit) upper bound on the threshold (at least under the null). We mention in passing that the
same result holds for the simpler test which only scans the largest open cluster at each threshold.

6 Implementation and numerical experiments

The scan test has been shown to be near-optimal in a wide variety of settings, differing both
in terms of network structure and cluster class (Arias-Castro et al., 2011, 2005). It is, however,
computationally demanding. For the simple situation of detecting a hypercube, the scan statistic
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can be computed in O(N logN) flops, where N := md is the network size, if the size of the
hypercube is known. If one scans over all possible hypercubes, then computing the scan statistic
requires O(N2 logN) flops. For non-parametric shapes, the computational cost is even higher. In
fact, for the problem of detecting a loopless path, computing the scan statistic corresponds to the
Reward-Budget Problem of DasGupta et al. (2006), shown there to be NP-hard. Because the scan
statistic is so computationally burdensome, the cluster class is most often taken to be parametric in
practice, even though the underlying clusters may take a much wider range of shapes. For instance,
discs are the prevalent shape used in disease outbreak detection (Kulldorff and Nagarwalla, 1995),
with variants such as ellipses (Hobolth et al., 2002; Kulldorff et al., 2006). For a wide range
of parametric shapes, Arias-Castro et al. (2005) recommend a multiscale approximation to the
scan statistic. Efforts to move beyond parametric models include tree-based approaches (Kulldorff
et al., 2003), simulated annealing (Duczmal and Assunção, 2004) and an exhaustive search among
arbitrarily shaped clusters of small size (Tango and Takahashi, 2005).

The LOC test does not assume any parametric form for the anomalous cluster, and in that sense,
it is nonparametric. Its computational complexity at a given threshold is of order the number of
nodes plus the number of edges in the network (Cormen et al., 2009), so of order O(N) flops for
the square lattice.

The ULS scan statistic is also nonparametric. Computing Um(t, km) requires determining Q(t)
m ,

which we saw takes O(N) flops, and then scanning over Q(t)
m . Since the clusters in Q(t)

m do not
intersect, scanning over them takes order O(N) flops. Therefore, computing ULSm can be done in
O(M · N) flops, where M is the number of distinct values at the nodes. Patil and Taillie (2004)
argue that this can be done faster, using the tree structure of Q∗

m, where the root is the entire
network Vm and a cluster K ∈ Km(tj) is the parent of any cluster L ∈ Km(tj+1) such that L ⊂ K,
where t1 < · · · < tM denote the distinct values at the nodes.

We complement our theoretical analysis with some small-scale numerical experiments. Specif-
ically, we explore the power properties of the LOC test of Section 4 and the ULS scan test of
Section 5 in the context of detecting a hypercube in the two-dimensional square lattice. Patil
et al. (2005) are developing sophisticated software implementing the ULS scan statistic for use in
real-life situations, with more recent variations Patil et al. (2010). However, this software is not
yet available, so we implemented our own (basic) routines.

We used the statistical software R3 with the package igraph4. Our (basic) implementation of
the ULS scan statistic for a given threshold is much slower than both the scan statistic with a
given mask and the LOC statistic, especially when there is no constraint on the size of the open
clusters to be scanned, i.e., when km = 1. In all our experiments, we chose the square lattice
in dimension d = 2 with side-length m = 500 for a total of 250,000 nodes, and we considered
three alternatives, specifically, squares of side length ℓ ∈ {10, 50, 100}, corresponding roughly to
α ∈ {0.4, 0.7, 0.8}. The squares were fixed, away from the boundary of the lattice, as the methods
are essentially location independent. (This is rigorously true of the scan statistic.) We assessed the
performance of a method in a given situation by estimating its risk, which we define as the sum of
the probabilities of type I and type II errors optimized over all rejection regions.

We first ran some experiments to quickly assess the power of the scan test and it agrees very
well with the theory, i.e., Lemma 3, though we knew that from previous experience. Specifically,
we assumed a normal location model and simulated 100 realizations of the null and each of the
three alternatives with θ ∈ {j/ℓ : j = 1, 3, 5, 7, 9}. See Figure 2.

Next, we performed some larger experiments to assess the power of the LOC test. We simply

3The R Project for Statistical Computing {http://www.r-project.org}
4The igraph library, by G. Csardi {http://igraph.sourceforge.net}

13

http://www.r-project.org
http://igraph.sourceforge.net


0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster of side−length 10

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster of side−length 50

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cluster of side−length 100

Figure 2: The risk of the scan test against each of the three alternatives. On the x-axis is θ, and
the y-axis is the estimated risk based on 100 replicates.

assumed a site percolation model with probability p ∈ {0.05, 0.10, . . . , 0.90, 0.95}. Note that pc is
not known for site percolation in the square lattice, though pc ≈ 0.5927460 from extensive numerical
experiments (Feng et al., 2008). We simulated the null and each one of the three alternatives with
a probability q ∈ {0.05, 0.10, . . . , 0.90, 0.95}, q > p, within the anomalous cluster. We replicated
each situation 1,000 times. The risk curves are pictured in Figure 3. The test seems to behave
similarly above and below criticality. Near criticality, the test is rather erratic. However, when the
size of the anomalous cluster is large enough, ℓ = 100, the risk curve is steepest just under pc, at
p = 0.55 in our experiments, with full power against q ≥ 0.65. In Figure 4 are boxplots of the test
statistic for the case of ℓ = 100 and p = 0.40 (subcritical), p = 0.55 (near-critical) and p = 0.70
(supercritical).
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Figure 3: The risk of the LOC test against each of the three alternatives. On the x-axis is the
percolation probability q on the anomalous cluster, and the y-axis is the estimated risk based on
1,000 replicates. Each curve corresponds to a different percolation probability p.

If we were to use this test in the context of a normal location model, the correspondence would
be t = Φ̄−1(p) (the threshold) and θ = t−Φ̄−1(q), where Φ̄ denotes the normal survival distribution
function. In Figure 5 we plot the risk curves in this context for p ∈ {0.40, 0.50, 0.55, 0.60, 0.70}.
In particular, the test near criticality with t = Φ̄−1(0.55) = −0.126 has full power against the
alternative with ℓ = 100 and θ = 0.26.

Last, we experimented with the ULS scan test. To limit the size of our simulations, we considered
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Figure 4: The size of the largest open cluster in log10 scale (y-axis) versus the percolation probability
q, for the alternative ℓ = 100 and p ∈ {0.40, 0.55, 0.70} (from left to right). Each boxplot represent
1,000 replicates.

alternatives with θ = Φ−1(q) with q ∈ {0.55, 0.6, 0.65, 0.70, 0.80, 0.90} and chose as thresholds
t = Φ−1(p) with p ∈ {0.40, 0.50, 0.55, 0.60, 0.70}. We restricted scanning to open clusters of size
not smaller than a tenth (1/10) of the size of largest open cluster, essentially falling in the regime
of Part 2 of Lemma 5 and also making the computations much faster. We used 200 replicates. We
observe again that the risk curve is sharpest near criticality when the size of the anomalous cluster
is sufficiently large, here for ℓ ≥ 50. Compared with the LOC test, the ULS scan test has more
power at large θ when the cluster is small ℓ = 10 (as predicted) and, more interestingly, a little
more power when the cluster is larger. Compared to the scan statistic, which knows the size and
shape of the anomalous cluster, the ULS scan test with the best choice of threshold (corresponding
to p = 0.55) requires about three times more signal amplitude.
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Figure 5: The risk of the LOC test in the context of a normal location model. On the x-axis is θ, and
on the y-axis is the estimated risk based on 1,000 replicates. Each curve corresponds to a different
threshold t. The black, red, green, blue and cyan curves correspond to p = 0.40, 0.50, 0.55, 0.60, 0.70,
respectively.
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Figure 6: The risk of the ULS scan test against each of the three alternatives. On the x-axis is θ,
and on the y-axis is the estimated risk based on 200 replicates. Each curve corresponds to a different
threshold t. The black, red, green, blue and cyan curves correspond to p = 0.40, 0.50, 0.55, 0.60, 0.70,
respectively.

