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1. Introduction

These notes are devoted to three recent rigorous results of significance in the
area of discrete random geometry in two dimensions. These results are concerned
with self-avoiding walks, percolation, and the random-cluster model, and may
be summarized as:

(a) the connective constant for self-avoiding walks on the hexagonal lattice is
√

2 +
√

2, [14].
(b) the universality of inhomogeneous bond percolation on the square, trian-

gular and hexagonal lattices, [25],
(c) the critical point of the random-cluster model on the square lattice with

cluster-weighting factor q ≥ 1 is
√

q/(1 +
√

q), [7].

In each case, the background and context will be described and the theorem
stated. A complete proof is included in the case of self-avoiding walks, whereas
reasonably detailed outlines are presented in the other two cases.

If the current focus is on three specific theorems, the general theme is two-
dimensional stochastic systems. In an exciting area of current research initiated
by Schramm [55, 56], connections are being forged between discrete models
and conformality; we mention percolation [60], the Ising model [13], uniform
spanning trees and loop-erased random walk [47], the discrete Gaussian free
field [57], and self-avoiding walks [15]. In each case, a scaling limit leads (or will
lead) to a conformal structure characterized by a Schramm-Löwner evolution
(SLE). In the settings of (a), (b), (c) above, the relevant scaling limits are yet to
be proved, and in that sense this article is about three ‘pre-conformal’ families
of stochastic processes.

Fig 1.1. The square lattice L2 and its dual square lattice. The triangular lattice T and its
dual hexagonal (or ‘honeycomb’) lattice H.

There are numerous surveys and books covering the history and basic method-
ology of these processes, and we do not repeat this material here. Instead, we
present clear definitions of the processes in question, and we outline those parts
of the general theory to be used in the proofs of the above three theorems.
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Self-avoiding walks (SAWs) are the subject of Section 2, bond percolation of
Section 3, and the random-cluster model of Section 4. More expository material
about these three topics may be found, for example, in [22], as well as: SAWs
[49]; percolation [9, 20, 66]; the random-cluster model [21, 67]. The relationship
between SAWs, percolation, and SLE is sketched in the companion paper [46].
Full references to original material are not invariably included.

A balance is attempted in these notes between providing enough but not too
much basic methodology. One recurring topic that might delay readers is the
theory of stochastic inequalities. Since a sample space of the form Ω = {0, 1}E
is a partially ordered set, one may speak of increasing random variables. This
in turn gives rise to a partial order on probability measures1 on Ω by: µ ≤st µ′

if µ(X) ≤ µ′(X) for all increasing random variables X . Holley’s theorem [31]
provides a useful sufficient criterion for such an inequality in the context of this
article. The reader is referred to [21, Chap. 2] and [22, Chap. 4] for accounts of
Holley’s theorem, as well as of ‘positive association’ and the FKG inequality.

A variety of lattices will be encountered in this article, but predominantly
the square, triangular, and hexagonal lattices illustrated in Figure 1.1. More
generally, a lattice in d dimensions is a connected graph L with bounded vertex-
degrees, together with an embedding in Rd such that: the embedded graph is
locally-finite and invariant under shifts of R

d by any of d independent vectors
τ1, τ2, . . . , τd. We shall sometimes speak of a lattice without having regard to its
embedding. A lattice is vertex-transitive if, for any pair v, w of vertices, there
exists a graph-automorphism of L mapping v to w. For simplicity, we shall
consider only vertex-transitive lattices. We pick some vertex of a lattice L and
designate it the origin, denoted 0, and we generally assume that 0 is embedded
at the origin of Rd. The degree of a vertex-transitive lattice is the number of
edges incident to any given vertex. We write Ld for the d-dimensional cubic
lattice, and T, H for the triangular and hexagonal lattices.

2. Self-avoiding walks

2.1. Background

Let L be a lattice with distinguished ‘origin’ 0, and assume for simplicity that
L is vertex-transitive. A self-avoiding walk (SAW) is a lattice path that visits
no vertex more than once.

How many self-avoiding walks of length n exist, starting from the origin?
What is the ‘shape’ of such a SAW chosen at random? In particular, what can be
said about the distance between its endpoints? These and related questions have
attracted a great deal of attention since the notable paper [26] of Hammersley
and Morton, and never more so than in recent years. Mathematicians believe
but have not proved that a typical SAW on a two-dimensional lattice L, starting
at the origin, converges in a suitable manner as n→∞ to a SLE8/3 curve. See
[15, 49, 56, 61] for discussion and results.

1The expectation of a random variable X under a probability measure µ is written µ(X).
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Paper [26] contained a number of stimulating ideas, of which we mention
here the use of subadditivity in studying asymptotics. This method and its
elaborations have proved extremely fruitful in many contexts since. Let Sn be
the set of SAWs with length n starting at the origin, with cardinality σn =
σn(L) := |Sn|.
Lemma 2.1 ([26]). We have that σm+n ≤ σmσn, for m, n ≥ 0.

Proof. Let π and π′ be finite SAWs starting at the origin, and denote by π∗π′ the
walk obtained by following π from 0 to its other endpoint x, and then following
the translated walk π′ + x. Every ν ∈ Sm+n may be written in a unique way as
ν = π ∗ π′ for some π ∈ Sm and π′ ∈ Sn. The claim of the lemma follows.

Theorem 2.2. Let L be a vertex-transitive lattice in d dimensions with degree

∆. The limit κ = κ(L) = limn→∞(σn)1/n exists and satisfies d ≤ κ ≤ ∆− 1.

Proof. By Lemma 2.1, xm = log σm satisfies the ‘subadditive inequality’

xm+n ≤ xm + xn.

By the subadditive inequality2 (see [20, App. I]), the limit

λ = lim
n→∞

1

n
xn

exists, and we write κ = eλ.
Since there are at most ∆ − 1 choices for each step of a SAW (apart from

the first), we have that σn ≤ ∆(∆ − 1)n−1, giving that κ ≤ ∆ − 1. Since L
is connected and d-dimensional, the origin has at least d linearly independent
neighbours, and we pick such a set W = {w1, w2, . . . , wd}. The set of n-step
SAWs has as subset the set of all (distinct) n-step walks every step of which
is a translate of some wj . There are dn of these, whence σn ≥ dn, giving that
κ ≥ d.

The constant κ = κ(L) is called the connective constant of the lattice L. The
exact value of κ = κ(Ld) is unknown for every d ≥ 2, see [32, Sect. 7.2, pp.
481–483]. As explained in the next section, the hexagonal lattice has a special
structure which permits an exact calculation, and our main purpose here is
to present the proof of this. In addition, we include next a short discussion
of critical exponents, for a fuller discussion of which the reader is referred to
[2, 49, 59]

By Theorem 2.2, σn grows exponentially in the manner of κn(1+o(1)). It is be-
lieved by mathematicians and physicists that there is a power-order correction,
in that

σn ∼ A1n
γ−1κn,

where the exponent γ depends only on the number of dimensions and not oth-
erwise on the lattice (here and later, there should be an additional logarithmic

2Sometimes known as Fekete’s Lemma.
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correction in four dimensions). Furthermore, it is believed that γ = 43
32 in two

dimensions. We mention two further critical exponents. It is believed that the
(random) end-to-end distance Dn of a typical n-step SAW satisfies

E(D2
n) ∼ A2n

2ν ,

and furthermore ν = 3
4 in two dimensions. Finally, let Zv(x) =

∑

k σk(v)xN

where σk(v) is the number of k-step SAWs from the origin to the vertex v. The
generating function Zv has radius of convergence κ−1, and it is believed that

Zv(κ
−1) ∼ A3|v|−(d−2+η) as |v| → ∞,

in d dimensions. Furthermore, η should satisfy the so-called Fisher relation
γ = (2 − η)ν, giving that η = 5

24 in two dimensions. The numerical predictions
for these exponents in two dimensions are explicable on the conjectural basis
that a typical n-step SAW in two dimensions converges to SLE8/3 as n → ∞
(see [6, 48]).

2.2. Hexagonal-lattice connective constant

Theorem 2.3 ([14]). The connective constant of the hexagonal lattice H satis-

fies κ(H) =
√

2 +
√

2.

This result of Duminil-Copin and Smirnov provides a rigorous and provoca-
tive verification of a prediction of Nienhuis [50] based on conformal field theory.
The proof falls short of a proof of conformal invariance for self-avoiding walks
on H. The remainder of this section contains an outline of the proof of Theorem
2.3, and is drawn from [14]3.

Fig 2.1. The Archimedean lattice (3, 122) is obtained by replacing each vertex of the hexagonal
lattice H by a triangle.

The reader may wonder about the special nature of the hexagonal lattice.
It is something of a mystery why certain results for this lattice (for example,

3The proof has been re-worked in [41].
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Theorem 2.3, and the conformal scaling limit of ‘face’ percolation) do not yet
extend to other lattices.

We note an application of Theorem 2.3 to the lattice illustrated in Figure
2.1, namely the Archimedean lattice denoted A = (3, 122) and known also as
a ‘Fisher lattice’ after [17]. Edges of A lying in a triangle are called triangular.
For simplicity, we shall consider only SAWs of A that start with a triangular
edge and finish with a non-triangular edge. The non-triangular edges of such a
SAW a induce a SAW h of H. Furthermore, for given h, the corresponding a are
obtained by replacing each vertex v of h (other than its final vertex) by either
a single edge in the triangle of A at v, or by two such edges. It follows that the
generating function of such walks is

ZA(a) =
∑

k

σk(H)(a2 + a3)k = Z(a2 + a3),

where Z(x) :=
∑

n σn(H)xk. The radius of convergence of ZA is 1/κ(A), and we
deduce the following formula of [33]:

1

κ(A)2
+

1

κ(A)3
=

1

κ(H)
. (2.1)

One may show similarly that the critical exponents γ, ν, η are equal for A

and H (assuming they exist). For definiteness, we say that γ = γ(L) exists for
a lattice L if there exists a slowly varying function L such that

σn = nγ−1κnL(n),

with a similar definition for ν. By the above, the SAW generating functions of
H and A are Z(a) and Z(a2 + a3), respectively. By the Tauberian theorem for
power series, [16, Sect. XIII.5], if either γ(H) or γ(A) exist, then so does the
other and they are equal.

