
1

Three problems
for the clairvoyant demon

Geoffrey Grimmett

Abstract

A number of tricky problems in probability are discussed, having in com-

mon one or more infinite sequences of coin tosses, and a representation

as a problem in dependent percolation. Three of these problems are of

‘Winkler’ type, that is, they are challenges for a clairvoyant demon.
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1.1 Introduction

Probability theory has emerged in recent decades as a crossroads where

many sub-disciplines of mathematical science meet and interact. Of the

many examples within mathematics, we mention (not in order): analy-

sis, partial differential equations, mathematical physics, measure theory,

discrete mathematics, theoretical computer science, and number theory.

The International Mathematical Union and the Abel Memorial Fund

have recently accorded acclaim to probabilists. This process of recogni-

tion by others has been too slow, and would have been slower without

the efforts of distinguished mathematicians including John Kingman.

JFCK’s work looks towards both theory and applications. To single

out just two of his theorems: the subadditive ergodic theorem [21, 22] is

a piece of mathematical perfection which has also proved rather useful

in practice; his ‘coalescent’ [23, 24] is a beautiful piece of probability,

now a keystone of mathematical genetics. John is also an inspiring and

devoted lecturer, who continued to lecture to undergraduates even as

the Bristol Vice-Chancellor, and the Director of the Isaac Newton In-

stitute in Cambridge. Indeed, the current author learned his measure

and probability from partial attendance at John’s course in Oxford in

1970/71.

To misquote Frank Spitzer [34, Sect. 8], we turn to a very down-to-

earth problem: consider an infinite sequence of light bulbs. The basic

commodity of probability is an infinite sequence of coin tosses. Such

a sequence has been studied for so long, and yet there remain ‘simple

to state’ problems that appear very hard. We present some of these

problems here. Sections 1.3–1.5 are devoted to three famous problems

for the so-called clairvoyant demon, a presumably non-human being to

whom is revealed the (infinite) realization of the sequence, and who is

permitted to plan accordingly for the future.

Each of these problems may be phrased as a geometrical problem of

percolation type. The difference with classical percolation [13] lies in

the dependence of the site variables. Percolation is reviewed briefly in

Section 1.2. This article ends with two short sections on related prob-

lems, namely: other forms of dependent percolation, and the question of

‘percolation of words’.
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1.2 Site percolation

We set the scene by reminding the reader of the classical ‘site percolation

model’ of Broadbent and Hammersley [9]. Consider a countably infinite,

connected graph G = (V,E). To each ‘site’ v ∈ V we assign a Bernoulli

random variable ω(v) with density p. That is, ω = {ω(v) : v ∈ V } is a

family of independent, identically distributed random variables taking

the values 0 and 1 with respective probabilities 1 − p and p. A vertex v

is called open if ω(v) = 1, and closed otherwise.

Let 0 be a given vertex, called the origin, and let θ(p) be the proba-

bility that the origin lies in an infinite open self-avoiding path of G. It is

clear that θ is non-decreasing in p, and θ(0) = 0, θ(1) = 1. The critical

probability is given as

pc = pc(G) := sup{p : θ(p) = 0}.

It is a standard exercise to show that the value of pc does not depend

on the choice of origin, but only on the graph G.

One may instead associate the random variables with the edges of the

graph, rather than the vertices, in which case the process is termed ‘bond

percolation’. Percolation is recognised as a fundamental model for a ran-

dom medium. It is important in probability and statistical physics, and

it continues to be the source of beautiful and apparently hard mathemat-

ical problems, of which the most outstanding is to prove that θ(pc) = 0

for the three-dimensional lattice Z
3. Of the several recent accounts of

the percolation model, we mention [13, 14].

Most attention has been paid to the case when G is a crystalline lattice

in two or more dimensions. The current article is entirely concerned

with aspects of two-dimensional percolation, particularly on the square

and triangular lattices illustrated in Figure 1.1. Site percolation on the

triangular lattice has featured prominently in the news in recent years,

owing to the work of Smirnov, Lawler–Schramm–Werner, and others

on the relationship of this model (with p = pc = 1
2
) to the process of

random curves in R
2 termed Schramm–Löwner evolutions (SLE), and

particularly the process denoted SLE6. See [35].

