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Abstract. We discuss inequalities and applications for percolation and random-
cluster models. The relevant areas of methodology concern the following two
types of inequality: inequalities involving the probability of a general increasing
event, and certain differential inequalities involving the percolation probability.
We summarise three areas of application of such inequalities, namely strict in-
equality between the bond and site critical percolation probabilities of a general
graph, the general study of entanglements in percolation, and strict inequalities
for critical points of disordered random-cluster models.

1. Introduction

Harry Kesten’s achievements across probability theory continue to be enor-
mously influential and stimulating, and nowhere more so than in the study of
spatial random processes. The results reported in this paper have been inspired
in part by Harry’s beautiful work on percolation.
Inequalities are central to the mathematics of disordered physical systems

such as percolation and random-cluster models. They occur in several different
ways, some of which are discussed here.
The methodological uses of inequalities include applications of the FKG and

BK inequalities; these inequalities are now well understood and appreciated (see
[6]). Less well known is an inequality used in [9, 11] in order to study exponen-
tial decay in random-cluster models. We present this inequality in Section 3.1,
together with an application to percolation entanglements in Section 4.
Our second ‘methodological’ inequality is more a frame of mind than a

theorem, and concerns the problem of proving that enhancements of certain
processes cause strict changes in the values of the critical point. We present a
very brief account of the relevant methods of [2] in Section 3.2. This method
will be applied in Section 5 to obtain a theorem concerning strict inequalities
between critical points of ‘disordered’ (or ‘quenched’) random-cluster models.
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Some of the results of this paper have appeared or will appear elsewhere,

and therefore no proofs are included here, although references are listed. The
results of Section 5 concerning disordered random-cluster models are however
new, and proofs are included in that section.

2. Percolation and Random-Cluster Models

Let Ld denote the d-dimensional cubic lattice having vertex set Zd and edge set
E
d, where d � 2. We consider bond percolation on Ld. The appropriate sample
space is Ω = f0, 1gEd , and the probability measure is the product measure Pp
with density p, where 0 � p � 1. As usual, we call an edge e open in the
configuration ω (2 Ω) if ω(e) = 1, and we call e closed otherwise.
A path in Ld is called open if and only if all its edges are open. For A,B �

Z
d, we write A$ B if there exists an open path having one endpoint in A and
the other in B. We write A $ 1 if there exists some vertex in A which is the
endpoint of an infinite open path. For x 2 Zd, we write Cx = fy 2 Zd : x$ yg
for the open cluster at x. The origin of Ld is denoted as 0, and we abbreviate
C0 to C.
We shall be particularly interested in the existence (or not) of infinite open

clusters. The principal objects of study in percolation theory are the percolationprobability
(2.1) θ(p) = Pp(jCj =1) = Pp(0$1),
together with the associated critical probability
(2.2) pc = supfp : θ(p) = 0g.
See [6, 15] for detailed accounts of the percolation model.
Site percolation is a variant of the above model in which the vertices rather

than the edges of Ld are designated either open or closed. The ‘site’ percolation
probability is defined as in (2.1), with the difference that a path is called open
if and only if all its vertices are open.
The random-cluster model of this paper will be defined in a slightly more

general way than was percolation. Let p = (pe : e 2 Ed) be a vector of numbers
from the interval [0, 1], and let q � 1. For a finite box Λ in Ld, we write EΛ for
the set of edges induced by Λ. For ξ 2 Ω = f0, 1gEd , we write ΩξΛ for the set of all
configurations ω 2 Ω satisfying ω(e) = ξ(e) for all e 62 EΛ. The random-cluster
measure φξΛ,p,q on Ω

ξ
Λ is given by

(2.3) φ
ξ
Λ,p,q(ω) =

1

Z
ξ
Λ,p,q

{

∏

e2EΛ pω(e)e (1� pe)
1�ω(e)} qk(ω,Λ), ω 2 ΩξΛ,
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where ZξΛ,p,q is the appropriate normalising constant, and k(ω,Λ) is the number

of open clusters of ω which intersect Λ. When ξ = 0 (respectively ξ = 1), this is
called the ‘free’ (respectively ‘wired’) measure. For the purposes of this paper,
it suffices to consider the wired measure, and we abbreviate henceforth φ1Λ,p,q
to φΛ,p,q. For a general guide to such random-cluster measures, see [8] and the
references therein.
For A � Zd, the surface ∂A is the subset of A containing all vertices which

have a neighbour in Ld not lying in A. We write Λk = [�k, k]d for the box of
L
d having side-length 2k.
The following facts are standard (see [8]):

(a) the limit measure φp,q = limΛ!Zd φΛ,p,q exists in the sense of weak
convergence,

(b) for any finite subset A of Zd,

φΛ,p,q(A$ ∂Λ)! φp,q(A$1) as Λ " Zd,
(c) φΛ,p,q and φp,q satisfy the FKG inequality.