Similarly, Zv(κ(H)−1) = ZA

v′(κ(A)−1), where v′ is on the triangle derived
from v. Therefore, if either η(H) or η(A) exist, then so does the other and they
are equal.

It may also be shown that ν(H) exists and is equal to ν(A), whenever the
latter exists. The reverse implication holds subject to a minor assumption on
the sequence of mean-squared distances in A, and with a slightly weakened
asymptotic in the definition of ν(A). The details are left as an exercise.

Proof of Theorem 2.3. This exploits the relationship between R2 and the Ar-
gand diagram of the complex numbers C. We embed H = (V, E) in R2 in a
natural way: edges have length 1 and are inclined at angles π/6, π/2, 5π/6 to
the x-axis, the origins of L and R2 coincide, and the line-segment from (0, 0) to
(0, 1) is an edge of H. Any point in H may thus be represented by a complex
number. Let M be the set of midpoints of edges of H. Rather than counting
paths between vertices of H, we count paths between midpoints.

Fix a ∈M, and let

Z(x) =
∑

γ

x|γ|, x ∈ (0,∞),
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where the sum is over all SAWs γ starting at a, and |γ| is the number of ver-
tices visited by γ. Theorem 2.3 is equivalent to the assertion that the radius of

convergence of Z is χ := 1/
√

2 +
√

2. We shall thus prove that

Z(χ) =∞, (2.2)

Z(x) <∞ for x < χ. (2.3)

Towards this end we introduce a function that records the turning angle of
a SAW. A SAW γ departs from its starting-midpoint a in one of two possible
directions, and its direction changes by ±π/3 at each vertex. On arriving at its
other endpoint b, it has turned through some total turning angle T (γ), measured
anticlockwise in radians.

We work within some bounded region M of H. Let S ⊆ V be a finite set
of vertices that induces a connected subgraph, and let M = MS be the set of
midpoints of edges touching points in S. Let ∆M be the set of midpoints for
which the corresponding edge of H has exactly one endpoint in S. Later in the
proof we shall restrict M to a region of the type illustrated in Figure 2.2.

a

Lh

Uh,v

T
−

h,v T
+

h,v

Fig 2.2. The region Mh,v has 2h + 1 midpoints on the bottom side, and v at the left/right.
In this illustration, we have h = 2 and v = 5.

Let a ∈ ∆M and σ, x ∈ (0,∞), and define the so-called ‘parafermionic ob-
servable’ of [14] by

F σ,x
a,M (z) =

∑

γ:a→z

e−iσT (γ)x|γ|, z ∈M, (2.4)

where the summation is over all SAWs from a to z lying entirely in M . We shall
suppress some of the notation in F σ,x

a,M when no ambiguity ensues.

Lemma 2.4. Let σ = 5
8 and x = χ. For v ∈ S,

(p− v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (2.5)

where p, q, r ∈M are the midpoints of the three edges incident to v.
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The quantities in (2.5) are to be interpreted as complex numbers.

Proof of Lemma 2.4. Let v ∈ S. We assume for definiteness that the star at v
is as drawn on the left of Figure 2.34.

v

p

q

r

a

v

p

q

r

a

ρ ρ

τ τ

v

p

q

r
v

p

q

r

a

ρ

Fig 2.3. The star centred at the vertex v is on the left. Two SAWs lying in P3, visiting the
midpoints of edges in the respective orders pqr and prq. They follow the same SAWs ρ and
τ (in one or the other directions), and differ only within the star.

Let Pk be the set of SAWs of M starting at a whose intersection with {p, q, r}
has cardinality k, for k = 1, 2, 3. We shall show that the aggregate contribution
to (2.5) of P1 ∪ P2 is zero, and similarly of P3.

Consider first P3. Let γ ∈ P3, and write b1, b2, b3 for the ordering of {p, q, r}
encountered along γ starting at a. Thus γ comprises:

– a SAW ρ from a to b1,
– a SAW of length 1 from b1 to b2,
– a SAW τ from b2 to b3 that is disjoint from ρ,

as illustrated in Figure 2.3. We partition P3 according to the pair ρ, τ . For given
ρ, τ , the aggregate contribution of these two paths to the left side of (2.5) is

c
(

θe−iσ4π/3 + θeiσ4π/3
)

(2.6)

where c = (b1 − v)e−iσT (ρ)x|ρ|+|τ |+1 and

θ =
q − v

p− v
= ei2π/3.

The parenthesis in (2.6) equals 2 cos
(

2
3π(2σ + 1)

)

which is 0 when σ = 5
8 .

Consider now P1 ∪ P2. This set may be partitioned according to the point b
in {p, q, r} visited first, and by the route ρ of the SAW from a to b. For given b,

4This and later figures are viewed best in colour.
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v

p

q

r

a

v

p

q

r

a

v

p

q

r

a

ρ ρ ρ

Fig 2.4. The left SAW, denoted γp, intersects the set {p, q, r} once only. The other two paths,
denoted γq and γr, are extensions of the first.

ρ, there are exactly three SAWs, as in Figure 2.4. Their aggregate contribution
to the left side of (2.5) is

c
(

1 + xθeiσπ/3 + xθe−iσπ/3
)

where c = (b− v)e−iσT (γb)x|γb|. With σ = 5
8 , we set this to 0 and solve for x, to

find x = 1/[2 cos(π/8)] = χ. The lemma is proved.

We return to the proof of Theorem 2.3, and we set σ = 5
8 henceforth. Let

M = Mh,v be as in Figure 2.2, and let Lh, T±
h,v, Uh,v be the sets of midpoints

indicated in the figure (note that a is excluded from Lh). Let

λx
h,v =

∑

γ:a→Lh

x|γ|,

where the sum is over all SAWs in Mh,v from a to some point in Lh. All such γ
have T (γ) = π. The sums τ±,x

h,v and ζx
h,v are defined similarly in terms of SAWs

ending in T±
h,v and Uh,v respectively, and all such γ have T (γ) = ∓2π/3 and

T (γ) = 0 respectively.
In summing (2.5) over all vertices v of Mh,v, with x = χ, all contributions

cancel except those from the boundary midpoints. Using the symmetry of Mv,h,
we deduce that

−iFχ(a)− iℜ(eiσπ)λχ
h,v + iθe−iσ2π/3τ−,χ

h,v + iζχ
h,v + iθeiσ2π/3τ+,χ

h,v = 0.

Divide by i, and use the fact that Fχ(a) = 1, to obtain

clλ
χ
h,v + ctτ

χ
h,v + ζχ

h,v = 1, (2.7)

where τh,v = τ+
h,v + τ−

h,v, cl = cos(3π/8), and ct = cos(π/4).
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Let x ∈ (0,∞). Since λx
h,v and ζx

h,v are increasing in h, the limits

λx
v = lim

h→∞
λx

h,v, ζx
v = lim

h→∞
ζx
h,v,

exist. Hence, by (2.7), the decreasing limit

τχ
h,v ↓ τχ

v as h→∞, (2.8)

exists also. Furthermore, by (2.7),

clλ
χ
v + ctτ

χ
v + ζχ

v = 1. (2.9)

We shall use (2.8)–(2.9) to prove (2.2)–(2.3) as follows.
Proof of (2.2). There are two cases depending on whether or not

τχ
v > 0 for some v ≥ 1. (2.10)

Assume first that (2.10) holds5, and pick v ≥ 1 accordingly. By (2.8), τχ
h,v ≥ τχ

v

for all h, so that

Z(χ) ≥
∞
∑

h=1

τχ
h,v =∞,

and (2.2) follows.

a

L∞

U∞,v+1b

Fig 2.5. A SAW contributing to λχ
v+1

but not λχ
v is broken at its first highest vertex into two

SAWs coloured red and blue. By adding two half-edges, we obtain two SAWs from b ∈ U∞,v+1

to L∞.

Assume now that (2.10) is false so that, by (2.9),

clλ
χ
v + ζχ

v = 1, v ≥ 1. (2.11)

We propose to bound Z(χ) below in terms of the ζχ
v . The difference λχ

v+1 − λχ
v

is the sum of x|γ| over all γ from a to L∞ whose highest vertex lies between

5In fact, (2.10) does not hold, see [5].
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U∞,v and U∞,v+1. See Figure 2.5. We split such a γ into two pieces at its first
highest vertex, and add two half-edges to obtain two self-avoiding paths from a
given midpoint, b say, of U∞,v+1 to L∞ ∪ {a}. Therefore,

λχ
v+1 − λχ

v ≤ χ(ζχ
v+1)

2, v ≥ 1.

By (2.11),
clχ(ζχ

v+1)
2 + ζχ

v+1 ≥ ζχ
v , v ≥ 1,

whence, by induction,

ζχ
v ≥

1

v
min

{

ζχ
1 ,

1

clχ

}

, v ≥ 1.

Therefore,

Z(χ) ≥
∞
∑

v=1

ζχ
v =∞.