When G is a directed graph, one may ask about the existence of an

infinite open directed path from the origin, in which case the process is

referred to as directed (or oriented) percolation.

Variants of the percolation model are discussed in the following sec-

tions, with the emphasis on models with site/bond variables that are

dependent.
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Figure 1.1 The square lattice Z
2 and the triangular lattice T, with

their dual lattices.

1.3 Clairvoyant scheduling

Let G = (V,E) be a finite connected graph. A symmetric random walk

on G is a Markov chain X = (Xk : k = 0, 1, 2, . . . ) on the state space V ,

with transition matrix

P(Xk+1 = w | Xk = v) =







1

∆v

if v ∼ w,

0 if v ≁ w,

where ∆v is the degree of vertex v, and ∼ denotes the adjacency relation

of G. Random walks on general graphs have attracted much interest in

recent years, see [14, Chap. 1] for example.

LetX and Y be independent random walks onG with distinct starting

sites x0, y0, respectively. We think of X (respectively, Y ) as describing

the trajectory of a particle labelled X (respectively, Y ) around G. A

clairvoyant demon is set the task of keeping the walks apart from one

another for all time. To this end, (s)he is permitted to schedule the

walks in such a way that exactly one walker moves at each epoch of

time. Thus, the walks may be delayed, but they are required to follow

their prescribed trajectories.

More precisely, a schedule is defined as a sequence Z = (Z1, Z2, . . . ) in

the space {X,Y }N, and a given schedule Z is implemented in the follow-

ing way. From the X and Y trajectories, we construct the rescheduled

walks Z(X) and Z(Y ), where:

1. If Z1 = X , the X-particle takes one step at time 1, and the Y -particle

remains stationary. If Z1 = Y , it is the Y -particle that moves, and
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the X-particle that remains stationary. Thus,

if Z1 = X then Z(X)1 = X1, Z(Y )1 = Y0,

if Z1 = Y then Z(X)1 = X0, Z(Y )1 = Y1.

2. Assume that, after time k, the X-particle has made r moves and the

Y -particle k − r moves, so that Z(X)k = Xr and Z(Y )k = Yk−r.

If Zk+1 = X then Z(X)k+1 = Xr+1, Z(Y )k+1 = Yk−r ,

if Zk+1 = Y then Z(X)k+1 = Xr, Z(Y )k+1 = Yk−r+1.

We call the schedule Z good if Z(X)k 6= Z(Y )k for all k ≥ 1, and we

say that the demon succeeds if there exists a good schedule Z = Z(X,Y ).

(We overlook issues of measurability here.) The probability of success is

θ(G) := P(there exists a good schedule),

and we ask: for which graphs G is it the case that θ(G) > 0? This

question was posed by Peter Winkler (see the discussion in [10, 11]).

Note that the answer is independent of the choice of (distinct) starting

points x0, y0.

The problem takes a simpler form when G is the complete graph on

some number, M say, of vertices. In order to simplify it still further,

we add a loop to each vertex. Write V = {1, 2, . . . ,M}, and θ(M) :=

θ(G). A random walk on G is now a sequence of independent, identically

distributed points in {1, 2, . . . ,M}, each with the uniform distribution.

It is expected that θ(M) is non-decreasing in M , and it is clear by

coupling that θ(kM) ≥ θ(M) for k ≥ 1. Also, it is not too hard to show

that θ(3) = 0.

Question 1.1 Is it the case that θ(M) > 0 for sufficiently large M?

Perhaps θ(4) > 0?

This problem has a geometrical formulation of percolation-type. Con-

sider the positive quadrant Z
2
+ = {(i, j) : i, j = 0, 1, 2, . . .} of the square

lattice Z
2. A path is taken to be an infinite sequence (un, vn), n ≥ 0,

with (u0, v0) = (0, 0) such that, for all n ≥ 0,

either (un+1, vn+1) = (un + 1, vn) or (un+1, vn+1) = (un, vn + 1).

