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Abstract. We examine two aspects of the mathematical basis for two-tier voting
systems, including that of the Council of the European Union. The Penrose square-
root system is based around the concept of equality of influence of the voters across
the Union. There are at least two distinct definitions of influence in current use in
probability theory, namely, absolute and conditional influence. These are in agree-
ment when the underlying random variables are independent, but not generally.
We review their possible implications for two-tier voting systems, especially in the
context of the so-called collective bias model. We show that the two square-root
laws of Penrose are unified through the use of conditional influence.

In an elaboration of the square-root system, S lomczyński and Życzkowski have
proposed an exact value for the quota to be achieved in a successful vote of the
Council, and they have presented numerical and theoretical evidence in its support.
We indicate some numerical and mathematical issues arising in the use of a Gauss-
ian (or normal) approximation in this context. We discuss certain aspects of the
relationship between theoreticians and politicians in the design of a two-tier voting
system, and we reach the conclusion that the choice of quota in the square-root
system is primarily an issue for politicians.

1. Introduction and background

The square-root voting system of Penrose [28] is prominent in discussion of two-
tier voting systems in general, and in specific of that of the Council of the European
Union (see, for example, [21, 36]). The challenge is to devise a system for pooling
the views of a number of Member States with varying population sizes. What weight
wj should be assigned to the opinion of State j, having a population of size Nj?
The Penrose system amounts to the proposal wj ∝

√
Nj. The essence of Penrose’s

argument is the observation that the number S of heads shown in Nj independent,
unbiased coin tosses satisfies

(1.1) E
∣∣S − 1

2
Nj

∣∣ ∼√2Nj/π.
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(Here and later, E denotes expectation, and P denotes probability.)
Penrose [28] discussed also the concept of the ‘power’ (termed ‘influence’ in the

current work, after [4, 31]) of an individual voter within a given election or vote. He
noted that, in a vote within a State containing Nj individuals, this power has order

(1.2) α ∼
√

2/(πNj)

(see also Banzhaf [2]). Later authors have linked (1.1) and (1.2) by proposing a
weight w′j for State j such that the product αw′j does not depend on population-size,

that is, w′j ∝
√
Nj, in agreement with (1.1). This argument appears to assume that:

(i) in a population with size Nj and individual power α, the collective power is αNj,
and (ii) 1/α has, generically, the same order as E

∣∣S − 1
2
Nj

∣∣. The first assumption
here is open to discussion, and the second is, in general, false. Proposition 2.6,
below, explains the true relationship between (1.1) and (1.2) in the context of general
probability distributions.

The mathematical basis of the preceding discussion has been developed by a num-
ber of authors including S lomczyński and Życzkowski [33, 34, 35, 36]. In a method
since dubbed the ‘Jagiellonian Compromise’ (JagCom), the latter have proposed the
use of square-root weights together with a particular value q∗ for the quota q. Writing
N1, N2, . . . , Ns for the populations of the s States of the Union, under the JagCom
a motion is passed if and only if

(1.3) S(J)− S(J) > q∗W where q∗ :=

√
N

W
, W =

s∑
j=1

√
Nj, N =

s∑
j=1

Nj.

Here, J is the set of States voting in favour of the motion, J is the set voting against,
and

S(K) :=
∑
j∈K

√
Nj, K ⊆ {1, 2, . . . , s}.

The value q = q∗ given in (1.3) is supported by a heuristic argument based on
approximation by a Gaussian distribution. Although no proper justification of this
approximation is yet available (see Section 4.2 of the current work), its conclusions
gain some support using exact numerical methods (See Section 4.3).

Certain assumptions appear to be necessary for the above analyses, and the pur-
pose of the current article is to examine some of these. There are four areas that
receive special attention:

(a) the underlying model in which individuals vote according to an unbiased coin
toss, independently of other voters [Section 2.3],

(b) an alternative interpretation of the concept of ‘voting power’ or ‘influence’
[Section 2.2],
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(c) the assumptions of mathematical smoothness under which the Gaussian ap-
proximation is suitable for finite populations [Section 4.2],

(d) some implications of exact computations of voting powers in the Council of
the European Union [Section 4.3].

Numerous earlier authors have of course considered some of these issues, namely (a),
(c), and (d). We mention [21, 23, 25, 30, 35], with apologies to those authors whose
work is not listed explicitly. We hope that some novel issues are illuminated in this
work.

