
POTTS MODELS AND RANDOM-CLUSTER

PROCESSES WITH MANY-BODY INTERACTIONS

Geoffrey GrimmettAbstrat. Known differential inequalities for certain ferromagnetic Potts models with pair-

interactions may be extended to Potts models with many-body interactions. As a major

application of such differential inequalities, we obtain necessary and sufficient conditions on
the set of interactions of such a Potts model in order that its critical point be a strictly

monotonic function of the strengths of interactions. The method yields some ancillary infor-
mation concerning the equality of certain critical exponents for Potts models; this amounts

to a small amount of rigorous universality. These results are achieved in the context of a

‘Fortuin–Kasteleyn representation’ of Potts models with many-body interactions. For such a
Potts model, the corresponding random-cluster process is a (random) hypergraph.

1. Introduction

In the study of phase transition, it is commonly the case that the value of the critical point
is a monotonic function of the strengths of local interactions. For example, the critical
temperature of a ferromagnetic Ising model cannot decrease if the intensity of any pair-
interaction is increased. Such (weak) monotonicity, when true, is usually easy to prove.
Strict monotonicity, on the other hand, presents special difficulties. A general approach
to the problem of proving strict monotonicity of the critical point was described by Aizen-
man and Grimmett (1991); they obtained necessary and sufficient conditions for strict
monotonicity in percolation, and in addition proved strict monotonicity for certain Ising
models with pair-interactions. The corresponding results for Potts models and random-
cluster processes have been established by Bezuidenhout, Grimmett, and Kesten (1993)
(subsequently referred to as [BGK]), for processes with pair-interactions. Since the Ising
model is an instance of a Potts model, the latter work generalizes some of the conclu-
sions of Aizenman and Grimmett (1991). It is our purpose in this paper to go further
than [BGK], and to show how strict monotonicity may be established for processes with
many-body interactions. The basic techniques developed in [BGK] are central to the ar-
guments presented here, but the present paper is self-contained with only little overlap of
mathematical content with [BGK]. Further discussion is provided in Grimmett (1993).

Rather than working directly with Potts models, we shall work with the correspond-
ing random-cluster processes (sometimes known as Fortuin–Kasteleyn processes). In the
case of pair-interactions, the relationship between Potts and random-cluster processes is
well understood (see Aizenman, Chayes, Chayes, and Newman (1988), Edwards and Sokal
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(1988), Grimmett (1994), and the references therein). Potts models with many-body inter-
actions do not appear to have been studied much in this regard, but it is straightforward
to see that they correspond to random-cluster processes which are hypergraphs rather than
the more usual graphs (i.e., the incidence relation is not that of pairs of vertices forming
‘edges’, but of finite sets of vertices forming ‘hyperedges’). Furthermore, the magneti-
zation of such a Potts model corresponds to the probability of certain infinite paths in
the random-cluster process. This correspondence enables one to study the Potts phase
transition by way of the random-cluster process.

In Section 2, we sketch the relationship between Potts models and random-cluster pro-
cesses, in the presence of many-body interactions. The class of random-cluster measures
is (in a certain sense) more general than the subclass of such measures arising from Potts
models, and it is in this more general context that the results of this paper will be stated
and proved.

In advance of sketching the main results, we make some remarks about the models
studied. The simplest d-dimensional systems inhabit the hypercubic lattice Zd, with edges
joining all pairs of points which are (euclidean) distance 1 apart. Commonly each edge
has an associated interaction J , which may be constant for all edges. Greater generality
may be obtained by one or more of the following constructions:
(a) allow different edges to have different values of J ,
(b) allow a different set of edges,
(c) allow many-body interactions, rather than pair-interactions only.

Authors often establish results for the simplest case above, and then may argue loosely that
similar results may be obtained for more general systems. The truth of such an assertion
is sometimes far from evident. When studying such systems in generality, new difficulties
usually arise. In the context of strict inequalities, no earlier author has obtained general re-
sults, and it is desirable to establish beyond doubt that general results are indeed valid; see
Hammersley (1961), Kesten (1982, Chap. 10), Menshikov (1987), Aizenman and Grimmett
(1991), [BGK]. (Certain results for percolation have also been found contemporaneously
by Wierman (1993).) In the present context, we obtain a necessary and sufficient condition
on the interactions of a Potts model in order that the critical point is strictly monotone in
the interactions; see Theorem 3. This condition has a novel structure which is not evident
from the easier case of pair-interactions on Zd (i.e., the concept of an ‘essential’ interaction
introduced in Section 3). Various graph-theoretic difficulties arise in proving this result,
and we see no way of avoiding the lengthy technicalities laid out later in this paper.

Let q ∈ [1,∞), and let p = (pe : e ∈ K) be a vector of real numbers satisfying
0 ≤ pe ≤ 1 and indexed by a finite family K of finite subsets of Zd. There exists (as
described in Section 3) a random-cluster measure φp,q on the set of hypergraphs having
Zd as vertex set, and having as set E of hyperedges the union of certain periodic families
of translates of the sets in K. Thus the family K contains a list of the basic interacting
sets of the measure, and these sets describe a pattern which is repeated elsewhere in the
lattice by periodic translations. The ‘order parameter’ of the measure φp,q is the function

(1.1) θ(p, q) = φp,q(0 ↔ ∞),

the probability that the origin of Zd is in an infinite component of a random hypergraph
sampled according to the measure. Since q ≥ 1, it is the case that the measure φp,q satisfies
the FKG inequality; consequently, θ(·, q) is non-decreasing in p (see Aizenman et al. (1988,
p. 9)). The zero-set of the function θ(·, q) gives rise to a ‘critical surface’ Cq, being the
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set of vectors p such that all open neighbourhoods of p (in RK) contain points p′ with
θ(p′, q) = 0 as well as points p′′ with θ(p′′, q) > 0.

We address the problem of whether or not Cq has ‘flat sections’ in the sense that there
exist p,p′ ∈ Cq with p ≤ p′ but p 6= p′ (all vector inequalities in this paper of the form
x ≤ y should be interpreted coordinatewise). It turns out that, when the problem is
suitably formulated, the set K of generating elements may be partitioned as K = E ∪ I
into a set E of ‘essential’ elements and a set I of ‘inessential’ elements, according to the
following property. Let e ∈ K, p ∈ Cq, and let p′ ∈ (0, 1)K be a vector satisfying pe 6= p′e,
pf = p′f for all f 6= e; thus p and p′ differ only in the component indexed by e. Then

(1.2) p′

{
/∈ Cq if e ∈ E

∈ Cq if e ∈ I.

That is to say, the value of pe (for e ∈ I) is immaterial to whether or not p ∈ Cq,
whereas the value of pe (for e ∈ E) is highly relevant. In other words, certain elements
of K contribute in an essential way to the phase transition, whilst others make no vital
contribution. We present, in Section 3, a characterization of the essential elements (i.e.,
the elements in E) as those elements of K which contain the endvertices of two vertex-
disjoint infinite paths in the hypergraph (Zd, E); actually we shall take the last statement
as a definition of the elements of E , and shall prove (1.2). Theorems 1–3, in Section 3, are
the main results of the paper.

Throughout, we make use of the methodology developed by Menshikov (1987), Aizen-
man and Grimmett (1991), and [BGK]. The basic approach is to prove inequalities for
the partial derivatives of the finite-box approximation θΛ to the function θ. Let Λ be a
finite box, let φΛ,p,q be the random-cluster measure on Λ with parameters p and q (with
‘wired’ boundary conditions), and let θΛ(p, q) be the φΛ,p,q-probability that the origin
is joined to the boundary of Λ. We shall prove that there exists a continuous function
α : (0, 1)K → (0,∞) such that

(1.3)
∂θΛ

∂pe
≤ α(p)

∂θΛ

∂pf
for all p ∈ (0, 1)K , and e, f ∈ E ,

and for all sufficiently large Λ. Taken in conjunction with a proof that elements in I
(= K \ E) do not contribute to the phase transition, inequality (1.3) turns out to be
enough to imply (1.2). We shall prove (1.3) by the route laid down in [BGK]; the (many-
body) generality of the current paper leads to certain difficulties not encountered in [BGK],
and these are resolved in Sections 5 and 6 by (hyper)graph-theoretic arguments.

As remarked in [BGK], the differential inequalities (1.3) have implications for the values
of certain critical exponents, particularly those which describe the behaviour of the function
θ(·, q) at points close to Cq. Let p ∈ Cq and let u lie in the (euclidean) unit sphere V of
RK . Let

(1.4) βp(u) = lim
ǫ↓0

{
log

[
θ(p + ǫu, q) − θ(p, q)

]

log ǫ

}

if this limit exists. Subject to the existence of such exponents, inequality (1.3) may be
used to show that, for given p ∈ Cq, the value of βp(u) is constant for all vectors u lying in
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some open subset of V which contains the ‘axial’ unit vectors ue = (δef : f ∈ K) for e ∈ E ,
where δef is the Kronecker delta. The argument of [BGK] is valid in this regard with
almost no change, with the forthcoming Theorem 1 as a starting point; we shall therefore
omit further details, referring the reader to the earlier paper and to the example at the
end of this section, beginning just before (1.7).

We terminate this section with simple examples of the type of results derived in this

paper. Let q be an integer satisfying q ≥ 2, and write Σ = {1, 2, . . . , q}Z
2

; we think of σ
(∈ Σ) as an allocation of a spin σ(y) to each vertex y (∈ Z2), where σ(y) ∈ {1, 2, . . . , q}.
Let ΣΛ be the set of all elements σ (∈ Σ) which satisfy σ(y) = 1 if y /∈ Λ \ ∂Λ, where Λ is
some finite box of Z2 and ∂Λ is the boundary of Λ. We wish to consider a Potts measure
on Σ, whose interactions are possibly many-body, and we give two examples (see Figure
1).
Example 1. Let e1 = {0, 1, 2}2, a square with side-length 2, and let e2 = {0, 1} × {1}, an
edge with endpoints (0, 1) and (1, 1). The sets ei are the basic interacting bodies of the
process, and we consider all translations of e1 and e2 by multiples of the vector (2, 2); i.e.,
we denote by E the set E = E1 ∪ E2, where

Ei =
{
ei + (2z1, 2z2) : z = (z1, z2) ∈ Z2

}
.

Let J = (J1, J2) where J1, J2 > 0, and let

HΛ(σ) =
∑

g∈EΛ

Jg

(
1 − δσ(g)

)
, σ ∈ ΣΛ

(this is a convenient way of defining the hamiltonian for what follows); here, EΛ is the set
of all members of E which are subsets of Λ, Jg = Ji if g is a translate of ei, and

δσ(g) =

{
1 if σ(u) = σ(v) for all u, v ∈ g

0 otherwise.

We then consider weak limits as Λ ↑ Z2 of the Potts probability measure

(1.5) πΛ,J,q(σ) =
1

ZΛ
exp

(
−βHΛ(σ)

)
, σ ∈ ΣΛ,

where β > 0 and ZΛ is the appropriate normalizing factor. There is a standard definition of
the critical inverse-temperature βc(J, q) for this model (see Section 3). A special case of the
forthcoming Theorem 3 is that βc(J, q) is strictly decreasing in J, i.e., βc(J, q) > βc(J

′, q)
if J ≤ J′ but J 6= J′. This conclusion is in contrast to that of the next (similar) example.
Example 2. This differs from Example 1 in the single regard that e1 and e2 are replaced by
f1 = e1 \{1, 1}, f2 = e2. In this case βc(J, q) is strictly decreasing in J1 but is independent
of J2.

These two examples are very similar in form, but the corresponding conclusions are
strikingly different. This difference arises in the following way. Any collection E of subsets
of Z2 may be used to generate a graph having vertex set Z2 and edge set given by the
adjacency relation

u ∼ v if {u, v} ⊆ g for some g ∈ E.
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Let G1 and G2 be the two graphs thus generated in Examples 1 and 2 respectively (see
Figure 1). A subset A of Z2 is said to be ‘2-connected to ∞ in Gi’ if there exist two
vertex-disjoint infinite paths of Gi, each having its (unique) endpoint lying in A. It is
easy to see from Figure 1 that both e1 and e2 are 2-connected to ∞ in G1, and it is this
graph-theoretic observation which leads to the conclusion that βc(J, q) is strictly monotone
in both J1 and J2. On the other hand, in G2, f1 is 2-connected to ∞ but f2 is not ; as a
consequence βc(J, q) is strictly monotone in J1 but not in J2 in this case.

More generally, consider the vertex set Zd (where d ≥ 2) together with some finite
collection L of finite subsets of Zd (in each of the above examples, L contains exactly two
sets); each set e (∈ L) generates a periodic family of translates of e. There is a family
J = (Je : e ∈ L) of parameters. It turns out that the critical point βc(J, q) is a strictly
monotonic function of a given parameter Je if and only if the corresponding set e is 2-
connected to ∞ in the appropriate graph. (The relationship between the collection L and
the collection K introduced before (1.1) will become clear soon.)

Such results will be obtained in the context of the random-cluster process with param-
eter q satisfying q ∈ (1,∞). It is interesting to note that the arguments of this paper fail
in the case q = 1, i.e., the case of percolation. In the case of Example 1, the percolation
process in question is that having the product measure on the space ΩΛ = {0, 1}EΛ given
by

(1.6) νΛ,p(ω) =
∏

g∈EΛ

pω(g)
g (1 − pg)

1−ω(g), ω ∈ ΩΛ,

where p = (p1, p2) ∈ [0, 1]2, and pg = pi if g is a translate of ei. There is a standard defi-
nition of the critical surface of such a process (see Section 3). The arguments of Aizenman
and Grimmett (1991) may be adapted to this general situation (as in the present paper)
in order to obtain a condition on an interaction-set e which is necessary and sufficient for
the associated parameter pe to contribute to the phase transition in an essential way; for
further discussion, see the second paragraph after Theorem 1 in Section 3.

Finally we illustrate our conclusions concerning critical exponents, making use of Ex-
ample 1. Let M(J, β, q) denote the magnetization of the Potts model observed in the limit
as Λ ↑ Z2 of the measure given in (1.5), and let βc = βc(J, q) denote the critical point, for
a given J. With J = (J1, J2) fixed and J1, J2 > 0, we define the critical exponent

(1.7) κJ(θ) = lim
ǫ↓0

{
log

[
M(J(θ, ǫ), βc, q) − M(J, βc, q)

]

log ǫ

}
,

where

J(θ, ǫ) = (J1 + ǫ cos θ, J2 + ǫ sin θ),

for any angle θ for which κJ(θ) exists. (Such an exponent is usually denoted by β.) It is
a consequence of Theorem 1(b) that the value of κJ(θ) is constant for all θ satisfying

(1.8) −θ1 < θ < 1
2
π + θ1

for some θ1 = θ1(J) > 0. That is to say, to a certain extent, the asymptotic behaviour of
M(J′, βc, q), in the limit as J′ → J, does not depend on the direction of approach by J′
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of J. In particular, there is a constant critical exponent whenever J′ ↓ J, whatever the
direction of this limit.

A corresponding conclusion is valid for any Potts or random-cluster process (with q > 1)
in any dimension, with possibly many-body interactions. Similarly, a corresponding result
is valid for percolation processes (by dint of the discussion appearing above, and after
Theorem 1). Wierman (1993) has reached related but more limited conclusions for certain
percolation processes.

Above (1.7) we required that J1, J2 > 0, but actually this requirement may be weakened
to obtain an interesting conclusion. If J2 = 0, then there is only one type of interaction
(i.e., the translates of e1, being the sets in E1). The above observation concerning the
equality of critical exponents is valid also at the point J = (J1, 0) (∈ Cq); that is to say,
there exists θ1 = θ1(J1) > 0 such that κJ(θ) is constant for all θ satisfying 0 ≤ θ < 1

2
π+θ1.