With X , Y the random walks as above, we declare the vertex (i, j) to

be open if Xi 6= Yj . It may be seen that the demon succeeds if and only

if there exists a path all of whose vertices are open.

Some discussion of this problem may be found in [11]. The law of the
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open vertices is 3-wise independent but not 4-wise independent, in the

sense of language introduced in Section 1.6.

The problem becomes significantly easier if paths are allowed to be

undirected. For the totally undirected problem, it is proved in [3, 36]

that there exists an infinite open path with strictly positive probability

if and only if M ≥ 4.

1.4 Clairvoyant compatibility

Let p ∈ (0, 1), and let X1, X2, . . . and Y1, Y2, . . . be independent se-

quences of independent Bernoulli variables with common parameter p.

We say that a collision occurs at time n if Xn = Yn = 1. The demon

is now charged with the removal of collisions, and to this end (s)he is

permitted to remove 0s from the sequences.

Let N = {1, 2, . . .} and W = {0, 1}N, the set of singly-infinite se-

quences of 0s and 1s. Each w ∈ W is considered as a word in an alphabet

of two letters, and we generally write wn for its nth letter. For w ∈ W ,

there exists a sequence i(w) = (i(w)1, i(w)2, . . . ) of non-negative inte-

gers such that w = 0i110i21 · · · , that is, there are exactly ij = i(w)j

zeros between the (j − 1)th and jth appearances of 1. For x, y ∈ W , we

write x → y if i(x)j ≥ i(y)j for j ≥ 1. That is, x → y if and only if y

may be obtained from x by the removal of 0s.

Two infinite words v, w are said to be compatible if there exist v′ and

w′ such that v → v′, w → w′, and v′nw
′

n = 0 for all n. For given realiza-

tions X , Y , we say that the demon succeeds if X and Y are compatible.

Write

ψ(p) = Pp(X and Y are compatible).

Note that, by a coupling argument, ψ is a non-increasing function.

Question 1.2 For what p is it the case that ψ(p) > 0.

It is easy to see as follows that ψ(1
2
) = 0. When p = 1

2
, there exists

almost surely an integer N such that

N
∑

i=1

Xi >
1
2
N,

N
∑

i=1

Yi >
1
2
N.

WithN chosen thus, it is not possible for the demon to prevent a collision

in the first N values. By working more carefully, one may obtain that

ψ(1
2
− ǫ) = 0 for small positive ǫ, see the discussion in [12].
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Gács has proved in [12] that ψ(10−400) > 0, and he has noted that

there is room for improvement.

1.5 Clairvoyant embedding

The clairvoyant demon’s third problem stems from work on long-range

percolation of words (see Section 1.7). Let X1, X2, . . . and Y1, Y2, . . . be

independent sequences of independent Bernoulli variables with param-

eter 1
2
. Let M ∈ {2, 3, . . .}. The demon’s task is to find a monotonic

embedding of the Xi within the Yj in such a way that the gaps between

successive terms are no greater than M .

Let v, w ∈ W . We say that v is M -embeddable in w, and we write

v ⊆M w, if there exists an increasing sequence (mi : i ≥ 1) of positive

integers such that vi = wmi
and 1 ≤ mi −mi−1 ≤M for all i ≥ 1. (We

set m0 = 0.) A similar definition is made for finite words v lying in one

of the spaces Wn = {0, 1}n, n ≥ 1.

The demon succeeds in the above task if X ⊆M Y , and we let

ρ(M) = P(X ⊆M Y ).

It is elementary that ρ(M) is non-decreasing in M .

Question 1.3 Is it the case that ρ(M) > 0 for sufficiently large M?

This question is introduced and discussed in [15], and partial but

limited results proved. One approach is to estimate the first two mo-

ments of the number Nn(w) of M -embeddings of the finite word w =

w1w2 · · ·wn ∈ Wn within the random word Y . It is elementary that

E(Nn(w)) = (M/2)n for any such w, and it may be shown that

E(Nn(X)2)

E(Nn(X))2
∼ AMcnM as n→ ∞,

where AM > 0 and cM > 1 for M ≥ 2. The fact that E(Nn(w)) ≡ 1

when M = 2 is strongly suggestive that ρ(2) = 0, and this is part of the

next theorem.