In Section 2, we introduce the notions of the absolute and the conditional influences
of an individual in an election. The absolute influence is that considered by Penrose
and later authors; the conditional influence is sometimes considered more appropriate
in situations where individuals’ votes are dependent random variables. The two
quantities are equal in the independent case, but not generally so.

Salient features of two-tier voting systems are summarised in Section 3, with
special attention to the work of Kirsch [20, 21] and S lomczyński and Życzkowski
[33, 34, 35, 36]. This is followed by a discussion in Section 4 of the influences of the
weighted States within the Council, and of the use and potential misuse of the nor-
mal approximation in estimating certain related probabilities. The closing Section 5
contains some reflections on the JagCom, and in particular the following conclusions.

1. Despite some fragility in the assumptions about voting patterns used to justify
the square-root weights of the JagCom, we offer no superior alternative here.

2. The justification for the proposed JagCom quota q∗ is numerical rather than
mathematical. However, the numerics provide only equivocal guidance which
does not eliminate other values of the quota, including the simpler value q = 0.
The final choice of quota is best informed by political input, supported by
theoretical analysis.

2. Absolute and conditional influence

2.1. The history and context of influence. The concept of ‘influence’ is central
in the probability theory of disordered systems. Consider a system that comprises
m sub-systems. These could be, for example, individual voters in an election, nodes
in a disordered medium (as in the percolation model), or particles in a model for
the ferromagnet (such as the Ising/Potts models). In studying the behaviour of the
collective system, it is often key to understand the effect of a variation within a given
sub-system. That is, what is the probability that a change in a given sub-system has
a substantial effect on the collective system?

The quantification of influence is long recognised as being central to the under-
standing of complex random systems. For example, influence in voting systems was
studied by Ben-Or and Linial [4] in work that played an important role in stimulating
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a systematic theory of influence and sharp threshold with many applications in ran-
dom systems (see [19] for a review). In percolation theory, the influence of a node is
the probability that the node is pivotal for a given global event (see (2.3) for the def-
inition of pivotality). Estimates for influence are key to most of the principal results
for percolation (see [15], for example). In these two areas above, the sub-systems are
generally taken to be independent random variables. This is, however, not so for a
number of important processes of statistical mechanics including the Ising and Potts
models, in which the sub-systems are dependent but usually positively correlated.
For such systems, ‘influence’ requires a new definition, and this is provided in [13, 14]
in the context of the Ising and random-cluster models (see [16]).

The origins of influence are rather older than the above work, and go back at least
to the work of Penrose [28] in 1946 and possibly the reliability literature surveyed by
Barlow and Proschan [3] in 1965. The two definitions of influence, referred to above,
are presented next in the context of a voting system (we shall use the standard
terminology of probability theory and the theory of interacting systems).

2.2. Definitions of absolute and conditional influences. There is a population
P containing m individuals, and a vote is taken between two possible outcomes,
labelled +1 and −1. Each individual votes either +1 or −1. We write X(i) for
the vote of person i, and we assume the X(i) are random variables. The vote-
vector X = (X(1), X(2), . . . , X(m)) takes values in the so-called ‘configuration space’
Σ = {−1, 1}m. There exists a predetermined subset A ⊆ Σ, and the vote is declared
to pass if and only if X ∈ A. It is normal to consider sets A which are increasing in
that

(2.1) σ ∈ A, σ ≤ σ′ ⇒ σ′ ∈ A.
The inequality σ ≤ σ′ refers to the natural partial order on Σ given by

σ ≤ σ′ if and only if σ(i) ≤ σ′(i) for all i ∈ P.
For concreteness, we assume henceforth that A is an increasing subset of Σ.

For i ∈ P and a configuration σ = (σ(1), σ(2), . . . , σ(m)) ∈ Σ, we define the
vectors σi, σi by

(2.2) σi(j) =

{
1 if j = i,

σ(j) otherwise,
σi(j) =

{
−1 if j = i,

σ(j) otherwise.