Proof of (2.3). SAWs that start at a lowermost vertex and end at an uppermost
vertex (or vice versa) are called bridges. Hammersley and Welsh [27] showed,
as follows, that any SAW may be decomposed in a unique way into sub-walks
that are bridges. They used this to obtain a bound on the rate of convergence
in the limit defining the connective constant.

a

b1

b2

b3

Fig 2.6. A half-plane walk γ decomposed into four bridges.

Consider first a (finite) SAW γ in M∞,∞ starting at a. From amongst its
highest vertices, choose the last, b1 say. Consider the sub-walk from b1 onwards,
and find the final lowest vertex, b2 say. Iterate the procedure until the endpoint
of γ is reached, as illustrated in Figure 2.6. The outcome is a decomposition of
γ into an ordered set of bridges with vertical displacements written T0 > T1 >
· · · > Tj .

Now let γ be a SAW from a (not necessarily a half-plane walk). Find the
earliest vertex of γ that is lowest, c say. Then γ may be decomposed into a
walk γ1 from a to c, together with the remaining walk γ2 = γ \ γ1. On applying
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the above procedure to γ1 viewed backwards, we obtain a decomposition into
bridges with vertical displacements written T−i < · · · < T−1, Similarly, γ2 has
a decomposition with T0 > · · · > Tj. The original walk γ may be reconstructed
from knowledge of the constituent bridges. A little further care is needed in our
case since our walks connect midpoints rather than vertices.

One may deduce a bound for Z(x) in terms of the ζx
v . Any SAW from a has

two choices for initial direction, and thereafter has a bridge decomposition as
above. Therefore,

Z(x) ≤ 2
∑

T−i<···<T−1

T0>···>Tj

j
∏

k=−i

ζx
k = 2

∞
∏

k=1

(1 + ζx
k )2. (2.12)

It remains to bound the right side.
Since all SAWs from a to Uh,v have length at least h,

ζx
h ≤

(

x

χ

)h

ζχ
h ≤

(

x

χ

)h

, x ≤ χ.

Therefore,
∞
∏

k=1

(1 + ζx
k ) <∞, x < χ.

and (2.3) follows by (2.12).

3. Bond percolation

3.1. Background

Percolation is the fundamental stochastic model for spatial disorder. We consider
bond percolation on several lattices, including the (two-dimensional) square,
triangular and hexagonal lattices of Figure 1.1, and the (hyper)cubic lattices
Ld = (Zd, Ed) in d ≥ 3 dimensions. Detailed accounts of the basic theory may
be found in [20, 22].

Percolation comes in two forms, ‘bond’ and ‘site’, and we concentrate here
on the bond model. Let L = (V, E) be a lattice with origin denoted 0, and let
p ∈ [0, 1]. Each edge e ∈ E is designated either open with probability p, or
closed otherwise, different edges receiving independent states. We think of an
open edge as being open to the passage of some material such as disease, liquid,
or infection. Suppose we remove all closed edges, and consider the remaining
open subgraph of the lattice. Percolation theory is concerned with the geometry
of this open graph. Of special interest is the size and shape of the open cluster
C0 containing the origin, and in particular the probability that C0 is infinite.

The sample space is the set Ω = {0, 1}E of 0/1-vectors ω indexed by the
edge-set E; here, 1 represents ‘open’, and 0 ‘closed’. The probability measure is
product measure Pp with density p.
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Geoffrey Grimmett/Three theorems in discrete random geometry 12

For x, y ∈ V , we write x ↔ y if there exists an open path joining x and y.
The open cluster at x is the set Cx = {y : x↔ y} of all vertices reached along
open paths from the vertex x, and we write C = C0. The percolation probability

is the function θ(p) given by

θ(p) = Pp(|C| =∞),

and the critical probability is defined by

pc = pc(L) = sup{p : θ(p) = 0}. (3.1)

It is elementary that θ is a non-decreasing function, and therefore,

θ(p)

{

= 0 if p < pc,

> 0 if p > pc.

It is a fundamental fact that 0 < pc(L) < 1 for any lattice L in two or more
dimensions, but it is unproven in general that no infinite open cluster exists
when p = pc.

Conjecture 3.1. For any lattice L in d ≥ 2 dimensions, we have that θ(pc) = 0.

The claim of the conjecture is known to be valid for certain lattices when
d = 2 and for large d, currently d ≥ 19.

Whereas the above process is defined in terms of a single parameter p, much
of this section is directed at the multiparameter setting in which an edge e is
designated open with some probability pe. In such a case, the critical probability
pc is replaced by a so-called ‘critical surface’. See Section 3.5 for a more precise
discussion of this.

The theory of percolation is extensive and influential. Not only is perco-
lation a benchmark model for studying random spatial processes in general,
but also it has been, and continues to be, a source of beautiful problems (of
which Conjecture 3.1 is one). Percolation in two dimensions has been especially
prominent in the last decade by virtue of its connections to conformal invari-
ance and conformal field theory. Interested readers are referred to the papers
[12, 56, 60, 61, 63, 66] and the books [9, 20, 22].

The concepts of critical exponent and scaling are discussed in Section 3.2.
Section 3.3 is concerned with percolation in two dimensions, and especially the
box-crossing property. The star–triangle transformation features in Section 3.4,
followed by a discussion of universality in Section 3.5.

3.2. Power-law singularity

Macroscopic functions, such as the percolation probability and mean cluster-
size,

θ(p) = Pp(|C| =∞), χ(p) = Pp(|C|),
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Geoffrey Grimmett/Three theorems in discrete random geometry 13

have singularities at p = pc, and there is overwhelming theoretical and numerical
evidence that these are of ‘power-law’ type. A great deal of effort has been
directed towards understanding the nature of the percolation phase transition.
The picture is now fairly clear for one specific model in 2 dimensions (site
percolation on the triangular lattice), owing to the very significant progress in
recent years linking critical percolation to the Schramm–Löwner curve SLE6.
There remain however substantial difficulties to be overcome even when d = 2,
associated largely with the extension of such results to general two-dimensional
systems. The case of large d (currently, d ≥ 19) is also well understood, through
work based on the so-called ‘lace expansion’. Many problems remain open in
the obvious case d = 3.

The nature of the percolation singularity is expected to be canonical, in that
it shares general features with phase transitions of other models of statistical
mechanics. These features are sometimes referred to as ‘scaling theory’ and they
relate to the ‘critical exponents’ occurring in the power-law singularities (see [20,
Chap. 9]). There are two sets of critical exponents, arising firstly in the limit as
p→ pc, and secondly in the limit over increasing spatial scales when p = pc. The
definitions of the critical exponents are found in Table 3.1 (taken from [20]).

Function Behaviour Exp.

percolation θ(p) = Pp(|C| = ∞) θ(p) ≈ (p − pc)β β
probability

truncated χf(p) = Pp(|C|1|C|<∞) χf(p) ≈ |p − pc|−γ γ
mean cluster-size

number of κ(p) = Pp(|C|−1) κ′′′(p) ≈ |p − pc|−1−α α
clusters per vertex

cluster moments χf
k
(p) = Pp(|C|k1|C|<∞)

χf
k+1

(p)

χf
k
(p)

≈ |p − pc|−∆ ∆

correlation length ξ(p) ξ(p) ≈ |p − pc|−ν ν

cluster volume Ppc(|C| = n) ≈ n−1−1/δ δ

cluster radius Ppc

(

rad(C) = n
)

≈ n−1−1/ρ ρ

connectivity function Ppc(0 ↔ x) ≈ ‖x‖2−d−η η

Table 3.1

Eight functions and their critical exponents. The first five exponents arise in the limit as
p → pc, and the remaining three as n → ∞ with p = pc. See [20] for a definition of the

correlation length ξ(p).
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The notation of Table 3.1 is as follows. We write f(x) ≈ g(x) as x → x0 ∈
[0,∞] if log f(x)/ log g(x)→ 1. The radius of the open cluster Cx at the vertex
x is defined by

rad(Cx) = sup{‖y‖ : x↔ y},
where

‖y‖ = sup
i
|yi|, y = (y1, y2, . . . , yd) ∈ R

d,

is the supremum (L∞) norm on Rd. (The choice of norm is irrelevant since all
norms are equivalent on R

d.) The limit as p → pc should be interpreted in a
manner appropriate for the function in question (for example, as p ↓ pc for θ(p),
but as p→ pc for κ(p)).

Eight critical exponents are listed in Table 3.1, denoted α, β, γ, δ, ν, η, ρ,
∆, but there is no general proof of the existence of any of these exponents for
arbitrary d ≥ 2. Such critical exponents may be defined for phase transitions
in a large family of physical systems. However, it is not believed that they are
independent variables, but rather that, for all such systems, they satisfy the
so-called scaling relations

2− α = γ + 2β = β(δ + 1),

∆ = δβ, γ = ν(2 − η),

and, when d is not too large, the hyperscaling relations

dρ = δ + 1, 2− α = dν.

More generally, a ‘scaling relation’ is any equation involving critical exponents
believed to be ‘universally’ valid. The upper critical dimension is the largest
value dc such that the hyperscaling relations hold for d ≤ dc. It is believed that
dc = 6 for percolation. There is no general proof of the validity of the scaling
and hyperscaling relations for percolation, although quite a lot is known when
either d = 2 or d is large.

We note some further points in the context of percolation.

(a) Universality. The numerical values of critical exponents are believed to
depend only on the value of d, and to be independent of the choice of lat-
tice, and whether bond or site. Universality in two dimensions is discussed
further in Section 3.5.

(b) Two dimensions . When d = 2, it is believed that

α = − 2
3 , β = 5

36 , γ = 43
18 , δ = 91

5 , . . .

These values (other than α) have been proved (essentially) only in the
special case of site percolation on the triangular lattice, see [62].