7 Discussion

Our contribution in this paper is a rigorous mathematical analysis of the performance of the LOC
test—independently of, and more extensively than (Davies et al., 2010; Langovoy and Wittich,
2011), and of the ULS scan test, both nonparametric and computationally tractable methods. We
made abundant use of percolation theory to establish these results. We compared their power
with that of the scan statistic, known to be near-optimal in a wide array of settings. While they
are comparable in power with the scan statistic for the detection of a path, these tests may be
substantially less powerful for the detection of a hypercube. Note however that the scan statistic is
provided with knowledge about the shape and size of the anomalous cluster (though the latter is not
as important). In theory, we argued that this was the case based on some heuristics and conjectures
from percolation theory. Numerically, this appears to be the case when the anomalous cluster is
large enough. In our experiments, the ULS scan test was slightly more powerful than the LOC test,
and required a θ three to four times larger compared to the scan statistic, the latter having the
advantage of knowing the shape and size of the cluster. This is promising and further numerical
experiments are needed to evaluate the power of these tests in truly nonparametric settings.

Our theoretical results generalize to other networks that resemble the lattice, with a different
critical percolation probability pc and different functions ζp and δp. In particular, we used the self-
similarity property of the square lattice and the fact that it has polynomial growth. Our results
also generalize to other cluster classes. In the setting of the square lattice, our results extend
immediately to any class of clusters that include a hypercube of comparable size, e.g., the class Km

of clusters K of size |K| = [mα]d such that there is a hypercube K0 ⊂ K with |K0|/|K| ≥ ωm, where
ωm → 0 slower than any negative power of m. Also, the class may contain clusters of different sizes,
though in that case the worst-case risk is driven by the smallest clusters. (The implementation of
the scan statistic may be much more demanding in this case.) The main results of Section 4 only
require that Fθ(t) is twice differentiable in (t, θ), with ∂θFθ(t) < 0 for all (t, θ), which is for example
the case for location models and scale models if F0 is twice differentiable with a strictly positive
first derivate. With some additional work, we may also obtain results for classes of ‘thin’ clusters
as defined in (Arias-Castro et al., 2011). The key is to understand the percolation behavior within
and near such clusters. Some results are available for slabs (Grimmett, 1999, Thm 7.2) and more
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general subgraphs of lattices including ‘wedges’, and these appear transferable to other ‘curved’
slabs.

Appendix

Notation

We write fm ∼ gm as n → ∞ if fm/gm → 1. Similarly, we use O() and o() notation, and write
fm ≍ gm as n → ∞ if fm = O(gm) and vice-versa. We will also use their random counterparts, ∼P,
≍P, OP() and oP(). For example, Zm = oP(km) means that Zm/km → 0 in probability and Zm =
OP(km) means that Zm/km is bounded in probability, which is to say that P(|Zm| ≥ kmlm) → 1 as
m → ∞, for any lm satisfying lm → ∞. We use 1{A} to denote the indicator function of the set
A. The maximum of k and ℓ is denoted k ∨ ℓ.

A.1 On the size of percolation clusters

We state and prove a couple of results on the sizes of percolation clusters in Zd. We start by proving
some properties of ζp. Recall that S denotes the size of the open cluster at the origin. Besides the
limit in (3), the following bound holds for p < pc and all k ≥ 1:

Pp(S ≥ k) ≤ (1− p)2
ke−kζp

(1− e−ζp)2
, (A.1)

by (Grimmett, 1999, Eq. (6.80)) adapted to site percolation.

Lemma A.1. The function ζp defined in (3) is continuous and strictly decreasing over (0, pc], with
limp→0 ζp = ∞ and limp→pc ζp = 0.

Proof. Let 0 ≤ p < p′ ≤ 1. By coupling Pp and Pp′ in the usual way,

Pp(S = k) ≥ (p/p′)kPp′(S = k),

so that ζp ≤ ζp′ + log(p′/p). Applying (Grimmett, 1999, Thm 2.38), to the event {S ≥ k}, we find
as in the proof of (Grimmett, 1999, Eq. (6.16)) that ζp/ log p ≤ ζp′/ log p

′. In summary,

ζp

(
1− log(1/p′)

log(1/p)

)
≤ ζp − ζp′ ≤ log(p′/p). (A.2)

Therefore, ζp is continuous, and is strictly decreasing on (0, pc). Moreover, by fixing p′ ∈ (0, pc)
and letting p → 0, we have

ζp ≥ ζp′
log(1/p)

log(1/p′)
→ ∞.

Finally, by (Grimmett, 1999, Eq. (6.83), (6.56)), ζp → 0 = ζpc as p ↑ pc.

We include next the proof of (4). This is done by standard means and the claim may be
strengthened, see also (Grimmett, 1985; Hofstad and Redig, 2006).
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Lemma A.2. Consider site percolation on Zd with parameter p < pc, and let Sm denote the size
of the largest open cluster within Vm. Then (4) holds, namely,

Sm

logm
→ d

ζp
, in probability.

Proof. Fix 0 < ε < 1/2. Let Sv be the size of the open cluster at a node v ∈ Zd, which has the
same distribution as S. We start with the upper bound. By (3) and the union bound,

P (Sm ≥ k) ≤
∑
v∈Vm

P (Sv ≥ k) = |Vm| · P (S ≥ k) . (A.3)

Hence, for km(ε) := (1 + ε)(d/ζp) logm and m large enough,

P (Sm ≥ km(ε)) ≤ md exp(−(1− ε/2)ζpkm(ε)) ≤ m−εd/4,

and the term on the right-hand side converges to zero.
For the lower bound, consider N = ⌈md/(logm)2d⌉ nodes v1, . . . , vN ∈ Vm separated from

each other and the boundary of Vm by at least 1
2(logm)2. Let km(ε) := (1 − ε)(d/ζp) logm. For

sufficiently large m, the events Ei := {|Svi | ≤ km(ε)} are independent. Therefore, for large m,

P (Sm ≤ km(ε)) ≤ (1− P (S ≥ km(ε)))N (A.4)

≤ (1− exp(−(1 + ε/2)ζpkm(ε)))N

≤ exp(−mεd/2/(logm)2d),

and the last term on the right-hand side tends to zero as m → ∞.

The following result describes the behavior of size of the open cluster at the origin when p is
small. It may be made more precise, but this is not pursued here.

Lemma A.3. There exists c > 0 depending only on d such that, for p ∈ (0, (2c)−1),

pk ≤ Pp(S ≥ k) ≤ 1
2(cp)

k, ∀k ≥ 1.

Proof. An animal is a connected subgraph of Zd containing the origin. The lower bound comes
from considering the probability that any given animal of size k is open. For the upper bound,
by the union bound we have Pp(S = k) ≤ |Ak|pk, where Ak is the set of animals with k vertices.
There is a constant c > 0 such that |Ak| ≤ ck, so that

Pp(S ≥ k) ≤
∑
ℓ≥k

cℓpℓ =
(cp)k

1− cp
≤ 1

2(cp)
k,

when cp < 1
2 .

Next is a result on the number of open clusters of a given size and is valid for all p ∈ (0, 1).

Lemma A.4. Consider site percolation on Zd with parameter p, and let Nm(k) denote the number
of open clusters of size k within Vm. Then, for k ≥ 1,

(m− 2k)d

k
P (S = k) ≤ E (Nm(k)) ≤ md

k
P (∞ > S ≥ k) ,
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In addition, for k, ℓ ≥ 1,∣∣Cov (Nm(k), Nm(ℓ))
∣∣ ≤ 3d+1(k + ℓ)dE (Nm(k ∨ ℓ)) .

Hence, for k ≥ 1,
Var (Nm(k)) ≤ 6d+1kdE (Nm(k)) .

Proof. Let Sv
m be the size of the open cluster at v within the box Vm. Then

Nm(k) =
∑
v∈Vm

Xv(k), (A.5)

where Xv(k) = k−11{Sv
m = k}. We immediately have

E (Nm(k)) ≤
∑
v∈Vm

1

k
P (∞ > Sv ≥ k) =

|Vm|
k

P (∞ > S ≥ k) .

For the lower bound, we count only nodes away from the boundary, obtaining

E (Nm(k)) ≥ |Vm(k)| 1
k
P (S = k) ,

where Vm(k) := {k, . . . ,m− k}d.
We turn now to the covariances. By (A.5),

Cov (Nm(k), Nm(ℓ)) =
∑

v,w∈Vm

Cov (Xv(k), Xw(l))

=
∑

v,w∈Vm

∥v−w∥≤k+ℓ

Cov (Xv(k), Xw(l)) ,

since Xv(k) and Xw(ℓ) are independent if ∥v − w∥ > k + ℓ, where ∥ · ∥ denotes ℓ∞-norm. Now,∣∣Cov (Xv(k), Xw(ℓ))
∣∣ = ∣∣E (Xw(ℓ) | Xv(k) = k−1

)
− E (Xw(ℓ))

∣∣E (Xv(k))

≤ 1

ℓ
E (Xv(k)) ,

so that ∣∣Cov (Nm(k), Nm(ℓ))
∣∣ ≤ 1

ℓ
(2k + 2ℓ+ 1)dE (Nm(k)) ,

and the second claim of the lemma follows.