The random-cluster percolation probability is given by

(2.4) θ(p, q) = φp,q(0$1).
For reasons which will become clear in Section 5, we shall work not with θ(p, q)
but with the function ψ(p, q) defined by

(2.5) ψ(p, q) = φp,q(I)

where I is the event that there exists at least one infinite open cluster.
We note that the random-cluster model with parameters p, q reduces to the

above bond percolation model when q = 1 and p = p, the vector all of whose
entries equal p. It is a standard fact concerning percolation that

θ(p, 1) = 0 if and only if ψ(p, 1) = 0.

Therefore, the percolation critical probability satisfies

pc = supfp : ψ(p, 1) = 0g.
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3. Inequalities

3.1. An inequality for increasing events

There is a partial order on Ω given by ω � ω0 if and only if ω(e) � ω0(e) for all
e 2 Ed. A random variable X is called increasing if X(ω) � X(ω0) whenever
ω � ω0. An event A is called increasing if its indicator function 1A is increasing.
For any ω 2 Ω and any increasing event A, we define the ‘distance’ FA(ω)

from ω to A by

(3.1) FA(ω) = inf

{

∑

e

(

ω0(e) � ω(e)
)

: ω0 � ω, ω0 2 A}.
That is to say, FA(ω) is the minimal number of extra edges which must be
designated ‘open’ in order for A to occur.
Let E be a finite set of edges of Ld, and let A be an event defined in terms

of the states of edges belonging to E. Let

N(ω) =
∑

e2E ω(e),
the total number of open edges of E in the configuration ω. The following
proposition follows by Russo’s formula and the FKG inequality, on noting that
FA1A = 0 and that N + FA is an increasing random variable.

Proposition 3.1. Let 0 < p < 1. For any non-empty increasing cylinder event
A,
(3.2)

d

dp
flogPp(A)g � Pp(FA)

p(1� p)
.

[We write µ(X) for the mean of the random variable X under the probability
measure µ.]
Proposition 3.1 relates the gradient of logPp(A) to the mean of FA. A

different type of inequality is needed in order to bound this mean value below.
In a way similar to the ‘sprinkling’ argument of [1], one may obtain the following.

Proposition 3.2. For all p1, p2 satisfying 0 < p1 < p2 < 1, there exist strictlypositive numbers a = a(p1, p2) and b = b(p1, p2) such that, for any increasingcylinder event A,
(3.3) Pp1(FA) � �b� a logPp2(A).

These two propositions do not appear to be sufficient by themselves in ap-
plications, and it is useful in practice to have recourse to the following additional
general proposition.
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Proposition 3.3. Let A,B1, B2, . . . , Bm be increasing cylinder events such that
A � B1\B2\� � �\Bm and such that the Bi are de�ned on disjoint sets of edges.Then
(3.4) FA � m

∑

i=1

FBi .

Similar propositions are valid in the more general context of random-cluster
models, and their proofs may be found in [9]. They may be applied to study the
decay rates of the connectivity functions of subcritical random-cluster models.
They also have applications to percolation, and such an application to entangle-
ments in percolation is described in Section 4.

3.2. Multiparameter processes

The following general situation occurs frequently. One encounters some random
process having two (or more) real-valued parameters p, s, say. This random
process has a phase transition, in the sense that some ‘macroscopic function’
θ = θ(p, s) satisfies

θ(p, s)

{

= 0 if φ(p, s) < 0

> 0 if φ(p, s) > 0,

for some smooth function φ. The set of pairs (p, s) satisfying φ(p, s) = 0 is
sometimes called the ‘critical surface’ of the process. In many situations, one may
be able to prove the existence of such a function φ, but its detailed properties,
such as continuity or strict monotonicity, can be difficult to ascertain.
Here are two examples of questions which may be formulated in this way.