(c) Large dimensions . When d is sufficiently large (in fact, d ≥ dc) it is be-
lieved that the critical exponents are the same as those for percolation
on a tree (the ‘mean-field model’), namely δ = 2, γ = 1, ν = 1

2 , ρ = 1
2 ,

and so on (the other exponents are found to satisfy the scaling relations).
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Using the first hyperscaling relation, this is consistent with the contention
that dc = 6. Several such statements are known to hold for d ≥ 19, see
[28, 29, 43].

Open challenges include the following:

– prove the existence of critical exponents for general lattices,
– prove some version of universality,
– prove the scaling and hyperscaling relations in general dimensions,
– calculate the critical exponents for general models in two dimensions,
– prove the mean-field values of critical exponents when d ≥ 6.

Progress towards these goals has been substantial. As noted above, for suffi-
ciently large d, the lace expansion has enabled proofs of exact values for many
exponents. There has been remarkable progress in recent years when d = 2, in-
spired largely by work of Schramm [55], enacted by Smirnov [60], and confirmed
by the programme pursued by Lawler, Schramm, Werner, Camia, Newman and
others to understand SLE curves and conformal ensembles.

Only two-dimensional lattices are considered in the remainder of Section 3.

3.3. Box-crossing property

Loosely speaking, the ‘box-crossing property’ is the property that the probability
of an open crossing of a box with given aspect-ratio is bounded away from 0,
uniformly in the position, orientation, and size of the box.

Let L = (V, E) be a planar lattice drawn in R2, and let P be a probability
measure on Ω = {0, 1}E. For definiteness, we may think of L as one of the
square, triangular, and hexagonal lattices, but the following discussion is valid
in much greater generality.

Let R be a (non-square) rectangle of R2. A lattice-path π is said to cross R
if π contains an arc (termed a box-crossing) lying in the interior of R except
for its two endpoints, which are required to lie, respectively, on the two shorter
sides of R. Note that a box-crossing of a rectangle lies in the longer direction.

Let ω ∈ Ω. The rectangle R is said to possess an open crossing if there exists
an open box-crossing of R, and we write C(R) for this event. Let T be the set of
translations of R2, and τ ∈ T . Fix the aspect-ratio ρ > 1. Let Hn = [0, ρn]×[0, n]
and Vn = [0, n]× [0, ρn], and let n0 = n0(L) <∞ be minimal with the property
that, for all τ ∈ T and all n ≥ n0, τHn and τVn possess crossings. Let

βρ(L, P) = inf
{

P(C(τHn)), P(C(τVn)) : n ≥ n0, τ ∈ T
}

. (3.2)

The pair (L, P) is said to have the ρ-box-crossing property if βρ(L, P) > 0.
The measure P is called positively associated if, for all increasing cylinder

events A, B,
P(A ∩B) ≥ P(A)P(B). (3.3)

(See [22, Sect. 4.2].) The value of ρ in the box-crossing property is in fact imma-
terial, so long as ρ > 1 and P is positively associated. We state this explicitly as
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a proposition since we shall need it in Section 4. The proof is left as an exercise
(see [22, Sect. 5.5]).

Proposition 3.2. Let P be a probability measure on Ω that is positively associ-

ated. If there exists ρ > 1 such that (L, P) has the ρ-box-crossing property, then

(L, P) has the ρ-box-crossing property for all ρ > 1.

It is standard that the percolation measure (and more generally the random-
cluster measure of Section 4, see [21, Sect. 3.2]) are positively associated, and
thus we may speak simply of the box-crossing property.

Here is a reminder about duality for planar graphs. Let G = (V, E) be a
planar graph, drawn in the plane. Loosely speaking, the planar dual Gd of G
is the graph constructed by placing a vertex inside every face of G (including
the infinite face if it exists) and joining two such vertices by an edge ed if and
only if the corresponding faces of G share a boundary edge e. The edge-set Ed

of Gd is in one–one correspondence (e ↔ ed) with E. The duals of the square,
triangular, and hexagonal lattices are illustrated in Figure 1.1.

Let Ω = {0, 1}E, and ω ∈ Ω. With ω we associate a configuration ωd in the
dual space Ωd = {0, 1}Ed by ω(e) + ωd(ed) = 1. Thus, an edge of the dual is
open if and only if it crosses a closed edge of the primal graph. The measure Pp

on Ω induces the measure P1−p on Ωd.
The box-crossing property is fundamental to rigorous study of two-dimensional

percolation. When it holds, the process is either critical or supercritical. If both
(L, Pp) and its dual (Ld, P1−p) have the box-crossing property, then each is
critical (see, for example, [24, Props 4.1, 4.2]). The box-crossing property was
developed by Russo [54], and Seymour and Welsh [58], and exploited heavily
by Kesten [38]. Further details of the use of the box-crossing property may be
found in [11, 60, 63, 66].

One way of estimating the chance of a box-crossing is via its derivative. Let A
be an increasing cylinder event, and let g(p) = Pp(A). An edge e is called pivotal

for A (in a configuration ω) if ωe ∈ A and ωe /∈ A, where ωe (respectively, ωe)
is the configuration ω with the state of e set to 1 (respectively, 0). The so-called
‘Russo formula’ provides a geometric representation for the derivative g′(p):

g′(p) =
∑

e∈E

Pp(e is pivotal for A).

With A the event that the rectangle R possesses an open-crossing, the edge e is
pivotal for A if the picture of Figure 3.1 holds. Note the four ‘arms’ centred at
e, alternating primal/dual.

It turns out that the nature of the percolation singularity is partly determined
by the asymptotic behaviour of the probability of such a ‘four-arm event’ at the
critical point. This event has an associated critical exponent which we introduce
next.

Let Λn be the set of vertices within graph-theoretic distance n of the origin
0, with boundary ∂Λn = Λn \ Λn−1. Let A(N, n) = Λn \ ΛN−1 be the annulus

centred at 0. We call ∂Λn (respectively, ∂ΛN ) its exterior (respectively, interior)
boundary.
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e

Fig 3.1. Primal and dual paths in the rectangle R. A black path is an open primal path joining
an endpoint of e to a left/right side of R, and a red path is an open dual path from an endpoint
of ed to the top/bottom side of R. An edge e is pivotal for the box-crossing event if and only
if there are four arms of alternating type from e to the boundary of the box.

Let k ∈ N, and let σ = (σ1, σ2, . . . , σk) ∈ {0, 1}k; we call σ a colour se-

quence. The sequence σ is called monochromatic if either σ = (0, 0, . . . , 0) or
σ = (1, 1, . . . , 1), and bichromatic otherwise. If k is even, σ is called alternat-

ing if either σ = (0, 1, 0, 1, . . . ) or σ = (1, 0, 1, 0, . . . ). An open path of the
primal (respectively, dual) lattice is said to have colour 1 (respectively, 0). For
0 < N < n, the arm event Aσ(N, n) is the event that the inner boundary of
A(N, n) is connected to the outer boundary by k vertex-disjoint paths with
colours σ1, . . . , σk, taken in anticlockwise order.

The choice of N is largely immaterial to the asymptotics as n → ∞, and it
is enough to take N = N(σ) sufficiently large that, for n ≥ N , there exists a
configuration with the required j coloured paths. It is believed that there exist
arm exponents ρ(σ) satisfying

Ppc
[Aσ(N, n)] ≈ n−ρ(σ) as n→∞.

Of particular interest here are the alternating arm exponents. Let j ∈ N, and
write ρ2j = ρ(σ) with σ the alternating colour sequence of length 2j. Thus, ρ4 is
the exponent associated with the derivative of box-crossing probabilities. Note
that the radial exponent ρ satisfies ρ = 1/ρ({1}).

3.4. Star–triangle transformation

In its base form, the star–triangle transformation is a simple graph-theoretic
relation. Its principal use has been to explore models with characteristics that
are invariant under such transformations. It was discovered in the context of
electrical networks by Kennelly [36] in 1899, and it was adapted in 1944 by
Onsager [52] to the Ising model in conjunction with Kramers–Wannier duality. It
is a key element in the work of Baxter [3] on exactly solvable models in statistical
mechanics, and it has become known as the Yang–Baxter equation (see [53] for

imsart-ps ver. 2011/05/20 file: cornell5.tex date: October 26, 2011



Geoffrey Grimmett/Three theorems in discrete random geometry 18

a history of its importance in physics). Sykes and Essam [64] used the star–
triangle transformation to predict the critical surfaces of inhomogeneous bond
percolation on triangular and hexagonal lattices, and it is a tool in the study of
the random-cluster model [21], and the dimer model [37].

Its importance for probability stems from the fact that a variety of proba-
bilistic models are conserved under this transformation, including critical per-
colation, Potts, and random-cluster models. More specifically, the star–triangle
transformation provides couplings of critical probability measures under which
certain geometrical properties of configurations (such as connectivity in perco-
lation) are conserved.

p0

p1p2

A

B C

O

1−p0

1−p1 1−p2

A

B C

Fig 3.2. The star–triangle transformation

We summarize the star–triangle transformation for percolation as in [20, Sect.
11.9]. Consider the triangle G = (V, E) and the star G′ = (V ′, E′) drawn in
Figure 3.2. Let p = (p0, p1, p2) ∈ [0, 1)3. Write Ω = {0, 1}E with associated
(inhomogeneous) product probability measure P△

p
with intensities (pi) as illus-

trated, and Ω′ = {0, 1}E′

with associated measure P71−p
. Let ω ∈ Ω and ω′ ∈ Ω′.

The configuration ω (respectively, ω′) induces a connectivity relation on the set
{A, B, C} within G (respectively, G′). It turns out that these two connectivity
relations are equi-distributed so long as κ△(p) = 0, where

κ△(p) = p0 + p1 + p2 − p1p2p3 − 1. (3.4)

This may be stated rigorously as follows. Let 1(x
G,ω←−→ y) denote the indicator

function of the event that x and y are connected in G by an open path of ω.