We now describe some properties of the open clusters within Vm in the supercritical regime.
In this regime, it is known that, with probability one, there is a unique infinite open cluster in Zd,
denoted Q∞, see for example (Grimmett, 1999, Sec. 8.2). With high probability, the largest open
cluster within Vm is a subgraph of this infinite open cluster. And we display below some additional
information on its size Sm.

Lemma A.5. Suppose that p > pc. There is a constant C > 0 such that, with probability at least
1 − exp(−Cmd−1), there is a unique largest open cluster within Vm, and it is a subgraph of Q∞.
Moreover, as m → ∞, its size Sm satisfies

Sm − E (Sm)√
Var (Sm)

→ N (0, 1), in distribution,

with E (Sm) ∼ Θp|Vm| and Var (Sm) ∼ σ2|Vm| for some σ2 > 0 depending on (d, p).
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Proof. For the first part and the limiting behavior of E (Sm) as m → ∞, see the discussion of
(Penrose and Pisztora, 1996, Th. 4 and Th. 6) and the beginning of this section. For the weak limit
and the limit size of the variance of Sm, see for example (Penrose, 2001, Th. 3.2).

Next, we describe some properties of the smaller open clusters. Let S
(2)
m be the size of the

largest open cluster of Zd that is contained entirely within Vm.

Lemma A.6. Suppose that p > pc. There exists a positive constant δp such that

S
(2)
m

(logm)d/(d−1)
→
(

d

δp

)d/(d−1)

, in probability.

For any c > 0 there exists σi = σi(p, c) > 0 such that, the following holds. With probability tending
to one, there exist at least σ1m

d exp[−σ2(logm)(d−1)/d] open clusters of size [c logm] of Zd lying
within Vm.

Our results on exact asymptotics in the supercritical phase concern Vm with toroidal boundary
conditions. One effect of the removal from Vm of its boundary is that the asymptotics of the largest

cluster coincide with those of Sm, and similarly for the second largest cluster S
(2)
m . In the proof

of Theorem 7, we shall need an upper bound on the size of the second largest cluster inside a box
with ‘free’ boundary conditions. We do not explore this in detail here, since it relies on extensions
of arguments of (Kesten and Zhang, 1990)—see also (Grimmett, 1999, Proof of Thm 8.65)—that
have not been not fully explored in the literature. Instead, we note that the the second largest
open cluster in a supercritical percolation model on Vm with free boundary conditions has size of
order OP((logm)d/(d−1)).

Proof. It was proved in (Cerf, 2006) that the limit

δp := − lim
k→∞

k−(d−1)/d logP(S = k) (A.6)

exists and is strictly positive and finite when pc < p < 1. It is an elementary exercise that δp
defined thus is equal to that of (8). See also (Grimmett, 1999, Sect. 8.6). The first part of the
lemma follows by the same proof as used in Lemma A.2.

As in the proof of Lemma A.4, the mean number µm of clusters of size k := [c logm] satisfies

md

c logm
exp

(
−δ1(c logm)(d−1)/d

)
≤ µm ≤ md

[c logm]
exp

(
−δ2(c logm)(d−1)/d

)
for positive constants δi. The number of such clusters has variance no larger than Ckdµm for some
C < ∞. The claim follows by Chebyshev’s inequality.

A.2 Some distributional properties

We gather here some results for AEP and exponential families of distributions. Our first result is
on the size of the maximum of an i.i.d. sample from an AEP distribution.

Lemma A.7. Let F ∈ AEP(b, C) for some b > 0 and C > 0. Then, for X1, . . . , Xn
iid∼ F ,

max(X1, . . . , Xn)

(log n)1/b
→ C−1/b, in probability.
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Proof. Fix ε ∈ (0, 1) and define xn(ε) = ((1 − ε)(log n)/C)1/b. For n large enough, we have, by
independence,

P (max(X1, . . . , Xn) ≤ xn(ε)) ≤ (1− F̄ (xn(ε)))
n

≤ (1− exp(−(1 + ε)Cxn(ε)
b))n

≤ exp(−nε2) → 0.

Now, redefine xn(ε) = ((1 + ε)(log n)/C)1/b. For n large enough, we have, by the union bound,

P (max(X1, . . . , Xn) ≥ xn(ε)) ≤ nF̄ (xn(ε))

≤ n exp(−(1− ε/3)Cxn(ε)
b)

≤ n−ε/3 → 0.

Next, we describe the behavior at infinity of the logarithmic moment generating function and
rate function of an AEP distribution.

Lemma A.8. Let F ∈ AEP(b, C) for some b ≥ 1 and C > 0, with logarithmic moment generating
function Λ and rate function Λ∗. Then, as θ → ∞,

θ−
b

b−1Λ(θ) → C(b− 1)(Cb)−
b

b−1 , b > 1; (A.7)

(log(1/(C − θ)))−1Λ(θ) → 1, b = 1; (A.8)

and, as x → ∞,

x−bΛ∗(x) → C. (A.9)

Proof. Assume F is continuous for concreteness and let φ denote its moment generating function.
We focus on the upper bound in (A.7)—obtaining the bound in (A.8) is analogous—and deduce
the lower bound in (A.9). Let b > 1, C/2 < A < C, and let x1 > 0 be such that F̄ (x) ≤ exp(−Axb)
for all x > x1. We start from the following bound

φ(θ) =

∫ ∞

−∞
θ exp(θx)F̄ (x)dx ≤ exp(θx1) +

∫ ∞

x1

θ exp(θx−Axb)dx.

We again divide the integral into x ≤ x2 and x > x2, where x2 := (2θ/A)
1

b−1 . For x ≤ x2, we
bound exp(θx − Axb) by its maximum over (0,∞). For x > x2, exp(θx − Axb) ≤ exp(−(C/4)xb).

Letting B = A(b− 1)(Ab)−
b

b−1 and assuming θ is large enough that x2 > x1, we get∫ ∞

x1

θ exp(θx−Axb)dx ≤ (x2 − x1)θ exp
(
Bθ

b
b−1

)
+ θ

∫ ∞

x2

exp(−(C/4)xb)dx.

Hence, when θ → ∞,

φ(θ) = O(θ
b

b−1 ) exp
(
Bθ

b
b−1

)
. (A.10)

Taking logs and letting θ → ∞, we get

lim sup
θ→∞

θ−
b

b−1Λ(θ) ≤ A(b− 1)(Ab)−
b

b−1 .
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Then letting A tend to C, we obtain the upper bound in (A.7).

Now, for x exceeding the mean of F , Λ∗(x) = supθ≥0(θx− Λ(θ)), and starting from (A.10), we
obtain

Λ∗(x) ≥ sup
θ≥0

(θx−Bθ
b

b−1 )− log 2 = Axb − log 2.

Therefore,

lim
x→∞

x−bΛ∗(x) ≥ A.

Then letting A tend to C, we obtain the lower bound in (A.9).

We now define γ, first appearing in Section 5.1. Our function γ depends on certain quantities
listed in the following lemma. It depends also on the quantity ζ, which we will take as that defined
in (3). It is only through its dependence on ζ that γ is affected by the geometry of Vm.

Lemma A.9. Consider a distribution F on the real line, possibly discrete but not a point mass,
with finite mean µ and finite moment generating function at some positive θ > 0, and let Λ∗ denote
its rate function. Let ν ≤ µ, and fix β, ζ ∈ [0,∞).

1. Assume ζ ̸= 0. If 0 < β < 1/ζ, or β = 0 and F ∈ AEP(b, C) for some b ≥ 2 and C > 0,
there is a unique solution γ = γ(F, ν, ζ, β) to the following equation

inf
β<s<1/ζ

[
sΛ∗

(
ν +

√
γ/s
)
+ sζ

]
= 1.

2. Assume ζ = 0. The above holds so long as ν = µ (and with 1/ζ interpreted as ∞).

Proof. Let M = sup{x : Λ∗(x) < ∞}. Since F is not a point mass, µ < M ≤ ∞. Define

G(s, γ) = sΛ∗
(
ν +

√
γ/s
)
+ sζ.