That is, σi (respectively, σi) agrees with σ except at i, with i’s vote set to 1 (re-
spectively, −1). Individual i is called pivotal if the outcome of the vote changes
when s/he changes opinion (the words decisive and critical are sometimes used in
the voting literature). More formally, i is called pivotal for the configuration σ if

(2.3) σi /∈ A, σi ∈ A.
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In all situations considered in this paper, the individual votes X(i) are assumed
to be identically distributed and symmetric in that

(2.4) P(X(i) = 1) = P(X(i) = −1) = 1
2
,

where P denotes the probability measure that governs the vote-vector X. Assump-
tions of independence will be introduced where appropriate.

Definition 2.1. We say that the vector X is symmetric if

(i) X and −X have the same distributions, and
(ii) for all i 6= j there exists a permutation π of {1, 2, . . . ,m} with πi = j such that

X and X(π) have the same distribution, where X(π) denotes the permuted
vector (Xπ1 , Xπ2 , . . . , Xπm).

Example 2.2 (Circular voting). Condition (ii) above is weaker than requiring that
X be exchangeable (see [18, p. 324]). Here is a simple one-dimensional example of a
random vector that is symmetric but not exchangeable. Suppose the m (≥ 4) voters
are distributed evenly around a circular table. Let Z1, Z2, . . . , Zm be the outcomes
of m independent tosses of a fair coin that shows the values ±1. Let X(i) be the
majority value of Zi−1, Zi, Zi+1, with the convention that Zm+k = Zk for all k
(and a similar convention for the X(i)). It may be checked that X(i) and X(j) are
independent if and only if i and j are distance 3 or more away from each other. The
joint distribution of X is invariant under the rotation i 7→ i + 1 modulo m, and is
hence symmetric.

Similar examples may be constructed in two and higher dimensions. In models that
incorporate a spatial element in the relationships between individual voters, it may
be argued that symmetry is a reasonable assumption where exchangeability is not.

Definition 2.3.

(a) The absolute influence of voter i is

α(i) := P(X i ∈ A)− P(Xi ∈ A)

= P(Xi /∈ A, X i ∈ A).

(b) The conditional influence of voter i is

κ(i) := P(A | X(i) = 1)− P(A | X(i) = −1).

When P is a product measure (that is, the X(i) are independent), it may be seen
that α(i) = κ(i), and the common value α is termed simply influence by Russo [31]
and Ben-Or and Linial [4]. Equality does not generally hold when P is not a product
measure. The above concept of ‘conditional influence’ seems to have been identified
in [13], where it was shown to be the correct adaptation of absolute influence in
proofs of sharp-threshold theorems for certain families of dependent measures arising
in stochastic geometry and statistical physics.
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Remark 2.4 (Success probability). The success probability η(i) of voter i is the
probability that i votes on the winning side, that is,

η(i) := P
(
A ∩ {X(i) = 1}

)
+ P

(
A ∩ {X(i) = −1}

)
,

where A is the complement of A. See, for example, [7, 24]. Friedrich Pukelsheim has
pointed out that, if the X(i) satisfy (2.4), the conditional influence is related to the
success probability by the relation η(i) = 1

2
(1 + κ(i)). This relation is, in fact, the

key step in the proof of the forthcoming Proposition 2.6.

2.3. Examples of influences. There follow three examples of calculations of abso-
lute and conditional influences. For convenience, we assume m = 2r + 1 is an odd
number, and take A to be the majority event, that is, A = {σ :

∑
i σ(i) > 0}. It is

clear that A is an increasing set. We shall take the X(i) to be Bernoulli random
variables with a shared parameter u which may itself be random. Thus, the X(i) are
not generally independent.

Let U be a random variable taking values in the interval (0, 1). Conditional on
the event U = u, the X(i) are defined to be independent random variables with

(2.5) X(i) =

{
1 with probability u,

−1 with probability 1− u.

If U has a symmetric distribution (in that U and 1 − U are equally distributed),
then the ensuing vote-vector X is symmetric (and, indeed, exchangeable), and this
is called the ‘collective bias’ model by Kirsch [20, 21] (see also [22]). Here are three
examples of collective bias in which the absolute and conditional influences vary
greatly.

1. Independent voting. Let P(U = 1
2
) = 1. The X(i) are independent, unbiased

Bernoulli variables, and

(2.6) α(i) = κ(i) =

(
2r

r

)(
1

2

)2r

∼ 1√
πr

=

√
2

π(m− 1)
as m→∞.