Theorem 1.4 [15] We have that ρ(2) = 0. Furthermore, for M = 2,

P(w ⊆2 Y ) ≤ P(an ⊆2 Y ) for all w ∈ Wn, (1.5)

where an = 0101 · · · is the alternating word of length n.
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It is immediate that (1.5) implies ρ(2) = 0 on noting that, for any

infinite periodic word π, P(π ⊆M Y ) = 0 for all M ≥ 2. One may

estimate such probabilities more exactly through solving appropriate

difference equations. For example, vn(M) = P(an ⊆M Y ) satisfies

vn+1(M) = (α+ (M − 1)β)vn − β(M − 2α)vn−1, n ≥ 1, (1.6)

with boundary conditions v0(M) = 1, v1(M) = α. Here,

α+ β = 1, β = 2−M .

The characteristic polynomial associated with (1.6) is a quadratic with

one root in each of the disjoint intervals (0,Mβ) and (α, 1). The larger

root equals 1 − (1 + o(1))21−2M for large M , so that, in rough terms

vn(M) ≈ (1 − 21−2M )n.

Herein lies a health warning for simulators. One knows that, almost

surely, an 6⊆M Y for large n, but one has to look on scales of order

22M−1 if one is to observe its extinction with reasonable probability.

One may ask about the ‘best’ and ‘worst’ words. Inequality (1.5) as-

serts that an alternating word an is the most easily embedded word when

M = 2. It is not known which word is best when M > 2. Were this a

periodic word, it would follow that ρ(M) = 0. Unsurprisingly, the worst

word is a constant word cn (of which there are of course two). That is,

for all M ≥ 2,

P(w ⊆M Y ) ≥ P(cn ⊆M Y ) for all w ∈ Wn,

where, for definiteness, we set cn = 1n ∈ Wn.

Let M = 2, so that the mean number E(Nn(w)) of embeddings of any

word of length n is exactly 1 (as remarked above). A further argument

is required to deduce that ρ(2) = 0. Peled [32] has made rigorous the

following alternative to that used in the proof of Theorem 1.4. Assume

that the word w ∈ Wn satisfies w ⊆2 Y . For some small c > 0, one may

identify (for most embeddings, with high probability) cn positions at

which the embedding may be altered, independently of each other. This

gives 2cn possible ‘local variations’ of the embedding. It may be deduced

that the probability of embedding a word w ∈ Wn is exponentially small

in n, and also ρ(2) = 0.

The sequences X , Y have been taken above with parameter 1
2
. Little

changes with Question 1.3 in a more general setting. Let the two (re-

spective) parameters be pX , pY ∈ (0, 1). It turns out that the validity of
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the statement “for all M ≥ 2, P(X ⊆M Y ) = 0” is independent of the

values of pX , pY . On the other hand, (1.5) is not generally true. See [15].

A number of easier variations on Question 1.3 spring immediately to

mind, of which two are mentioned here.

1. Suppose the gap between the embeddings of Xi−1 and Xi must be

bounded above by some Mi. How slow a growth on the Mi suffices

that the embedding probability be strictly positive? [An elementary

bound follows by the Borel–Cantelli lemma.]

2. Suppose that the demon is allowed to look only boundedly into the

future. How much clairvoyance may (s)he be allowed without the

embedding probability becoming strictly positive?

Further questions (and variations thereof) have been proposed by others.

1. In a ‘penalised embedding’ problem, we are permitted mismatches by

paying a (multiplicative) penalty b for each. What is the cost of the

‘cheapest’ penalised embedding of the first n terms, and what can be

said as b→ ∞? [Erwin Bolthausen]

2. What can be said if we are required to embed only the 1s? That is, a

‘1’ must be matched to a ‘1’, but a ‘0’ may be matched to either ‘0’

or ‘1’. [Simon Griffiths]

3. The above problems may be described as embedding Z in Z. In this

language, might it be possible to embed Z
m in Z

n for some m,n ≥ 2?