Thus, connections in G are described by the family {1(x
G,ω←−→ y) : x, y ∈ V }

of random variables, and similarly for G′. It may be checked (or see [20, Sect.
11.9]) that the families

{

1(x
G,ω←−→ y) : x, y = A, B, C

}

,

{

1(x
G′,ω′

←−−→ y) : x, y = A, B, C

}

,

have the same law whenever κ△(p) = 0.
It is helpful to express this in terms of a coupling of P△

p
and P71−p

. Suppose

p ∈ [0, 1)3 satisfies κ△(p) = 0, and let Ω (respectively, Ω′) have associated
measure P△

p
(respectively, P71−p

) as above. There exist random mappings T :
Ω→ Ω′ and S : Ω′ → Ω such that:
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(a) T (ω) has the same law as ω′, namely P71−p
,

(b) S(ω′) has the same law as ω, namely P△
p

,

(c) for x, y ∈ {A, B, C}, 1
(

x
G,ω←−→ y

)

= 1
(

x
G′,T (ω)←−−−−→ y

)

,

(d) for x, y ∈ {A, B, C}, 1
(

x
G′,ω′

←−−→ y
)

= 1
(

x
G,S(ω′)←−−−−→ y

)

.

Such mappings are described informally in Figure 3.3 (taken from [24]).

and similarly for all pairs of edges

(1− p0)p1p2
P

p0p1p2

P

p0(1− p1)p2
P

p0p1(1− p2)

P

(1− p0)p1p2
P

p0p1p2

P

p0(1− p1)p2
P

p0p1(1− p2)

P

and similarly for all single edges

T

T

S

S

S

T

Fig 3.3. The random maps T and S and their transition probabilities, with P := (1− p0)(1−
p1)(1− p2). Note that T (ω) is deterministic for seven of the eight elements of Ω; only in the
eighth case does T (ω) involve further randomness. Similarly, S(ω′) is deterministic except
for one special ω′.

The star–triangle transformation may evidently be used to couple bond per-
colation on the triangular and hexagonal lattices. This may be done, for exam-
ple, by applying it to every upwards pointing triangle of T. Its impact however
extends much beyond this. Whenever two percolation models are related by
sequences of disjoint star–triangle transformations, their open connections are
also related (see [23]). That is, the star–triangle transformation transports not
only measures but also open connections. We shall see how this may be used in
the next section.
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3.5. Universality for bond percolation

The hypothesis of universality states in the context of percolation that the
nature of the singularity depends on the number of dimensions but not further
on the details of the model (such as choice of lattice, and whether bond or site).
In this section, we summarize results of [24, 25] showing a degree of universality
for a class of bond percolation models in two dimensions. The basic idea is as
follows. The star–triangle transformation is a relation between a large family
of critical bond percolation models. Since it preserves open connections, these
models have singularities of the same type.

We concentrate here on the square, triangular, and hexagonal (or honeycomb)
lattices, denoted respectively as L

2, T, and H. The following analysis applies to
a large class of so-called isoradial graphs of which these lattices are examples
(see [23]). Their critical probabilities are known as follows (see [20]): pc(L

2) = 1
2 ,

and pc(T) = 1 − pc(H) is the root in the interval (0, 1) of the cubic equation
3p− p3 − 1 = 0.

We define next inhomogeneous percolation on these lattices. The edges of the
square lattice are partitioned into two classes (horizontal and vertical) of parallel
edges, while those of the triangular and hexagonal lattices may be split into three
such classes. The product measure on the edge-configurations is permitted to
have different intensities on different edges, while requiring that any two parallel
edges have the same intensity. Thus, inhomogeneous percolation on the square
lattice has two parameters, p0 for horizontal edges and p1 for vertical edges,
and we denote the corresponding measure P�

p
where p = (p0, p1) ∈ [0, 1)2. On

the triangular and hexagonal lattices, the measure is defined by a triplet of
parameters p = (p0, p1, p2) ∈ [0, 1)3, and we denote these measures P△

p
and P7

p
,

respectively.
Criticality is identified in an inhomogeneous model via a ‘critical surface’.

Consider bond percolation on a lattice Lwith edge-probabilities p = (p0, p1, . . . ).
The critical surface is an equation of the form κ(p) = 0, where the percolation
probability θ(p) satisfies

θ(p)

{

= 0 if κ(p) < 0,

> 0 if κ(p) > 0.

The discussion of Section 3.2 may be adapted to the critical surface of an inho-
mogeneous model.

The critical surfaces of the above models are given explicitly in [20, 38]. Let

κ�(p) = p0 + p1 − 1, p = (p0, p1),

κ△(p) = p0 + p1 + p2 − p0p1p2 − 1, p = (p0, p1, p2),

κ7(p) = −κ△(1 − p0, 1− p1, 1− p2), p = (p0, p1, p2).

The critical surface of the lattice L2 (respectively, T, H) is given by κ�(p) = 0
(respectively, κ△(p) = 0, κ7(p) = 0).
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Let M denote the set of all inhomogeneous bond percolation models on the
square, triangular, and hexagonal lattices, with edge-parameters p belonging
to the half-open interval [0, 1) and lying in the appropriate critical surface. A
critical exponent π is said to exist for a model M ∈ M if the appropriate
asymptotic relation of Table 3.1 holds, and π is called M-invariant if it exists
for all M ∈M and its value is independent of the choice of such M .

Theorem 3.3 ([25]).

(a) For every π ∈ {ρ} ∪ {ρ2j : j ≥ 1}, if π exists for some model M ∈ M,

then it is M-invariant.

(b) If either ρ or η exist for some M ∈M, then ρ, δ, η are M-invariant and

satisfy the scaling relations 2ρ = δ + 1, η(δ + 1) = 4.

Kesten [40] showed6 that the ‘near-critical’ exponents β, γ, ν, ∆ may be
given explicitly in terms of ρ and ρ4, for two-dimensional models satisfying
certain symmetries. Homogeneous percolation on our three lattices have these
symmetries, but it is not known whether the strictly inhomogeneous models
have sufficient regularity for the conclusions to apply. The next theorem is a
corollary of Theorem 3.3 in the light of the results of [40, 51].

Theorem 3.4 ([25]). Assume that ρ and ρ4 exist for some M ∈ M. Then β, γ,

ν, and ∆ exist for homogeneous percolation on the square, triangular and hexag-

onal lattices, and they are invariant across these three models. Furthermore, they

satisfy the scaling relations γ + 2β = β(δ + 1) = 2ν, ∆ = βδ.

A key intermediate step in the proof of Theorem 3.3 is the box-crossing
property for inhomogeneous percolation on these lattices.

Theorem 3.5 ([24]).

(a) If p ∈ (0, 1)2 satisfies κ�(p) = 0, then P�
p

has the box-crossing property.

(b) If p ∈ [0, 1)3 satisfies κ△(p) = 0, then both P△
p

and P71−p
have the box-

crossing property.

In the remainder of this section, we outline the proof of Theorem 3.5 and
indicate the further steps necessary for Theorem 3.3. The starting point is the
observation of Baxter and Enting [4] that the star–triangle transformation may
be used to transform the square into the triangular lattice. Consider the ‘mixed
lattice’ on the left of Figure 3.4 (taken from [24]), in which there is an interface
I separating the square from the triangular parts. Triangular edges have length√

3 and vertical edges length 1. We apply the star–triangle transformation to
every upwards pointing triangle, and then to every downwards pointing star.
The result is a translate of the mixed lattice with the interface lowered by one
step. When performed in reverse, the interface is raised one step.

This star–triangle map is augmented with probabilities as follows. Let p =
(p0, p1, p2) ∈ [0, 1)3 satisfy κ△(p) = 0. An edge e of the mixed lattice is declared
open with probability:

6See also [51].
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p1p2 1−p0
1−p1

1−p2p0I

I I

p0

p2p1

T △

T ▽

S�
S�

Fig 3.4. Transformations S�, S�, T △, and T ▽ of mixed lattices. The transformations map
the dashed stars/triangles to the bold stars/triangles. The interface-height decreases by 1 from
the leftmost to the rightmost graph.

(a) p0 if e is horizontal,
(b) 1− p0 if e is vertical,
(c) p1 if e is the right edge of an upwards pointing triangle,
(d) p2 if e is the left edge of an upwards pointing triangle,

and the ensuing product measure is written Pp. Write S� ◦ T △ for the left-to-
right map of Figure 3.4, and S� ◦ T ▽ for the right-to-left map. As described in
Section 3.4, each τ ∈ {S� ◦ T △, S� ◦ T ▽} may be extended to maps between
configuration spaces, and they give rise to couplings of the relevant probability
measures under which local open connections are preserved. It follows that, for
a open path π in the domain of τ , the image τ(π) contains an open path π′ with
endpoints within distance 1 of those of π, and furthermore every point of π′ is
within distance 1 of some point in π. We shall speak of π being transformed to
π′ under τ .

Let α > 2 and let RN be a 2αN × N rectangle in the square part of a
mixed lattice. Since Pp is a product measure, we may take as interface the set
Z×{N}. Suppose there is an open path π crossing RN horizontally. By making
N applications of S�◦T △, π is transformed into an open path π′ in the triangular
part of the lattice. As above, π′ is within distance N of π, and its endpoints
are within distance N of those of π. As illustrated in Figure 3.5, π′ contains a
horizontal crossing of a 2(α− 1)× 2N rectangle R′

N in the triangular lattice. It
follows that

P
△
p

(C(R′
N )) ≥ P

�

(p0,1−p0)
(C(RN )), N ≥ 1.

