
CONFORMAL INVARIANCE,

DROPLETS, AND ENTANGLEMENT

Geoffrey GrimmettAbstract. Very brief surveys are presented of three topics of importance for inter-
acting random systems, namely conformal invariance, droplets, and entanglement. For

ease of description, the emphasis throughout is upon progress and open problems for
the percolation model, rather than for the more general random-cluster model. Sub-

stantial recent progress has been made on each of these topics, as summarised here.

Detailed bibliographies of recent work are included.

1. Introduction

Rather than attempt to summarise the ‘state of the art’ in percolation and disordered
systems, a task for many volumes, we concentrate in this short article on three areas
of recent progress, namely conformal invariance, droplets, and entanglement. In
each case, the target is to stimulate via a brief survey, rather than to present the
details.

Much of the contents of this article may be expressed in terms of the random-
cluster model, but for simplicity we consider here only the special case of percolation,
defined as follows. Let L be a lattice in R

d; that is, L is a connected, locally finite
graph embedded in R

d which is invariant under translation by any basic unit vector.
We write L = (V, E), and we choose a vertex of L which we call the origin, denoted
0. The cubic lattice, denoted Z

d, is the lattice in R
d with integer vertices and with

edges joining pairs of vertices which are Euclidean distance 1 apart.
Let 0 ≤ p ≤ 1. In bond percolation on L, each edge is designated open with prob-

ability p, and closed otherwise, different edges receiving independent designations.
In site percolation, it is the vertices of L rather than its edges which are designated
open or closed. In either case, for A, B ⊆ V , we write A ↔ B if there exists an open
path joining some a ∈ A to some b ∈ B, and we write A ↔ ∞ if there exists an
infinite open path from some vertex in A.

Let Pp denote the appropriate product measure, and let

θ(p) = Pp(0 ↔ ∞)
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be the probability that the origin lies in some infinite open path. The critical prob-
ability of the process is defined by

pc = sup{p : θ(p) = 0}.

Note that the values of θ(p) and pc depend on the choice of L and on the type (bond
or site) of the process; we shall suppress this information whenever it is clear from
the context.

For more information about the mathematics of percolation, see Grimmett (1997,
1999). Periodic reference will be made to a more general model called the random-

cluster model . There is a sense in which the latter model includes percolation, Ising,
and Potts models as special cases; the reader is referred to Grimmett (1995) for a
recent account of random-cluster processes.

The next three sections contain summaries of recent progress on conformal in-
variance, the droplet problem, and the question of entanglement, respectively.

2. Conformal invariance

Consider a random spatial process in R
2, perhaps a percolation process on some

two-dimensional lattice. Let us assume the existence, in an appropriate sense, of the
limit process obtained by a spatial re-scaling of the original process by an increasing
sequence of factors. Under certain assumptions, the law of the limit process is
expected to be invariant under conformal maps of the underlying space R

2.
This remarkable speculation has emerged from conformal field theory, and is

relevant to a variety of random processes including the percolation and Ising models.
For simplicity, we consider here the case of percolation only.

Let L be a lattice in two dimensions, and let pc be its critical probability (we
shall not at this stage be specific whether it is bond or site percolation under con-
sideration). The hypothesis of universality suggests that the chances of long-range
connections should, to some degree, be independent of the choice of L. In particular,
local deformations of space, within limits, are not expected to affect such probabil-
ities. One family of local changes arises by local rotations and dilations, and such
mappings of R

2 constitute the set of conformal maps.
We make this specific in the manner surveyed and pursued by Langlands et al.

(1992, 1994). Take a simple closed curve γ in the plane, and disjoint arcs α, β of γ.
For a dilation factor r ≥ 1, define

πr(γ; α, β) = P (rα ↔ rβ in rγ)

where P = Ppc
and the event in question is the event that there exists an open path

of L whose intersection with the inside of γ contains an open connection between
rα and rβ. (See Figure 2.1.)