In the case θ = 0, the exponent κJ(0) is associated with a process of ‘pure e1 type’, since
J2 is held equal to 0. On the other hand, in the case θ = 1

2
π, κJ( 1

2
π) is associated with

a marginal increase in the strength of interaction of sets in E2, being the translates of e2.
We obtain therefore a small amount of rigorous universality involving processes of different
(but related) types. Such an observation is valid in general, subject to a graph-theoretic
condition on the extra interaction (i.e., e2 in the example above). We state this extra
condition here, using the terminology and notation to be introduced later in Section 3.
Let e ∈ L. Let He be the hypergraph obtained from H by deleting all hyperedges of the
form (e, z) with z ∈ Zd. We call e acceptable if He satisfies (3.2) and (3.3), and in addition
there exist two infinite vertex-disjoint paths of He each containing some point of e. It is
not difficult to see that e2 is acceptable, in Example 1, whereas e1 is not acceptable. It
is precisely the property of acceptability which is relevant in the discussion earlier in this
paragraph. See also the final paragraph of Section 4.

2. Processes with many-body interactions

The random-cluster representation for a Potts model with pair-interactions has been well
documented by Aizenman et al. (1988), Edwards and Sokal (1988), Grimmett (1994), and
others. A similar representation is valid for Potts models with many-body interactions, the
corresponding random-cluster process being a hypergraph rather than an ordinary graph.
Such a consideration of many-body interactions leads to a theory which is a generalization
of the original work of Fortuin and Kasteleyn. In particular, the generalized random-cluster
process studied here has broadly similar properties to those of the Fortuin–Kasteleyn (FK)
representation for processes with pair-interactions, such as the FKG inequality and the
comparison inequalities. We sketch this material in this section, beginning with some
notation for hypergraphs.

Let V be a (finite or infinite) set of vertices, and let E be a family of subsets of V
each having cardinality at least 2. Members of E are called hyperedges, and the pair
H = (V, E) is a hypergraph; see Berge (1973) for a general account of the theory of
hypergraphs. It is convenient (for a notational reason which may be clear later) to permit
multiple hyperedges, in the sense that any given subset of V may occur more than once
in E. We say that distinct vertices u, v are adjacent to one another if there exists e ∈ E
such that {u, v} ⊆ e; if this holds, we write u ∼ v. A path in H is an alternating
sequence v1, e1, v2, e2, . . . , en, vn+1, . . . of distinct vertices vi and distinct hyperedges ej

such that {vi, vi+1} ⊆ ei for all i ≥ 1. If the path contains only finitely many vertices,
and terminates at vn+1, it is said to connect v1 to vn+1 and to be of length n (≥ 0). If
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the path contains infinitely many vertices, it is called infinite and is said to connect v1

to ∞. The requirement that the hyperedges of a path be distinct is not essential for that
which follows, but is convenient; in the case of conventional graph theory, the edges are
inevitably distinct if the vertices are distinct.

For A, B ⊆ V , we write A
H
↔ B if either A ∩ B 6= ∅ or there exist a ∈ A and b ∈ B

such that a is connected to b by a path in H. It is easily seen that
H
↔ is an equivalence

relation on V . The equivalence classes of this relation are called the components of H. A
hypergraph is connected if it has a unique component.

Next we define Potts models and random-cluster processes associated with the hy-
pergraph H. In doing so, we make use of the observation, due to Edwards and Sokal
(1988), that such processes may be defined on the same probability space in a certain
useful way. Suppose that the vertex set V is finite. Let q be an integer satisfying
q ≥ 2, and write ΣV = {1, 2, . . . , q}V , the set of ‘spin vectors’ σ = (σ(y) : y ∈ V )
with σ(y) ∈ {1, 2, . . . , q} for each vertex y. Let ΩE = {0, 1}E be the set of ‘hyperedge-
configurations’ ω = (ω(e) : e ∈ E) with ω(e) ∈ {0, 1} for each hyperedge e. Let
p = (pe : e ∈ E) be a real vector satisfying 0 ≤ pe ≤ 1 for all e. We define a proba-
bility measure on ΣV × ΩE , having parameters p and q, by

(2.1) µH,p,q(σ, ω) =
1

Z

∏

e∈E

{
(1 − pe)δω(e),0 + peδω(e),1δσ(e)

}
, σ ∈ ΣV , ω ∈ ΩE ,

where Z is the appropriate normalizing factor, δi,j is the Kronecker delta, and δ·(e) : ΣV →
{0, 1} is given by

δσ(e) =

{
1 if σ(u) = σ(v) for all u, v ∈ e

0 otherwise.

Following elementary calculations (as in Edwards and Sokal (1988)), one obtains that
the marginal measures of µH,p,q are

πH,p,q(σ) =
1

Z

∏

e∈E

{
(1 − pe) + peδσ(e)

}
, σ ∈ ΣV ,(2.2)

φH,p,q(ω) =
1

Z

{∏

e∈E

pω(e)
e (1 − pe)

1−ω(e)

}
qk(ω), ω ∈ ΩE ;(2.3)

here, k(ω) is the number of components of the hypergraph (V, η(ω)) where η(ω) = {e ∈
E : ω(e) = 1} is the set of ‘open hyperedges’ of ω. The measures πH,p,q and φH,p,q

are the well-known Potts and random-cluster measures, but in the context of many-body
interactions. This is seen in the first case by rewriting (2.2) in the form

(2.4) πH,p,q(σ) =
1

Z

∏

e∈E

exp
(
−βJe{1 − δσ(e)}

)
, σ ∈ ΣV ,

where the parameters β and J = (Je : e ∈ E) satisfy β > 0 and

(2.5) e−βJe = 1 − pe, e ∈ E.

The quantity β is the ‘inverse temperature’ and the Je are the ferromagnetic coupling
variables.
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The conditional measure µH,p,q(σ | ω) is given as follows. Let ω ∈ ΩE . By (2.1),
whenever e is such that ω(e) = 0, then no constraint is placed on the values of σ in
consequence of this fact. On the other hand, if e is such that ω(e) = 1, then there is
(conditional) probability 1 that δσ(e) = 1, which is to say that the spins of all vertices in e
are equal. There being no further constraints (conditional on ω), we deduce that there is
equal (conditional) probability on any spin vector which has the property of being constant
on each component of (V, η(ω)). That is to say, to each of the k(ω) components of (V, η(ω))
is allocated a random spin, such spins being uniform on {1, 2, . . . , q} and independent of
each other. There are qk(ω) such possible spin vectors, and therefore

µH,p,q(σ | ω) =

{
q−k(ω) if σ(u) = σ(v) whenever u ↔ v,

0 otherwise,

where A ↔ B means that there exists a ∈ A (⊆ V ) and b ∈ B (⊆ V ) such that a and b
are in the same component of the random hypergraph (V, η(ω)).

For u, v ∈ V , let

(2.6) τH,p,q(u, v) =
∑

σ∈ΣV

(δσ(u),σ(v) − q−1)πH,p,q(σ),

the ‘two-point correlation function’ of the Potts measure given in (2.2). Using the fact
that πH,p,q is a marginal of µH,p,q, we obtain that

τH,p,q(u, v) =
∑

σ,ω

(δσ(u),σ(v) − q−1)µH,p,q(σ, ω)(2.7)

=
∑

ω∈ΩE

φH,p,q(ω)

{ ∑

σ∈ΣV

(δσ(u),σ(v) − q−1)µH,p,q(σ | ω)

}

=
∑

ω∈ΩE

φH,p,q(ω)
{
(1 − q−1)I{u↔v}(ω)

}

= (1 − q−1)φH,p,q(u ↔ v),

where IF denotes the indicator function of an event F (⊆ ΩE). It is a consequence of
(2.7) that long-range order in the Potts model corresponds exactly to the existence of long
paths in the random-cluster process.

Having sketched the relationship between Potts and random-cluster measures, we turn
our attention to the latter, given in (2.3); we make four notes concerning such measures.

(a) The parameter q. The measure φH,p,q is well defined for all positive real values of
q, not merely the integers; henceforth, when studying random-cluster measures, we shall
assume that q ∈ (0,∞).

(b) The FKG inequality. There is a partial order on ΩE given by ω ≤ ω′ if and only if
ω(e) ≤ ω′(e) for all e ∈ E. A function f : ΩE → R is called increasing if f(ω) ≤ f(ω′)
whenever ω ≤ ω′. An event F ⊆ ΩE is called increasing if its indicator function IF is
increasing. Having settled the necessary terminology, we point out that the measure φH,p,q

satisfies the FKG inequality so long as q ≥ 1:

φH,p,q(F ∩ G) ≥ φH,p,q(F )φH,p,q(G)
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for all increasing events F and G, if q ≥ 1 (similarly, increasing integrable random variables
are positively correlated). The proof of this follows that of Aizenman et al. (1988, Thm
2.2), with one change in their equation (2.18) arising from the fact that

(2.8) k(ωe) − k(ωe) = 1 − ke(ωe), for e ∈ E,

where ωe and ωe are the hyperedge-configurations given by

(2.9) ωe(f) =

{
ω(f) if f 6= e,

1 if f = e,
ωe(f) =

{
ω(f) if f 6= e,

0 if f = e,

and ke(ω
′) is the number of components of the hypergraph (V, η(ω′)) which contain vertices

belonging to the hyperedge e.

(c) Comparison inequalities. Given two measures φ1, φ2 on ΩE , we write φ1 ≤ φ2 if

∑

ω∈ΩE

f(ω)φ1(ω) ≤
∑

ω∈ΩE

f(ω)φ2(ω)

for all increasing functions f : ΩE → R. There are two partial orders of interest on the
class of random-cluster measures on ΩE . First,

(2.10) φH,p′,q′ ≤ φH,p,q if q′ ≥ q, q′ ≥ 1, p′e ≤ pe for all e ∈ E,

and secondly,

(2.11) φH,p′,q′ ≥ φH,p,q if q′ ≥ q, q′ ≥ 1,
p′e

q′|e|−1(1 − p′e)
≥

pe

q|e|−1(1 − pe)
for all e ∈ E.

The proofs of these inequalities are just as in Aizenman et al. (1988, Thm 4.1), and they
make use (respectively) of the facts that

(i) k(ω) is a decreasing function of ω (i.e., −k(ω) is increasing),
(ii) k(ω) +

∑
e∈E(|e| − 1)ω(e) is an increasing function of ω (cf. (2.8)).

Here, |e| is the cardinality of the set e, i.e., the number of vertices in the hyperedge e.

(d) Phase transition. It is premature to discuss phase transition at this point, since H is
assumed finite at this stage. In the next section, we shall construct a family (φΛ,p,q) of
random-cluster measures indexed by certain finite subsets Λ of Zd, and we shall take the
limit as Λ ↑ Zd. The weak limit of the associated sequence of measures exists if q ≥ 1,
and the question arises as to whether or not the limit measure exhibits a phase transition,
for any fixed value of q and as the parameter p varies. The above comparison inequalities
imply the existence of phase transitions for all values of q (≥ 1) whenever it is known that
phase transition occurs for some value of q (≥ 1). See Aizenman et al. (1988, Thm 4.2).

3. Strict inequality for critical values

Let d ≥ 2, and let Zd be the set of d-vectors x = (x1, x2, . . . , xd) of integers. We begin
this section by constructing a family (φΛ,p,q) of random-cluster measures indexed by finite
boxes Λ contained in Zd; then we shall take the limit as Λ ↑ Zd, and shall consider the
phase transition exhibited by the (weak) limit measure

(3.1) φp,q = lim
Λ↑Zd

φΛ,p,q.
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Let K be a finite family of distinct subsets of Zd satisfying |e| ≥ 2 for all e ∈ K. Sets
in K are the basic ‘interaction-sets’ of the process; if |e| = 2 for all e ∈ K, then only pair-
interactions occur. The class K generates a family of ‘interaction-sets’ in Zd, obtained by
applying periodic families of translates to the members of K. Let τ = (τ(e) : e ∈ K) be a
sequence of points in Zd, and we assume that each τ(e) = (τ1(e), τ2(e), . . . , τd(e)) satisfies

τi(e) > 0 for 1 ≤ i ≤ d,

for all e ∈ K. To each e ∈ K, there corresponds a family

T (e) = {e + z.τ(e) : z ∈ Zd}

of copies of e, obtained by translating e by all (vector) multiples of τ(e); here and later,

u.v = (u1v1, u2v2, . . . , udvd) for u, v ∈ Zd.

In the simplest situation, we may take τ(e) = (1, 1, . . . , 1) for all e, but many cases of
practical interest are more complicated than this. We write F = K × Zd. The set F
generates a family of subsets of Zd given by the mapping (e, z) 7→ e+z.τ(e), for (e, z) ∈ F.
This family may contain multiple entries, since there may exist (e1, z1), (e2, z2) ∈ F such
that e1 + z1.τ(e1) = e2 + z2.τ(e2). We define H to be the hypergraph with vertex set Zd

and hyperedge set (e + z.τ(e) : (e, z) ∈ F), each hyperedge occurring the correct number
of times. Upon the hypergraph H we shall construct the random-cluster measures. For
u, v ∈ Zd, we write u ∼ v if there exists (e, z) ∈ F with {u, v} ⊆ e + z.τ(e). We say that
‘the vertex w is 2-connected to ∞’ if there exist two infinite vertex-disjoint paths, neither
containing w, but such that their endpoints u and v satisfy w ∼ u and w ∼ v. We make
the following assumptions about the family K:

the infinite hypergraph H is connected,(3.2)

the origin is 2-connected to ∞.(3.3)

Assumption (3.2) is vital for what follows. Assumption (3.3) is a matter of convenience
only, as the following sketch argument indicates. The hypergraph H is invariant under
translations of the form x 7→ x + z.τ for any given z ∈ Zd, where τ = (τ1, τ2, . . . , τd)
is given by τi =

∏
e∈K τi(e). Therefore, if there exists a vertex which is 2-connected

to ∞, then there exists a periodic class of such vertices; in this case, we may as well
assume that the origin lies in this class. In order to show that such vertices exist, we may
argue as follows. We define a doubly-infinite path of H to be a doubly-infinite sequence
. . . , v−1, e−1, v0, e0, v1, e1, . . . of distinct vertices vi and distinct hyperedges ej such that
{vi, vi+1} ⊆ ei for all i. The graph Zd (considered as a graph with the usual neighbour-
relation) contains many doubly-infinite paths, including for example the first coordinate
axis. Consequently (using the argument in the proof of the forthcoming Lemma 9) H must
contain a doubly-infinite path lying close to this coordinate axis: more specifically, there
exists a constant D and a doubly-infinite path π of H such that each vertex of π lies in the
tube Z× [−D, D]d−1. However, every vertex of a doubly-infinite path of H is 2-connected
to ∞.

For a reason which will become evident soon, it is convenient to describe the hypergraph
H in an equivalent but different way than that used above. Let

κi = lcm{τi(e) : e ∈ K}, 1 ≤ i ≤ d,
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the least common multiple of the τi(e); we write κ = (κ1, κ2, . . . , κd). The hypergraph H
is invariant under translations of Zd of the form x 7→ x + z.κ for any given z ∈ Zd. Let

L =
(
e + z.τ(e) : 0 ≤ zi < κi/τi(e) for 1 ≤ i ≤ d, e ∈ K

)
,

a family of translates of the members of K; note that the entries of L may be repeated,
since there may exist e, f ∈ K with e 6= f such that e + z(e).τ(e) = f + z(f).τ(f) for
some z(e), z(f) ∈ Zd satisfying 0 ≤ zi(g) < κi/τi(g) for g = e, f and 1 ≤ i ≤ d. Instead of
working with the set F = K × Zd, we propose to work with the set E = L × Zd; this will
aid the calculations to follow. There is a one–one correspondence between E and F, but
a little care is needed to see this, since L may have some entries which are equal. Each
pair (e, z) ∈ F may be mapped onto a triple (e, u, v) where u, v (∈ Zd) are given by the
factorization

z.τ(e) = v.κ + u.τ(e), 0 ≤ ui < κi/τi(e) for 1 ≤ i ≤ d.

Since the pair (u, v) specifies z uniquely for any given e, we have that F is in one–one
correspondence with the set I × Zd, where

I =
∏

e∈K

d∏

i=1

{
0, 1, . . . , (κi/τi(e)) − 1

}

is the index set of L. Therefore E and F are in one–one correspondence; the useful way of
thinking about this correspondence is via the mapping

(3.4) (e, z) 7→ (e + u.τ(e), v)

for (e, z) ∈ F, where u and v are given as above. The set E generates the same family of
hyperedges as before, the pair (e, z) (∈ E = L×Zd) giving rise to the subset e+ z.κ of Zd.
As before, this collection of subsets may contain multiple entries. We emphasize the role
of E by writing H as the pair H = (Zd, E); this involves a (slight) abuse of notation, since
E is not itself a set of subsets of Zd. When we speak of a hyperedge (e, z) ∈ E, we will be
referring to the corresponding set e + z.κ of vertices.