First, one may ask whether or not there exists a critical probability pentc for
the existence of an infinite entanglement in bond percolation, and in addition
whether or not pentc differs from pc. (See Section 4.) Secondly, if some of the
strengths of interactions of a disordered ferromagnetic Ising or Potts model are
increased, does the critical temperature necessarily change? We discuss this
latter question further in Section 5.
A useful method for approaching and sometimes answering such questions

has been described in [2]. In a broad class of situations including the two exam-
ples above, one may reformulate the question in the manner of the first paragraph
of this section. One may then find a sequence θn(p, s), n � 1, of non-decreasing
real-analytic functions satisfying θn(p, s)! θ(p, s), and in addition such that

(3.5) α
∂θn

∂p
� ∂θn

∂s
� α�1 ∂θn

∂p

for some continuous function α = α(p, s) which is strictly positive and finite on
the interior of the parameter space. Such differential inequalities may be used to
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gain information about the gradient vector of θn, and this in turn implies certain
properties of continuity and strict monotonicity for a natural parametrization
of the critical surface of the process.
This approach has recently yielded, amongst other results, a solution to the

problem of proving strict inequality between the critical probabilities of bond
and site percolation on a given graph, and we state the relevant theorem here.
Let G be an arbitrary connected graph, and write pbondc (G) (respectively

psitec (G)) for the critical point of bond percolation (respectively site percolation)
on G. The automorphism group of G acts on the vertices of G in a natural
way, and we call G �nitely transitive if this group action has only finitely many
orbits. An edge e of G is called a bridge if its removal disconnects G; G is said
to be bridgeless if it contains no bridges. We write ∆ = ∆(G) for the maximum
vertex degree of a graph G.

Theorem 3.4. Let G be an in�nite connected graph with ∆ = ∆(G) <1.
(a) If G is �nitely transitive and bridgeless, then either

(i) pbondc (G) = psitec (G) = 1, or
(ii) 0 < pbondc (G) < psitec (G) < 1.

(b) We have that
psitec (G) � 1� (1� pbondc (G)

)∆�1
.

The proof may be found in [12]. This result generalises related inequalities
valid for certain two-dimensional lattices; see [15] and elsewhere. For more
details and applications of the general argument around (3.5), see [2, 9].

4. Entanglements in Percolation

The question was posed in [14] whether or not a percolation model on Z3 can
contain large entangled clusters but no large connected clusters. Numerical work
reported in [14] suggested the existence of an ‘entanglement critical point’ pentc
satisfying pentc � pc � 1.8� 10�7. No formal definition of this critical point was
presented, and indeed the discussion of this initial paper concerned the contents
of finite boxes only, rather than the configuration on the entire infinite lattice.
We summarise in this section recent progress towards a rigorous formulation of
the problem of entanglements in percolation, and we present an application of
Propositions 3.1–3.3, together with some open problems.
Here is some terminology. With each edge e of E3, we associate the closed

straight line segment of R3 joining its endpoints. For E � E3, we write [E] for
the union of the corresponding line segments. A ‘sphere’ shall be taken to mean
any subset of R3 which is homeomorphic to the unit sphere. The complement of
a sphere S has two connected components, an unbounded component called theoutside of S and denoted out(S), and a bounded component called the inside
and denoted ins(S).



Inequalities and Entanglements 7

Figure 1. Sketches of two graphs. The first is entangled, the second is not.

Figure 2. The four uppermost points lie in disjoint infinite paths not shown in this
figure. The first graph is strongly entangled; the second graph is weakly entangled
but not strongly entangled.

Let E be a finite subset of E3. We call E entangled if, for any sphere S
not intersecting [E], either [E] � ins(S) or [E] � out(S). This definition is
illustrated in Figure 1.
There is more than one way of extending the notion of entanglement to an

infinite set E of edges. Here are two such ways.
(a) We call E strongly entangled if, for every finite subset F of E, there exists
a finite entangled subset F 0 of E satisfying F � F 0.

(b) We call E weakly entangled if, for any sphere S not intersecting [E], either
[E] � ins(S) or [E] � out(S).