The first conjecture is the existence of the limit

(2.1) π(γ; α, β) = lim
r→∞

πr(γ; α, β)

for all triples (γ; α, β). Some convention is needed in order to make sense of (2.1),
arising from the fact that rγ lives in the plane R

2 rather than on the lattice L; this
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Fig. 2.1. An illustration of the event that rα is joined to rβ within rγ, in the case

of bond percolation on Z2.

poses no major problem. Only in very special cases is (2.1) known to hold. For
example, in the case of bond percolation on Z

2, self-duality enables a proof of the
existence of the limit when γ is a square and α, β are opposite sides thereof.

Let φ : R
2 → R

2 be conformal on the inside of γ and bijective on the curve γ
itself. The hypothesis of conformal invariance states that

(2.2) π(γ; α, β) = π(φγ; φα, φβ)

for all such φ. This conjecture concerns only percolation of a specific type (bond
or site) on a specific lattice. More general forms of the conjecture come readily to
hand; see Langlands, Pouliot, and Saint-Aubin (1994). First, it is natural to extend
the conjecture to include the existence (or not) of crossings between more than one
pair of arcs of the curve γ. Secondly, the conjecture may be extended to include a
hypothesis of universality.

Lengthy computer simulations, reported by Langlands, Pouliot, and Saint-Aubin
(1994), support these conjectures. Particularly stimulating evidence is provided by
a formula known as Cardy’s formula. By following a sequence of transformations
of models, and applying ideas of conformal field theory, Cardy (1992) was led to
the following explicit formula for crossing probabilities between two arcs of a simple
closed curve γ.

Let γ be a simple closed curve, and let z1, z2, z3, z4 be four points on γ in clockwise
order. There is a conformal map φ on the inside of γ which maps to the unit disc,
taking γ to its circumference, and the points zi to the points wi. There are many
such maps, but the cross-ratio of such maps,

(2.3) u =
(w4 − w3)(w2 − w1)

(w3 − w1)(w4 − w2)
,

is a constant satisfying 0 ≤ u ≤ 1 (we think of zi and wi as points in the complex
plane). We may parametrise the wi as follows: we may assume that

w1 = eiθ, w2 = e−iθ, w3 = −eiθ , w4 = −e−iθ
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Fig. 2.2. Part of the triangular lattice.

for some θ satisfying 0 ≤ θ ≤ π
2
. Note that u = sin2 θ. We take α to be the segment

of γ from z1 to z2, and β the segment from z3 to z4. Using the hypothesis (2.2) of
conformal invariance, we deduce that π(γ; α, β) may be expressed as some function
f(u), where u is given in (2.3). Cardy (1992) has derived a differential equation for
f , namely

u(1 − u)f ′′(u) + 2

3
(1 − 2u)f ′(u) = 0,

subject to the boundary conditions f(0) = 0, f(1) = 1. The solution is

(2.4) f(u) =
3Γ( 2

3
)

Γ( 1

3
)2

u1/3
2F1(

1

3
, 2

3
, 4

3
; u),

where 2F1 is a hypergeometric function. The derivation is somewhat speculative,
but the predictions of the formula may be verified by Monte Carlo simulation (see
Figure 3.2 of Langlands, Pouliot, and Saint-Aubin (1994)).

The function in (2.4) appears complicated, and calls for an intuitive motivation.
The following concrete conjecture concerning site percolation on the triangular lat-
tice is provocative and partly explains the form of (2.4). Consider site percolation on
the triangular lattice, illustrated in Figure 2.2; the critical probability of the process
is pc = 1

2
(see Grimmett (1999), Section 11.9). Let x satisfy 0 ≤ x ≤ 1. Take γ

to be an equilateral triangle of unit side-length; let α be one side of γ, and β be a
sub-interval of another side, with length x and having the vertex opposite to α as
an endpoint. (See Figure 2.3.) It may be conjectured that

(2.5) π(γ; α, β) = x.

Subject to a suitable generalised form of the hypothesis of conformal invariance,
(2.5) is equivalent to Cardy’s formula. Conjecture (2.5) appears to be due to L.
Carleson and P. Jones. It is supported by numerical simulations of Bain (1999) and
probably others. Formula (2.5) may be justified by the self-matching property when
x = 1

2
.