Note that G(s, γ) is finite (resp. infinite) if γ/s < (M − ν)2 (resp. γ/s > (M − ν)2). Also, G(s, γ)
and its derivatives are continuous wherever G is finite, and hence are uniformly continuous on any
compact subset of [0,∞)2 on which G is finite. Furthermore, G(s, γ) is strictly increasing in γ on
the interval (0, s(M − ν)2). Let

Lβ(γ) = inf
β<s<1/ζ

G(s, γ). (A.11)

Thus Lβ(γ) is finite if γζ < (M − ν)2, and infinite when < is replaced by >. Furthermore,
for γ < (M − ν)2/ζ, the infimum is achieved at some value sγ of s in a neighborhood of which
G(s, γ) < ∞.

Assume first that β > 0. It may be seen as follows that Lβ(γ) is continuous and strictly
increasing in γ on the interval [0, (M − ν)2/ζ). Let 0 ≤ γ < γ′ < (M − ν)2/ζ. Then

0 ≤ Lβ(γ
′)− Lβ(γ) ≤ G(sγ , γ

′)−G(sγ , γ), (A.12)

and continuity follows from the properties of G noted above. Similarly,

Lβ(γ
′)− Lβ(γ) ≥ G(sγ′ , γ′)−G(sγ′ , γ). (A.13)

and strict monotonicity follows similarly.
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It suffices to prove that Lβ(γ) takes values smaller than 1 and finite values larger than 1. The
first claim follows from the fact that, with γ = β(µ− ν)2,

Lβ(γ) ≤ G(β, γ) = βζ < 1.

We turn to the second claim, and shall make use of two general properties of rate functions
which follow from (Dembo and Zeitouni, 2010, Eq. (2.2.10), Lem. 2.2.20). It is standard that
Λ∗(µ+ x) ∼ 1

2(x/σ)
2 as x ↓ 0, where σ2 > 0 is the variance of F . Therefore,

∃T ∈ (0,M) such that Λ∗(µ+ x) ≥ 1
4(x/σ)

2 when 0 ≤ x ≤ T. (A.14)

With T chosen thus, by convexity,

∃A > 0 such that Λ∗(µ+ x) ≥ Ax when x ≥ T. (A.15)

Assume first that ζ > 0 and M = ∞. By (A.15), for sufficiently large γ,

∞ > Lβ(γ) ≥ inf
β<s<1/ζ

[
sA(ν − µ+

√
γ/s) + sζ

]
≥ A

(
β(ν − µ) +

√
γβ
)
> 1.

Suppose next that ζ > 0 and M < ∞. Let 0 < γ < (M − ν)2/ζ. Since Λ∗(ν +
√

γ/s) = ∞ if
s < γ/(M − ν)2 =: β0(γ),

∞ > Lβ(γ) ≥ β0 inf
β0<s<1/ζ

Λ∗(ν +
√

γ/s) + β0ζ

= β0Λ
∗(ν +

√
γζ) + β0ζ. (A.16)

The limit of this, as γ ↑ (M − ν)2/ζ, is strictly greater than 1.
Now let ζ = 0 and ν = µ, and note that Lβ(γ) < ∞ for all γ ≥ 0. Suppose M ≤ ∞ and γ > 0.

By dividing the infimum in (A.11) according to whether or not
√

γ/s < T , we find that

∞ > Lβ(γ) ≥ min

{
inf

β<s<γ/T 2
sΛ∗(µ+

√
γ/s), inf

s>γ/T 2
sΛ∗(µ+

√
γ/s)

}
≥ min

{
A
√

γβ, 14γ/σ
2
}
,

by (A.14)–(A.15). This diverges as γ → ∞.
When β = 0, some of the arguments fail as G(s, γ) may not be continuous at (0, 0). Assume

that F ∈ AEP(b, C) for some b ≥ 2 and C > 0. Note that M = ∞ by Lemma A.8. If b = 2,
G(s, γ) → Cγ when γ > 0 is fixed and s → 0, by Lemma A.8, and taking this limit as an extension
at s = 0, the same arguments used in the case β > 0 apply. If b > 2, we need slightly different
arguments. As before, let sγ be a minimizer of G(s, γ). We have that sγ is well-defined for all
γ and strictly positive, since G is uniformly continuous on any compact of (0, 1/ζ] × [0,∞) and
G(s, γ) ∼ Cγb/2 s1−b/2 → ∞ when s → 0. Hence, we may proceed as before in (A.13)-(A.12),
obtaining that L0(γ) is strictly increasing and continuous. As before, we turn to proving that L0

takes values below 1 and finite values above 1. First, with γ = (µ− ν)2/(2ζ) and s = 1/(2ζ),

L0(γ) ≤ G(s, γ) = γζ/(µ− ν)2 = 1/2 < 1.

Next, showing that L0 takes finite values above 1 is done exactly as before, except that (A.14) is
replaced by

G(s, γ) ∼ Cs1−b/2γb/2 ≥ Cζb/2−1γb/2, γ → ∞.

by Lemma A.8.
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The following result describes the variations of γ (defined in Lemma A.9) with the parameter
of an exponential family.

Lemma A.10. Consider a natural exponential family of distributions (Fθ, θ ≥ 0) and let µθ and
Λ∗
θ denote the mean and the rate function of Fθ, respectively. Let ζθ be a continuous and decreasing

function of θ. Then, for any fixed 0 < β < 1/ζ0, γθ := γ(Fθ, µ0, ζθ, β) is continuous and strictly
increasing in θ. Moreover, if ζθ → 0 when θ → θc, then γθ → ∞ when θ → θc.

Proof. First, note that µθ ≥ µ0 (Brown, 1986, Cor. 2.22) so that γθ is well-defined. That γθ is
strictly increasing comes from the fact that both ζθ and Λ∗

θ(a) (a > µθ fixed) are decreasing. The
latter can be seen from

Λ∗
θ(a) = − lim

k→∞

1

k
logPθ(X̄k ≥ a),

where X̄k is the average of the sample of size k from Fθ, (Brown, 1986, Cor. 2.22) and the fact that
the distribution of X̄k as θ varies forms a natural exponential family with parameter kθ. That γθ
is continuous comes from the continuity of ζθ and Λ∗

θ(a) (in (θ, a)).
For the behavior near θc, notice that Λ∗

θ(a) = 0 for a ≤ µθ, so that G(1/(2ζθ), γ) = 1/2 for any
γ ≤ (µθ −µ0)

2/(2ζθ). Then combine this with the fact that µθ is strictly increasing in θ to see that
γθ is of order at least 1/ζθ. In fact, it is easy to see that γθ ∼ (µθ − µ0)

2/ζθ when θ ↗ θc.

A.3 Main proofs

A.3.1 Proof of Theorem 1

By monotonicity, it is enough to assume that θm = θ for all m. Fix t and, for short, let p = p0(t)
and p′ = pθ(t). First, assume that θ > θ∗, so that ζp′ < αζp. Fix B such that 1/ζp < B < α/ζp′

and consider the test with rejection region {Sm(t) ≥ dB logm}. Under Hm
0 , we have Sm(t) =

(1 + oP(1))(d/ζp) logm by (4), so that P (Sm(t) ≥ dB logm) → 0. Under Hm
1,K , Sm(t) ≥ SK(t) =

(1 + oP(1))(αd/ζp′) logm, so that P (Sm(t) ≥ dB logm) → 1. Hence, this test is asymptotically
powerful.

Now assume that θ < θ∗, so that ζp′ > αζp and there is B such that α/ζp′ < B < 1/ζp. Let
Kc = Vm\K. It is enough to show that, under both Hm

0 and Hm
1,K , Sm(t) = SKc(t) with probability

tending to one, so that the values at the nodes in K have no influence on Sm(t). Indeed, let J be a
hypercube within Vm of sidelength [m/3] which does not intersect K. Then SKc(t) ≥ SJ(t) and the
distribution of SJ(t) is the same, both under Hm

0 and Hm
1,K . In addition, P (SJ(t) ≥ dB logm) → 1

by (4). Now, let L be the set of nodes within (supnorm) distance (logm)2 from K, so that L
is a hypercube of sidelength [mα] + [2(logm)2] containing K in its interior. Under the event
{Sm(t) ≤ (logm)2}, Sm(t) ̸= SKc(t) only when SL(t) > SKc(t). The distribution of SL(t) under
the null is stochastically bounded by its distribution under Hm

1,K , which is itself bounded by its
distribution under Hm

1,L. Even under the latter, P (SL(t) ≥ dB logm) → 0 by (4). We then conclude

using the fact that P
(
Sm(t) ≤ (logm)2

)
→ 1, again by (4).