A configuration ω = (ω(e, z) : (e, z) ∈ E) ∈ {0, 1}E is an allocation of 0 or 1 to each
hyperedge of H, and Ω denotes the set of all such configurations. With Ω we associate
the σ-field F generated by the finite-dimensional cylinders. For ω ∈ Ω, we write η(ω) =
{(e, z) ∈ E : ω(e, z) = 1}, the set of ‘open’ hyperedges. We shall sometimes confuse the
roles of ω and η(ω), and may speak of ‘ω containing the hyperedge (e, z)’ when we mean
that (e, z) ∈ η(ω). For subsets A and B of Zd, and configurations ω, we write A ↔ B if
there is a path of (Zd, η(ω)) joining some point in A to some point in B.

Let Λ be a finite box of Zd, i.e.,

Λ =
d∏

i=1

[xi, yi], for some x, y ∈ Zd.

The box Λ gives rise to a sub-hypergraph of H defined as follows. Let △Λ be the set of all
vertices v (/∈ Λ) with the property that every infinite path of H beginning at v contains
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some vertex of Λ; let Λ = Λ∪△Λ. With the set Λ we associate the set EΛ of all hyperedges
(e, z) (∈ E) with e + z.κ ⊆ Λ. Thus, (Λ, EΛ) is the finite sub-hypergraph of H obtained
by adding to Λ all vertices which lie in no infinite path of Zd \Λ. It turns out to be more
convenient to work with the hypergraph (Λ, EΛ) rather than with the smaller hypergraph
induced by the vertex set Λ, although in principle the arguments which follow might be
reworked along the latter route. We shall see in Lemma 9 that there exists a constant D
such that

Λ ⊆ Λ ⊆ Λ + [−D, D]d

for all finite boxes Λ.
We define the boundary ∂Λ as the set of points v (∈ Λ) for which there exists w (/∈ Λ)

satisfying v ∼ w; i.e.,

∂Λ = Λ ∩

{ ⋃

(e,z)∈E\EΛ

(e + z.κ)

}
.

Note that, by the definition of Λ, it is the case that ∂Λ ⊆ Λ. The main advantage of
working with (Λ, EΛ) is that, for all u1, u2 ∈ ∂Λ, there exists a path joining u1 and u2

using only hyperedges lying in E \ EΛ; see Lemma 10.
Finally, let ΩΛ be the subset of Ω containing all configurations ω satisfying ω(e, z) = 1

if (e, z) /∈ EΛ, and write FΛ for the σ-field of all subsets of ΩΛ.
Next we define the random-cluster measures. Let p = (pe : e ∈ L) be a real vector

satisfying 0 ≤ pe ≤ 1 for all e ∈ L, and let q be a positive real number. The parameters
p, q specify a random-cluster process in the following way. For any finite box Λ, we let
φΛ,p,q be the probability measure on (ΩΛ,FΛ) given by

(3.5) φΛ,p,q(ω) =
1

ZΛ

{ ∏

(e,z)∈EΛ

pω(e)
e (1 − pe)

1−ω(e)

}
qk(ω), ω ∈ ΩΛ,

where k(ω) is the number of components of the graph (Zd, η(ω)), and

ZΛ =
∑

ω∈ΩΛ

{ ∏

(e,z)∈EΛ

pω(e)
e (1 − pe)

1−ω(e)

}
qk(ω)

is the appropriate normalizing constant. Note that the measure φΛ,p,q contains a ‘product

measure’ term together with a ‘Radon–Nikodym derivative’ qk(ω)/ZΛ. It is interesting to
note that much of the contents of this paper may be generalized to situations in which
this ‘derivative’ is replaced by one of a large family of non-constant positive functions (see
the discussion after Proposition 5). The measure defined in (3.5) is essentially the same
as that given in (2.3) and defined on the hypergraph obtained from H by identifying all
vertices not belonging to Λ \ ∂Λ (see Lemma 10).

We assume henceforth that q ≥ 1, and we shall occasionally suppress explicit reference
to q. It may be seen, as in Aizenman et al. (1988), that the limit measure

φp,q = lim
Λ↑Zd

φΛ,p,q

exists in the weak sense, where the limit is understood to be taken along any increasing
sequence of finite boxes Λ. For any such box Λ, let

θΛ(p, q) = φΛ,p,q(0 ↔ ∞)
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where {0 ↔ ∞} is the event that the origin (denoted by 0) is in an infinite component. It
is the case that

θΛ(p, q) ↓ θ(p, q) as Λ ↑ Zd

where

(3.6) θ(p, q) = φp,q(0 ↔ ∞).

As remarked at the end of the last section, φΛ,p,q and φp,q satisfy the FKG inequality,
and it follows as in Aizenman et al. (1988) that the quantities θΛ(p, q) and θ(p, q) are
non-decreasing functions of p when q ≥ 1.

For p ∈ [0, 1]L let
γc(p) = sup{γ ≥ 0 : θ(γp, q) = 0}.

The set Cq = {p ∈ [0, 1]L : γc(p) = 1} is called the critical surface of the process, and the
sets

SBq = {p ∈ [0, 1]L : γc(p) > 1},

SPq = {p ∈ [0, 1]L : γc(p) < 1},

are called the subcritical and supercritical regions. We shall prove a result concerning the
behaviour of θ(·, q) in the neighbourhood of the critical surface. Our result amounts to a
characterization of those hyperedges (e, z) ∈ E which contribute in a vital way to the phase
transition. To this end we introduce a classification of hyperedges in E. For (e, z) ∈ E,
we call the hyperedge (e, z) essential if there exist u, v ∈ e and two infinite vertex-disjoint
paths of H with endpoints u+z.κ and v +z.κ (lying in e+z.κ). Note that, unlike the case
when |e| = 2 for all (e, z) ∈ E, the hyperedges of the above paths need not (and generally
will not) be distinct. If (e, z) is not essential, we call it inessential . Since H is invariant
under translations of the form x 7→ x + z.κ for given z ∈ Zd, it is the case that (e, z) is
essential if and only if (e, 0) is essential. We denote by E the set of all e ∈ L for which
(e, 0) is essential, and by I the set of all e ∈ L for which (e, 0) is inessential. We write

E = E + Zd.κ, I = I + Zd.κ,

the families of all (respectively) essential and inessential hyperedges of H.
Let Λ(n) = [−n, n]d, and let θn(p, q) = θΛ(n)(p, q). For p ∈ RL we define p̂ = (p̂e : e ∈

L) by

(3.7) p̂e =

{
pe if e ∈ E ,

0 if e ∈ I.

For a subset F of RL, we write F̂ for the set of vectors q = (qe : e ∈ E) ∈ RE with the

property that there exists p ∈ F such that qe = pe for all e ∈ E ; thus F̂ is the projection
of F with respect to those components indexed by E . Let U be the unit sphere of RE , with
the topology induced from the euclidean topology on RE . We call a subset F of RL full

if F̂ is an open subset of U which contains the set of all points of U having non-negative
coordinates (i.e., all points of U lying in the first orthant of RE). Our main result is the
following.
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Theorem 1.

(a) Let q ≥ 1. For p ∈ (0, 1)L,

(3.8) θ(p, q) = θ(p̂, q).

(b) Let q > 1 and let p ∈ Cq where 0 < pe < 1 for all e ∈ E . There exist positive
constants δ, ν, and ǫ0, together with a full subset F of RL, such that

(3.9) θ(p + νǫg, q) ≤ θ(p + ǫh, q) ≤ θ(p + δǫg, q)

for all 0 < ǫ < ǫ0 and all g,h ∈ F .

It is a consequence of part (a) that the presence or absence of inessential hyperedges is
irrelevant for the existence of infinite paths from the origin. Consequently, in studying the
long-range properties of the process with parameter p, it suffices to work with the reduced
vector p̂. Note that, in part (b), the quantities δ, ν, ǫ0, and F may depend on the value
of p̂. It is easily seen from part (a) and the definition of Cq that θ(p + ǫh, q) > 0 when
p ∈ Cq, ǫ > 0, and h is such that he > 0 for all e ∈ E . A consequence of Theorem 1 is
therefore the existence, for each p ∈ Cq with pe > 0 for e ∈ E , of a positive real ǫ1 and a
full subset F of RL such that (p + ǫF ) ∩ [0, 1]L ⊆ SPq for 0 < ǫ < ǫ1.

Part (b) is the principal part of Theorem 1. As remarked in the introduction, the argu-
ments leading to (3.9) fail in the case q = 1, i.e., in the case of ‘many-body’ bond percola-
tion. Nevertheless, the arguments of Aizenman and Grimmett (1991) may be adapted in
order to derive a corresponding result (via a corresponding version of Theorem 2). There is
however an important variation in the case of percolation, in that the collection E of essen-
tial hyperedges must be replaced by a collection E ′ defined in the following way. For ω ∈ Ω
and e ∈ L, let ωe, ω

e ∈ Ω be given by (2.9). We say that ω (∈ Ω) contains a doubly-infinite
path if there exists a doubly-infinite alternating sequence . . . , v−1, e−1, v0, e0, v1, e1, . . . of
distinct vertices vi and distinct hyperedges ej such that {vi, vi+1} ⊆ ei and ω(ei) = 1 for
all i. Now, we define E ′ to be the set of all e (∈ L) with the property that there exists
ω ∈ Ω such that ωe contains a doubly-infinite path but ωe contains no such path. It is
clear that E ′ ⊆ E , and it is sometimes the case that E ′ 6= E (for example, in Example 1 at
the end of Section 1, we have that E = {e1, e2} but E ′ = {e1}). The set E ′ assumes the
role of E in the case q = 1, and the reason for this is roughly as follows. The hyperedges
(e, z) which are relevant for the percolation phase transition are those which have the (ge-
ometrical) capacity to be pivotal for the event {0 ↔ ∞}, and it may be seen that (e, z) is
of this type if and only if e ∈ E ′. On the other hand, if q > 1, a hyperedge can in certain
circumstances be relevant for the random-cluster phase transition even though it can never
(on geometrical grounds) be pivotal. This occurs if the hyperedge, when present in a con-
figuration, can influence the presence or absence of other hyperedges having the capacity
to be pivotal. That is to say, such a hyperedge is relevant by virtue of the (non-constant)
term qk(ω) in the random-cluster measure (3.5), rather than by virtue of its capacity for
pivotality.

The principal step in the proof of part (b) of Theorem 1 is the following calculation.
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Theorem 2. Let q > 1. There exists a continuous function α : (0, 1)L → (0,∞) and a
positive integer N such that

(3.10)
∂θn

∂pe
≤ α(p)

∂θn

∂pf

for all p ∈ (0, 1)L, all n ≥ N , and all pairs e, f ∈ E .

This theorem resembles closely Theorem 1 of [BGK]. Its proof however is considerably
more complicated, owing to its extra generality. In understanding the central role of the
family E , various difficulties are encountered. The resolutions of these difficulties seem to
require substantial technical arguments involving the relationship between the random-
cluster measure and the structure of the hypergraph H.

Before stating the next theorem, we introduce some notation. Given two vectors x =
(xi) and y = (yi), we write x ≤ y if xi ≤ yi for all i, and we write x < y if x ≤ y but
x 6= y. A function p : Rm → Rn is called increasing if p(x) ≤ p(y) whenever x ≤ y. We
say that p(x) is a strictly increasing function of xi if p(x) < p(y) whenever xi < yi and
xj ≤ yj for all j 6= i.

Theorem 1 has a valuable consequence obtained by narrowing the field of application
to a one-parameter family of processes. Let J = (Je : e ∈ L) ∈ [0,∞)L and let β > 0;
we think of J as describing the strengths of the many-body interactions, and β as being
the parameter (or ‘inverse temperature’) of the process. Suppose that p is a continuous
increasing function of the pair (J, β), say p = p(J, β). The critical value of β is given by

(3.11) βc(J, q) = sup
{
β : θ

(
p(J, β), q

)
= 0

}
.

An example of particular importance is the case when

(3.12) pe = 1 − e−βJe , for e ∈ L;

cf. (2.5). We write p̂ for the function obtained according to (3.7); i.e., if p(J, β) =
(pe(J, β) : e ∈ L), then p̂(J, β) = (p̂e(J, β) : e ∈ L) where

p̂e(J, β) =

{
pe(J, β) if e ∈ E ,

0 if e ∈ I.

Theorem 3. Let q > 1, and suppose that the function p : [0,∞)L × (0,∞) → [0, 1]L is
continuous and increasing.
(a) It is the case that βc(J, q) = βc(J

′, q) if p̂(J, β) = p̂(J′, β) for all β.
(b) In addition, βc(J, q) > βc(J

′, q) if p̂(J, β) < p̂(J′, β) and 0 < p̂e(J, β) < 1 for all
β > 0.

We now sketch the application of Theorem 3 to Potts models. Let q be an integer
satisfying q ≥ 2, and let J = (Je : e ∈ L) be a vector of strictly positive reals. Write

Σ = {1, 2, . . . , q}Z
d

, and let ΣΛ be the set of spin-vectors σ (∈ Σ) satisfying σ(y) = 1 if
y /∈ Λ \ ∂Λ. We consider the hamiltonian

(3.13) HΛ(σ) =
∑

(e,z)∈E

Je

(
1 − δσ(e, z)

)
, σ ∈ ΣΛ,
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where

δσ(e, z) =

{
1 if σ(u) = σ(v) whenever u, v ∈ e + z.κ

0 otherwise.

We are interested in the probability measure πΛ,J,q given by

(3.14) πΛ,J,q(σ) =
1

YΛ
exp

(
−βHΛ(σ)

)
, σ ∈ ΣΛ,

where β > 0, and YΛ is the appropriate normalizing factor. The weak limit

π1
J,q = lim

Λ↑Zd
πΛ,J,q

exists, and is independent of the choice of increasing sequence of boxes Λ; see Aizenman
et al. (1988) for details of the argument, which is valid for many-body interactions as for
pair-interactions (the forthcoming Lemma 10 is relevant here). The order parameter is
given by

(3.15) M(J, β, q) =
q

q − 1

(
π1
J,q

(
{σ : σ(0) = 1}

)
−

1

q

)

and the critical point by

βP
c (J, q) = sup

{
β : M(J, β, q) = 0

}
.

We have that πΛ,J,q(σ(y) = 1) = 1 for all y ∈ ∂Λ and σ ∈ ΣΛ. Writing H = (Λ, EΛ),
the probability πΛ,J,q(σ) may be represented as the conditional probability πH,p,q(σΛ | B)

given by (2.4), where B = {σ(y) = 1 for all y ∈ ∂Λ}, σΛ =
(
σΛ(x) : x ∈ Λ

)
is given by

σΛ(x) = σ(x) for x ∈ Λ, and p satisfies (3.12). It follows, by applying (2.6) and (2.7)
with u = 0 and v being a composite vertex obtained by identifying all vertices in ∂Λ (and
making surreptitious use of Lemma 10), that

πΛ,J,q

(
σ(0) = 1

)
−

1

q
= (1 − q−1)θΛ(p, q),

whence

(3.16) M(J, β, q) = θ(p, q).

Therefore βP
c (J, q) = βc(p, q) where p = p(J, q) satisfies (3.12). Note that p̂(J, q) is

strictly increasing in Je for any e ∈ E . It is a consequence of Theorems 1 and 3 that

βP
c (J, q) = βP

c (Ĵ, q) and that βP
c (J, q) is strictly decreasing in any Je for which e ∈ E .

As in Aizenman and Grimmett (1991), the derivatives of βP
c (J, q) with respect to the Je

(e ∈ E) may be bounded above and below by continuous and strictly negative functions.