Such definitions are explored in [10, 13], where it is shown that E is weakly
entangled whenever it is strongly entangled; the converse statement is false. See
Figure 2.
Let Jw (respectively Js) be the event that the origin is an endvertex of some

edge lying in an infinite weakly (respectively strongly) entangled set E of open
edges. It may be shown that Jw and Js are indeed events, and it is clear that
they are increasing. One may therefore define the weak and strong entanglement
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(4.1) θw(p) = Pp(J

w), θs(p) = Pp(J
s),

and associated entanglement critical points
(4.2)

wpentc = supfp : θw(p) = 0g,
spentc = supfp : θs(p) = 0g.

It may be conjectured that

(4.3) wpentc =
spentc .

Article [10] contains a further discussion of types of entanglement, but no proof
of this conjecture. In order to be more concrete in the remainder of this section,
we concentrate henceforth on ‘strong entanglement’, and shall suppress further
reference to the word ‘strong’. Thus, for example, we write pentc =

spentc .
Since all connected graphs are entangled, it is immediate that pentc � pc.

The technique of Section 3.2 was used in [2] in such a way as to imply the strict
inequality pentc < pc. Only recently was it proved in [13] that p

ent
c > 0. We

summarise these two facts in a theorem.

Theorem 4.1. It is the case that 0 < pentc < pc.
We consider next a further problem, namely to ascertain the manner of decay

of the sizes of large finite entanglements. Let Ex be the maximal entanglement
touching the vertex x, and write E = E0; it is not hard to see that Ex is well
defined for any x. For n � 1, let B(n) be the box [�n, n]3, and ∂B(n) =
B(n)nB(n� 1). It seems reasonable to believe that Pp(E \ ∂B(n) 6= ∅) should
decay exponentially as n!1, whenever p < pentc , and it is an open problem to
prove this. The inequalities of Section 3.1 allow a little progress in the direction
of estimating the decay rate of Pp(E \ ∂B(n) 6= ∅) as n!1, as follows.
For a positive integer k, we write λk for the kth iterate of the natural

logarithm function. More precisely, let

λ1(x) = log x,

λk+1(x) = max
{

1, log λk(x)
}

for k � 1.
Theorem 4.2. There exists p0 > 0 such that, for p 2 (0, p0) and k � 1, thereexists αk(p) > 0 such that
(4.4) Pp

(

E \ ∂B(n) 6= ∅) � exp{�αk(p)n
λk(n)

} for all large n.
We expect that the logarithmic term in (4.4) may be removed, and that

the conclusion is valid for all p satisfying p < pentc . The proof of Theorem 4.2
exploits versions of Propositions 3.1–3.3, and may be found in [10].
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5. Disordered Random-Cluster Models

The problem of proving strict inequality between two critical points occurs fre-
quently in probability theory and statistical mechanics. The fundamental mech-
anism summarised in Section 3.2 for establishing such inequalities was applied
in [2] to percolation and Ising models. This work was extended in [3, 7] to
random-cluster models, thereby deriving an attractive methodology for Ising
and Potts systems. There has been considerable interest recently in disordered
(or ‘quenched’) systems, in which the interaction function is itself sampled at
random from an appropriate ensemble, and it is the purpose of this section to
explore strict inequalities for random-cluster models in this setting.
Perhaps the main motivation for the general study of disordered systems is

the desire to understand phase transitions in spin glasses (see [18]). Indeed, it
is currently unknown whether or not such phase transitions exist. Theorem 5.2
of this section has proved useful to recent work [4] intended to elucidate this
question.
Here is a description of a disordered random-cluster model. Let J = fJe :

e 2 Edg be a family of non-negative random variables governed by a probability
measure P; we allow the Je to take values in the extended half-line [0,1], and
we define

pe = 1� e�βJe , e 2 Ed,
where 0 < β <1. Let q be a real number satisfying q � 1. The random-cluster
measure φp,q, defined as in Section 2, is a random probability measure.
Let I (� Ω) be the event that there exists at least one infinite open cluster.