A.3.2 Proof of Theorem 2

We use the notation and follow the arguments of Section A.3.1. In addition, let ζ1p′ = log(1/p′), i.e.,

the function ζ in dimension one. When θ > θ+∗ , we consider 1/ζp < B < α/dζ1p′ . Under Hm
0 , we

still have Sm(t) = (1 + oP(1))(d/ζp) logm. Under Hm
1,K , Sm(t) ≥ SK(t) = (1 + oP(1))(α/ζp′) logm,

since K is isomorphic to a subinterval of the one-dimensional lattice. We conclude as before that
the test with rejection region {Sm(t) ≥ dB logm} is asymptotically powerful.
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When θ < θ−∗ , we consider α/dζp′ < B < 1/ζp. As before, let L be the set of nodes within
(supnorm) distance (logm)2 from K, so that L is now a band. As before, it suffices to prove that
P (SL(t) ≥ dB logm) → 0 under Hm

1,L. Though (4) cannot be applied as L is not isomorphic to a
square lattice, its proof via the union bound and (3) applies. Indeed, fix η > 0 small enough that
(1− η)ζp′dB > α. Then, for m large enough, we have

P (SL(t) ≥ dB logm) ≤ |L| · P (S ≥ dB logm)

≤ O(mα(logm)2(d−1)) exp(−(1− η)ζp′dB logm)

= O(logm)2(d−1) exp((α− (1− η)ζp′dB) logm) → 0.

A.3.3 Proof of Proposition 1

Let km(ε) = (1 − ε)d log(m)/ log(1/p0(tm)) with ε > 0 fixed. We first show that Sm(tm) ≥ km(ε)
with probability tending to one under Hm

0 . We use the notation and arguments provided in the
proof of Lemma A.2. As in (A.4),

P (Sm(tm) < km(ε)) ≤ (1− P (S ≥ km(ε)))N

≤
(
1− p0(tm)km(ε)

)N
≤ exp

(
−mεd/(logm)2d

)
→ 0,

where the second inequality holds for m large enough by Lemma A.3.
Assume that θm ≤ θ < ∞ for all m. Proceeding as in Section A.3.1 and using the slightly

larger region L, it is enough to show that, for ε small enough, SL(tm) ≤ km(ε) when Xv ∼ Fθ for
all v ∈ L. Using the union bound and the fact that |L| = O(m)αd, we have

P (SL(tm) ≥ km(ε)) ≤ |L| · P (S ≥ km(ε)) ≤ O(m)αd(cpθ(tm))km(ε), (A.17)

where the last inequality is due to Lemma A.3 (and c is the constant that appears there). By
integration by parts, for θ > 0 and ε ∈ (0, 1) fixed, we have pθ(t) ≤ p0((1−ε)t) for sufficiently large
t. Indeed, for t large enough,

pθ(t) = exp(θt− Λ(θ))p0(t) +

∫ ∞

t
θ exp(θx− Λ(θ))p0(x)dx

≤ exp(θt− Λ(θ)− C(1− ε/3)btb) +

∫ ∞

t
θ exp(θx− Λ(θ)− C(1− ε/3)bxb)dx

≤ exp(−C(1− ε/2)btb)

≤ p0((1− ε)t),

where we used the fact that b > 1 in line 3 and the fact that log p0(t) ∼ −Ctb as t → ∞ (since

F0 ∈ AEP(b, C)) in lines 2 and 4. The last property implies also that p0((1 − ε)t) ≤ p0(t)
(1−ε)b+1

for large t. Hence, for m large enough, pθ(tm) ≤ p0(tm)(1−ε)b+1
, so that taking logs in (A.17), we

get

logP (SL(tm) ≥ km(ε)) ≤ O(1) + (d logm)
(
α+O(log p0(tm))−1 − (1− ε)b+2

)
→ −∞,

when ε < 1 − α1/(b+2). (Remember that α < 1 and that p0(tm) → 0 so that the middle term is
small.)
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A.3.4 Proof of Theorem 3

Let Eθ denote the expectation of Xv under Fθ. By Lemma A.5, under the null,

Sm(t)− E0(Sm(t))√
Var0(Sm(t))

→ N (0, 1), (A.18)

with Var0(Sm(t)) of order md. Write p := p0(t) and p′ := pθm(t).
We consider the alternative with anomalous cluster K as a two-stage percolation process, where

the first stage is percolation on Vm with probability p, as under the null, and the second stage is
percolation on the closed nodes within K, i.e., K \ {v : Xv > t}, with (conditional) probability
(p′ − p)/(1− p). An open cluster at the first stage is called small if it is not a largest open cluster.

We may assume, except where noted below, that θm → 0. Since

∂

∂θ
log pθ(t) = Eθ(Xv|Xv > t)− Eθ(Xv),

which is positive at θ = 0 by choice of t, there exists c ∈ (0,∞) such that

p′ − p ∼ cθm as m → ∞. (A.19)

Let ∆m ≥ 0 be the difference between the sizes of the largest clusters under the null and
alternative. For x ∈ K, let Fx be the sum of the sizes of all small clusters of the entire lattice that
contain some neighbor of x. Note that ∆m ≤

∑
x∈D(1 + Fx) where D is the set of x ∈ K that are

closed at the first stage and open at the second. Therefore, ∆m has expectation bounded above by

E(∆m) ≤
(
p′ − p

1− p

)
|K|(1 + 2dµp), (A.20)

where µp < ∞ is the mean size of a finite open cluster in the infinite lattice.
By (A.19) and the above, E(∆m) ≤ Cθmmαd for some C < ∞. By Markov’s inequality,

∆m = OP(θmmαd).
Thus, if θmm(α−1/2)d → 0, then ∆m/

√
Var0(Sm(t)) → 0, implying that the same central limit

law as (A.18) holds under the alternative, so that the test based on the largest open cluster is
asymptotically powerless. We must also consider the case when θm ̸→ 0, for which a similar
argument is valid.

Now assume that α ≥ 1/2 and θmm(α−1/2)d → ∞. By (Grimmett, 1999, Thm 8.99) and
standard properties of the largest cluster in a box (to be found in, for example, (Falconer and
Grimmett, 1992)), with probability tending to one the largest open cluster increases in size by at
least C1(p

′ − p)|K| for some C1 = C1(p) > 0. By (A.19), this has order θmmαd. Since

θmmαd√
Var0(Sm(t))

∼ C2θmm(α−1/2)d → ∞

for some C2 = C2(p) > 0, the test based on the largest open cluster is asymptotically powerful.

A.3.5 Proof of Theorem 4

We may assume without loss of generality that θm → 0 as m → ∞. By (5) and the assumption on
tm, we have that Sm(tm) ≍P logm under the null. Now pθ(t) is infinitely differentiable in θ, with
each derivative continuous in t, and with

∂pθ(t)

∂θ

∣∣∣∣
θ=0

= p0(t) [E0(Xv|Xv > t)− E0(Xv)] ≥
pc
2
[E0(Xv|Xv > tc)− E0(Xv)] > 0,
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uniformly for t in a neighborhood of tc. Therefore, there exists C > 0 such that

∂pθ(t)

∂θ
≥ 1/C, and

∣∣∣∣∂2pθ(t)

∂θ2

∣∣∣∣ ≤ C,

for (θ, t) in some neighborhood of (0, tc). Hence,

pθ(t)− p0(t) ≥ θ/C − C2θ2/2 ≥ θ/(2C),

on such a neighborhood. Let A and B be such that pc − p0(tm) ≤ Am−α/ν′ and θm ≥ Bm−α/ν′ ,
and assume that B > 2AC, which we may by the statement of the theorem. Since θm → 0 and
tm → tc,

mα/ν′′(pθm(tm)− pc) ≥ mα/ν′′
[
θm
2C

+ (p0(tm)− pc)

]
≥
[
B

2C
−A

]
mα(1/ν′′−1/ν′) → ∞,

for ν ′′ < ν ′ and sufficiently largem. By (5) applied toK ∈ Km, it follows that SK(tm) ≍P mαd under
the alternative. Consequently, the test with rejection region {Sm(tm) ≥ (logm)2} is asymptotically
powerful.