4. Russo’s formula and time-evolutions for random-cluster processes

As before, Λ is a finite box of Zd, and EΛ is the set of hyperedges (of E = L × Zd) which
are subsets of Λ. On (ΩΛ,FΛ) we construct a probability measure which is slightly more
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general than that defined by (3.5). Let p̃ = (pe,z : (e, z) ∈ EΛ) be a vector of reals each of

which satisfies 0 ≤ pe,z ≤ 1, and define the measure φ̃ on (ΩΛ,FΛ) by

(4.1) φ̃(ω) =
1

Z

{ ∏

(e,z)∈EΛ

pω(e,z)
e,z (1 − pe,z)

1−ω(e,z)

}
qk(ω), ω ∈ ΩΛ,

where Z = Z(Λ, p̃, q) is the appropriate normalizing factor. The measure φΛ,p,q of (3.5) is
retrieved by setting pe,z = pe for e ∈ L and z ∈ Zd. Thus, in (4.1), each hyperedge (e, z)
has an associated independent variable pe,z.

We write IA for the indicator function of an event A; for (e, z) ∈ EΛ, we write Ie,z for
the indicator function of the event {ω(e, z) = 1}, i.e., Ie,z(ω) = ω(e, z) for ω ∈ Ω.

Proposition 4. Let 0 < q < ∞, and let A ∈ FΛ. If 0 < pe,z < 1, then

(4.2)
∂

∂pe,z
φ̃(A) =

1

pe,z(1 − pe,z)
cov(Ie,z, IA) for all (e, z) ∈ EΛ.

Here, ‘cov’ denotes covariance relative to the probability measure φ̃. In the case q = 1,
equation (4.2) is a version of Russo’s formula for percolation, but in a form first discovered
by Barlow and Proschan (1965, p. 10); see Grimmett (1989, p. 38). It is notable that
(4.2) is valid for all values of q. Indeed, (4.2) is valid for any measure of the form of (4.1)
with the term qk(ω) replaced by an arbitrary function of ω which does not depend on pe,z

(see also the discussion after Proposition 5). We omit the proof of the above proposition,
which may be taken directly from [BGK]. The assumption that 0 < pe,z < 1 may be
relaxed; see the final paragraph of this section. The bulk of the remainder of this section
is devoted to a representation for the covariance in (4.2), when A is an increasing event;
this representation is essentially the same as appears in Section 3 of [BGK], but differs in
the important detail of condition (4.13).

Suppose that q ≥ 1 and let A be an increasing event of (ΩΛ,FΛ) (that is, if ω ∈ A and

ω ≤ ω′ then ω′ ∈ A). It will be useful to have recourse to a representation for ∂φ̃(A)/∂pe,z

containing only non-negative terms. Suppose that 0 < pe,z < 1 for all (e, z) ∈ EΛ. Using
(4.2), we may write

(4.3)
∂

∂pe,z
φ̃(A) =

φ̃(A)

pe,z(1 − pe,z)

{
φ̃
(
ω(e, z) = 1 | A

)
− φ̃

(
ω(e, z) = 1

)}
.

The term in braces is non-negative (by the FKG inequality) and may be represented in
terms of coupled time-evolutions of the random-cluster process. We show next how this
may be done.

We shall construct certain Markov chains on the state space ΩΛ. Let µ be a probability
measure on (ΩΛ,FΛ), and let G : ΩΛ × ΩΛ → [0,∞) be the generator of a Markov chain
(i.e., for ω 6= ω′, G(ω, ω′) represents the jump-rate of the chain from ω to ω′, while a
diagonal element G(ω, ω) is chosen in such a way that

∑
ω′ G(ω, ω′) = 0). If the pair

(µ, G) satisfies the balance equations

(4.4) µ(ω)G(ω, ω′) = µ(ω′)G(ω′, ω) for all ω, ω′ ∈ ΩΛ,

then the chain is reversible with stationary measure µ.
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For ω ∈ ΩΛ and (f, y) ∈ EΛ, we define the configurations ωf,y and ωf,y by

ωf,y(g, x) =

{
ω(g, x) if (g, x) 6= (f, y)

0 if (g, x) = (f, y),

ωf,y(g, x) =

{
ω(g, x) if (g, x) 6= (f, y)

1 if (g, x) = (f, y).

We define

(4.5) Df,y(ω) = k(ωf,y) − k(ωf,y),

the increment in the number of components of the configuration depending on whether or
not it contains the hyperedge (f, y) (cf. (2.8)).

There are two instances of (4.4) of importance for (4.3). When µ = φ̃, equations (4.4)
are satisfied when we take for G the function H : ΩΛ × ΩΛ → [0,∞) given by

H(ωf,y, ω
f,y) = 1,(4.6)

H(ωf,y, ωf,y) =
φ̃(ωf,y)

φ̃(ωf,y)
=

1 − pf,y

pf,y
qDf,y(ω)(4.7)

for ω ∈ ΩΛ and (f, y) ∈ EΛ, where H(ω, ω′) is set to 0 for other pairs ω, ω′ with ω 6= ω′.

In the second instance, we take µ = φ̃(· | A), and in this case (4.4) is satisfied by the
generator HA given by

(4.8) HA(ω, ω′) = H(ω, ω′)IA(ω ∧ ω′) if ω 6= ω′

where ω ∧ ω′(g, x) = min{ω(g, x), ω′(g, x)} for (g, x) ∈ EΛ.
These two instances give rise to Markov chains which can be constructed on the same

sample space in such a way that the first ‘lies beneath’ the second. To this end we argue
as follows.

Let ΘΛ be the set of all pairs (π, ω) of configurations in ΩΛ satisfying π ≤ ω. We define
J : ΘΛ × ΘΛ → [0,∞) by

J(πf,y, ω; πf,y, ωf,y) = 1,(4.9)

J(π, ωf,y; πf,y, ωf,y) = HA(ωf,y, ωf,y),(4.10)

J(πf,y, ωf,y; πf,y, ω
f,y) = H(πf,y, πf,y) − HA(ωf,y, ωf,y),(4.11)

for all (π, ω) ∈ ΘΛ and (f, y) ∈ EΛ; all other off-diagonal values of J are set to 0. Equation
(4.9) specifies that, for π ∈ ΩΛ and (f, y) ∈ EΛ, the hyperedge (f, y) is acquired by π (if it
does not already contain it) at rate 1; any hyperedge so acquired is added also to ω if it
does not already contain it. Equation (4.10) specifies that, for ω ∈ ΩΛ and (f, y) ∈ η(ω),
the hyperedge (f, y) is removed from ω (and also from π if (f, y) ∈ η(π)) at the rate
given by (4.10). For (f, y) ∈ η(π) (⊆ η(ω)), there is an additional rate at which (f, y) is
removed from π but not from ω. Note that this additional rate (given in (4.11)) is indeed
non-negative, since

(4.12) H(πf,y, πf,y) − HA(ωf,y, ωf,y) =
1 − pf,y

pf,y

{
qDf,y(π) − qDf,y(ω)IA(ωf,y)

}
≥ 0,
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by (4.7) and (4.8); remember that q ≥ 1 and Df,y(ω) ≤ Df,y(π) when π ≤ ω. This
additional rate is strictly positive if and only if

(4.13) either ωf,y /∈ A, or ωf,y ∈ A and Df,y(π) > Df,y(ω).

We note also that the transitions referred to in (4.9)–(4.11) take pairs (π, ω) with π ≤ ω
onto new pairs (π′, ω′) with π′ ≤ ω′. Therefore, the function J is the generator of a Markov
chain (Xt, Yt)t≥0 taking values in ΘΛ. We assume henceforth that (Xt, Yt)t≥0 is such a
chain, and we set (X0, Y0) = (0, 1) where i (∈ ΩΛ) is the configuration which takes the
value i on every hyperedge in EΛ. We write P for the appropriate probability measure on
the set of sample paths of this process.

By further examination of (4.9)–(4.11), it is easily seen that X = (Xt)t≥0 is a Markov

chain on ΩΛ with generator H, and stationary measure φ̃. Similarly, Y = (Yt)t≥0 is a
Markov chain on the subset A of ΩΛ with generator given by HA restricted to A×A, and

stationary measure φ̃(· | A). Both these chains are irreducible. This claim is trivial for
X , since each hyperedge has a strictly positive birth and death rate in this process. The
claim is also true for Y , as the following argument indicates. If ω ∈ A and Yt = ω, then
the process Y can progress (with a strictly positive probability) from ω to the state 1;
this is valid because hyperedges are acquired by Y at rate 1, and furthermore 1 ∈ A by
virtue of the facts that ω ∈ A and A is an increasing event. If ω′ ∈ A, then Y can progress
from 1 to ω′ by the removal of exactly those hyperedges (f, y) for which ω′(f, y) = 0; such
transitions have strictly positive jump-rates since A is an increasing event.

It follows from the irreducibility of X and Y , and from the facts that φ̃ and φ̃(· | A) are
stationary measures for X and Y respectively, that

lim
t→∞

P
(
Xt(e, z) = 1

)
= φ̃

(
ω(e, z) = 1

)
, and lim

t→∞
P

(
Yt(e, z) = 1

)
= φ̃

(
ω(e, z) = 1

∣∣ A
)
,

for (e, z) ∈ EΛ (cf. Doob (1953, Thm VI.1.1)).
Finally we recall that Xt ≤ Yt for all t, in the light of which (4.3) may be written in the

form given as follows.

Proposition 5. Suppose that 0 < pe,z < 1 for all (e, z) ∈ EΛ. If A is an increasing event
and (e, z) ∈ EΛ, then

∂

∂pe,z
φ̃(A) =

φ̃(A)

pe,z(1 − pe,z)
lim

t→∞

{
P

(
Yt(e, z) = 1

)
− P

(
Xt(e, z) = 1

)}
(4.14)

=
φ̃(A)

pe,z(1 − pe,z)
lim

t→∞

{
P

(
Xt(e, z) = 0, Yt(e, z) = 1

)}
,

where (Xt, Yt)t≥0 is a Markov chain on ΩΛ × A with generator given by (4.9)–(4.11) and
satisfying (X0, Y0) = (0, 1).

It is interesting to note that the main results of this paper are valid in considerable
extra generality than the random-cluster processes only. Let us consider a measure ν on
(ΩΛ,FΛ) given by

(4.15) ν(ω) =
1

Z ′

{ ∏

(e,z)∈EΛ

pω(e,z)
e,z (1 − pe,z)

1−ω(e,z)

}
ρ(ω), ω ∈ ΩΛ,
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i.e., (4.1) with qk(ω) replaced by some function ρ(ω) which does not depend on p̃. It may
be shown that Proposition 4 and (by Holley (1974)) the argument leading to Proposition
5 are valid so long as ρ satisfies

(4.16) ρ(ω ∨ ω′)ρ(ω ∧ ω′) ≥ ρ(ω)ρ(ω′) for ω, ω′ ∈ ΩΛ.

Subject to certain extra conditions on ρ, the remaining analysis of this paper may be
validated for measures of the form (4.15) and their weak limits, leading thereby to gener-
alizations of Theorems 1 and 2.

There appeared at the end of Section 1 certain remarks concerned with the equality of
critical exponents for Potts models, when some parameter Je takes the value 0. In the
associated random-cluster process, the corresponding parameter pe = 1 − e−βJe takes the
value pe = 0. In proving these remarks, one needs a version of Proposition 4 which is valid

at the point pe,z = 0, for a given (e, z) ∈ EΛ. For simplicity of notation, we write φ̃p for

the measure φ̃ in (4.1) with pe,z = p; thus, although φ̃ depends on p̃ (and therefore on
p), we shall think of it as a function of the real parameter p alone. It is an elementary
calculation that (4.2) may be replaced by the formula

(4.17) φ̃′
p(A) =

S(B)S(Bc)
(
pS(B) + (1 − p)S(Bc)

)2

{
φ̃1(A) − φ̃0(A)

}
, 0 ≤ p ≤ 1,

where φ̃′
p(A) is the derivative (with respect to x) of φ̃x(A), evaluated at x = p, B is the

event {ω ∈ ΩΛ : ω(e, z) = 1}, and

S(C) =
∑

ω∈C

α(ω), C ⊆ ΩΛ,

α(ω) =

{
∏

(f,y)∈EΛ

(f,y)6=(e,z)

p
ω(f,y)
f,y (1 − pf,y)

1−ω(f,y)

}
qk(ω), ω ∈ ΩΛ.

Note that the normalizing factor in (4.1) is given by

(4.18) Z(p) = pS(B) + (1 − p)S(Bc), 0 ≤ p ≤ 1,

where we have written Z = Z(p) to emphasize the parameter p. Therefore

(4.19) φ̃′
p(A) =

{
Z( 1

2 )

Z(p)

}2

φ̃′
1/2(A), 0 ≤ p ≤ 1,

a formula which expresses the dependence of φ̃′
p(A) on p. The events B and Bc may be

put in one–one correspondence by the mapping ωe,z 7→ ωe,z between configurations. It is
then immediate, using (2.8), that

(4.20) 1 ≤
S(Bc)

S(B)
≤ q|e|−1.
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Hence

min

{
1,

1 + q|e|−1

2(p + (1 − p)q|e|−1)

}
≤

Z( 1
2 )

Z(p)
≤ max

{
1,

1 + q|e|−1

2(p + (1 − p)q|e|−1)

}
, 0 ≤ p ≤ 1,

by (4.18). Taken in conjunction with (4.19), this implies in particular that

(4.21)
1

4

(
1 +

1

q|e|−1

)2

≤
φ̃′

0(A)

φ̃′
1/2(A)

≤ 1,

which is to say that φ̃′
0(A) differs from φ̃′

1/2(A) by a multiplicative factor which is bounded

above and beneath by positive functions of q alone. Using this observation, one may adapt
the arguments of the next two sections in order to obtain the conclusions described at the
end of Section 1.

5. Preliminary lemmas

In proving Theorems 1–3, we shall make use of certain preliminary results largely concerned
with the graph-theoretic structure of H. Our first lemma concerns random-cluster measures
on hypergraphs which contain articulation points. Let H1 = (V1, E1) and H2 = (V2, E2) be
hypergraphs with exactly one common vertex, i.e., V1 ∩ V2 = {v}. Let p1 = (pe : e ∈ E1)
and p2 = (pf : f ∈ E2) be vectors satisfying 0 ≤ pg ≤ 1 for all g ∈ E1 ∪E2, and let q > 0.
Let φi be the random-cluster measure on the set Ωi = {0, 1}Ei of configurations of Hi with
parameters pi and q; let φ be the random-cluster measure on Ω1 × Ω2, thought of as the
set of hyperedge-configurations of the hypergraph H = (V1∪V2, E1∪E2), with parameters
p = (pg : g ∈ E1 ∪ E2) and q. See (2.3) for the formal definition of these measures.

Lemma 6. We have that φ = φ1 × φ2, which is to say that the random-cluster processes
on H1 and H2 are independent.

Proof. Since V1 and V2 have a single vertex in common, we have that

k(ω1 × ω2) = k(ω1) + k(ω2) − 1, for ωi ∈ Ωi, i = 1, 2,

where k(ωi) is the number of components of the hypergraph (Vi, η(ωi)), i = 1, 2, and
η(ωi) = {e ∈ Ei : ωi(e) = 1}. It follows from (2.3) that

(5.1) φ(ω1 × ω2) = φ1(ω1)φ(ω2)

as required. �

The next five lemmas are graph-theoretic. Remember that E is the set of all essential
hyperedges; let

(5.2) V =
⋃

{e : e ∈ E}

and write HE for the hypergraph (V, E). We may obtain HE by deletion of all inessential
hyperedges and all vertices which lie in inessential hyperedges only. Let (e, z) ∈ I, the set
of inessential hyperedges. By Menger’s theorem and assumptions (3.2)–(3.3), there exists
a non-empty set C(e, z) (⊆ Zd) such that every infinite path π of H which intersects the
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subset e+z.κ of vertices has the property that its vertex set V (π) satisfies C(e, z) ⊆ V (π).
We choose C(e, z) to be maximal with this property, and we have by translation-invariance
that C(e, z) = C(e, 0) + z.κ; C(e, z) is exactly the set of all vertices whose removal from
H leaves each (remaining) member of e + z.κ in some finite component of the resulting
hypergraph. As a consequence of the definition of C(e, z), the points therein may be placed
in an order, c1, c2, . . . , in such a way that, for all n, every path joining a vertex of e+z.κ to
cn+1 passes through cn (see Figure 2). Also, C(e, z) is finite since, if C(e, z) were infinite,
then, by the connectedness of H, all hyperedges in E would be inessential, in contradiction
of (3.3). We define c(e, z) to be the final vertex in the list c1, c2, . . . defined above. Let
g(e, z) be the set of all endpoints of paths of H which contain vertices in e + z.κ but not
the vertex c(e, z), and let h(e, z) be the set of all hyperedges of H which are subsets of
g(e, z) = g(e, z)∪ {c(e, z)}. Note that every hyperedge of h(e, z) is inessential, since every
infinite path intersecting g(e, z) passes through c(e, z).