This is one of two inequalities that jointly imply that, if P�

(p0,1−p0) has the

box-crossing property then so does P△
p

. The other such inequality is concerned
with vertical crossings of rectangles. It is not so straightforward to derive, and
makes use of a probabilistic estimate based on the randomization within the
map S� ◦ T △ given in Figure 3.3.

One may similarly show that P�

(p0,1−p0) has the box-crossing property when-

ever P△
p

has it. As above, two inequalities are needed, one of which is simple
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N

2αN

2(α− 1)N

2N
interface

interface

Fig 3.5. After N applications of S� ◦ T △, a horizontal crossing of a rectangle of Z2 has been
transformed into a crossing of a rectangle in T with altered aspect-ratio.

and the other less so. In summary, P�

(p0,1−p0) has the box-crossing property if

and only if P△
p

has it. The reader is referred to [24] for the details.
Theorem 3.5 follows thus. It was shown by Russo [54] and by Seymour and

Welsh [58] that P�

( 1
2
, 1
2
)
has the box-crossing property (see also [22, Sect. 5.5]). By

the above, so does P△
p

for p = (1
2 , p1, p2) whenever κ△(1

2 , p1, p2) = 0. Similarly,

so does P�

(p1,1−p1)
, and therefore also P△

p
for any triple p = (p0, p1, p2) satisfying

κ△(p) = 0.

1−p0
1−p1

1−p2

p2 p1

p1p2

1−p0

p0

p0

p2 p1

p0

T−

T+
S+

S−

Fig 3.6. The transformation S+ ◦ T+ (respectively, S− ◦T−) transforms L1 into L2 (respec-
tively, L2 into L1). They map the dashed graphs to the bold graphs.

We close this section with some notes on the further steps required for The-
orem 3.3. We restrict ourselves to a consideration of the radial exponent ρ, and
the reader is referred to [25] for the alternating-arm exponents. Rather than the
mixed lattices of Figure 3.4, we consider the hybrid lattices Lm of Figure 3.6
having a band of square lattice of width 2m, with triangular sections above and
below. The edges of triangles have length

√
3 and the vertical edges length 1.

The edge-probabilities of Lm are as above, and the resulting measure is denoted
Pm

p
.
Let n ≥ 3, and Bn = [−n, n]2 ⊆ R

2, and write An = {0 ↔ ∂Bn} where ∂B
denotes the boundary of the box B. Let Jn be the line-segment [2n, 3n]× {0},
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(3n, 0)

Jn0

∂B3n

Fig 3.7. If 0 is connected to ∂B3n and the four box-crossings occur, then 0 is connected to
the line-segment Jn.

and note that Jn is invariant under the lattice transformations of Figure 3.6. If
A3n occurs, and in addition the four rectangles illustrated in Figure 3.7 have
crossings, then 0↔ Jn. Let p ∈ [0, 1)3. By Theorem 3.5 and positive association,
there exists α > 0 such that, for n ≥ 3,

αP
�
p

(A3n) ≤ P
�
p

(0↔ Jn) ≤ P
�
p

(A2n), (3.5)

αP
△
p

(A3n) ≤ P
△
p

(0↔ Jn) ≤ P
△
p

(A2n). (3.6)

By making 3n applications of the mapping S+ ◦ T + (respectively, S− ◦ T−)
of Figure 3.6, we find that

P
�

(p0,1−p0)
(0↔ Jn) = P

3n
p

(0↔ Jn) = P
0
p
(0↔ Jn) = P

△
p

(0↔ Jn).

The equality of the exponents ρ (if they exist) for these two models follows by
(3.5)–(3.6), and the proof of Theorem 3.3(a) is completed as was that of the
box-crossing property, Theorem 3.5.

Part (b) is a consequence of Theorem 3.5 on applying Kesten’s results of [39]
about scaling relations at criticality.

4. Random-cluster model

4.1. Background

Let G = (V, E) be a finite graph, and Ω = {0, 1}E. For ω ∈ Ω, we write
η(ω) = {e ∈ E : ω(e) = 1} for the set of open edges, and k(ω) for the number
of connected components, or ‘open clusters’, of the subgraph (V, η(ω)). The
random-cluster measure on Ω, with parameters p ∈ [0, 1], q ∈ (0,∞) is the
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probability measure

φp,q(ω) =
1

Z

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω), ω ∈ Ω, (4.1)

where Z = ZG,p,q is the normalizing constant. We assume throughout this
section that q ≥ 1, and for definiteness shall work only with the cubic lattice
Ld = (Zd, Ed) in d ≥ 2 dimensions.

This measure was introduced by Fortuin and Kasteleyn in a series of papers
around 1970, in a unification of electrical networks, percolation, Ising, and Potts
models. Percolation is retrieved by setting q = 1, and electrical networks arise via
the limit p, q → 0 in such a way that q/p → 0. The relationship to Ising/Potts
models is more complex in that it involves a transformation of measures. In
brief, two-point connection probabilities for the random-cluster measure with
q ∈ {2, 3, . . .} correspond to correlations for ferromagnetic Ising/Potts models,
and this allows a geometrical interpretation of their correlation structure. A
fuller account of the random-cluster model and its history and associations may
be found in [21].

We omit an account of the properties of random-cluster measures, instead
referring the reader to [21, 22]. Note however that random-cluster measures are
positively associated whenever q ≥ 1, in that (3.3) holds for all pairs A, B of
increasing events.

The random-cluster measure may not be defined directly on the cubic lattice
Ld = (Zd, Ed), since this is infinite. There are two possible ways to proceed of
which we choose here to use weak limits, and towards this end we introduce
boundary conditions. Let Λ be a finite box in Zd. For b ∈ {0, 1}, define

Ωb
Λ = {ω ∈ Ω : ω(e) = b for e /∈ EΛ},

where EΛ is the set of edges of Ld joining pairs of vertices belonging to Λ.
Each of the two values of b corresponds to a certain ‘boundary condition’ on
Λ, and we shall be interested in the effect of these boundary conditions in the
infinite-volume limit.

On Ωb
Λ, we define a random-cluster measure φb

Λ,p,q as follows. Let

φb
Λ,p,q(ω) =

1

Zb
Λ,p,q

{

∏

e∈EΛ

pω(e)(1− p)1−ω(e)

}

qk(ω,Λ), ω ∈ Ωb
Λ, (4.2)

where k(ω, Λ) is the number of clusters of (Zd, η(ω)) that intersect Λ. The bound-
ary condition b = 0 (respectively, b = 1) is sometimes termed ‘free’ (respectively,
‘wired’). The choice of boundary condition affects the measure through the total
number k(ω, Λ) of open clusters: when using the wired boundary condition, the
set of clusters intersecting the boundary of Λ contributes only 1 to this total.

The free/wired boundary conditions are extremal within a broader class.
A boundary condition on Λ amounts to a rule for how to count the clusters
intersecting the boundary ∂Λ of Λ. Let ξ be an equivalence relation on ∂Λ; two
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vertices v, w ∈ ∂Λ are identified as a single point if and only if vξw. Thus ξ gives
rise to a cluster-counting function K(·, ξ), and thence a probability measure

φξ
Λ,p,q as in (4.2). It is an exercise in Holley’s inequality [31] to show that

φξ
Λ,p,q ≤st φξ′

Λ,p,q if ξ ≤ ξ′, (4.3)

where we write ξ ≤ ξ′ if, for all pairs v, w, vξw ⇒ vξ′w. In particular,

φ0
Λ,p,q ≤st φξ

Λ,p,q ≤st φ1
Λ,p,q for all ξ. (4.4)

We may now take the infinite-volume limit. It may be shown that the weak
limits

φb
p,q = lim

Λ→Zd
φb

Λ,p,q, b = 0, 1,

exist, and are translation-invariant and ergodic (see [19]). The limit measures,
φ0

p,q and φ1
p,q, are called ‘random-cluster measures’ on Ld, and they are ex-

tremal in the following sense. There is a larger family of measures that can
be constructed on Ω, either by a process of weak limits, or by the procedure
that gives rise to so-called DLR measures (see [21, Chap. 4]). It turns out that
φ0

p,q ≤st φp,q ≤st φ1
p,q for any such measure φp,q, as in (4.4). Therefore, there

exists a unique random-cluster measure if and only if φ0
p,q = φ1

p,q.
The percolation probabilities are defined by

θb(p, q) = φb
p,q(0↔∞), b = 0, 1, (4.5)

and the critical values by

pb
c(q) = sup{p : θb(p, q) = 0}, b = 0, 1. (4.6)

We are now ready to present a theorem that gives sufficient conditions under
which φ0

p,q = φ1
p,q. The proof may be found in [21].

Theorem 4.1. Let d ≥ 2 and q ≥ 1. We have that

(a) [1] φ0
p,q = φ1

p,q if θ1(p, q) = 0,
(b) [19] there exists a countable subset Dd,q of [0, 1], possibly empty, such that

φ0
p,q = φ1

p,q if and only if p /∈ Dd,q.

By Theorem 4.1(b), θ0(p, q) = θ1(p, q) for p /∈ Dd,q, whence p0
c(q) = p1

c(q) by
the monotonicity of the θb(·, q). Henceforth we refer to the critical value as pc(q).
It is a basic fact that pc(q) is non-trivial, which is to say that 0 < pc(q) < 1
whenever d ≥ 2 and q ≥ 1.

It is an open problem to find a satisfactory definition of pc(q) for q < 1.
Despite the failure of positive association in this case, it may be shown by
the so-called ‘comparison inequalities’ that there exists no infinite cluster for
q ∈ (0, 1) and small p, whereas there is an infinite cluster for q ∈ (0, 1) and large
p.