The above ‘calculations’ are striking. As suggested by Aizenman (1995), similar
calculations may well be possible for more complicated crossing probabilities than
the cases discussed above. For example, Watts (1996) has performed numerical
simulations which give support to a conjecture for the limiting probability that a
large rectangle is crossed from left to right and simultaneously from top to bottom.
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Fig. 2.3. An illustration of the triple (γ;α, β) and of the event relevant to the
probability πr(γ;α, β).

In the above formulation, the principle of conformal invariance is expressed in
terms of a collection {π(γ; α, β)} of limiting ‘crossing probabilities’. It would be
useful to have a representation of these π(γ; α, β) as probabilities associated with
a specific random variable on a specific probability space. Aizenman (1995) has
made certain proposals about how this might be possible. In his formulation, we
observe a bounded region DR = [0, R]2, and we shrink the lattice spacing a of bond
percolation restricted to this domain. Let p = pc, and let Ga be the graph of open
connections of bond percolation with lattice spacing a on DR. By describing Ga

through the set of Jordan curves describing the realised paths, he has apparently
obtained sufficient compactness to imply the existence of weak limits as a → 0.
Possibly there is a unique weak limit, and Aizenman has termed an object sampled
according to this limit as the ‘web’. The fundamental conjectures are therefore that
there is a unique weak limit, and that this limit is conformally invariant. Further
work in this direction may be found in Aizenman and Burchard (1999).

The quantities π(γ; α, β) should then arise as crossing probabilities in ‘web-
measure’. This geometrical vision may be useful to physicists and mathematicians
in understanding conformal invariance.

Mathematicians have long been interested in the existence of long open connec-
tions in critical percolation models in R

d (see, for example, Kesten (1982), Kesten
and Zhang (1983)). An overall description of such connections will depend greatly
on whether d is small or large. When d = 2, a complex picture is expected, involving
long but finite paths on all scales whose geometry may be described as ‘fractal’. See
Aizenman (1997, 1998) for accounts of the current state of knowledge. A particular
question of interest is to ascertain the fractal dimension of the exterior boundary of
a large droplet (see Section 3 of the current paper). Such questions are linked to
similar problems for Brownian Motion in two dimensions. The (rigorous) conformal
invariance of Brownian Motion has been used to derive certain exact calculations,
some of which are rigorous, of various associated critical exponents (see Lawler and
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Werner (1998) and Duplantier (1999), for example). Such results support the belief
that similar calculations are valid for percolation.

The picture for large d is expected to be quite different. Indeed, Hara and Slade
(1999a, 1999b) have recently proved that, for large d, the two- and three-point con-
nectivity functions of critical percolation converge to appropriate correlation func-
tions of the process known as Integrated Super-Brownian Excursion.

In one interesting ‘continuum’ percolation model, conformal invariance may actu-
ally be proved rigorously. We drop points {X1, X2, . . .} in the plane R

2 in the manner
of a Poisson process with intensity λ. Now divide R

2 into tiles {T (X1), T (X2), . . .},
where T (X) is defined as the set of points in R

2 which are no further from X
than they are from any other point of the Poisson process (this is the ‘Dirichlet’
or ‘Voronoi’ tesselation). We designate each tile to be open with probability 1

2
and

closed otherwise. This continuum percolation model has a property of self-duality,
and it inherits properties of conformal invariance from those of the underlying Pois-
son point process. See Aizenman (1998) and Benjamini and Schramm (1998).

We note that Langlands et al. (1999) have reported a largely numerical study of
conformal invariance for the two-dimensional Ising model.

3. Droplets and large deviations

Consider the Ising model on a finite box B of the square lattice Z
2 with + boundary

conditions, and suppose that the temperature T is low. The origin may lie within
some region whose interior spins behave as in the − phase, but it is unlikely that
such a region, or ‘droplet’, is large. What is the probability that this droplet is
indeed large? Conditional on its being large, what is its approximate shape? For
low T , such questions were answered by Dobrushin, Kotecký, and Shlosman (1992),
who proved amongst other things that droplets have approximately the shape of
what is termed a Wulff crystal (after Wulff (1901)). In later work, such results were
placed in the context of the associated random-cluster model, and were proved for all
subcritical T ; see Ioffe (1994, 1995), Ioffe and Schonmann (1997), and the references
therein.