Since I is an increasing event, we have by the FKG inequality that φp,q(I) is
non-decreasing in β. We define the critical point βc(J) by

βc(J) = supfβ > 0 : φp,q(I) = 0g,
with the convention that the supremum of the empty set is 0. It is more usual
(see [8]) to define the critical point via the event f0 $ 1g rather than via
I. Such a definition may be inappropriate whenever the Je are permitted to
take the value 0 with strictly positive probability, since there may exist (with
strictly positive P-probability) configurations J such that φp,q(I) > 0 while
φp,q(0$1) = 0. It is not difficult to see however that the two such definitions
are equivalent whenever P satisfies

P
(

φp,q(x$ y) > 0
)

= 1 for all x, y 2 Zd.
Let τi, 1 � i � d, be the d fundamental lattice shifts of Ld; that is, τi(x) =

x+ ei where ei is a unit vector in the direction of increasing ith coordinate. We
recall that the invariant σ-�eld I of the random field J = fJe : e 2 Edg is the
σ-field of all events which are invariant under the natural shift operators on Ω
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induced by the τi. We call a σ-field trivial if all events therein have probability
either 0 or 1.

Theorem 5.1. If the family J has trivial invariant σ-�eld, then there exists aconstant βc = βc(P) satisfying 0 � βc � 1 and
P
(

βc(J) = βc
)

= 1.

Proof. The quantity φp,q(I) is a function of J which is invariant under lattice
shifts. Therefore it is measurable on the invariant σ-field, and is therefore a.s.
constant. It follows that βc(J) is a.s. constant as claimed. �

We do not have useful necessary and sufficient conditions for the strict in-
equalities 0 < βc <1. Instead we note that, when J has trivial invariant σ-field,
then

(a) βc =1 if the edge set fe : Je > 0g possesses a.s. finite clusters only, and
(b) βc = 0 if the edge set fe : Je = 1g possesses a.s. one or more infinite
clusters.

We shall prove that βc(P) is strictly monotone in P, subject to certain condi-
tions. Although the main applications of such a result are currently to situations
where the Je are independent random variables (see [4]), we shall consider here
a more general setting, as follows.
Let X = fXe : e 2 Edg and Y = fYe : e 2 Edg be families of non-negative

random variables indexed by Ed and defined on the same probability space
(Γ,G,P). We shall assume henceforth that
(5.1) P(X � Y) = 1,
which is to say that P(Xe � Ye) = 1 for all e. We propose to compare with one
another the two random-cluster models having respective edge interactions X
and Y. It is evident (by the FKG inequality) that

(5.2) βc(X) � βc(Y).

In order to prove a strict inequality, we shall require some sort of lower bound
for the difference Y �X. Let η 2 Ed and let k = (k1, k2, . . . , kd) 2 Zd satisfy
kj 6= 0 for 1 � j � d. The pair (η,k) generates a periodic class

(5.3) Ξ = Ξ(η,k) = fη +m.k :m 2 Zdg
of edges, where m.k = (m1k1,m2k2, . . . ,mdkd).
For f 2 Ed, let Ff = σ({Xe, Ye : e 2 Ed, e 6= f})
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denote the σ-field generated by the random variables Xe, Ye for e 6= f . We shall
require that there exists η, k, and δ > 0 such that

(5.4) P(Yf �Xf j Ff ) � δ a.s., for all f 2 Ξ(η,k).
[The expression P(Z j Ff ) denotes the appropriate conditional expectation of
the random variable Z.]
Let 0 � s � 1, and set

(5.5) Je = Je(s) = Xe + s(Ye �Xe), e 2 Ed.
The Je(s) interpolate between Je(0) = Xe and Je(1) = Ye. If the familyf(Xe, Ye) : e 2 Edg has trivial invariant σ-field, then so does J(s) = fJe(s) : e 2
E
dg, whence there exists by Theorem 5.1 a constant βc = βc(P, s) such that

P
(

βc(J(s)) = βc(P, s)
)

= 1.

Our target is to identify conditions under which βc(P, 0) > βc(P, 1).