Lemma 7. Let π be a finite or infinite path of H.
(a) If π is finite and both of its endpoints lie in essential hyperedges, then all of the

hyperedges of π are essential.
(b) If π is infinite, and its single endvertex lies in an essential hyperedge, then all of the

hyperedges of π are essential.

Proof. (a) Let π be a path whose endpoints u and v lie in essential hyperedges, and assume
that π contains at least one hyperedge. Note that u 6= v by the definition of a path.
Suppose that there exists an inessential hyperedge (e, z) in π. It follows that u, v /∈ g(e, z),
since vertices of g(e, z) lie in only inessential hyperedges. Therefore, u, v ∈ Zd \ g(e, z).
However, all paths from g(e, z) to the set {u, v} pass through the articulation point c(e, z),
in contradiction of the existence of π.
(b) Let π be an infinite path whose endpoint u lies in an essential hyperedge. Suppose
that there exists an inessential hyperedge (e, z) in π. By the above argument, we have
that u ∈ Zd \ g(e, z), and as above there can be no infinite path from u which uses two or
more vertices of e + z.κ. �

Lemma 8. The hypergraph HE = (V, E) is connected, and the vertex z.κ lies in V for all
z ∈ Zd.

Proof. It is a consequence of (3.3) that the origin lies in some essential hyperedge, and
therefore lies in V also. As observed previously, H is invariant under lattice shifts of the
form x 7→ x + z.κ for given z ∈ Zd. Therefore HE is similarly invariant, implying that
z.κ ∈ V for all z ∈ Zd.

Let u, v ∈ V , and let π be a path of H joining u to v. Each of the vertices u, v lies in
some essential hyperedge, and therefore all hyperedges of π are essential by Lemma 7. It
follows that u and v are in the same component of HE , whence HE is connected. �

For x ∈ Zd, let
‖x‖ = max

{
|xi| : 1 ≤ i ≤ d

}
.

Given two sets A, B ⊆ Zd, we define

d(A, B) = max
{
d(x, B) : x ∈ A

}

where
d(x, B) = min

{
‖x − y‖ : y ∈ B

}
.
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We recall the notation Λ(n) = [−n, n]d, and we point out that d(A, B) ≤ D if and only if
A ⊆ B + Λ(D). For a path π of a hypergraph H, we write V (π) and Vh(π) for the set of
vertices of π, and the set of all vertices lying in hyperedges of π, respectively. It is important
to remember that V (π) is not generally the same as Vh(π); however, V (π) ⊆ Vh(π).

Lemma 9. There exists a positive integer D such that the following holds. For all u, v ∈
Zd and any path π of Zd joining u to v (where Zd is thought of as a graph with the usual
nearest-neighbour relation)
(a) there exists a path π̂ of H joining u to v such that d(V (π), Vh(π̂)) < D, and
(b) if u, v ∈ V , then there exists a path π′ of HE joining u to v such that d(V (π), Vh(π

′)) <
D.

With this choice of D, it is the case that

Λ ⊆ Λ ⊆ Λ + Λ(D)

for all bounded boxes Λ of Zd.

Proof. By virtue of (3.2) and the invariance of H under translations by multiples of κ,
there exists a constant D1 = D1(K) such that any two vertices u, v ∈ Zd with ‖u− v‖ = 1
are connected in H by a path πuv for which Vh(πuv) ⊆ {v}+Λ(D1). It follows that, for any
pair u, v ∈ Zd, and for any path π from u to v on the graph Zd with the usual neighbour-
relation, there exists a path π̂ of H joining u to v such that Vh(π̂) ⊆ V (π)+Λ(D1). Part (a)
follows for any D satisfying D > D1. The proof of (b) is identical to that of (a), replacing
H by HE , and (3.2) by Lemma 8.

Turning to the final assertion of the lemma, let Λ be a finite box, and let Λ be defined
as before (see the text between (3.4) and (3.5)). Suppose that y /∈ Λ + Λ(D). There
exists an infinite path π of Zd (with the usual neighbour-relation) with endpoint y and
containing no vertex of Λ + Λ(D). By the proof of (a) above, there exists an infinite path
of H with endpoint y and containing no vertex of Λ. It follows that y /∈ △Λ, implying that
y /∈ Λ = Λ ∪△Λ. Therefore Λ ⊆ Λ + Λ(D) as required. �

Let Λ be a finite box of Zd, and let EΛ = EΛ∩E , the set of essential hyperedges contained
in Λ.

Lemma 10.

(a) If u1, u2 ∈ ∂Λ, then there exists a path of H joining u1 to u2 which contains only
hyperedges lying in E \ EΛ.

(b) If furthermore u1, u2 ∈ V ∩∂Λ, then there exists a path of HE joining u1 to u2 which
contains only hyperedges lying in E \ EΛ.

Proof. (a) Suppose u1, u2 ∈ ∂Λ; we may assume that u1 6= u2. By the definition of ∂Λ,
there exist infinite paths π1 and π2 of H with respective endpoints u1 and u2, and which
contain no other vertices of ∂Λ (and therefore π1 and π2 contain no hyperedges of EΛ).
Since πi is infinite, it contains some vertex vi lying outside Λ(m+ D), where D is given in
Lemma 9, and m = min{k : Λ ⊆ Λ(k)}. Now, there exists a path of Zd (as a graph with
the usual neighbour-relation) from v1 to v2 which is disjoint from Λ(m + D). By Lemma
9(a), there exists a path π3 of H joining v1 to v2 which uses no hyperedges of EΛ. The
union of π3, together with the portion of each πi between ui and vi, contains a path of the
required type joining u1 to u2.
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(b) Let u1, u2 ∈ V ∩∂Λ, and u1 6= u2. By virtue of the assumption that u1, u2 ∈ ∂Λ, there
exist infinite paths π1 and π2 of H with respective endvertices u1 and u2, and containing
no other vertices of ∂Λ. Since u1, u2 ∈ V , Lemma 7 implies that all hyperedges contained
in π1 and π2 are essential. The proof is now finished as was part (a), this time by applying
Lemma 9(b). �

Given two subsets A1 and A2 of Zd, we say that ‘A1 is 2-connected to A2’ if there exist
two vertex-disjoint paths πi = (ai,1, gi,1, ai,2, . . . , gi,ri

, ai,ri+1), i = 1, 2, where the ai,j are
vertices and the gi,j are hyperedges, such that ai,1 ∈ A1 and ai,ri+1 ∈ A2 for i = 1, 2. Note
that the paths πi are not required to be hyperedge-disjoint. If the above holds, we write
A1−→A2. If |A1 ∩ A2| ≥ 2 then it is immediate that A1−→A2, by choosing π1 and π2 to
be appropriate singleton vertices lying in A1 ∩ A2.

We say that ‘A1 is 2-connected to ∞’ if there exist two infinite vertex-disjoint paths
πi = (ai,1, gi,1, ai,2, . . . ), i = 1, 2, such that ai,1 ∈ A1 for i = 1, 2. In this case, we write
A1−→∞.

If A1 is 2-connected to A2 by paths π1, π2 satisfying Vh(πi) ⊆ Λ(M) for i = 1, 2, then

we write A1
M
−→A2.

Lemma 11. Let x ∈ Zd. There exists a positive integer Ix, depending on x only, such

that e, f + x.κ ⊆ Λ(Ix) and e
Ix−→f + x.κ for all e, f ∈ E .

Proof. Let x ∈ Zd. We claim that

(5.3) e−→f + x.κ for all e, f ∈ E .

The lemma is a consequence of (5.3), as the following argument shows. Let M1 be such
that e, f + x.κ ⊆ Λ(M1) for all e, f ∈ E . If e−→f +x.κ then there exists a positive integer

M(e, f) such that e
M(e,f)
−→ f + x.κ. Now set

M2 = max{M(e, f) : e, f ∈ E},

and Ix = max{M1, M2}.
Next we prove (5.3). Let e, f ∈ E . If e = f + x.κ then |e ∩ (f + x.κ)| ≥ 2 and the

conclusion is immediate; therefore we may assume that e 6= f +x.κ. Let F be the maximal
number of vertex-disjoint paths joining vertices in e to vertices in f +x.κ. Certainly F ≥ 1
since H is connected. If F ≥ 2 then e−→f + x.κ. Suppose then that F = 1. By Menger’s
theorem, there exists a vertex v such that every path from e to f + x.κ passes through v.
Since e (respectively f +x.κ) is essential, there exist two vertex-disjoint paths π1(e), π2(e)
connecting vertices in e to ∞ (respectively π1(f), π2(f) connecting vertices in f + x.κ to
∞).

There exists a path νe of minimal length joining v to some vertex of V (π1(e))∪V (π2(e)).
We pick such a path according to some rule, and may suppose without loss of generality
that νe has an endpoint in π1(e), say we. We pick similarly a path νf , of minimal length,
and joining v to some vertex of V (π1(f)) ∪ V (π2(f)); we may suppose that νf has an
endpoint in π1(f), say wf . The union of the paths π1(e), νe, νf , π1(f) contains a path
joining some vertex of e to some vertex of f +x.κ, viz., the subpath of π1(e) from e to we,
followed by νe and νf , followed by the subpath of π1(f) joining wf to f + x.κ. Certainly
this is an alternating sequence v1, h1, v2, . . . , hs, vs+1 of vertices and hyperedges such that
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v1 ∈ e, vs+1 ∈ f + x.κ, and {vi, vi+1} ⊆ hi for 1 ≤ i ≤ s. If this sequence is not itself a
path, then a path may be obtained from it by a process of loop-removal. In this way we
obtain a path π joining some vertex of e to some vertex of f + x.κ which is vertex-disjoint
from π2(e) and π2(f).

Let N be a positive integer such that Vh(π) ⊆ Λ(N). Since π2(e) and π2(f) are infinite,
they contain (respectively) vertices xe and xf lying outside Λ(N +D), where D is given by
Lemma 9. Now xe and xf are joined by a path of Zd (with the usual neighbour-relation)
which lies entirely outside Λ(N + D). By Lemma 9, there exists a path π′ of H joining xe

to xf such that Vh(π′)∩Λ(N) = ∅. The union of π2(e), π′, and π2(f) contains a path π′′

of H, joining some vertex of e to some vertex of f + x.κ, which is vertex-disjoint from π.
However, v does not lie on π′′, which contradicts the definition of v. It follows that F 6= 1,
and the proof is complete. �

Let Λ be a finite box of Zd, let p̃ = (pe,z : (e, z) ∈ EΛ) be a vector of reals satisfying
0 ≤ pe,z ≤ 1, and let q > 0. From p̃ we construct the vector p̂ = (p̂e,z : (e, z) ∈ EΛ) by

(5.4) p̂e,z =

{
pe,z if (e, z) ∈ E

0 if (e, z) ∈ I.

Let Ω′
Λ be the set of all configurations ω′ =

(
ω′(e, z) : (e, z) ∈ E

)
with ω′(e, z) = 1 if

(e, z) /∈ EΛ, and let F ′
Λ be the σ-field of all subsets of Ω′

Λ.
Next we define some probability measures. Let φΛ,ep,q be the measure on (ΩΛ,FΛ) given

by (4.1), and let φ′
Λ,ep,q be the probability measure on (Ω′

Λ,F ′
Λ) given by

(5.5) φ′
Λ,ep,q(ω

′) =
1

Z

{ ∏

(e,z)∈EΛ

pω′(e,z)
e,z (1 − pe,z)

1−ω′(e,z)

}
qk(ω′), ω′ ∈ Ω′

Λ;

here, Z is the appropriate normalizing factor, and k(ω′) is the number of components of
(V, η(ω′)), where η(ω′) = {(e, z) ∈ E : ω′(e, z) = 1}.

For ω ∈ ΩΛ, we define ω′ (∈ Ω′
Λ) by

ω′(e, z) = ω(e, z) if (e, z) ∈ E .

For A′ ∈ F ′
Λ, we define the event A (∈ FΛ) as the set of all ω (∈ ΩΛ) such that ω′ ∈ A′;

thus, A is the set of all configurations in ΩΛ whose projections onto E lie in A′, i.e.,

A =
(
A′ × {0, 1}E\E

)
∩ ΩΛ.

Lemma 12. For any A′ ∈ F ′
Λ,

(5.6) φΛ,ep,q(A) = φΛ,bp,q(A) = φ′
Λ,ep,q(A

′).

This amounts to saying that, for any event which is defined in terms of the states of
the essential elements of EΛ only, this event is independent of the states of the inessential
elements.

Proof. Let A′ ∈ F ′
Λ. It suffices to prove that

(5.7) φΛ,ep,q(A) = φ′
Λ,ep,q(A

′),
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since φ′
Λ,bp,q = φ′

Λ,ep,q by (5.4) and (5.5). Although configurations in ΩΛ and Ω′
Λ have

infinitely many coordinates (since there are infinitely many hyperedges in E and E), we
may think of φΛ,ep,q and φ′

Λ,ep,q as being measures on finite hypergraphs derived from H by

identifying all vertices not belonging to Λ \ ∂Λ. To this end we introduce the operator TΛ

which performs the required identification. That is, for u ∈ Zd, we define

TΛ(u) =

{
u if u ∈ Λ \ ∂Λ

I if u /∈ Λ \ ∂Λ,

where I is a title for the composite vertex obtained by such an identification. We write
TΛ(e, z) for the set of vertices in TΛ(e + z.κ), where (e, z) ∈ E, and we denote by TΛH (re-
spectively TΛHE) the hypergraph obtained from H (respectively HE) by this identification.

We think of φΛ,ep,q as the random-cluster measure on TΛH, and of φ′
Λ,ep,q as the random-

cluster measure on TΛHE ; this may be done as a consequence of Lemma 10, on observing
that, if ω ∈ ΩΛ, then ω(e, z) = 1 for all (e, z) /∈ EΛ and ω′(e, z) = 1 for all (e, z) ∈ E \ EΛ.

Let (e, z) be an inessential hyperedge of EΛ, i.e., (e, z) ∈ I ∩ EΛ (= EΛ \ EΛ). Making
use of Lemma 10 and the discussion prior to Lemma 7, we have that the hypergraphs
TΛCe,z and TΛDe,z, where Ce,z =

(
g(e, z), h(e, z)

)
and De,z =

(
Zd \ g(e, z), E \ h(e, z)

)
,

have a unique vertex in common (viz. TΛ(c(e, z))). Furthermore, TΛH may be expressed
as the union TΛCe,z ∪ TΛDe,z of two hypergraphs having exactly one vertex in common.
In addition, the event A′ is defined in terms of the states of essential hyperedges only, each
of which has image (under TΛ) belonging to TΛDe,z. It follows from Lemma 6 that A′ is
independent of all hyperedge-states in Ce,z, which is to say that

(5.8) φΛ,ep,q(A) = φ̂e,z(Ae,z)

where φ̂e,z is the random-cluster measure defined as was φΛ,ep,q but on the smaller hyper-

graph De,z, and Ae,z is the set of all configurations in {0, 1}E\h(e,z) whose projections onto

E lie in A′.
Having dealt with the inessential hyperedge (e, z) and the associated region (g(e, z),

h(e, z)), we pick another inessential element of EΛ, and iterate the argument. Once all the
inessential elements of EΛ have been removed, one obtains (5.7) in like manner as (5.8). �

6. Remaining proofs

Proof of Theorem 1. (a) Let A (∈ F) be the event {0 ↔ ∞}. By Lemmas 7 and 8, the
states of inessential hyperedges are irrelevant to the occurrence or non-occurrence of A,
and therefore

(6.1) A = A′ × {0, 1}E\E

where A′ (⊆ {0, 1}E) is the set of configurations of essential hyperedges in which there
exists an infinite path beginning at the origin.