In a parallel development for percolation on Z
2, Alexander, Chayes, and Chayes

(1990) explored the likely shape of a large finite open cluster when p > pc. They
established a Wulff shape, and proved in particular the existence of η(p) ∈ (0,∞)
such that

(3.1) − 1

n1/2
log Pp(|C| = n) → η(p) as n → ∞

where C denotes the set of vertices which are connected to the origin by open paths.
The geometrical framework for such results begins with a definition of ‘surface

tension’. Let k be a unit vector, and let σ(k) denote surface tension in direction
k. For the Ising model, σ(k) is defined in terms of the probability of the existence
of an interface orthogonal to k; for percolation, one considers the probability of a
dual path of closed edges orthogonal to k. Given a closed curve γ, one may define
its energy η(γ) as the integral along γ of σ(k), where k denotes the normal vector
to γ. We say that γ encloses a ‘Wulff crystal’ if η(γ) ≤ η(γ′) for all closed curves γ′

enclosing the same area as γ.
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We make this discussion of surface tension more concrete in the case of two
dimensions, following Alexander, Chayes, and Chayes (1990). For a unit vector k

and an integer n, let [nk] be a vertex of Z
2 lying closest to nk. The existence of the

limit

σ(k) = lim
n→∞

{

− 1

n
log Pp

(

0 ↔ [nk]
)

}

follows by subadditivity, and this provides the required definition of surface tension.
Consider now the percolation model on Z

2 with p > pc. If |C| < ∞, the origin lies
within some closed dual circuit γ. For a wide variety of possible γ, γ contains with
large probability a large open cluster of size approximately θ(p)|ins(γ)|, where ins(γ)
denotes the inside of γ. It turns out that, amongst all γ with θ(p)|ins(γ)| = n, say,
the γ having largest probability may be approximated by the Wulff crystal enclosing
area n/θ(p). The length of such γ has order

√
n, and one is led towards (3.1). A

substantial amount of work is required to make this argument rigorous.
It is a great advantage to work in two dimensions, and until recently there has

been only little progress towards understanding how to prove such results in three
dimensions. Topological and probabilistic problems intervened. However, a recent
paper of Cerf (1998) has answered such problems, and has shown the way to a
Wulff construction in three dimensions. Cerf has proved a large deviation principle
from which the Wulff construction emerges. A key probabilistic tool is the ‘coarse
graining’ of Pisztora (1996), which is itself based on the results of Grimmett and
Marstrand (1990); see also Grimmett (1999, Section 7.4).

Cerf’s paper has provoked a further look at the Ising model, this time in three di-
mensions. Bodineau (1999) has achieved a Wulff construction for low temperatures,
and Cerf and Pisztora (1999) have proved such a result for all T smaller than a cer-
tain value Tslab believed equal to the critical temperature Tc. The latter paper used
methods of Pisztora (1996) concerning ‘coarse graining’ for random-cluster models.

4. Entanglement

The theory of long-chain polymers has led to the study of entanglements in systems
of random arcs of R

3. Suppose that a set of arcs is chosen within R
3 according

to some given probability measure µ. Under what conditions on µ does there exist
with strictly positive probability one or more infinite entanglements? Such a question
was posed implicitly by Kantor and Hassold (1988), and has been studied further
for bond percolation on the cubic lattice Z

3 by Aizenman and Grimmett (1991),
Holroyd (1998), and Grimmett and Holroyd (1999).

It is first necessary to decide on a definition of an ‘entanglement’. Let E be the
edge set of Z

3. We think of an edge e as being the closed line segment of R
3 joining

its endpoints. For E ⊆ E, we let [E] be the union of the edges in E. The term
‘sphere’ is used to mean a subset of R

3 which is homeomorphic to the unit sphere.
The complement of a sphere S has two connected components, an unbounded outside

denoted out(S), and a bounded inside denoted ins(S). For E ⊆ E and a sphere S,
we say that S separates E if S ∩ [E] = ∅ but [E] has non-empty intersection with
both inside and outside of S.