[Ron Peled]

Question 1.3 may be expressed as a geometrical problem of percolation

type. With X and Y as above, we declare the vertex (i, j) ∈ N
2 to be

open if Xi = Yj . A path is defined as an infinite sequence (un, vn), n ≥ 0,

of vertices such that:

(u0, v0) = (0, 0), (un+1, vn+1) = (un + 1, vn + dn),

for some dn satisfying 1 ≤ dn ≤M . It is easily seen that X ⊆M Y if and

only if there exists a path all of whose vertices are open. (We declare

(0, 0) to be open.)

With this formulation in mind, the above problem may be represented

by the icon at the top left of Figure 1.2. The further icons of that figure

represent examples of problems of similar type. Nothing seems to be

known about these except that:

1. the argument of Peled [32] may be applied to problem (b) with M = 2

to obtain that P(w ⊆2 Y ) = 0 for all w ∈ W ,
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1
2

M

n1

nM

M

2
1

n2

1

M

1
2

(d) (f)(e)

(a) (b) (c)

Figure 1.2 Icons describing a variety of embedding problems.

2. problem (e) is easily seen to be trivial.

It is, as one might expect, much easier to embed words in two dimen-

sions than in one, and indeed this may be done along a path of Z
2 that

is directed in the north–easterly direction. This statement is made more

precise as follows. Let Y = (Yi,j : i, j = 1, 2, . . . ) be a two-dimensional

array of independent Bernoulli variables with parameter p ∈ (0, 1), say.

A word v ∈ W is said to be M -embeddable in Y , written v ⊆M Y , if

there exist strictly increasing sequences (mi : i ≥ 1), (ni : i ≥ 1) of

positive integers such that vi = Ymi,ni
and

1 ≤ (mi −mi−1) + (ni − ni−1) ≤M, i ≥ 1.

(We set m0 = n0 = 0.) The following answers a question posed in [29].

Note added at revision: A related result has been discovered indepen-

dently in [30].
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Theorem 1.7 [14] Suppose R ≥ 1 is such that 1−pR2

−(1−p)R2

> ~pc,

the critical probability of directed site percolation on Z
2. With strictly

positive probability, every infinite word w satisfies w ⊆5R Y .

The identification of the set of words that are 1-embeddable in the two-

dimensional array Y , with positive probability, is much harder. This is a

problem of percolation of words, and the results to date are summarised

in Section 1.7.

Proof We use a block argument. Let R ∈ {2, 3, . . .}. For (i, j) ∈ N
2,

define the block BR(i, j) = ((i− 1)R, iR]× ((j − 1)R, jR] ⊆ N
2. On the

graph of blocks, we define the (directed) relation BR(i, j) → BR(m,n)

if (m,n) is either (i + 1, j + 1) or (i + 1, j + 2). By drawing a picture,

one sees that the ensuing directed graph is isomorphic to N
2 directed

north–easterly. Note that the L1-distance between two vertices lying in

adjacent blocks is no more than 5R.

We call a block BR good if it contains at least one 0 and at least one

1. It is trivial that

Pp(BR is good) = 1 − pR2

− (1 − p)R2

.

If the right side exceeds the critical probability ~pc of directed site per-

colation on Z
2, then there is a strictly positive probability of an infinite

directed path of good blocks in the block graph, beginning at BR(1, 1).

Such a path contains 5R-embeddings of all words.

The problem of clairvoyant embedding is connected to a question con-

cerning isometries of random metric spaces discussed in [33]. In broad

terms, two metric spaces (Si, µi), i = 1, 2, are said to be ‘quasi-isometric’

(or ‘roughly isometric’) if their metric structure is the same up to mul-

tiplicative and additive constants. That is, there exists a mapping T :

S1 → S2 and positive constants M , D, R such that:

1

M
µ1(x, y) −D ≤ µ2(T (x), T (y)) ≤Mµ1(x, y) +D, x, y ∈ S1,

and, for x2 ∈ S2, there exists x1 ∈ S1 with µ2(x2, T (x1)) ≤ R.