We may apply Lemma 12 to the event A′ ∩ Ω′
Λ (∈ F ′

Λ) to deduce that

(6.2) φΛ,ep,q(A ∩ ΩΛ) = φΛ,bp,q(A ∩ ΩΛ) = φ′
Λ,ep,q(A

′ ∩ Ω′
Λ),
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in the notation of that lemma. Therefore

(6.3) θΛ(p, q) = θΛ(p̂, q)

in the notation of Theorem 1. The claim of part (a) follows in the limit as Λ ↑ Zd.
(b) Let q > 1. Let p ∈ [0, 1]L be such that pe > 0 for all e ∈ E , and let θ′Λ(p, q) = φ′

Λ,ep,q(A
′)

where p̃ is given by pe,z = pe, and A′ is defined above. We have, by (6.2), that

(6.4) θΛ(p, q) = θ′Λ(p, q),

and therefore
θ′(p, q) = lim

Λ↑Zd
θ′Λ(p, q)

exists and satisfies

(6.5) θ′(p, q) = θ(p, q).

Once Theorem 2 has been proved, it will follow from (6.4) that there exists a positive
integer N and a continuous function α : (0, 1)E → (0,∞) such that θ′n(p, q) = θ′Λ(n)(p, q)

satisfies

(6.6)
∂θ′n
∂pe

≤ α(p)
∂θ′n
∂pf

for all n ≥ N and all e, f ∈ E . We now follow the proof of Theorem 2 of [BGK] exactly,
to deduce that there exist positive constants δ, ν, and ǫ0, together with a full subset F of
RL, such that

(6.7) θ′(p + νǫg, q) ≤ θ′(p + ǫh, q) ≤ θ′(p + δǫg, q)

for all 0 < ǫ < ǫ0 and all g,h ∈ F . Inequality (3.9) is a consequence of this, by applying
(6.5). �

Proof of Theorem 2. It is a consequence of (3.8) that the probability of the event A =
{0 ↔ ∞} is unchanged by setting pe = 0 for all hyperedges e such that (e, 0) is inessential.
As is implicit in Lemma 12, this amounts to working with the connected hypergraph HE

containing the essential hyperedges only, rather than working with the original hypergraph
H. We shall find it slightly more convenient to work instead on H with pe set to some
fixed value for e ∈ I, say pe = 1

2 . Such values are immaterial to the probability of A by
virtue of (3.8).

Let p ∈ (0, 1)L and suppose pe = 1
2 for e ∈ I. Let

(6.8) π(p) = min{pe, 1 − pe : e ∈ E},

and let p̃ = (pe,z : (e, z) ∈ E) satisfy

(6.9) 1
2π(p) < pe,z < 1 − 1

2π(p) for (e, z) ∈ E ,

and pe,z = pe = 1
2 for (e, z) ∈ I. Let n be a positive integer, and let φn be the measure

defined in (4.1) with Λ = Λ(n).
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We have that

(6.10)
∂θn

∂pe
=

∑

z:(e,z)∈EΛ(n)

∂θn

∂pe,z

∣∣∣∣ep=p

, e ∈ E ,

where θn(p̃, q) = φn(A). In writing p̃ = p we mean the second derivative to be evaluated
by setting pe,z = pe for all (e, z) ∈ EΛ(n).

Let (e, z), (f, x) ∈ EΛ(n), and let M be a positive integer. We write (e, z)
M,n
−→(f, x) if

there exist two paths π1 and π2 of H, each joining a vertex of e+z.κ to a vertex of f +x.κ,
such that
(a) these paths are vertex-disjoint,

(b) Vh(πi) ∩ Λ(n) ⊆ Λ(M) + z.κ for i = 1, 2, and also e + z.κ, f + x.κ ⊆ Λ(M) + z.κ,

(c) no more than one of π1, π2 contains vertices of ∂Λ(n).
If (a), (b), and (c) are satisfied, it is a consequence of Lemma 7 that every hyperedge
of π1 and π2 is essential, and in addition at least one of π1, π2 uses only hyperedges

in EΛ(n). We write (e, z)
M,n
⇐⇒(f, x) if two such paths π1, π2 may be found which satisfy

Vh(π1) ∩ Vh(π2) = ∅ in addition.
The principal steps in the proof of Theorem 2 are contained in the next two lemmas.

Lemma 13. Let M be a positive integer. There exists a continuous function αM :
(0, 1)L → (0,∞) such that

(6.11)
∂θn

∂pe,z
≤ αM (p)

∂θn

∂pf,x

for all (e, z), (f, x) ∈ EΛ(n) such that (e, z)
M,n
⇐⇒(f, x).

Proof. This fundamental lemma is proved using Proposition 5 in a manner closely related
to the proof of Theorem 1 of [BGK].

Take A = {0 ↔ ∞} as usual, so that θn(p̃, q) = φn(A). Let (X, Y ) be the Markov chain
constructed in Section 4 for this event, using the region Λ = Λ(n). Suppose that (e, z)
and (f, x) satisfy the condition of the lemma, and let π1 = (u1, a1, u2, . . . , ar−1, ur) and
π2 = (v1, b1, v2, . . . , bs−1, vs) be paths satisfying (a)–(c) above, and with u1, v1 ∈ e + z.κ,
ur, vs ∈ f + x.κ, and Vh(π1) ∩ Vh(π2) = ∅; by (c), we may assume that π1 contains no

vertex of ∂Λ(n), and hence ai ∈ EΛ(n) for all i. See Figure 3.
By Proposition 5,

(6.12)
∂θn

∂pe,z

/
∂θn

∂pf,x
= γ(p̃)

limt→∞

{
P (Xt(e, z) = 0, Yt(e, z) = 1)

}

limt→∞

{
P (Xt(f, x) = 0, Yt(f, x) = 1)

}

for some continuous γ which is positive and finite when 0 < p̃ < 1. We shall show that
there exists ν(p̃), continuous and strictly positive when 0 < p̃ < 1, such that

(6.13) P
(
Xt+3(f, x) = 0, Yt+3(f, x) = 1

)
≥ ν(p̃) P

(
Xt(e, z) = 0, Yt(e, z) = 1

)
for all t.

This clearly implies that

(6.14)
limt→∞

{
P (Xt(e, z) = 0, Yt(e, z) = 1)

}

limt→∞

{
P (Xt(f, x) = 0, Yt(f, x) = 1)

} ≤
1

ν(p̃)
,
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which in turn yields (6.11) with some αM satisfying αM (p) ≥ γ(p̃)/ν(p̃), via (6.9) and
(6.12). Inequality (6.13) will be obtained by showing that

(6.15) P
(
Xt+3(f, x) = 0, Yt+3(f, x) = 1

∣∣Xt(e, z) = 0, Yt(e, z) = 1
)
≥ ν(p̃).

We now prove (6.15). Let Bz be the collection of all hyperedges of H which are subsets

of (z.κ + Λ(M)) ∩ Λ(n); these are hyperedges which are ‘near’ to e + z.κ and lie in Λ(n).
In particular, (e, z), (f, x) ∈ Bz, and in addition Bz contains all hyperedges of π1 and π2

which belong to EΛ(n). Therefore ai ∈ Bz for all i. We shall say that a hyperedge (g, y) is
‘present in the process Z at time s’ if Zs(g, y) = 1. We introduce the following events:

Vt =
{
Xt(e, z) = 0, Yt(e, z) = 1

}
,

Wt =
{
Xt(f, x) = 0, Yt(f, x) = 1

}
.

In addition we define the events V i, i = 1, 2, 3, by

(i) V 1 is the event that: during the time-interval (t, t+1], all hyperedges in Bz which are
present in Xt are removed, and no hyperedges in Bz are added to X ; (e, z) remains
present in Y ,

(ii) V 2 is the event that: during (t + 1, t + 2], the hyperedges a1, a2, . . . , ar−1, b1, b2, . . . ,
bs−1, (f, x) are added to X , but no other hyperedges in Bz are added to X ; (e, z)
remains present in Y ,

(iii) V 3 is the event that: during (t + 2, t + 3], the hyperedge (f, x) is removed from X
but not from Y .

Note that, due to the coupling of X and Y , the occurrence of V 1 may force the removal
of some hyperedges from Y during (t, t + 1]. However, on Vt, (e, z) is absent from X
and present in Y at time t. Thus, for V 1 to occur, Xs(e, z) and Ys(e, z) must remain
constant for t < s ≤ t + 1. Similarly, the occurrence of V 2 will force the addition of
a1, a2, . . . , ar−1, b1, b2, . . . , bs−1, (f, x) to Y , if not already present at time t + 1, because
Xs ≤ Ys (see also (4.11)–(4.13)). If any of the hyperedges a1, a2, . . . , ar−1, b1, b2, . . . , bs−1

lie outside EΛ(n), then it is automatically present at all times in both X and Y , and the

requirement on such a hyperedge under V 2 is vacuous. Note that none of the events Vt,
V i for 1 ≤ i ≤ 3, places any constraint on the states of hyperedges outside Bz.

Clearly Vt ∩V 1 ∩ V 2 ∩ V 3 ⊆ Wt+3. In order to prove (6.15) it therefore suffices to show
that

(6.16) P (V 1 ∩ V 2 ∩ V 3 | Vt) ≥ ν(p̃).

Assume now that Vt occurs. According to (4.10) and (4.11), each hyperedge (g, y)
(∈ EΛ(n)) that is present in X is lost at a rate which is bounded away from 0, uniformly in
the states of all other edges (and uniformly in all p̃ satisfying (6.9)). Moreover, the total
rate at which changes occur within Bz is no larger than the following upper bound for the
sum of birth and death rates,

(6.17) |Bz|

(
1 + 2qµ max

{
1 − pg,y

pg,y
: (g, y) ∈ EΛ(n)

})
≤ |Bz|

(
1 + 2qµ 2 − π(p)

π(p)

)
= U
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by (4.6)–(4.11), where µ = max{|e| : e ∈ K} − 1; the bound U does not depend on n or z
but only on M and p. Therefore there exists ν1(p̃) such that

(6.18) P (V 1 | Vt) ≥ ν1(p̃) > 0;

the quantity ν1(p̃) (and quantities νi(p̃) to be defined soon) may be chosen to be continuous
and strictly positive when 0 < p̃ < 1, and not to depend on the values of n and z.

Underlying the argument of the previous paragraph is a small lemma concerning Markov
chains, which we choose not to state formally. Such a lemma amounts roughly to the
following. If, for each hyperedge (g, y) belonging to some set G of bounded cardinality,
the jump-rate of some transition of the state of (g, y) is bounded away from 0, uniformly
in the current states of all other hyperedges, then the probability that the appropriate
transitions take place on all the hyperedges in G during a given time-interval is uniformly
bounded away from 0. Similarly, if the total jump-rate on a collection G′ of hyperedges
is uniformly bounded away from ∞, then the probability of any change at all on G′ is
uniformly bounded away from 1. A simple way of seeing this is to construct the chain in
terms of ‘exponential alarm clocks’ sitting on the different hyperedges of G and G′, so that
each hyperedge examines its state whenever its alarm clock rings, and it changes its current
state according to a probability distribution which may be a function of the current states
of the other hyperedges.

Suppose that the event Vt ∩ V 1 occurs, and consider the event V 2. Each hyperedge
(g, y) (∈ Bz) is acquired by X (and also by Y if not already present there) at rate 1 (see
(4.9)); therefore there exists ν2(p̃) of the required form such that

(6.19) P (V 2 | Vt ∩ V 1) ≥ ν2(p̃) > 0.

Suppose that Vt ∩ V 1 ∩ V 2 occurs, and consider V 3. At time t + 2, the only hyper-
edges of Bz which are present in X are (f, x) together with any ai and bj belonging
to EΛ(n). In general Yt+2 contains more hyperedges than does Xt+2, and certainly at
least (e, z), a1, a2, . . . , ar−1, b1, b2, . . . , bs−1, (f, x). We have therefore that Df,x(Xt+2) >
Df,x(Yt+2); see Figure 3 and remember that Vh(π1) ∩ Vh(π2) = ∅. It follows by (4.11)–
(4.13) that the rate at which (f, x) is removed from Y but not from X is at least

(6.20)
1 − pf,x

pf,x
(q − 1) ≥

π(p)

2 − π(p)
(q − 1) > 0.

This implies that

(6.21) P (V 3 | Vt ∩ V 1 ∩ V 2) ≥ ν3(p̃) > 0

for some suitable ν3(p̃). This in turn implies (6.15) with ν(p̃) = ν1(p̃)ν2(p̃)ν3(p̃); as
described before, (6.11) follows for a suitable function αM . �

Lemma 14. Let M be a positive integer. There exists a continuous function βM :
(0, 1)L → (0,∞) such that

(6.22)
∂θn

∂pe,z
≤ βM (p)

∂θn

∂pf,x
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for all (e, z), (f, x) ∈ EΛ(n) such that (e, z)
M,n
−→(f, x).

Proof. We begin with a graph-theoretic observation. Let π = (v1, e1, v2, . . . , er, vr+1) be
a path of H. By the definition of a path, the vi and ej are distinct, but there may exist
vi and ej such that vi ∈ ej but j /∈ {i − 1, i} (if no such vi, ej exist, we call π loop-free).
However, there exists a path π′′ = (u1 = v1, f1, u2, . . . , fs, us+1 = vr+1) obtained from π
by deleting vertices and hyperedges, which joins v1 to vr+1 and has the further property
that ui ∈ fj if and only if j ∈ {i − 1, i}. Such a path π′′ is obtained from π by a process
of loop-removal, as follows. Let J = J(π) and K = K(π) be given by

J = min{j : vj ∈ ek for some k > j},

K = min{k : vj ∈ ek for some j > k + 1},

with the convention that the minimum of the empty set is ∞. If J ≤ K and J < ∞, we
remove from π the sequence eJ , vJ+1, . . . , vJ ′ where

J ′ = max{l : vJ ∈ el};

note that J ′ < r + 1, so that vJ ′ 6= vr+1. If K < J (and so K < ∞, also), we remove from
π the sequence vK+1, eK+1, . . . , eK′−1 where

K ′ = max{m : vm ∈ eK};

note that K + 1 ≥ 2, so that vK+1 6= v1. This results in a new path π′ which is strictly
shorter than π whenever either J(π) or K(π) is finite. We iterate this construction, ob-
taining thus a sequence π, π′, . . . , π′′ of paths, where π′′ joins v1 to vr+1 and satisfies
J(π′′), K(π′′) = ∞; π′′ is the required path.

Next, we describe a construction on pairs of paths. Let (h, x) ∈ E. Suppose that (π1, π2)
is a pair of finite vertex-disjoint paths of H, say πi = (ai,1, gi,1, ai,2, . . . , gi,ri

, ai,ri+1) where
the ai,j are vertices and the gi,j are hyperedges. We assume that the triple (h, x), π1, π2 is
such that ai,1 ∈ h + x.κ but ai,j /∈ h + x.κ for i = 1, 2 and j ≥ 2. We assume in addition
that π1 and π2 have the property described above, i.e.,

(6.23) ai,j ∈ gi,k if and only if k ∈ {j − 1, j}, for i = 1, 2.

We shall describe a method which replaces the pair (π1, π2) by two pairs (σ1, σ2) and
(π′

1, π
′
2) of paths, where σi and π′

i are (apart from minor changes) subpaths of πi, for
i = 1, 2.

Let
A1 = min{j : g1,j ∩ Vh(π2) 6= ∅, 1 ≤ j ≤ r1};

if no such j exists, then Vh(π1) ∩ Vh(π2) = ∅ and we shall do nothing. Assume then that
1 ≤ A1 ≤ r1, and let

A2 = min{k : g1,A1
∩ g2,k 6= ∅, 1 ≤ k ≤ r2},

B1 = max{j : a1,j ∈ g2,A2
, 1 ≤ j ≤ r1},

B2 = max{k : a2,k ∈ g1,A1
, 1 ≤ k ≤ r2},
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whenever these two maxima exist. In order to simplify the notation a little, we write

α1 = a1,A1
, β1 = a1,A1+1, γ1 = a1,B1

, e1 = g1,A1
,

α2 = a2,A2
, β2 = a2,A2+1, γ2 = a2,B2

, e2 = g2,A2
.