The following is an important conjecture ccncerning the discontinuity set Dq.

Conjecture 4.2. There exists Q(d) such that :
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(a) if q < Q(d), then θ1(pc, q) = 0 and Dd,q = ∅,

(b) if q > Q(d), then θ1(pc, q) > 0 and Dd,q = {pc}.
In the physical vernacular, there is conjectured to exist a critical value of

q beneath which the phase transition is continuous (‘second order’) and above
which it is discontinuous (‘first order’). It was proved in [42, 44] that there is a
first-order transition for large q, and it is expected that

Q(d) =

{

4 if d = 2,

2 if d ≥ 6.

This may be contrasted with the best current rigorous estimate in two dimen-
sions, namely Q(2) ≤ 25.72, see [21, Sect. 6.4].

The third result of this article concerns the behaviour of the random-cluster
model on the square lattice L2, and particularly its critical value.

4.2. Critical point on the square lattice

Theorem 4.3 ([7]). The random-cluster model on L2 with cluster-weighting

factor q ≥ 1 has critical value

pc(q) =

√
q

1 +
√

q
.

This exact value has been ‘known’ for a long time, but the full proof has
been completed only recently. When q = 1, the statement pc(1) = 1

2 is the
Harris–Kesten theorem for bond percolation. When q = 2, it amounts to the
well known calculation of the critical temperature of the Ising model. For large
q, the result was proved in [44, 45]. There is a ‘proof’ in the physics paper [30]
when q ≥ 4.

L

Fig 4.1. The lattice L2 and its dual, rotated through π/4. Under reflection in the green line
L, the primal is mapped to the dual.

The main complication of Theorem 4.3 beyond the q = 1 case stems from
the interference of boundary conditions in the proof and applications of the
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box-crossing property, and this is where the major contributions of [7] are to be
found. We summarize first the statement and proof of the box-crossing property.
It is convenient to work on the square lattice L2 rotated through π/4, as illus-
trated in Figure 4.1. For a = (a1, a2) ∈ N

2 and b = (b1, b2) ∈ N
2, the rectangle

Ra,b of this graph is the subgraph induced by the vertices lying inside the rect-
angle [a1, a2]× [b1, b2] of R2. We shall consider two types of boundary condition
on Ra,b. These affect the counts of clusters, and therefore the measures.

Wired (1): all vertices in the boundary of a rectangle are identified as a
single vertex.

Periodic (per): each vertex (a1, y) (respectively, (x, b1)) of the boundary of
Ra,b is wired to (a2, y) (respectively, (x, b2)).

Let q ≥ 1, and write psd =
√

q/(1 +
√

q) and Bm = R(−m,−m),(m,m). The
suffix in psd stands for ‘self-dual’, and is explained in the next section. The
random-cluster measure on Bm with parameters p, q and boundary condition b
is denoted φb

p,m. For a rectangle R, we write Ch(R) (respectively, Cv(R)) for the
event that R is crossed horizontally (respectively, vertically) by an open path.

Proposition 4.4 ([7]). There exists c = c(q) > 0 such that, for m > 3
2n > 0,

φper
psd,m

[

Ch

(

[0, 3
2n)× [0, n)

)]

≥ c.

The choice of periodic boundary condition is significant in that the ensuing
measure is translation-invariant. Since the measure is invariant also under ro-
tations through π/2, this inequality holds also for crossings of vertical boxes.
Since random-cluster measures are positively associated, by Proposition 3.2, the
measure φper

psd,m satisfies a ‘finite-volume’ ρ-box-crossing property for all ρ > 1.
An infinite-volume version of Proposition 4.4 will be useful later. Let m >

3
2n ≥ 1. By stochastic ordering (4.4),

φ1
psd,m

[

Ch

(

[0, 3
2n)× [0, n)

)]

≥ φper
psd,m

[

Ch

(

[0, 3
2n)× [0, n)

)]

≥ c. (4.7)

Let m→∞ to obtain

φ1
psd,q

[

Ch

(

[0, 3
2n)× [0, n)

)]

≥ c, n ≥ 1. (4.8)

By Proposition 3.2, φ1
psd,q has the box-crossing property. Equation (4.8) with

φ0
psd,q in place of φ1

psd,q is false for large q, see [21, Thm 6.35].
Proposition 4.4 may be used to show also the exponential-decay of connection

probabilities when p < psd. See [7] for the details.
This section closes with a note about other two-dimensional models. The

proof of Theorem 4.3 may be adapted (see [7]) to the triangular and hexagonal
lattices, thus complementing known inequalities of [21, Thm 6.72] for the crit-
ical points. It is an open problem to prove the conjectured critical surfaces of
inhomogeneous models on L2, T, and H. See [21, Sect. 6.6].
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4.3. Proof of the box-crossing property

We outline the proof of Proposition 4.4, for which full details may be found
in [7]. There are two steps: first, one uses duality to prove inequalities about
crossings of certain regions; secondly, these are used to estimate the probabilities
of crossings of rectangles.

Step 1, duality. Let G = (V, E) be a finite, connected planar graph embedded in
R2, and let Gd = (Vd, Ed) be its planar dual graph. A configuration ω ∈ {0, 1}E
induces a configuration ωd ∈ {0, 1}Ed as in Section 3.3 by ω(e) + ωd(ed) = 1.

We recall the use of duality for bond percolation on L2: there is a horizontal
open primal crossing of the rectangle [0, n + 1] × [0, n] (with the usual lattice
orientation) if and only if there is no vertical open dual crossing of the dual
rectangle. When p = 1

2 , both rectangle and probability measure are self-dual,
and thus the chance of a primal crossing is 1

2 , whatever the value of n. See [20,
Lemma 11.21].

Returning to the random-cluster measure on G, if ω has law φG,p,q, it may
be shown using Euler’s formula (see [21, Sect. 6.1] or [22, Sect. 8.5]) that ωd has
law φ1

Gd,pd,q where
p

1− p
· pd

1− pd
= q.

Note that p = pd if and only if p = psd. One must be careful with boundary
conditions. If the primal measure has the free boundary condition, then the dual
measure has the wired boundary condition (in effect, since Gd possesses a vertex
in the infinite face of G).

Overlooking temporarily the issue of boundary condition, the dual graph of
a rectangle [0, n)2 in the square lattice is a rectangle in a shifted square lattice,
and this leads to the aspiration to find a self-dual measure and a crossing event
with probability bounded away from 0 uniformly in n. The natural measure is
φper

psd,m, and the natural event is Ch

(

[0, n)2
)

. Since this measure is defined on a
torus, and tori are not planar, Euler’s formula cannot be applied directly. By a
consideration of the homotopy of the torus, one obtains via an amended Euler
formula that there exists c1 = c1(q) > 0 such that

φper
psd,m

[

Ch

(

[0, n)2
)]

≥ c1, 0 < n < m. (4.9)

We show next an inequality similar to (4.9) but for more general domains.
Let γ1, γ2 be paths as described in the caption of Figure 4.2, and consider
the random-cluster measure, denoted φγ1,γ2

, on the primal graph within the
coloured region G(γ1, γ2) of the figure, with mixed wired/free boundary condi-
tions obtained by identifying all points on γ1, and similarly on γ2 (these two
sets are not wired together as one). For readers who prefer words to pictures: γ1

(respectively, γ2) is a path on the left (respectively, right) of the line L of the
figure, with exactly one endpoint adjacent to L; reflection in L is denoted ρ; γ1

and ργ2 (and hence γ2 and ργ1 also) do not intersect, and their other endpoints
are adjacent in the sense of the figure.
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γ1

γ2

ργ1

ργ2

L

Fig 4.2. Under reflection ρ in the green line L, the primal lattice is mapped to the dual. The
primal path γ1 is on the left side with an endpoint abutting L, and similarly γ2 is on the
right. Also, γ1 and ργ2 are non-intersecting with adjacent endpoints as marked.

Writing {γ1 ↔ γ2} for the event that there is an open path in G(γ1, γ2) from
γ1 to γ2, we have by duality that

φγ1,γ2
(γ1 ↔ γ2) + φ∗

γ1,γ2
(ργ1 ↔∗ ργ2) = 1, (4.10)

where φ∗
γ1,γ2

is the random-cluster measure on the dual of the graph within
G(γ1, γ2) and↔∗ denotes the existence of an open dual connection. Now, φ∗

γ1,γ2

has a mixed boundary condition in which all vertices of ργ1 ∪ργ2 are identified.
Since the number of clusters with this wired boundary condition differs by at
most 1 from that in which ργ1 and ργ2 are separately wired, the Radon–Nikodým
derivative of φ∗

γ1,γ2
with respect to ρφγ1,γ2

takes values in the interval [q−1, q].
Therefore,

φ∗
γ1,γ2

(ργ1 ↔∗ ργ2) ≤ q2φγ1,γ2
(γ1 ↔ γ2).

By (4.10),

φγ1,γ2
(γ1 ↔ γ2) ≥

1

1 + q2
. (4.11)

Step 2, crossing rectangles. We show next how (4.11) may be used to prove
Proposition 4.4. Let S = S1 ∪ S2, with S1 = [0, n)× [0, n) and S2 = [12n, 3

2n)×
[0, n), as illustrated in Figure 4.3. Let A be the (increasing) event that: S1 ∪ S2

contains some open cluster C that contains both a horizontal crossing of S1 and
a vertical crossing of S2. We claim that

φper
psd,m(A) ≥ c2

1

2(1 + q2)
, m ≥ 3

2n, (4.12)
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with c1 as in (4.9). The proposition follows from (4.12) since, by positive asso-
ciation and (4.9),

φper
psd,m

[

Ch

(

[0, 3
2n)× [0, n)

)]

≥ φper
psd,m [A ∩ Ch(S2)]

≥ φper
psd,m(A)φper

psd,m [Ch(S2)]

≥ c3
1

2(1 + q2)
.