A.3.6 Proof of Lemma 5

Part 1. This follows immediately from Lemma A.2.
We therefore focus on the remaining two parts. We use the abbreviated notation F := Fθ|t,

Λ∗ := Λ∗
θ|t, µ := µθ|t, ζ := ζpθ(t), γ := γθ|t(β), Um := Um(t, km), and we write ν := µ0|t. Let

Yk = Xk − ν. As in Lemma A.4, let Nm(k) denote the number of open cluster of size k within Vm,
and define

Gk(x) = P
(
k1/2Ȳk ≤ x

)
,

where Ȳk = X̄k − ν and X̄k is the average of an i.i.d. sample of size k from F . By the independence

of ȲK and ȲL for K,L ∈ Q(t)
m distinct, we have

P (Um ≤ x) = E

 ∏
k≥km

Gk(x)
Nm(k)

 = E (exp[−Rm(x)]) ,

where
Rm(x) := −

∑
k≥km

Nm(k) log(1− Ḡk(x)).

We turn, therefore, to bounding Rm(x).
Part 2. Define xm =

√
γd logm and fix ε > 0. For the lower bound, let ℓm be the closest

integer to ad logm between km and (d/ζ) logm, where

a = argmin
β<s<1/ζ

[
sΛ∗

(
ν +

√
γ/s
)
+ sζ

]
. (A.21)

We have
Rm((1− ε)xm) ≥ Tm := Nm(ℓm)Ḡℓm((1− ε)xm),

and we shall show that, for ε fixed, Tm → ∞ in probability. Fix η > 0. On the one hand, we use
Lemma A.4 and (3), to get

E (Nm(ℓm)) ≥ (m− 2ℓm)d

ℓm
P (S = ℓm) ≥ md exp(−(1 + η)ζℓm),
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for m large enough. On the other hand, we use Cramér’s Theorem (Dembo and Zeitouni, 2010,
Thm 2.2.3) to get

Ḡℓm((1− ε)xm) ≥ P
(
Ȳℓm ≥ (1− ε/2)

√
γ/a

)
≥ exp

(
−(1 + η)ℓmΛ∗

[
ν + (1− ε/2)

√
γ/a

])
,

for m large enough. By the definition of γ, aΛ∗
[
ν +

√
γ/a

]
+ aζ = 1, and hence, for ε small

enough,

aζ + aΛ∗
[
ν + (1− ε/2)

√
γ/a

]
< 1,

by strict monotonicity, as in the proof of Lemma A.9. Hence, for η small enough,

ℓmζ + ℓmΛ∗
[
ν + (1− ε/2)

√
γ/a

]
≤ (1− η)d logm.

It follows that

E (Tm) ≥ mη2d.

To bound the corresponding variance, we use Lemma A.4 to obtain

Var (Tm) ≤ O(logm)d E (Tm) ,

and it follows by Chebyshev’s Inequality that, indeed, Tm → ∞ in probability.

Since Tm ≥ 0, exp(−Tm) → 0 in L1, and therefore

P (Um ≤ (1− ε)xm) → 0.

We show next that E (Rm((1 + ε)xm)) → 0, and this will imply the claim of Part 2. Fix η > 0.
We have that

Rm((1 + ε)xm) ≤ Tm + 2Zm, (A.22)

where

Tm := 2

k
(η)
m∑

k=km

Nm(k)Ḡk((1 + ε)xm)

and Zm is the number of clusters of size exceeding k
(η)
m := [(1 + η)(d/ζ) logm]. We note first that,

as in the proof of Lemma A.4, for large m,

E (Zm) ≤ md exp(−1
2ζk

(η)
m ) → 0. (A.23)

We turn next to Tm, and shall show that, for ε fixed and η small enough, E (Tm) → 0. On the
one hand, we use Lemma A.4 and (3), to get

E (Nm(k)) ≤ md exp(−(1− η)ζk),

for m large enough. On the other hand, by Chernoff’s Bound,

Ḡk((1 + ε)xm) ≤ exp
(
−kΛ∗

[
ν + (1 + ε)xm/

√
k
])

.
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Together, we obtain

E (Tm) ≤ 2

k
(η)
m∑

k=km

md exp
(
−(1− η)

[
kζ + kΛ∗

(
ν + (1 + ε)xm/

√
k
)])

≤ O(logm) exp

(
d logm− (1− η) min

km≤k≤k
(η)
m

[
kζ + kΛ∗

(
ν + (1 + ε)xm/

√
k
)])

≤ O(logm) exp ((1− (1− η)A)d logm) ,

where
A := inf

β<a<(1+η)/ζ

[
aΛ∗

(
ν + (1 + ε)

√
γ/a

)
+ aζ

]
. (A.24)

As in the proof of Lemma A.9, A = A(ε, η) is continuous in (ε, η) and strictly increasing in ε. Since
A(0, 0) = 1 by definition of γ, for ε fixed, −h := 1− (1− η)A(ε, η) < 0 for η small enough, in which
case E (Tm) ≤ m−hd/2 → 0 as m increases.

By (A.22)–(A.23), we have that E (Rm((1 + ε)xm))) → 0. By Jensen’s inequality,

P (Um ≤ (1 + ε)xm) ≥ exp(−E (Rm((1 + ε)xm))) → 1,

and the proof of this part is complete.
Part 3. We build on the arguments provided so far, which apply essentially unchanged, except

in two places. In the lower bound, instead of Cramér’s Theorem, we use

Ḡk(x) ≥ F̄ (x/
√
k)k,

combined with the asymptotic behavior for F̄ . And in the upper bound, the evaluation of A defined
in (A.24) is done differently when b < 2.

Part 3(a). When b > 2, we have a > 0 in (A.21) (with β = 0), since

h(s) := sΛ∗
(
ν +

√
γ/s
)
+ sζ ≍ s1−b/2 → ∞,

for γ fixed and s → 0, by Lemma A.8. When b = 2, we take a small enough if the minimum is at
a = 0. Then the other arguments in Part 2 apply unchanged.

Part 3(b). By the same calculations, a = 0 in (A.21), since h(s) > 0 for all s > 0, and
h(s) ≍ s1−b/2 → 0 when s → 0, because b < 2. This would make A = 0 in (A.24) for any ε > 0,

making the arguments for the upper bound collapse. Instead, redefine xm = (Cd logm)1/bk
1/2−1/b
m .

Since xm/
√
k → ∞ uniformly over k ≤ k

(η)
m , for η > 0 fixed, we have

kζ + kΛ∗
(
ν + (1 + ε)xm/

√
k
)
≥ kζ + (1− η)Ck1−b/2(1 + ε)bxbm,

for m large enough, by Lemma A.8. Then the term on the right-hand side takes its minimum over

km ≤ k ≤ k
(η)
m at k = km, and from here, the remaining arguments apply.

A.3.7 Proof of Proposition 2

Assume, for simplicity, that θm = θ < θc for all m. The key point is that Fθ|t ∈ AEP(b, C). Indeed,
we have F̄θ|t(x) = F̄θ(x)/F̄θ(t), where the denominator is constant in x, and, integrating by parts,

F̄θ(x) = exp(θx− Λ(θ))F̄0(x) +

∫ ∞

x
θ exp(θy − Λ(θ))F̄0(y)dy.

29



From here, we reason as in the proof of Proposition 1, using the fact that log F̄0(y) ∼ −Cyb when
y → ∞, with b > 1. Hence, Fθ|t and F0|t have same (first-order) asymptotics, so there is nothing
distinguishing the asymptotic behavior of Um under the null and under an alternative. In detail,
we proceed as in Section A.3.1, with the enlarged hypercube L, and show that, in probability under
Hm

1,L,

lim sup
m→∞

k1/b−1/2
m (logm)−1/bUL < (d/C)1/b,

where UL is the ULS scan statistic restricted to open clusters within L. Since L is a scaled version
of Vm, Fθ|t ∈ AEP(b, C) and pθ(t) < pc, Lemma 5 applies to yield

k1/b−1/2
m (α logm)−1/bUL → (d/C)1/b.

We then conclude with the fact that α < 1.

A.3.8 Proof of Theorem 5 and Theorem 6

The proof of Theorem 5 is parallel to that of Theorem 1 in Section A.3.1, here using Lemma 5 in
place of Lemma A.2. Note that we use the fact that, for t and β > 0 fixed, γθ|t(β) is continuous
and strictly increasing in θ. This comes from Lemma A.10 and the fact that, when t is fixed, Fθ|t
is also a natural exponential family with parameter θ. Similarly, the proof of Theorem 6 is parallel
to that of Theorem 2 in Section A.3.2. Further details are omitted.