Suppose first that 1 < Ai ≤ ri for i = 1, 2; there is an extra complication when Ai = 1
for some i, and we shall deal with this later. Since Ai > 1 for i = 1, 2, it follows from the
definition of the Ai that

α1 /∈ e2, α2 /∈ e1.

There are several cases, illustrated in Figure 4.

Case A. If β2 ∈ e1, then A2 + 1 ≤ B2 ≤ r2 and we define

σ1 = (a1,1, g1,1, . . . , g1,A1−1, α1),

σ2 = (a2,1, g2,1, . . . , a2,A2−1, α2, e2, β2),

π′
1 = (β1, g1,A1+1, . . . , g1,r1

, a1,r1+1),

π′
2 = (γ2, g2,B2

, . . . , g2,r2
, a2,r2+1),

(h′, x′) = e1 (= g1,A1
).

Case B. If β2 /∈ e1 but β1 ∈ e2, then A1 + 1 ≤ B1 ≤ r1 and we define

σ1 = (a1,1, g1,1, . . . , g1,A1−1, α1, e1, β1),

σ2 = (a2,1, g2,1, . . . , g2,A2−1, α2),

π′
1 = (γ1, g1,B1

, . . . , g1,r1
, a1,r1+1),

π′
2 = (β2, g2,A2+1, . . . , g2,r2

, a2,r2+1),

(h′, x′) = e2 (= g2,A2
).

Case C. If β2 /∈ e1 and β1 /∈ e2, we pick a vertex w satisfying w ∈ e1 ∩ e2 (note that
w /∈ V (π1) ∩ V (π2) by (6.23)) and define

σ1 = (a1,1, g1,1, . . . , g1,A1−1, α1),

σ2 = (a2,1, g2,1, . . . , a2,A2−1, α2, e2, w),

π′
1 = (β1, g1,A1+1, . . . , g1,r1

, a1,r1+1),

π′
2 = (w, e2, β2, g2,A2+1, . . . , g2,r2

, a2,r2+1),

(h′, x′) = e1 (= g1,A1
).

Suppose now that A1 = 1 but A2 > 1. In this case it may occur that α1 ∈ e2. If
α1 /∈ e2, we act as above. On the other hand:
Case D. If α1 ∈ e2, then 1 ≤ B1 ≤ r1 and we define

σ1 = (α1),

σ2 = (a2,1, g2,1, . . . , g2,A2−1, α2),

π′
1 = (γ1, g1,B1

, . . . , g1,r1
, a1,r1+1),

π′
2 = (β2, g2,A2+1, . . . , g2,r2

, a2,r2+1),

(h′, x′) = e2 (= g2,A2
).
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Suppose that A1 > 1 but A2 = 1. If α2 /∈ e1, we act as in Cases A, B, C, above. On
the other hand:
Case E. If α2 ∈ e1, then 1 ≤ B2 ≤ r2 and we define

σ1 = (a1,1, g1,1, . . . , g1,A1−1, α1),

σ2 = (α2),

π′
1 = (β1, g1,A1+1, . . . , g1,r1

, a1,r1+1),

π′
2 = (γ2, g2,B2

, . . . , g2,r2
, a2,r2+1),

(h′, x′) = e1 (= g1,A1
).

Finally suppose that A1 = A2 = 1. If α1 /∈ e2 and α2 /∈ e1, we act according to Cases
A, B, and C. If α1 ∈ e2 we act according to Case D, and if α1 /∈ e2 but α2 ∈ e1 we act
according to Case E.

We do one more thing before continuing. Whenever Case C is invoked, a new vertex
w is involved. If (under this case) w lies in some hyperedge of π′

2 (given in Case C) in
addition to e2, then the new path π′

2 is not loop-free. If this occurs, we replace π′
2 by a

new path obtained from π′
2 by the process of loop-removal described at the beginning of

this proof. Rather than introduce more notation, we shall continue to denote this new
path by π′

2.
By way of outcome, we obtain a family of objects which we write as {(h, x), σ1, σ2,

(h′, x′), π′
1, π

′
2}, and the following may be checked in each of the above cases.

(i) σ1 and σ2 are vertex-disjoint paths having initial endpoints in h + x.κ and final
endpoints in h′ + x′.κ, and such that Vh(σ1) ∩ Vh(σ2) = ∅; σi is a subpath of πi for
i = 1, 2.

(ii) π′
1 and π′

2 are vertex-disjoint paths having initial endpoints in h′ + x′.κ and having
the same final endpoints as π1 and π2. In addition, π′

1 is a subpath of π1, and every
hyperedge of π′

2 lies in π2. The π′
i have no loops; π′

i is no longer than πi for i = 1, 2,
and is strictly shorter for at least one value of i.

(iii) (h′, x′) contains a vertex of π1, and lies in either π1 or π2.
Let (e, z), (f, x) satisfy the condition of the lemma. Let πi = (ui = ai,1, gi,1, ai,2, . . . ,

gi,ri
, ai,ri+1 = vi), i = 1, 2, be vertex-disjoint paths with ui ∈ e + z.κ, vi ∈ f + x.κ,

Vh(πi) ∩ Λ(n) ⊆ z.κ + Λ(M), for i = 1, 2, and assume that π1 contains no vertices of

∂Λ(n). We may assume that ai,j 6= (e, z), (f, x) for all i, j; if this fails, we replace π1 and
π2 by appropriate subpaths. Without loss of generality, we may suppose that (6.23) holds;
if (6.23) fails, then we replace (π1, π2) by subpaths obtained by the process of loop-removal.
Let H ′ = {j : g1,j ∩ Vh(π2) 6= ∅} be the set of indices of hyperedges in π1 which intersect
hyperedges lying in π2.

If H ′ = ∅, then Vh(π1) ∩ Vh(π2) = ∅, so that (e, z)
M,n
⇐⇒(f, x), whence

(6.24)
∂θn

∂pe,z
≤ αM (p)

∂θn

∂pf,x
,

by Lemma 13.
Assume that H ′ 6= ∅, and write (e0, v0) = (e, z). We apply the above construction to

the triple (e0, v0), π1, π2 to obtain a family {(e0, v0), σ1
1, σ

1
2 , (e

1, v1), π1
1, π

1
2}. Having con-

structed the triple (et, vt), πt
1, π

t
2 for some t, we apply the construction to this triple in order
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to obtain a new family {(et, vt), σt+1
1 , σt+1

2 , (et+1, vt+1), πt+1
1 , πt+1

2 }, whenever this is possi-
ble (i.e., whenever Vh(πt

1)∩ Vh(πt
2) 6= ∅). In this way we obtain a sequence (et, vt), πt

1, π
t
2,

0 ≤ t ≤ k, of triples. The final term is such that Vh(πk
1 ) ∩ Vh(πk

2 ) = ∅. We then set
(ek+1, vk+1) = (f, x).

Each hyperedge (et, vt), 1 ≤ t ≤ k, lies in either π1 or π2; by Lemma 7, all hyperedges
of π1 and π2 are essential, and therefore each (et, vt) is essential. Furthermore, by (iii),

each (et, vt) contains a vertex of π1; since V (π1) ⊆ int(Λ(n)), it is the case that (et, vt)
lies in EΛ(n). Therefore (et, vt) ∈ EΛ(n) for 1 ≤ t ≤ k.

Note that the value of k depends generally on the choice of (e, z), (f, x), M , and n.
However, et + vt.κ ⊆ z.κ +Λ(M) for 0 ≤ t ≤ k + 1, and the (et, vt) are distinct. There are
only finitely many hyperedges contained in z.κ+Λ(M), and, by the translation-invariance
of H, we may find a constant K(M), depending on M alone, such that k ≤ K(M) for all
appropriate (e, z), (f, x), and n.

As a consequence of the method of construction of the (et, vt), and particularly (i)–(iii)
above, we have that

(e, z) = (e0, v0)
M,n
⇐⇒(e1, v1)

M,n
⇐⇒(e2, v2)

M,n
⇐⇒· · ·

M,n
⇐⇒(ek, vk)

M,n
⇐⇒(ek+1, vk+1) = (f, x).

We apply Lemma 13 iteratively, to obtain that

(6.25)
∂θn

∂pe,z
≤ αM (p)k+1 ∂θn

∂pf,x
.

The required inequality (6.22) follows from (6.24) and (6.25) by setting

βM (p) = max
{
1, αM(p)K(M)+1

}
. �

Lemma 14 is the main intermediate step in proving Theorem 2, in the following way. We
shall use (6.10) in proving (3.10), in two stages. We partition the set EΛ(n) into two subsets,

containing respectively those hyperedges which are ‘close’ to the boundary of Λ(n) and

those hyperedges which lie in the ‘interior’ of Λ(n). For hyperedges (e, z) of the latter type,
Lemma 14 may be applied to show that the forthcoming (6.26) is valid for some suitable
function β. Unfortunately, the corresponding argument for hyperedges of the former type
is somewhat more complicated, and we deal with such cases later (see Lemmas 16 and 17).

Lemma 15. Let I = I0 be given as in Lemma 11. There exists a positive integer N
together with a continuous function β : (0, 1)L → (0,∞), such that the following holds. Let

e, f ∈ E . For all n ≥ N , and all z ∈ Zd such that z.κ + Λ(3I) ⊆ Λ(n),

(6.26)
∂θn

∂pe,z
≤ β(p)

∂θn

∂pf,z
.

Proof. Suppose e, f ∈ E , and z.κ + Λ(3I) ⊆ Λ(n). We have from Lemma 11 that e, f ⊆

Λ(I), so that e + z.κ, f + z.κ ⊆ Λ(n), implying that (e, z), (f, z) ∈ EΛ(n). Also e
I

−→f ,
which is to say that there exist vertex-disjoint paths π1 and π2, joining e to f , and using
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hyperedges contained in Λ(I). The translated paths π1 + z.κ, π2 + z.κ join e + z.κ to
f + z.κ, and use hyperedges contained in z.κ + Λ(I). We claim that

(6.27)
(
z.κ + Λ(I)

)
∩ ∂Λ(n) = ∅,

from which it follows that e + z.κ
I,n
−→f + z.κ. This in turn implies, by Lemma 14, that

(6.26) holds with β = βI and for all large n.

As for the proof of (6.27), suppose that
(
z.κ + Λ(I)

)
∩ ∂Λ(n) 6= ∅. There exists (by

Lemma 7 and the definition of ∂Λ(n)) an essential hyperedge (g, y) which intersects both

z.κ + Λ(I) and Λ(n)
c

= Zd \ Λ(n). However, by Lemma 11, all essential hyperedges have
diameter (in the supremum norm ‖·‖) not exceeding 2I, in contradiction of the assumption

that z.κ + Λ(3I) ⊆ Λ(n). �

Lemma 15 goes most of the way towards proving Theorem 2, by summing (6.26) over
all appropriate z and applying (6.10). Unfortunately, a special and non-trivial argument

is necessary in order to deal with hyperedges (e, z) which lie near to the boundary of Λ(n),

i.e., those hyperedges (e, z) ∈ EΛ(n) for which z.κ + Λ(3I) * Λ(n). Intuitively, such a
‘boundary effect’ should be negligible in comparison with the ‘volume effect’ provided by
Lemma 15. In order to achieve this final step, we introduce a classification of hyperedges
in EΛ(n).

Let int(Λ) = Λ \ ∂Λ. We say that a hyperedge (e, z) (∈ EΛ(n)) is n-essential if there
exists a path π connecting the origin to some vertex of e + z.κ, and using only vertices of
int(Λ(n)) (if the origin belongs to e + z.κ, this path may be taken to contain the origin

only, assuming that n is such that 0 ∈ int(Λ(n))). Since 0 lies in an essential hyperedge,
we have by Lemma 7 that all hyperedges in such a path π are essential.

The summation in (6.10) may be restricted to hyperedges (e, z) which are n-essential,
as part (a) of the following lemma indicates. Part (b) asserts that all hyperedges of EΛ(n)

which are sufficiently distant from ∂Λ(n) are n-essential. Part (c) asserts roughly that, if
(e, z) is n-essential and R ≥ 1, then there is a path from e + z.κ to 0 which, apart from
boundedly many vertices lying close to z.κ, uses only vertices contained in Λ(n − R).

Lemma 16.

(a) Let (e, z) ∈ EΛ(n) and suppose that (e, z) is not n-essential. Then

(6.28)
∂θn

∂pe,z
= 0.

(b) There exists an absolute constant J such that (e, z) (∈ EΛ(n)) is n-essential for all

e ∈ E and all z (∈ Zd) satisfying z.κ ∈ Λ(n − J).
(c) For any positive integer R, there exists a positive integer A = A(R) such that the

following holds. For all sufficiently large n, and for all n-essential hyperedges (e, z),

there exists a path π joining a vertex of e + z.κ to 0 with V (π) ⊆ int
(
Λ(n)

)
, and

satisfying V (π) ∩ Λ(n − R)c ⊆ z.κ + Λ(A).

Proof. (a) Suppose that (e, z) (∈ EΛ(n)) is not n-essential. Since (e, z) is essential, there

exist at least two vertex-disjoint paths joining e + z.κ to ∂Λ(n). Since (e, z) is not n-
essential, every path of H joining some vertex of e + z.κ to 0 contains some vertex of



36 GEOFFREY GRIMMETT

∂Λ(n). Hence, in the finite hypergraph obtained from H by identifying all vertices not in

int(Λ(n)), the composite vertex being labelled I, it is the case that all paths from e + z.κ
to 0 pass through I. By Lemma 6, the event that 0 and I are in the same component is
independent of the state of (e, z), whence (6.28) follows.
(b) Let D be as in Lemma 9, and I = I0 as in Lemma 11. Let J = 3I + D. Suppose
z.κ ∈ Λ(n − J) and let e ∈ E ; note that (e, z) ∈ EΛ(n) since

e + z.κ ⊆ z.κ + Λ(I) ⊆ Λ(n − D − 2I).

There exists a path of Zd (thought of as a graph with the usual neighbour-relation) joining
0 to some vertex of e + z.κ and using only vertices of Λ(n − D − 2I). By Lemma 9, there
exists a path π of HE joining 0 to some vertex of e + z.κ using hyperedges contained in
Λ(n − 2I − 1). Since no essential hyperedge has diameter exceeding 2I, we have that no

vertex of π lies in ∂Λ(n).
(c) For any set B of vertices of H, we let ∂B be the set of vertices u of B for which there
exists v (/∈ B) such that u ∼ v. We denote by △B the set of all vertices v (/∈ B) with the
property that every infinite path of H beginning at v contains some vertex of B. We write
B = B ∪△B.

Let R, n ≥ 1, and let (e, z) be an n-essential hyperedge. For any path π joining a vertex
of e + z.κ to 0, we define

B(π, n) = min
{
r : V (π) ∩ Λ(n − R)c ⊆ z.κ + Λ(r)

}
.

Thus, π uses vertices in the union of Λ(n − R) together with the box with radius B(π, n)
and centre z.κ. We let

B(e, z, n) = min
π

B(π, n)

where the supremum is taken over all paths π joining some vertex of e + z.κ to 0 and
satisfying V (π) ⊆ int(Λ(n)); such a path exists by the definition of n-essentialness. We
need to prove that

(6.29) A = sup
{
B(e, z, n) : (e, z) is n-essential, n ≥ 1

}

satisfies A < ∞.
Suppose first that e + z.κ contains a vertex of Λ(n − R − D − 2I). In this case, by the

argument in the proof of part (b), there exists a path π joining e + z.κ to 0 and using

only vertices of int(Λ(n)) contained in Λ(n − R). Such π satisfies V (π) ∩ Λ(n − R)c = ∅,
whence

(6.30) B(e, z, n) = 0 if (e + z.κ) ∩ Λ(n − R − D − 2I) 6= ∅.