2. Uniform bias. Let U be uniform on the interval (0, 1). Then

(2.7) α(i) =

∫ 1

0

(
2r

r

)
ur(1− u)r du =

1

m
, κ(i) =

1

2
+ o(1).

3. Polarised bias. Let P(U = 1
3
) = P(U = 2

3
) = 1

2
. There exists γ > 0 such that

(2.8) α(i) = o(e−γm), κ(i) =
1

3
+ o(1).

We remind the reader that f(m) = o(g(m)) means f(m)/g(m) → 0 as m → ∞.
Cases 2 and 3 are exemplars of more general situations in which the distribution of
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U has an absolutely continuous component on a neighbourhood of 1
2
, and U is almost

surely bounded away from 1
2
, respectively.

Remark 2.5. Only in the case of independence does the absolute influence have the
order of the square root 1/

√
m. In the two other situations, the absolute influence is

as small as 1/m and e−γm, respectively.

Correlations are easily computed in the collective bias model of (2.5). For example,
for i 6= j, the covariance ρ between X(i) and X(j) satisfies

ρ = E
[
E(X(i)X(j) | U)

]
= E

[
E(X(i) | U)E(X(j) | U)

]
by conditional independence

= E[(2U − 1)2] by (2.5)

= 4 var(U).

In particular,

ρ =

{
1
3

for uniform bias,
1
9

for the above polarised bias.

Further discussion of the relationship between absolute and conditional influence
may be found in [13, Sect. 2]. A review of influence for product measures is found at
[19], see also [17, Sect. 4.5]. Uniform bias was discussed in [30], and polarised bias
in [13].

2.4. Two square-root laws unified. We present next an elementary application
of conditional influence. We will see its relevance in the discussion of the Penrose
square-root law in Remark 3.3.

Proposition 2.6. Let m = 2r + 1 be odd. Assume that X and −X have the same
distributions. Then S =

∑m
i=1X(i) satisfies

E|S| =
m∑
i=1

κ(i).

If X is symmetric, then κ = κ(i) is constant and E|S| = mκ.

The question arises of deciding the ‘correct’ definition of influence in the voting
context. The answer may depend on the context of the question.

(a) If we are trying to capture the probability that an individual can, as a theo-
retical exercise in free will, affect the outcome of a vote, then we might favour
absolute influence.

(b) If we view the opinion of an individual as being representative of the opinions
of the entire population, this perhaps favours conditional influence.
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(c) This issue is connected to the interpretation of ‘chance’ or ‘randomness’ in
the voting model. Some authors have discussed the proposal that the views
of voters may not themselves be considered random, but it is rather the
proposals that are random (see, for example, [11, p. 38] and [20, p. 360]).
This interesting suggestion poses some philosophical challenges.

This section closes with a note. An application of Proposition 2.6 to the two
square-root laws of Penrose is summarised in Remark 3.3, where it is pointed out
that his “two” square-root laws are in reality only one, so long as one uses conditional
rather than absolute influences. When voting is truly independent, the distinction
is nominal only. Seen in the light of Remark 2.4, Proposition 2.6 supports the
thesis that, for general probability measures, the success probability is a more central
quantity than the absolute influence.

Proof of Proposition 2.6. Let 1A denote the indicator function of an event A. Then,
since X and −X have the same distribution,

E|S| = E(S1S>0)− E(S1S<0)

= 2E(S1S>0)

= 2
m∑
i=1

E(Xi1S>0)

=
m∑
i=1

[
P(S > 0 | Xi = 1)− P(S > 0 | Xi = −1)

]
=

m∑
i=1

κ(i).

Subject to symmetry, the constantness of κ(i) holds by choosing suitable permuta-
tions of {1, 2, . . . .,m}. �

3. Two-tier voting

3.1. The two-tier voting structure. We assume there exist s States with respec-
tive populations N1, N2, . . . , Ns (which we take for simplicity to be odd numbers).
States are each allowed one representative on the Council. Each State is assumed
to conduct a ballot on a given issue, and the vote of voter i in State j is denoted
Xj(i) ∈ {−1, 1}. The outcome of the vote in state j is taken to be

(3.1) χj :=

{
1 if Sj :=

∑Nj

i=1Xj(i) > 0,

−1 otherwise.