We prove (4.12) next.
Let ℓ be the line-segment [ 12n, n) × {0}, and let Cℓ

v(S2) be the event of a
vertical crossing of S2 whose only endpoint on the x-axis lies in ℓ. By a symmetry
of the random-cluster model, and (4.9),

φper
psd,m[Cℓ

v(S2)] ≥ 1
2φper

psd,q[Cv(S2)] ≥ 1
2c1. (4.13)

On the event Ch(S1) (respectively, Cℓ
v(S2)) let Γ1 (respectively, Γ2) be the high-

est (respectively, rightmost) crossing of the required type. The paths Γi may be
used to construct the coloured region of Figure 4.3: L is a line in whose reflection
the primal and dual lattices are interchanged; the reflections ρΓi of the Γi frame
a region bounded by subsets γi of Γi and their reflections ργi. The situation is
generally more complicated than the illustration in the figure since the Γi can
wander around S (see [7], but the essential ingredients of the proof are clearest
thus.

γ1

γ2

ργ1

ργ2

L(0, 0)

(3
2
n, n)

Γ1

Γ2

ℓ

Fig 4.3. The path Γ1 is the uppermost crossing of S1, and Γ2 is the rightmost crossing of S2

starting in ℓ. The coloured region is framed by the Γi and their reflections in L. This is the
simplest situation and there are more complex, depending on the Γi.

Let I = {Γ1 ∩ Γ2 6= ∅}, so that

φper
psd,m(A) ≥ φper

psd,m

[

Ch(S1) ∩ Cℓ
v(S2) ∩ I

]

+ φper
psd,m

[

A ∩ Ch(S1) ∩ Cℓ
v(S2) ∩ Ic

]

.
(4.14)
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On the event Ch(S1) ∩Cℓ
v(S2) ∩ Ic,

φper
psd,m(A | Γ1, Γ2) ≥ φper

psd,m

(

γ1 ↔ γ2 in G(γ1, γ2)
∣

∣Γ1, Γ2

)

.

Since {γ ↔ γ2 in G(γ1, γ2)} is an increasing event, the right side is no larger if
we augment the conditioning with the event that all edges of S1 strictly above
Γ1 (and S2 to the right of Γ2) are closed. It may then be seen that

φper
psd,m

(

γ1 ↔ γ2 in G(γ1, γ2)
∣

∣Γ1, Γ2

)

≥ φγ1,γ2
(γ1 ↔ γ2). (4.15)

This follows from (4.3) by conditioning on the configuration off G(γ1, γ2). By
(4.13)–(4.14), (4.11), and positive association,

φper
psd,m(A) ≥ 1

1 + q2
φper

psd,m

(

Ch(S1) ∩ Cℓ
v(S2)

)

≥ c2
1

2(1 + q2)
,

and (4.12) follows.
Care is needed in deducing (4.15) in general, since the picture can be more

complicated than indicated in Figure 4.3.

4.4. Proof of the critical point

The inequality pc ≥ psd follows from the stronger statement θ0(psd) = 0, and
has been known since [19, 65]. Here is a brief explanation. We have that φ0

p,q

is ergodic and has the so-called finite-energy property. By the Burton–Keane
uniqueness theorem [10], the number of infinite open clusters is either a.s. 0 or
a.s. 1. If θ0(psd) > 0, then a contradiction follows by duality, as in the case of
percolation. Hence, θ0(psd) = 0, and therefore pc ≥ psd. The details may be
found in [21, Sect. 6.2].

It suffices then to show that θ1(p) > 0 for p > psd, since this implies pc ≤
psd. The argument of [7] follows the classic route for percolation, but with two
significant twists. The first of these is the use of a sharp-threshold theorem for
the random-cluster measure, combined with the uniform estimate of Proposition
4.4, to show that, when p > psd, the chances of box-crossings are near to 1.

Proposition 4.5. Let p > psd. For integral β > α ≥ 2, there exist a, b > 0 such

that

φper
p,βn

[

Ch

(

[0, αn]× [0, n)
)]

≥ 1− an−b, n ≥ 1.

Outline proof. Recall first the remark after Proposition 4.4 that φper
psd,m has the

α-box-crossing property. Now some history. In proving that pc = 1
2 for bond per-

colation on L2, Kesten used a geometrical argument to derive a sharp-threshold
statement for box-crossings along the following lines: since crossings of rectan-
gles with given aspect-ratio have probabilities bounded away from 0 when p = 1

2 ,
they have probability close to 1 when p > 1

2 . Kahn, Kalai, and Linial (KKL)
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[34] derived a general approach to sharp-thresholds of probabilities P 1
2
(A) of in-

creasing events A under the product measure P 1
2
, and this was extended later to

more general product measures (see [22, Chap. 4] and [35] for general accounts).
Bollobás and Riordan [8] observed that the KKL method could be used instead
of Kesten’s geometrical method. The KKL method works best for events and
measures with a certain symmetry, and it is explained in [8] how this may be
adapted for percolation box-crossings.

The KKL theorem was extended in [18] to measures satisfying the FKG lattice
condition (such as, for example, random-cluster measures). The symmetrization
argument of [8] may be adapted to the random-cluster model with periodic
boundary condition (since the measure is translation-invariant), and the current
proposition is a consequence.

See [7] for the details, and [22, Sect. 4.5] for an account of the KKL method,
with proofs.

∂B3k+1

∂B3k+2

∂B3k

Fig 4.4. If the four red box-crossings exist, as well as the blue box-crossing, then the event
Ak occurs.

Let p > psd, and consider the annulus Ak = B3k+1 \B3k . Let Ak be the event
that Ak contains an open cycle C with 0 in its inside, and in addition there is an
open path from C to the boundary ∂B3k+2 . We claim that there exist c, d > 0,
independent of k, such that

φ1
p,3k+2(Ak) ≥ 1− ce−dk, k ≥ 1. (4.16)

This is proved as follows. The event Ak occurs whenever the two rectangles

[−3k+1,−3k)× [−3k+1, 3k+1], (3k, 3k+1]× [−3k+1, 3k+1]
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are crossed vertically, and in addition the three rectangles

[−3k+1, 3k+1]× [−3k+1,−3k), [−3k+1, 3k+1]× (3k, 3k+1],

[3k, 3k+2]× [−3k, 3k]

are crossed horizontally. See Figure 4.4. Each of these five rectangles has shorter
dimension at least 3k and longer dimension not exceeding 3k+2. By Proposition
4.5 and the invariance of φper

p,3k+2 under rotations and translations, each of these

five events has φper
p,3k+2 -probability at least 1 − a3−bk for suitable a, b > 0. By

stochastic ordering (4.3) and positive association,

φ1
p,3k+2(Ak) ≥ φper

p,3k+2(Ak) ≥ (1− a3−bk)5,

and (4.16) is proved.
Recall the weak limit φ1

p,q = limk→∞ φ1
p,3k . The events Ak have been defined

in such a way that, on the event IK =
⋂∞

k=K Ak, there exists an infinite open
cluster. It suffices then to show that φ1

p,q(IK) > 0 for large K. Now,

φ1
p,q

(

m
⋂

k=K

Ak

)

= φ1
p,q(Am)

m−1
∏

k=K

φ1
p,q

(

Ak

∣

∣

∣

∣

∣

m
⋂

l=k+1

Al

)

. (4.17)

Let Γk be the outermost open cycle in Ak, whenever this exists. The condi-
tioning on the right side of (4.17) amounts to the existence of Γk+1 together
with the event {Γk+1 ↔ ∂B3k+2}, in addition to some further information, I say,
about the configuration outside Γk+1. For any appropriate cycle γ, the event
{Γk+1 = γ}∩{γ ↔ ∂B3k+2} is defined in terms of the states of edges of γ and out-
side γ. On this event, Ak occurs if and only if Ak(γ) := {Γk exists} ∩ {Γk ↔ γ}
occurs. The latter event is measurable on the states of edges inside γ, and the
appropriate conditional random-cluster measure is that with wired boundary
condition inherited from γ, denoted φ1

γ . (We have used the fact that the cluster-
count inside γ is not changed by I.) Therefore, the term in the product on the
right side of (4.17) equals the average over γ of

φ1
p,q

(

Ak(γ)
∣

∣

∣
{Γk+1 = γ} ∩ {γ ↔ ∂B3k+2} ∩ I

)

= φ1
γ(Ak(γ)).

Since φ1
∆ ≤st φ1

γ and Ak(∆) ⊆ Ak(γ) with ∆ the boundary of B3k+2 , we have

φ1
γ(Ak(γ)) ≥ φ1

∆(Ak(∆)) = φ1
p,3k+2(Ak).

In conclusion,

φ1
p,q

(

Ak

∣

∣

∣

∣

∣

m
⋂

l=k+1

Al

)

≥ φ1
p,3k+2(Ak). (4.18)

By (4.16)–(4.18),

φ1
p,q

(

m
⋂

k=K

Ak

)

≥ φ1
p,q(Am)

m−1
∏

k=K

(1− ce−dk).
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By (4.8), the box-crossing property, and positive association (as in the red paths
of Figure 4.4), there exists c2 > 0 such that φ1

p,q(Am) ≥ c2 for all m ≥ 1. Hence,

φ1
p,q(IK) = lim

m→∞
φ1

p,q

(

m
⋂

k=K

Ak

)

≥ c2

∞
∏

k=K

(1− ce−dk),

which is strictly positive for large K. Therefore θ1(p, q) > 0, and the theorem is
proved.
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