Theorem 5.2. Let q > 1. Assume that :
(i) P, η, k, δ are such that δ > 0 and (5.4) holds,
(ii) there exist reals ρ, σ such that 0 < ρ � σ <1 and

(5.6) P(ρ � Xe � Ye � σ) = 1 for all e 2 Ed,
(iii) the invariant σ-�eld of the family f(Xe, Ye) : e 2 Edg is trivial.We have that βc(P, 0) > βc(P, 1).
It may be possible to relax condition (ii) while retaining the conclusion of

this theorem. A similar result is valid when q = 1, but a different argument is
needed; see the relevant discussion in [7]. An inequality related to the above
theorem, and derived independently of the present paper, will appear in [5].
We begin the proof of Theorem 5.2 with a preliminary lemma. Let G =

(V,E) be a finite graph; let p = (pe : e 2 E) be a vector of numbers in [0, 1],
and let q � 1. We write φG for the random-cluster measure on f0, 1gE having
edge parameters pe and cluster-weighting factor q; that is,

φG(ω) =
1

ZG

{

∏

e2E pω(e)e (1� pe)
1�ω(e)}qk(ω), ω 2 ΩE = f0, 1gE ,

where k(ω) is the number of open clusters of ω. For e 2 E, let Je denote the
event fω(e) = 1g. We denote by G.e (respectively Gne) the graph obtained from
G by contracting (respectively deleting) the edge e.
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Lemma 5.3. Let e 2 E, q � 1, and 0 < pe < 1.
(a) For any event A (� f0, 1gE),

(5.7)
d

dpe
φG(A) =

φG(Je)(1 � φG(Je))

pe(1� pe)
∆G(A, e)where

∆G(A, e) = φG.e(A)� φGne(A).
(b) We have that

(5.8)
1

q
� φG(Je)(1� φG(Je))

pe(1� pe)
� q.

Proof. (a) By Proposition 4 of [3],

d

dpe
φG(A) =

1

pe(1� pe)

{

φG(A \ Je)� φG(A)φG(Je)
}

.

Now,

φG(A \ Je)� φG(A)φG(Je) = φG(Je)φG(Je)
{

φG(A j Je)� φG(A j Je)},
and (5.7) follows by [8], Theorem 2.3.
(b) It is standard (see [8], equation (3.10)) that

pe

pe + (1� pe)q
� φG(Je) � pe

and the claim follows easily. �

Proof of Theorem 5.2. Assume the hypotheses of the theorem. Let 0 � s � 1,
and define J(s) = fJe(s) : e 2 Edg accordingly by (5.5). With p = p(s) given
by

pe(s) = 1� exp(�βJe(s)),
we write Im,n = f∂Λm $ ∂Λng, and

θm,n = φΛn,p,q(Im,n) for m � n.
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We have that

∂θm,n

∂s
=
∑

e

∂θm,n

∂pe

∂pe

∂s
(5.9) �∑

f2Ξ ∂θm,n∂pf

∂pf

∂s�∑
f2Ξ ∂θm,n∂pf

β(Yf �Xf )e
�βσ ,

where Ξ = Ξ(η,k). Similarly,

∂θm,n

∂β
=
∑

e

∂θm,n

∂pe

∂pe

∂β
(5.10) �∑

e

∂θm,n

∂pe
σe�βρ.

These two sums may be compared with one another via the forthcoming Lemma
5.4.
Let e 2 EΛn and let f = f(e) be the edge of Ξ \ EΛn�1 which is closest to

e. [That is, the midpoint of f is closest to the midpoint of e, according to some
given norm, say L1, on Rd. If two or more such edges f exist, we pick one of
them according to some predetermined rule.] We note that, for any given edge
f 2 Ξ, there exist at most K = d2dk1k2 . . . kd edges e with f(e) = f .
Lemma 5.4. There exist a positive integer N and a function ζ = ζ(β), contin-uous and �nite when 0 < β <1, such that
(5.11)

∂θm,n

∂pe
� ζ

∂θm,n

∂pf(e)
for all e 2 EΛn, m � n, and n � N .

Note that (5.11) is an inequality between random variables. The proof of
this lemma is given later.
We deduce from (5.10)–(5.11) that

(5.12)
∂θm,n

∂β
� Kζσe�βρ∑

f2Ξ ∂θm,n∂pf
for n � N.