It has been asked whether two Poisson process on the line, viewed

as random sets with metric inherited from R, are quasi-isometric. This

question is open at the time of writing. A number of related results

are proved in [33], where a history of the problem may be found also. It

turns out that the above question is equivalent to the following. Let X =

(. . . , X−1, X0, X1, . . . ) be a sequence of independent Bernoulli variables

with common parameter pX . The sequenceX generates a random metric
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space with points {i : Xi = 1} and metric inherited from Z. Is it the

case that two independent sequences X and Y generate quasi-isometric

metric spaces? A possibly important difference between this problem

and clairvoyant embedding is that quasi-isometries of metric subspaces

of Z need not be monotone.

1.6 Dependent percolation

Whereas there is only one type of independence, there are many types

of dependence, too many to be summarised here. We mention just three

further types of dependent percolation in this section, of which the first

(at least) arises in the context of processes in random environments. In

each, the dependence has infinite range, and in this sense these problems

have something in common with those treated in Sections 1.3–1.5.

For our first example, let X = {Xi : i ∈ Z} be independent, identically

distributed random variables taking values in [0, 1]. Conditional on X ,

the vertex (i, j) of Z
2 is declared open with probability Xi, and different

vertices receive (conditionally) independent states. The ensuing measure

possesses a dependence that extends without limit in the vertical direc-

tion. Let pc denote the critical probability of site percolation on Z
2. If

the law µ of X0 places probability both below and above pc, there exist

(almost surely) vertically-unbounded domains that consider themselves

subcritical, and others that consider themselves supercritical. Depend-

ing on the choice of µ, the process may or may not possess infinite open

paths, and necessary and sufficient conditions have proved elusive. The

most successful technique for dealing with such problems seems to be the

so-called ‘multiscale analysis’. This leads to sufficient conditions under

which the process is subcritical (respectively, supercritical). See [25, 26].

There is a variety of models of physics and applied probability for

which the natural random environment is exactly of the above type.

Consider, for example, the contact model in d dimensions with recovery

rates δx and infection rates λe, see [27, 28]. Suppose that the environment

is randomised through the assumption that the δx (respectively, λe) are

independent and identically distributed. The graphical representation of

this model may be viewed as a ‘vertically directed’ percolation model

on Z
d × [0,∞), in which the intensities of infections and recoveries are

dependent in the vertical direction. See [1, 8, 31] for further discussion.

Vertical dependence arises naturally in certain models of statistical

physics also, of which we present one example. The ‘quantum Ising
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model’ on a graph G may be formulated as a problem in stochastic ge-

ometry on a product space of the form G× [0, β], where β is the inverse

temperature. A fair bit of work has been done on the quantum model

in a random environment, that is, when its parameters vary randomly

around different vertices/edges ofG. The corresponding stochastic model

on G× [0, β] has ‘vertical dependence’ of infinite range. See [7, 16].

It is easy to adapt the above structure to provide dependencies in

both horizontal and vertical directions, although the ensuing problems

may be considered (so far) to have greater mathematical than physical

interest. For example, consider bond percolation on Z
2, in which the

states of horizontal edges are correlated thus, and similarly those of

vertical edges. A related three-dimensional system has been studied by

Jonasson, Mossel, and Peres [18]. Draw planes in R
3 orthogonal to the

x-axis, such that they intersect the x-axis at points of a Poisson process

with given intensity λ. Similarly, draw independent families of planes

orthogonal to the y- and z-axes. These three families define a ‘stretched’

copy of Z
3. An edge of this stretched lattice, of length l, is declared to be

open with probability e−l, independently of the states of other edges. It is

proved in [18] that, for sufficiently large λ, there exists (a.s.) an infinite

open directed percolation cluster that is transient for simple random

walk. The method of proof is interesting, proceeding as it does by the

method of ‘exponential intersection tails’ (EIT) of [5]. When combined

with an earlier argument of Häggström, this proves the existence of a

percolation phase transition for the model.