A.3.9 Proof of Lemma 6

The proof is parallel to that of Lemma 5. In particular, we use the notation introduced there and
only sketch where the arguments differ (though never substantially).

Part 1. In this case, by Lemma A.5 and Lemma A.6, there is only one open cluster with size
km or larger, and the result follows from, e.g., Chebyshev’s inequality.

Part 2. Define xm =
√

2σ2d(1− δβ′) logm and fix ε > 0. For the lower bound, we have

Rm((1− ε)xm) ≥ Tm := Nm(km)Ḡkm((1− ε)xm),

Fix η > 0. By Lemma A.4 (still valid) and (8),

E (Nm(km)) ≥ md exp(−(1 + η)δk(d−1)/d
m ),

for m large enough. And by Cramér’s Theorem and the fact that Λ∗(x) ∼ x2/(2σ2) when x is
small,

Ḡkm((1− ε)xm) ≥ exp
(
−(1 + η)kmΛ∗

[
(1− ε)xm/

√
km

])
≥ exp

(
−(1 + η)(1− ε/2)x2m/(2σ2)

)
,

for m large enough. Hence,

E (Tm) ≥ exp
(
d logm− (1 + η)(δk(d−1)/d

m + (1− ε/2)x2m/(2σ2))
)
≥ mεd(1−δβ′)/4,

for m large enough and η small enough. For the variance, we use Lemma A.4 to get

Var (Tm) ≤ O(logm)d
2/(d−1) E (Tm)
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We then conclude by Chebyshev’s Inequality.

We now show that Rm((1 + ε)xm) → 0 in probability. Equation (A.22) holds with k
(η)
m :=

[(1 + η)(d/δ) logm]d/(d−1). As before,

E (Zm) ≤ md exp
{
−1

2δ(k
(η)
m )(d−1)/d

}
→ 0 as m → ∞.

By Lemma A.4 and (8),
E (Nm(k)) ≤ md exp(−(1− η)δk(d−1)/d),

for m large enough. (The absence of a boundary to Vm is being used here. The tail behavior of
percolation clusters near the boundary of a box is not yet fully understood. See the remark in
Section 5.2.) And by Chernoff’s Bound and the behavior of Λ∗ near the origin,

Ḡk((1 + ε)xm) ≤ exp
(
−(1 + ε)x2m/(2σ2)

)
,

for any k ≥ km. Thus,

E (Tm) ≤ 2

k
(η)
m∑

k=km

md exp
(
−(1− η)δk(d−1)/d − (1 + ε)x2m/(2σ2)

)
≤ O(logm)d/(d−1)m−εd(1−δβ′)/4,

for m large enough and η small enough.
Part 3. This part is even more similar to what we did in the proof of Lemma 5. The behavior

of Um is driven by the open clusters of size of order logm and the only difference is that the term
in k(d−1)/d from the bounds on Nm(k) is negligible. Details are omitted.

A.3.10 Proof of Theorem 7

Without loss of generality, we assume θm is bounded. By Lemma 6 and our assumptions on km,
under the null, Um := Um(t, km) ∼P A(logm)1/2, for a finite constant A > 0. We now consider the
alternative where the anomalous cluster is K.

The contribution of the largest open cluster Qm is√
|Qm|(X̄Qm − µ0|t) =

|Qm ∩K|√
|Qm|

(X̄Qm∩K − µθm|t) +
|Qm ∩Kc|√

|Qm|
(X̄Qm∩Kc − µ0|t)

+
|Qm ∩K|√

|Qm|
(µθm|t − µ0|t).

On the right-hand side, the first term is of order oP(1) and the second term is of order OP(1),
by Chebyshev’s inequality and the fact that, with probability tending to one, |Qm ∩ K| ≍ |K|
and |Qm| ≍ |Vm|, by Lemma A.5. The last term is of (exact) order O(θmm(α−1/2)d), by the fact
that µθ|t is differentiable at θ = 0 with derivative equal to σ2

0|t > 0. Therefore, the ULS scan

test is asymptotically powerful when lim inf θmm(α−1/2)d(logm)−1/2 is large enough. (Note that
this requires α > 1/2.) If instead, lim sup θmm(α−1/2)d(logm)−1/2 → 0, the scan over Qm may be
ignored and we need to consider smaller clusters.

By Lemma A.6 and the upper bound on km, the second largest cluster entirely within K is
scanned and its contribution is of order O(θm(logm)d/(2d−2)), by the same arguments that estab-
lished the contribution of the largest open cluster. Hence, the ULS scan test is asymptotically
powerful when lim inf θm(logm)d/(2d−2)−1/2 is large enough. If instead, θm(logm)d/(2d−2)−1/2 → 0,
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the test is asymptotically powerless. Indeed, let L be the set of nodes within distance (logm)3 from
K and let UL be the result of scanning the open clusters of size at least km and entirely within
L. As argued in the proof of Proposition 2, this time using Lemma A.6, it is enough to show that
UL ≤ A(logm)1/2 with probability tending to one under Hm

1,L. For any open cluster Q entirely
within L, √

|Q|(X̄Q − µ0|t) =
√

|Q|(X̄Q − µθm|t) +
√

|Q|(µθm|t − µ0|t),

so that
UL ≤ max

Q

√
|Q|(X̄Q − µθm|t) + oP(1),

where the maximum is over open clusters of size at least km and entirely within L, and the second
term is oP(1) by Lemma A.6 and the size of θm. Though θm → 0 varies, this maximum may be
handled exactly as in Lemma 6, so that it is ∼P A(α logm)1/2 and we conclude.

A.3.11 Proof of Lemma 7

We only prove the more refined part. We use abbreviated notation as before, in particular, we
omit the subscript 0, using Ft = F0|t, σt = σ0|t, etc. The lower bound is obtained via ULSm ≥
Um(t∗)/σt∗ , where t∗ defines Γ(β), and applying Lemmas 5 or 6 to Um(t∗) depending on whether
t∗ > tc or t∗ < tc. For simplicity, we assume that t∗ ̸= tc. If t∗ = tc, then we consider a nearby
threshold and argue by continuity. For the upper bound, we prove that P (ULSm ≥ xm) → 0, where
xm :=

√
g logm and g > G := (dΓ(β))1/2.

As t increases, clusters are created and then destroyed in the coupled percolation processes.
Suppose the removal at time t from the percolation process of vertex v creates some cluster Qt(w)
at some neighbor w of v. If ULSm ≥ xm, there must exist a vertex v and a neighbor w such that
the cluster formed at w at time Xv contributes at some future time t′ > Xv an amount at least xm
to ULSm. By conditioning on v, Xv, and w, one obtains that

P (ULSm ≥ xm) ≤ o(1) +

∫ tβ

−∞
P

( ∪
v∈Vm

∪
w∈∂v

Ωt(w)

)
dF (t), (A.25)

where the o(1) term covers the probability that the cluster at time −∞, namely Vm, determines
ULSm, or that a cluster at threshold t > tβ is of size at least km := β logm; ∂v is the neighbor set
of v; and Ωt(w) is the event that:

1. k := |Qt(w)| satisfies k ≥ β logm,

2. there exists a time t′ ≥ t such that Qt(w) still exists at time t′, and

3. Yt(k)− E (Yt′(k)) ≥ xmσt′
√
k, where Yt(k) is the sum of a k-sample from Ft.

Assume (briefly) that σt is non-decreasing, and note that µt is automatically non-decreasing.
Then as in the proofs of Lemmas 5 and 6, and using similar notation,∑

v∈Vm

∑
w∈∂v

P (Ωt(w)) ≤
∑
v∈Vm

∑
w∈∂v

P
(
k := |Qt(w)| ≥ β logm, Yt(k)− E (Yt(k)) ≥ xσt

√
k
)

≤ 2d E(Rt(xm)), Rt(x) :=
∑
k≥km

Nt(k)Ḡt(k, x),

where Nt(k) is the number of t-open clusters of size k and

Ḡt(k, x) = P
(
Yt(k)− E (Yt(k)) ≥ xσt

√
k
)
.
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Therefore, by (A.25),

P (ULSm ≥ xm) ≤ o(1) + 2d

(∫ tc−h

−∞
+

∫ tβ

tc+h
E(Rt(xm)) dF (t)

)
+ F (tc + h)− F (tc − h), (A.26)

for any h > 0. We bound E(Rt(xm)) as we did in the proofs of Lemmas 5 and 6. Explicitly, when
tc + h ≤ t ≤ tβ, we use Lemma A.4 and (A.1), to get

E(Nt(k)) ≤ (1− p(t))2
ke−kζp(t)

(1− e−ζp(t))2

≤ C(h, β) k exp(−kζp(tc+h)), C(h, β) :=
(1− p(tβ))

2

(1− e−ζp(tc+h))2
.