By (5.9) and Lemma 5.3,

(5.13)
∂θm,n

∂s
� βe�βσ

q

∑

f2Ξ∆m,n(f)(Yf �Xf ),

where

∆m,n(f) = φΛn.f,p,q(Im,n)� φΛnnf,p,q(Im,n).
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Note that ∆m,n(f) does not depend on the random variable pf (s), and is there-
fore Ff -measurable. It follows that

P

(

∂θm,n

∂s

) � βe�βσ
q

∑

f2ΞP(∆m,n(f)(Yf �Xf )
)

=
βe�βσ
q

∑

f2ΞP(∆m,n(f)P(Yf �Xf j Ff ))� βe�βσ
q

∑

f2Ξ δ P(∆m,n(f)) by (5.4)� βδe�βσ
q2Kζσe�βρ P(∂θm,n∂β

)

for n � N,

where we have used Lemma 5.3 and (5.12) at the last step.
In summary, there exists ζ 0(β), continuous and finite when 0 < β <1, such

that

P

(

∂θm,n

∂β

) � ζ 0P(∂θm,n
∂s

)

for n � N.

It follows that Γm,n = P(θm,n) satisfies

∂Γm,n
∂β

� ζ 0 ∂Γm,n
∂s

for n � N.

Now,

Γm,n ! P(φp(s),q(∂Λm $1)) as n!1! P(φp(s),q(I)) as m!1,

by the dominated convergence theorem. Furthermore, by Theorem 5.1,

P

(

φp(s),q(I)
)

=

{

0 if β < βc(P, s)

1 if β > βc(P, s),

where we have used assumption (iii) of the theorem. It follows as in [2, 9] (see
also Section 3.2 of the current article) that βc(P, s) is strictly decreasing in s,
which implies the claim of the theorem. �

Proof of Lemma 5.4. This is very similar to the proof of Theorem 1 of [3],
and we therefore omit many of the details. The first step is to express the two
derivatives in (5.11) in terms of two coupled Markov processes Rt, St on the
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common state space Ω1Λn , satisfying Rt � St, and whose respective equilibrium
distributions are φΛn,p,q(�) and φΛn,p,q(� j Im,n); such representations are easily
derived as in (5.9)–(5.10) from Proposition 5 of [3], which states that

(5.14)
∂θm,n

∂pe
=

θm,n

pe(1� pe)
lim
t!1{P (Rt(e) = 0, St(e) = 1)}.

[Here, P denotes the appropriate probability measure for the processes R, S.]
Utilising the argument of [3], particularly the proof of inequality (4.4) there,
one may obtain in the following way the required (5.11). The only difference of
significance arises in the definition of the events V 1, V 2, V 3 of [3].
Let e 2 EΛn and let f = f(e); let u, v be the endvertices of e. We may

assume that e has at least one endvertex, u say, belonging to Λn�1; if, on the
contrary, u, v 2 Λn n Λn�1 then it is a consequence of our assumption of wired
boundary conditions that

∂θm,n

∂pe
= 0,

and inequality (5.11) is trivial in this case.
Let C be a circuit of edges in EΛn containing both e and f . The set Cnfe, fg

is the union of two paths πu, πv, where πu (respectively πv) is the path containing
u (respectively v). Let Cn(e) be a shortest such circuit with the property that
πu contains no vertices in Λn n Λn�1. The following statement constitutes an
easy piece of graph theory. There exists a constant M , depending only on d
and k, such that Cn(e) exists, and furthermore every vertex therein belongs to
e+ΛM .
Let hBei denote the collection of all edges of Ed having both endvertices in

(e + ΛM+1) \ Λn. Assume that the event Vt = fRt(e) = 0, St(e) = 1g occurs.
We define the following further events V 1, V 2, V 3:

(i) V 1 is the event that: during the time-interval (t, t+1], all edges in hBei
which are present in Rt are removed, and no edges in hBei are added to
R; e remains present in S,

(ii) V 2 is the event that: during (t + 1, t + 2], all edges in Cn(e) n feg are
added to R, but no other edges in hBei are added to R; e remains present
in S,

(iii) V 3 is the event that: during (t+2, t+3], the edge f is removed from R

but not from S.

We note that

Vt \ V 1 \ V 2 \ V 3 � {Rt+3(f) = 0, St+3(f) = 1}.
It may be shown as in [3] that

P (V 1 \ V 2 \ V 3 j Vt) � ν(β)
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for some ν(β) which is continuous and strictly positive on (0,1). With the
above definitions of V 1, V 2, V 3, the proof of [3] goes through in the present
situation, and yields (5.11) by way of (5.14). �
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16. Kesten, H. (1986), Aspects of first-passage percolation, Ecole d’Eté de Probabilités de
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