The method of EIT is invalid in two dimensions, because random

walk is recurrent on Z
2. The corresponding percolation question in two

dimensions was answered using different means by Hoffman [17].

In our final example, the dependence comes without geometrical in-

formation. Let k ≥ 2, and call a family of random variables k-wise

independent if any k-subset is independent. Note that the vertex-states

arising in the clairvoyant scheduling problem of Section 1.3 are 3-wise

independent but not 4-wise independent.

Benjamini, Gurel-Gurevich, and Peled [6] have investigated various

properties of k-wise independent Bernoulli families, and in particular

the following percolation question. Consider the n-box Bn = [1, n]d in

Z
d with d ≥ 2, in which the measure governing the site variables {ω(v) :

v ∈ Bn} has local density p and is k-wise independent. Let Ln be the

event that two given opposite faces are connected by an open path in the

box. Thus, for large n, the probability of Ln under the product measure

Pp has a sharp threshold around p = pc(Z
d). The problem is to find
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bounds on the smallest value of k such that the probability of Ln is

close to its value Pp(Ln) under product measure.

This question may be formalised as follows. Let Π = Π(n, k, p) be

the set of probability measures on {0, 1}Bn that have density p and are

k-wise independent. Let

ǫn(p, k) = max
P∈Π

P(Ln) − min
P∈Π

P(Ln),

and

Kn(p) = min{k : ǫn(p, k) ≤ δ},

where for definiteness we may take δ = 0.01 as in [6]. Thus, roughly

speaking, Kn(p) is a quantification of the amount of independence re-

quired in order that, for all P ∈ Π, P(Ln) differs from Pp(Ln) by at most

δ.

Benjamini, Gurel-Gurevich, and Peled have proved, in an ongoing

project [6], that Kn(p) ≤ c logn when d = 2 and p 6= pc (and when

d > 2 and p < pc), for some constant c = c(p, d). They have in addition

a lower bound for Kn(p) that depends on p, d, and n, and goes to ∞ as

n→ ∞.

1.7 Percolation of words

Recall the set W = {0, 1}N of words in the alphabet comprising the

two letters 0, 1. Consider the site percolation process of Section 1.2

on a countably infinite connected graph G = (V,E), and write ω =

{ω(v) : v ∈ V } for the ensuing configuration. Let v ∈ V and let Sv be

the set of all self-avoiding walks starting at v. Each π ∈ Sv is a path

v0, v1, v2, . . . with v0 = v. With the path π we associate the word w(π) =

ω(v1)ω(v2) · · · , and we write Wv = {w(π) : π ∈ Sv} for the set of words

‘visible from v’. The central question of site percolation concerns the

probability that Wv ∋ 1∞, where 1∞ denotes the infinite word 111 · · · .

The so-called AB-percolation problem concerns the existence in Wv of

the infinite alternating word 01010 · · · , see [2].

More generally, for given p, we ask which words lie in the random

set Wv. Partial answers to this question may be found in three papers

[4, 19, 20] of Kesten and co-authors Benjamini, Sidoravicius, and Zhang,

and their results are summarised here as follows.

For Z
d, with p = 1

2
and d sufficiently large, we have from [4] that

P 1

2

(W0 = W) > 0,
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and indeed there exists (a.s.) some vertex v for which Wv = W . Partial

results are obtained for Z
d with edge-orientations in increasing coordi-

nate directions.

For the triangular lattice T and p = 1
2
, we have from [19] that

P 1

2

(
⋃

v∈V Wv contains almost every word
)

= 1, (1.8)

where the set of words seen includes all periodic words apart from 0∞ and

1∞. The measure on W can be taken in (1.8) as any non-trivial product

measure. This extends the observation that AB-percolation takes place

at p = 1
2
, whereas there is no infinite cluster in the usual site percolation

model.

Finally, for the ‘close-packed’ lattice Z
2
cp obtained from Z

2 by adding

both diagonals to each face,

Pp(W0 = W) > 0

for 1 − pc < p < pc, with pc = pc(Z
2). Moreover, every word is (a.s.)

seen along some self-avoiding path in the lattice. See [20].
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