We use Chernoff’s Bound on Ḡt(k, x), to obtain

E(Rt(xm)) ≤ C(h, β)(khm,t)
2 exp ((1−At)d logm) + exp(−hd log(m)/2),

where khm,t := (1 + h)(d/ζp(t)) logm,

At := inf
β<s<(1+h)/ζp(t)

[
sΛ∗

t

(
µ+

√
g/s
)
+ sζp(t)

]
,

as in (A.24), and the last term is the probability that a there is a t-open of size exceeding khm,t.
Note that At > 1 for all tc+h ≤ t ≤ tβ because g > G. By continuity of At, A+ := inf{At : tc+h ≤
t ≤ tβ} > 0. Hence, we have the following bound for all tc + h ≤ t ≤ tβ,

E(Rt(xm)) ≤ C(h, β)[(1 + h)(d/ζp(tc+h)) logm]2m−(A+−1)d + exp(−hd log(m)/2).

When t ≤ tc − h, we simply use the fact that∑
k

E(Nt(k)) ≤ |Vm| = md,

and bound Ḡt(k, x) in the same way. We get

E(Rt(xm)) ≤ exp ((1−At)d logm) ,

where
At := inf

β<s
sΛ∗

t

(
µ+

√
g/s
)
.

Again, At > 1 for t < tc − h and At → A−∞ > 1 as t → −∞. Hence, by continuity of At,
A− := inf{At : t < tc − h} > 0, so that

E(Rt(xm)) ≤ m−(A−−1)d,

valid for all t < tc − h. Hence, the two integrals in (A.26) tend to zero with m. We then let h → 0
so that F (tc + h)− F (tc − h) → 0, since F is continuous at tc.

Assume now that F has no atoms on (−∞, tβ]. Then σt is continuous on (−∞, tβ], and in fact,
is uniformly continuous since σt → σ when t → −∞. Since it is positive on that interval (because
σt = 0 implies that Ft is a point mass), σ := min{σt : t ≤ tβ} > 0. Since g > G we can find c > 0
such that g′ := g(1− c)2 > G, and also η > 0 such that

|σs − σt| ≤ cσ, if |s− t| ≤ η, s, t ≤ tβ. (A.27)
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Let x′m =
√
g′ logm. We say that a cluster Q scores at time s if it exists at time s and in addition

|Q| ≥ β logm,
∑
v∈Q

Xv ≥ |Q|µs + xmσs
√

|Q|.

Without loss of generality, assume that tc is not an integer multiple of η. Fix two neighbors
v, w ∈ Vm, and a time t ≤ tβ. If Ωt(w) occurs then either:

(a) Qt(w) scores at some time s ∈ [t, ntη], where nt ∈ Z satisfies (nt − 1)η ≤ t < ntη, or

(b) there exists n ≥ nt and s ∈ [nη, (n+ 1)η) such that Qnη(w) scores at time s.

The latter possibility arises when Qt(w) scores at some time s not belonging to the interval [t, ntη).
Writing [nη, (n + 1)η) for the interval containing s, Qt(w) must exist at the start of this interval,
which is to say that Qt(w) = Qnη(w).

The probability of (a) is no larger than

P
(
k := |Qt(w)| ≥ β logm, ∃s ∈ [t, ntη] : Yt(k)/k ≥ µs + xmσs/

√
k
)
. (A.28)

By (A.27) and the fact that µs is non-decreasing,

µs +
xmσs√

k
≥ µt +

x′mσt√
k

, (A.29)

so that (A.28) is no greater than

P
(
k := |Qt(w)| ≥ β logm, Yt(k)/k ≥ µt + x′mσt/

√
k
)
. (A.30)

Arguing similarly, part (b) has probability no greater than∑
t/η<n<tβ/η

P
(
k := |Qt(w)| ≥ β logm, Ynη(k)/k ≥ µnη + x′mσnη/

√
k
)
. (A.31)

We divide the integral in (A.25) as follows∫ tβ

−∞
=

∫ −1/h

−∞
+

∫ tc−h

−1/h
+

∫ tc+h

tc−h
+

∫ tβ

tc+h
.

The first integral is bounded by F (−1/h) and the third integral by F (tc + h) − F (tc − h), both
terms vanishing as h → 0. For the second and fourth integrals, we do exactly as before, separately
for (A.30) and (A.31)—for the latter, the sum has at most (tβ + 1/h)/η + 1 terms in the second
integral and at most (tβ − tc − h)/η + 1 terms in the fourth integral.

A.3.12 Proof of Theorem 8

By Lemma 7, ULSm(km) is of order at most
√
logm under the null. Now consider the alternative

with anomalous cluster K. If 0 < (α− 1/2)d < α/ν, consider the contribution of the largest open
cluster at supercritical threshold t and reason as in the proof of Theorem 7. Otherwise, consider
the contribution of the largest open cluster at a threshold tm such that pc−p0(tm) ≍ m−λ/α. As in
Theorem 4, the largest open cluster will be comparable in size to, and occupy a substantial portion
of K. Reasoning again as in the proof of Theorem 7, the contribution is of order mαd/2θm ≥
mα/νθm ≥ mα/ν−λ, which grows as a positive power of m.
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B The scan statistic as the generalized likelihood ratio

We show that the simple scan statistic defined in (1) approximates the scan statistic of Kulldorff
(1997), which is strictly speaking the generalized likelihood ratio (GLR), defined as follows. The
log-likelihood under Hm

1,K is given by

loglik(K, θ, θ0) := |K|
(
θX̄K − logφ(θ)

)
+ |Kc|

(
θ0X̄Kc − logφ(θ0)

)
.

Assuming θ and θ0 are both unknown, the log GLR is defined as

max
K∈Km

sup
θ>θ0

loglik(K, θ, θ0)− sup
θ0

loglik(Vm, θ0, θ0),

which is equal to

max
K∈Km

[
|K|Λ∗(X̄K) + |Kc|Λ∗(X̄Kc)− |Vm|Λ∗(X̄Vm)

]
+
. (B.1)

(The subscript + denotes the positive part.)
Under the normal location model, Λ∗(x) = x2/2 and (B.1) is equal to

max
K∈Km

|Vm| |K|
|Vm| − |K|

(X̄K − X̄Vm)
2
+.

(We used the fact that X̄K ≥ X̄Kc ⇔ X̄K ≥ X̄Vm .) If k+m := max{|K| : K ∈ Km} satisfies
k+m/|Vm| → 0, which is the case in our examples, the fraction above is equal to |K|(1+O(k+m/|Vm|)).
Moreover, knowing that there is always a cluster K such that X̄K ≥ X̄Vm , we get that the square
root of (B.1) is approximately equal to

max
K∈Km

√
|K|(X̄K − X̄Vm), (B.2)

which is the version of (1) when µ0 is unknown. (Note that X̄Vm = µ0 + O(|Vm|)−1/2, by the
Central Limit Theorem, so that (B.2) is within O(k+m/|Vm|)1/2 from (1).) This approximation is
actually valid more generally, at least in a way that suffices for the asymptotic analysis we perform
in this paper. Indeed, with σ2

0 = Var0(Xv), we have Λ∗(x) = (x− µ0)
2/(2σ2

0) + O(x− µ0)
3 in the

neighborhood of µ0. Assuming that k−m := min{|K| : K ∈ Km} satisfies k−m → ∞, which is the case
in our examples, the approximation of the square root of (B.1) by (B.2) is valid under the null,
since X̄K = µ0 + O(k−m)−1/2 and X̄Kc , X̄Vm = µ0 + O(|Vm|)−1/2, by the Central Limit Theorem
and the fact that k−m → ∞ and k+m/|Vm| → 0. The same applies under the alternative if θm → 0,
so that µθm := Eθm(Xv) → µ0 and therefore X̄K for any K ∈ Km. When θm is bounded away from
zero, the two statistics, square root of (B.1) and (B.2), are both of order

√
|K|, where K denotes

the cluster under the alternative (or in the case of the ULS scan, the largest open cluster within
the anomalous cluster). All together, this is enough to conclude that the tests respectively based
on (B.1) and (1) behave similarly.
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