It follows that we need only consider n-essential hyperedges (e, z) satisfying

(6.31) e + z.κ ⊆ Λ(n + D) \ Λ(n − R − D − 2I),

since Λ(n) ⊆ Λ(n + D) by Lemma 9. The basis of the required argument is the following.
The hypergraph H is invariant under shifts of the form u 7→ u+x.κ for any given x (∈ Zd),
and therefore there are at most κ1κ2 · · ·κd different ‘types’ of vertex. By (6.30) and (6.31),
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we need only consider vertices within distance R + D + 2I of the bounding hyperplanes of
Λ(n), i.e., the hyperplanes contributing to Λ(n)\Λ(n−1). We shall see that there are only
finitely many combinations (uniformly in n) of ‘types of vertex’ and ‘nearby hyperplanes’.
In this way, the supremum in (6.29) may be taken over a finite set, implying as required
that A < ∞.

We do not present the argument in every detail, but there follows sufficient information
to check its validity. For a positive integer n, we let

(6.32) Hi(n) = {x ∈ Zd : xi = n}, Li(n) =
⋃

k≤n

Hi(k).

We define Li(n) accordingly and note that, as in the proof of Lemma 9,

Li(n) ⊆ Li(n + D).

For v ∈ Li(n) we choose a path π = πi(v, n) of H such that

(a) V (π) ⊆ int(Li(n)) = Li(n) \ ∂Li(n),
(b) π joins v to some vertex of Li(n − R − D − 2I), and
(c) the quantity r(π), given by

r(π) = max
{
‖x − v‖ : x ∈ V (π)

}
,

is a minimum, subject to (a) and (b) above,
whenever such a path exists. Such a path πi(v, n) has vertex set contained in v +
Λ(r(πi(v, n))). We note that r(πi(v, n)) = 0 if v ∈ Li(n − R − D − 2I). We denote
by li(v, n) the endpoint of πi(v, n) lying in Li(n − R − D − 2I).

Since H is invariant under shifts of the form u 7→ u + x.κ for any given x (∈ Zd), there
exists (in a manner similar to that of the proof of the final assertion of Lemma 9) an
absolute constant U such that

(6.33) r(πi(v, n)) ≤ U

for all triples (v, n, i) for which πi(v, n) exists. It follows that

(6.34) V (πi(v, n)) ⊆ v + Λ(U)

whenever πi(v, n) exists.
Let (e, z) be an n-essential hyperedge of EΛ(n), and assume that (6.31) holds. There

exists a vertex v (∈ e + z.κ) and a path π joining v to 0, satisfying V (π) ⊆ int(Λ(n)). We
shall assume that v = (v1, v2, . . . , vd) satisfies

vi ≥ 0 for all i;

an exactly analogous argument is valid for any other combination of signs of the vi, and
there are at most 2d such combinations. By (6.31), v satisfies

(6.35) n − R − D − 2I < vi ≤ n + D for some i ∈ {1, 2, . . . , d}.
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Since (6.35) holds for some i, it holds for some smallest value of i, and we assume that

(6.36) n − R − D − 2I < v1 ≤ n + D;

the following argument is valid for other values of i also.
Suppose, in addition to (6.36), that v satisfies

(6.37) 0 ≤ vi < n − R − D − 2I − 2U for i ∈ {2, 3, . . . , d}

where U satisfies (6.33). Since (e, z) is n-essential, and int(Λ(n)) ⊆ int(L1(n)), there exists

a path joining v to L1(n−R−D−2I), using only vertices of int(L1(n)). By (6.33)–(6.37),
π1(v, n) exists and satisfies

V (π1(v, n)) ⊆ int(Λ(n)), l1(v, n) ∈ Λ(n − R − D − 2I).

By Lemma 9, there exists a path π′ joining l1(v, n) to 0, and such that V (π′) ⊆

Λ(n − R) ∩ int(Λ(n)). The union of π1(v, n) and π′ contains a path joining v to 0, using

vertices of int(Λ(n)) which belong to Λ(n − R) ∪
{
v + Λ(U)

}
. Now

v ∈ e + z.κ ⊆ z.κ + Λ(I).

Therefore ‖v − z.κ‖ ≤ I, implying that

B(e, z, n) ≤ U + I

under the assumptions (6.36) and (6.37).
Suppose now that (6.36) holds but that (6.37) fails to hold for some i (≥ 2). Then

(6.37) fails for some smallest value of i, and we shall assume for simplicity of notation that
this value is i = 2; an exactly analogous argument is valid for other values. Assume then
that

(6.38) n − R − D − 2I < v1 ≤ n + D, n − R − D − 2I − 2U ≤ v2 ≤ n + D.

In the argument above (from (6.32) onwards) we replace H1(n) and L1(n) by

H12(n) =
{
x ∈ Zd : x1 = n, x2 ≤ n

}
∪

{
x ∈ Zd : x1 ≤ n, x2 = n

}
,

L12(n) =
⋃

k≤n

H12(k) = L1(n) ∩ L2(n),

and we define L12(n) accordingly. For v ∈ L12(n) we find a path π = π12(v, n) which

(a) uses only vertices of int(L12(n)) = L12(n) \ ∂L12(n),
(b) joins v to some vertex in L12(n − R − D − 2I),
(c) is such that r(π) is a minimum subject to (a) and (b),

whenever such a path exists. We write l12(v, n) for the endvertex of π12(v, n) lying in
L12(n − R − D − 2I).

As before, there exists an absolute constant U12 such that

(6.39) r(π12(v, n)) ≤ U12 whenever π12(v, n) exists.
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Assume in addition to (6.38) that

(6.40) 0 ≤ vi < n − R − D − 2I − 2(U + U12) for i ≥ 3.

Under this extra assumption, it is the case that
(a) π12(v, n) exists,

(b) V (π12(v, n)) ⊆ int(Λ(n)),
(c) l12(v, n) ∈ Λ(n − R − D − 2I).

There exists a path π′ joining l12(v, n) to 0, and using only vertices of int(Λ(n)) contained
in Λ(n−R). The union of π12(v, n) and π′ contains a path π joining v to 0, using vertices

of int(Λ(n)) which belong to Λ(n − R) ∪
{
v + Λ(max{U, U12})

}
. It follows as before that

B(e, z, n) ≤ max{U, U12} + I under assumptions (6.38) and (6.40).
We now iterate this argument. At the next stage, we suppose that (6.40) fails for some

i (≥ 3), say the value i = 3. That is, we replace (6.38) by

(6.41)
n − R − D − 2I < v1 ≤ n + D, n − R − D − 2I − 2U ≤ v2 ≤ n + D,

n − R − D − 2I − 2(U + U12) ≤ v3 ≤ n + D.

Arguing as above, but replacing H12(n) by

H123(n) =
{
x ∈ Zd : x1, x2, x3 ≤ n, xi = n for some i = 1, 2, 3

}
,

and making further appropriate changes, we obtain B(e, z, n) ≤ max{U, U12, U123}+ I for
some appropriate constant U123, whenever it is the case that

(6.42) 0 ≤ vi < n − R − D − 2I − 2(U + U12 + U123) for i ≥ 4

in place of (6.40).
We may continue in like manner until all of the (bounded number of) possible cases have

been dealt with. We have made various assumptions above, particularly in the choices of
i in (6.35), (6.38), and (6.41). At each of these (and subsequent) stages, there are only
boundedly many possibilities (uniformly in all large n), and the corresponding argument
is valid for all of them. Since each possibility leads to the conclusion that B(e, z, n) is
uniformly bounded for all large n, we deduce that

B(e, z, n) ≤ U ′ if v ≥ (0, 0, . . . , 0)

for some absolute constant U ′, so long as n is sufficiently large. Exactly similar arguments
are valid when some of the vi are negative. Since there are only boundedly many combi-
nations of signs of the vi, we deduce that the constant A given in (6.29) is finite, and the
proof is complete. �

With the aid of Lemma 16, we may establish the final step in the proof of Theorem 2.

Lemma 17. Let I = I0 be given as in Lemma 11. There exist positive integers R, S, and
a continuous function γ : (0, 1)L → (0,∞), such that the following holds. Let e, f ∈ E , and
let n ≥ R. Suppose that z is such that

(6.43) z.κ + Λ(3I) * Λ(n), and (e, z) is n-essential.
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There exists y ∈ Zd such that ‖y − z‖ ≤ S, (f, y) is n-essential, and

(6.44)
∂θn

∂pe,z
≤ γ(p)

∂θn

∂pf,y
.

Before proving Lemma 17, we show how it may be used to deduce Theorem 2. Let
I, N, R, S, β, γ be as in Lemmas 15 and 17, and suppose n ≥ max{N, R}. Fix e, f ∈ E .

Let Z1 be the set of all z (∈ Zd) such that z.κ + Λ(3I) ⊆ Λ(n), and let Z2 be the set of all

z such that (e, z) ∈ EΛ(n) and z.κ + Λ(3I) * Λ(n). We have by (6.26) that

(6.45)
∑

z∈Z1

∂θn

∂pe,z
≤ β(p)

∑

z∈Z1

∂θn

∂pf,z
.

Furthermore, by Lemmas 16(a) and 17,

(6.46)
∑

z∈Z2

∂θn

∂pe,z
=

∑

z∈Z2:
(e,z) is n-essential

∂θn

∂pe,z
≤ γ(p)

∑

z∈Z2

∂θn

∂pf,y

where y = y(e, f, z, n) satisfies ‖y − z‖ ≤ S, and (f, y) is n-essential. Let T be an upper
bound for the number of points x (∈ Zd) satisfying ‖x‖ ≤ S. By (6.46),

∑

z∈Z2

∂θn

∂pe,z
≤ Tγ(p)

∑

y:(f,y)∈EΛ(n)

∂θn

∂pf,y
,

which may be combined with (6.45) to yield, via (6.10),

∂θn

∂pe
≤ α(p)

∂θn

∂pf

where α(p) = β(p) + Tγ(p). This proves Theorem 2.

Proof of Lemma 17. Let n ≥ 1, e, f ∈ E , and let (e, z) satisfy (6.43). Let D be given as in
Lemma 9, Ix as in Lemma 11, and J as in Lemma 16(b). For all sufficiently large n, we
may find y (∈ Zd) such that
(a) ‖y − z‖ ≤ 2(3I + J + D),
(b) y.κ ∈ Λ(n − J), and
(c) e + z.κ and f + y.κ are disjoint,

where I = I0; we choose y accordingly. We have from Lemma 16(b) that (f, y) is n-
essential. Using Lemma 11,

e
T

−→f + (y − z).κ

where T = max{Iu : ‖u‖ ≤ 2(3I + J + D)}. Therefore there exist at least two vertex-
disjoint paths π1, π2 joining vertices of e + z.κ to vertices of f + y.κ, these paths using

hyperedges contained within z.κ + Λ(T ). Either (e, z)
T,n
−→(f, y), or not. If (e, z)

T,n
−→(f, y),

we may apply Lemma 14 to find that

∂θn

∂pe,z
≤ βT (p)

∂θn

∂pf,y
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for all large n, in which case (6.44) is proved for suitable γ and S.

Suppose then that it is not the case that (e, z)
T,n
−→(f, y). In this case, we must pick the

above pair π1, π2 in such a way that both π1 and π2 contain vertices lying in ∂Λ(n). For
i = 1, 2, we write πi(e, z) (respectively πi(f, y)) for the maximal subpath of πi containing
the endvertex of πi lying in e+z.κ (respectively, lying in f +y.κ) but containing no vertex

of ∂Λ(n).
Since (e, z) (respectively (f, y)) is n-essential, there exists a path πe (respectively πf )

joining some vertex of e+z.κ (respectively f+y.κ) to 0, and using only vertices of int(Λ(n)).
By Lemma 16(c) and assumption (a) above, we may choose πe and πf with the following
property: there exists an absolute constant A = A(D, I, J) such that any vertex v of πe

or πf which is not contained in Λ(n − 2D − 2I) satisfies v ∈ z.κ + Λ(A). By appealing
to Lemma 9, we may find a constant B = B(A, I, D, T ) such that there exists a path
πef joining some vertex of e + z.κ to some vertex of f + y.κ, and using only vertices in

int(Λ(n)) ∩ (z.κ + Λ(B)); cf. (6.27). We may assume that B ≥ T .
If πef uses no vertex contained in either π1 or π2 (except possibly for vertices of e+ z.κ

or f + y.κ), then

(6.47) (e, z)
B,n
−→(f, y),

whence (6.44) follows by Lemma 14 for appropriate γ and S; see Figure 5. On the other
hand, if πef uses some such vertex, then there may be a last vertex of πef (proceeding
along πef , starting from its endpoint in e + z.κ) lying on either π1(e, z) or π2(e, z), and
there may be a first subsequent vertex lying on either π1(f, y) or π2(f, y). More precisely,
let w1, w2, . . . , wr be the vertices of πef in order, where w1 ∈ e + z.κ and wr ∈ f + y.κ.
Let

i = max
{
k : wk ∈ V (π1(e, z)) ∪ V (π2(e, z))

}
,

j = min
{
k : k > i, wk ∈ V (π1(f, y)) ∪ V (π2(f, y))

}
,

with the convention that the maximum (respectively minimum) of the empty set is −∞
(respectively ∞). Suppose that 1 ≤ i, j ≤ r, and we may suppose without loss of generality
that wi lies on π1(e, z), and wj lies on πl(f, y) for some l. In such a case, one may see as
follows that (6.47) holds. One path from e+z.κ to f +y.κ of the required form is obtained
by following π1(e, z) to wi, then following πef from wi to wj , and thence following πl(f, y)
to f + y.κ; if this sequence does not form a path, then a path may be obtained from it by
a process of loop-removal. Another such path is obtained by following π2(e, z) to ∂Λ(n),

then some path of Zd \ int(Λ(n)) to a vertex of ∂Λ(n) adjacent to an endpoint of πk(f, y)
(where k 6= l), then following πk(f, y) to f + y.κ. These two paths are vertex-disjoint, and
we have in conclusion that (6.47) holds as before.

The remaining two cases arise when either i = −∞ or j = ∞; certainly, either i ≥ 1
or j ≤ r, by the assumption that πef has some vertex in common with V (π1) ∪ V (π2).
Suppose that i = −∞ and j ≤ r (the other case is similar). One path of the required sort
is obtained by following πef from w1 to wj , then πl(f, y) from wj to f + y.κ; the other
such path is obtained as before. Thus (6.47) holds. �

Proof of Theorem 3. (a) If p̂(J, β) = p̂(J′, β) for all β then, by (3.8),

θ
(
p(J, β), q

)
= θ

(
p(J′, β), q

)
for all β,



42 GEOFFREY GRIMMETT

whence βc(J, q) = βc(J
′, q).

(b) Certainly βc(·, q) is non-increasing, since θ(·, q) is non-decreasing. Suppose it is the
case that βc(J, q) = βc(J

′, q) (= βc, say) for some pair J, J′ satisfying the conditions of
the theorem. Then p(J, βc),p(J′, βc) ∈ Cq, in contradiction of Theorem 1(b), particularly
the deduction at the end of the subsequent paragraph. �
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FIGURE CAPTIONS

Figure 1. The upper pair depict the interacting sets e1 and e2 of Example 1 (in dotted
lines, and a solid line, respectively, on the left), together with the associated lattice G1.
The lower pair depict f1 and f2 in Example 2, and the lattice G2.

Figure 2. Every infinite path beginning in e + z.κ passes through each ci. The set g(e, z)
comprises all vertices to the left of c(e, z) in this diagram.

Figure 3. The hyperedges (e, z) and (f, x) are joined by two paths π1 and π2, such that

π1 uses vertices of int(Λ(n)) only, and Vh(π1)∩Vh(π2) = ∅. No other hyperedges of EΛ(n),
lying in Bz, are present. The smaller box is z.κ + Λ(M).

Figure 4. Cases A–E in the definition of the family {(h, x), σ1, σ2, (h
′, x′), π′

1, π
′
2}. In each

case, the two leftmost lines depict σ1 and σ2, and the two rightmost lines depict π′
1 and

π′
2. The left-hand endpoint of each πi lies in h + x.κ; the value of (h′, x′) is given in the

right-hand column. The rectangles depict e1 and e2. In Case C, the new vertex w lies in
both e1 and e2.

Figure 5. A sketch of the situation in the proof of Lemma 17, when πef has no vertices
in common with π1 and π2.