Let E be a non-empty finite subset of E. We call E entangled if it is separated
by no sphere. See Figure 4.1.
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Fig. 4.1. The left graph is not entangled; the right graph is entangled.

There appears to be no unique way of defining an infinite entanglement, and the
‘correct’ way is likely to depend on the application in question. Two specific ways
propose themselves, and it turns out that the corresponding definitions are ‘extreme’
in a manner to be explained soon.

Let E be a (non-empty) finite or infinite subset of E.
(a) We call E strongly entangled if, for every finite subset F of E, there exists a

finite entangled subset F ′ of E satisfying F ⊆ F ′.
(b) We call E weakly entangled if it is separated by no sphere.

Note that all connected graphs are entangled in both manners, and that a finite
subset of E is strongly entangled if and only if it is weakly entangled.

Let E0 (respectively E1) be the collection of all strongly entangled sets of edges
(respectively weakly entangled sets). It is proved in Grimmett and Holroyd (1999)
that E0 ⊆ E1, and that these sets are extreme in the sense that E0 ⊆ E ⊆ E1 for any
collection E of non-empty subsets of E having the following three properties:

(i) the intersection of E with the set of finite graphs is exactly the set of finite
entangled graphs;

(ii) if E ∈ E , then E is separated by no sphere;
(iii) let E1, E2, . . . ∈ E be a sequence such that, for every pair i and j, Ei and Ej

have a common vertex; then
⋃

i Ei ∈ E .
Furthermore, E0 and E1 satisfy conditions (i)–(iii).

The reason for the notation E0 and E1 is that the notions of weak and strong
entanglement arise naturally through a consideration of finite entanglements within
the box [−n, n]3 in the limit of large n, with ‘free’ and ‘wired’ boundary conditions
respectively.

Let J0 (respectively J1) be the event that the origin of Z
3 lies in an infinite, open,

strongly (respectively weakly) entangled set E; note that J0 and J1 are increasing
events. We define the strong and weak entanglement probabilities by

θ0(p) = Pp(J0), θ1(p) = Pp(J1),

and the associated entanglement critical points

p0

c = sup{p : θ0(p) = 0},
p1

c
= sup{p : θ1(p) = 0}.

Since E0 ⊆ E1, it is immediate that θ0(p) ≤ θ1(p), whence p0
c
≥ p1

c
.
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Fig. 4.2. The left graph is weakly but not strongly entangled; the right graph is

both strongly and weakly entangled.

It is proved in Grimmett and Holroyd (1999) that θ0(p) = θ1(p) for all values of
p sufficiently close to 1, and it may be conjectured that

p0

c
= p1

c
= pent

c
, for some pent

c
∈ (0, 1),

θ1(p) = θ0(p) if p > pent

c
.

Such mathematical questions were not treated in the initial paper of Kantor
and Hassold (1988). Numerical work reported there suggested the existence of an
‘entanglement critical point’ pent

c
satisfying pent

c
≈ pc − 1.8 × 10−7. No formal def-

inition of this critical point was presented, and indeed the discussion of this initial
paper concerned only finite entanglements. The strict inequality p0

c
< pc follows by

the argument presented in Aizenman and Grimmett (1991). The complementary
inequality p1

c
> 0 has been proved by Holroyd (1998).

The list of open problems concerning entanglement in percolation includes: prov-
ing the almost sure equivalence of the notions of strong and weak entanglement,
proving the almost sure uniqueness of the maximal infinite entanglement whenever
it exists, and establishing an exponential tail for the size of the maximal finite en-
tanglement containing the origin when p < pent

c
.

The following combinatorial question may prove interesting. Let ηn be the num-
ber of finite entangled subsets of E which contain the origin and have exactly n
edges. Does there exist a constant A such that ηn ≤ An for all n?
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