That is, 1
2
(1 + χj) is the indicator function of the event that Sj > 0.
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Assumption 3.1 ([20]). We assume the vectors Xj = (Xj(i) : i = 1, 2, . . . , Nj),
j = 1, 2, . . . , s, are independent, which is to say that the votes of different States are
independent. We make no assumption for the moment about the voters of any given
State beyond that, for given j, the vectors Xj and −Xj have the same distribution.

To the State j is assigned a weight wj > 0, and we write W =
∑

j wj for the
aggregate weight of the States. The representative of state j votes χj, and the
weighted sum

V :=
s∑
j=1

wjχj,

is calculated. The motion is said to pass if

(3.2) V > qW,

and to fail otherwise, where q is a predetermined quota (this is not quite the quota
of [35], but rather that of [20], see also (1.3)). This voting system depends on the
weights w = (wj) and the quota q, and we refer to it as the (w, q) system.

Question 3.2. How should the weights wj and the quota q be chosen?

We summarise two approaches.

3.2. Penrose/Kirsch and least squares [20, 28]. Penrose has argued that, within
any given state, the strength of a vote is proportional to the “edge”, that is, the
difference NF − NA where NF is the number voting for the successful outcome and
NA is the number voting against. Now, NF − NA = E|Sj|, where Sj is given in
(3.1). In the case of independent voters (see (1.1)), this has the order

√
Nj, and this

motivates the proposal that
wj =

√
Nj.

This calculation follows in one line by Proposition 2.6 when X is symmetric: we
have that E|Sj| = Njκj, where κj ∼

√
C/Nj by (2.6). In this sense, Penrose’s “two

square-root laws” are unified as one (see [11]).

Remark 3.3. Assuming only that the jth vote-vector Xj is symmetric (that is, with
no assumption of independence), Proposition 2.6 yields that E|Sj| = Njκj. In the
language of Penrose, the mean “edge” differs from the conditional influence by the
constant multiple Nj. Thus, in the context of general distributions, conditional in-
fluence takes precedence over absolute influence.

Kirsch [20] has proposed choosing the wj in such a way as to minimise the mean
sum of squared errors

T := E

[ s∑
j=1

(Sj − wjχj)

]2
 .
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A quick proof of the following proposition is given at the end of the subsection.

Proposition 3.4 ([20, Thm 2.1]). The quantity T is minimised when wj = E|Sj|
for j = 1, 2, . . . , s.

Thus, Kirsch’s least-squares principle leads to the Penrose solution wj = E|Sj|,
which we call the majority rule. As explained by Kirsch, this motivates the choice

(3.3) wj =

{√
Nj if there is no long-range order,

Nj if there is long-range order,

where ‘long-range order’ is interpreted in the sense of statistical mechanics as the
non-decay of correlations. For example, Case 1 of Section 2 has no long-range order,
but Cases 2 and 3 possess long-range order. See also Proposition 2.6.

Kirsch proposed studying the voting problem via the analogy of a ferromagnetic
model, such as the classical Ising model. He concentrated in [20] on the so-called
Curie–Weiss (or mean-field) model, in which each vertex v of the complete graph has
a random spin σv taking values in {−1, 1} according to a certain probability distri-
bution dictated by the so-called Ising model. The analysis is especially simple in this
so-called ‘mean-field’ case since the complete graph has the maximum of symmetry.
Similar results are, however, fairly immediate for finite-dimensional systems also, as
follows. For concreteness, let d ≥ 1 and let Tn be the d-dimensional torus obtained
from the square grid {0, 1, . . . , n}d with periodic boundary conditions. Let βc be
the critical value of the inverse-temperature β of the Ising model on Zd (we refer to
[16, 17] for explanations of the model and notation). Interpreting σv as the vote of
an individual placed at the vertex v, the aggregate vote

S =
∑
v∈Tn

σv

satisfies

(3.4) E|S| ≈

{
nd/2 if β < βc,

nd if β > βc.

The bibliography associated with the Ising model and its ramifications is extended
and complex, and is directed mostly at the corresponding infinite-volume problem
defined on the entire d-dimensional space Zd. Some of the above claims for periodic
boundary conditions are well known, and others may be derived from classical results.
The relevant literature includes [1, 9, 27].
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Proof of Proposition 3.4. By Assumption 3.1,

T = var

(∑
j

(Sj − wjχj)

)
since E(Sj) = E(χj) = 0

=
s∑
j=1

var(Sj − wjχj) since the Xj are independent.

By calculus, the last summand is a minimum when wj = E(Sjχj) as claimed. �

3.3. S lomczyński/Życzkowski and influence [34, 35, 36]. Let us concentrate on
the situation in which the entire vote-set (Xj(i) : i = 1, 2, . . . , Nj, j = 1, 2, . . . , s)
is an independent family of random variables. By independence, the absolute and
conditional influences (within States) are equal. The influence αj := αj(i) of a
member of State j is (asymptotically as Nj →∞) proportional to 1/

√
Nj, by (2.6).

According to the Penrose square-root law (2.6) for influence, with wj =
√
Nj one

achieves a product αjwj that is (asymptotically) constant across the States. This
may be seen as evidence that the voting system with this set of weights is ‘fair’ across
the union of the States.

How does one calculate the so-called ‘total influence’ of a given voter in the (w, q)
system? A given voter is pivotal overall if s/he is pivotal within the relevant State
vote, and furthermore the outcome of that vote is pivotal in the Council’s vote. By
Assumption 3.1, the total influence Ij of voter i in State j is the product

(3.5) Ij = αjβj,

where βj = βj(w, q) is the influence of State j in the Council’s vote. (See [11, p. 67].)
The total influences Ij of (3.5) need not agree with the products of the previous

paragraph, since the ratios βj/wj are in general non-constant across the States. A

number of authors including S lomczyński and Życzkowski [36] have developed the
following approach.

1. Allocate to State j the weight wj =
√
Nj.

2. Calculate or estimate the State-influences βj as functions of (w, q).
3. Identify a quota q such that βj is an approximately linear function of wj.
4. The ensuing products Ij = αjβj are approximately constant across States.

They have proposed choosing the quota q in (3.2) in such a way that, for the given
weights (wj), the sum of squared differences

T :=
s∑
j=1

(wj − βj)2
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is a minimum, where wj and βj are the normalised influences and weights, respec-
tively (see Table 1). They present numerical, empirical, and theoretical evidence
that this is often achieved when q is near

(3.6) q∗ :=

√
N∑

j

√
Nj

, where N =
s∑
j=1

Nj.

The theoretical foundation for this proposal lies in: (i) approximating βj by a Gauss-
ian integral, and (ii) picking q such that the integrand is close to linear in wj. The
latter step is achieved by finding the point at which the N(µ, σ) Gaussian density
function has an inflection, and is thus locally closest to being locally linear. This
inflection is easily found by calculus to be at q := µ±σ, and this leads to the formula
(3.6).

In summary, they argue that, when wj =
√
Nj and q = q∗, the βj = βj(w, q) are

close to the wj, and hence the total influences Ij = αjβj are close to the products
αjwj. Finally, since αj ∼ C/

√
Nj and wj =

√
Nj, the last product is constant across

the States.
The above procedure is termed the Jagiellonian Compromise (or JagCom). We

note that the weights wj are chosen first, and then the quota q according to a
minimisation algorithm. It may instead be preferable to choose the parameters
(w, q) in such a way that the deviation in the total influences Ij is minimised. We
discuss in Section 4 some aspects of the derivation of the quota q∗ in (3.6).

4. ‘Total influences’ in a two-tier system

4.1. Total influences. A mathematical derivation of the JagCom quota q∗, (3.6),
seems to require certain approximations which we discuss next. The first issue is to
identify the target of the analysis. Let Ij be the total influence of a member of State
j, as in (3.5). One extreme way of achieving the near-equality of the Ij is to set the
quota q on the left side of (1.3) to be either −ε +

∑
j

√
Nj or its negation, where

ε > 0 is small. If we insist on such unanimity, we achieve

Ij = αj

(
1

2

)s
∼ C√

Nj

(
1

2

)s
.

For large s, these influences are nearly equal, indeed nearly equal to 0. Their ratios
however can be as large as

√
Nmax/Nmin, where Nmax (respectively, Nmin) is the

maximum (respectively, minimum) State population size. An alternative target is
that the ratios Ij/Ik be as close to unity as possible, and a secondary target might
be that the total influences are as large as possible. We consider this next.

Consider a vote of the Council in which each State k has a preassigned weight
wk > 0. Let j ∈ {1, 2, . . . , s}. By (3.2), State j is pivotal for the outcome if: the set
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J of States (other than j) voting for the motion is such that

(4.1) wJ + wj − wJ > qW, wJ − wj − wJ ≤ qW,

where J ⊆ {1, 2, . . . , s} \ {j}, J = {1, 2, . . . , s} \ (J ∪ {j}), and

wK :=
∑
k∈K

wk, K ⊆ {1, 2, . . . , s}.

Inequalities (4.1) may be written in the form qW − wj < Zj ≤ qW + wj where

(4.2) Zj = wJ − wJ =
∑
k 6=j

wkχk, j ∈ {1, 2, . . . , s},

and (χk : k = 1, 2, . . . , s) is a family of independent Bernoulli random variables with

P(χk = 1) = P(χk = −1) = 1
2
.

Therefore, State j is pivotal in the Council with probability

βj := P
(
qW − wj < Zj ≤ qW + wj

)
(4.3)

= FZj
(qW + wj)− FZj

(qW − wj),

where FZj
is the distribution function of Zj. (Similar formulae appear in [35, App.].)

4.2. The argument via the Berry–Esseen bound. It is tempting to argue
roughly as follows. We approximate the distribution of Zj by the Gaussian dis-
tribution with mean and variance given by

(4.4) µ = E(Zj) = 0, σ2
j = var(Zj) =

∑
k 6=j

w2
k.

Motivated by the local central limit theorem for non-identically distributed random
variables (see [18, p. 195] and [12], or otherwise), we aspire to an approximation of
(4.3) of the form

βj ≈
∫ qW+wj

qW−wj

φσj
(z) dz ≈ 2wjφσj

(qW )(4.5)

=
2wj√
2πσ2

j

exp

(
−(qW )2

2σ2
j

)
,

where φσ is the density function of the N(0, σ2) Gaussian distribution. This leads to
the following approximation for the total influence of a voter in State j:

Ij = αjβj '
C√
Nj

2wj√
∆2 − w2

j

exp

(
−1

2
· (qW )2

(∆2 − w2
j )

)
,
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where C > 0 is an absolute constant, and

∆2 =
s∑

k=1

w2
k.

Let δ = Nmax/N , and set wj =
√
Nj.

(a) If we set q = q∗ as in (3.6), we obtain the approximate inequalities

(4.6)
2C

∆
e−1/[2(1−δ)] � Ij = αjβj �

2C

∆
√

1− δ
e−1/2, j = 1, 2, . . . , s,

with ∆ =
√
N . (The symbol � is used in order to indicate that the in-

equalities are based on the unproven approximation (4.5).) These bounds are
independent of the choice of j, and are increasingly close to one another in
the limit as δ → 0.

(b) If, instead, we set q = 0, we obtain the inequalities (4.6) with the exponential
terms deleted.

The exact numerical values of the βj are calculated in Section 4.3 for the particular
case of the 27 Member States of the European Union post-Brexit.

The above analysis depends on two Assumptions:

1. the normal (or Gaussian) approximation (4.5) is reasonable,
2. the ratio δ = Nmax/N is small.

Assumption 2 is unavoidable in some form, and its use within (4.6) is quantified
therein. We therefore concentrate henceforth on Assumption 1. The approxima-
tion of (4.5) is a statement about a finite population, and thus one needs a rate of
convergence in the central limit theorem. The classical such result is as follows.

Theorem 4.1 (Berry–Esseen [5, 10, 32]). There exists C ∈ [0.4906, 0.5600] such that
the following holds. Let X1, X2, . . . , Xs be independent random variables with

E(Xi) = 0, E(X2
i ) = t2i > 0, E(|Xi|3) = γi <∞,

and write

σ2 =
s∑
i=1

t2i , S =
1

σ

s∑
i=1

Xi.

Then

sup
z∈R

∣∣P(S ≤ z)− Φ(z)
∣∣ ≤ C

σ3

∑
i

γi,

where Φ is the distribution function of the N(0, 1) distribution.
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Applying this to the random variable Zj of (4.2), we obtain

sup
z∈R

∣∣FZj
(z)− Φσj

(z)
∣∣ = sup

z∈R

∣∣P (Zj/σj ≤ z)− Φ(z)
∣∣(4.7)

≤ C

∑
k 6=j w

3
k(∑

k 6=j w
2
k

)3/2
,

where σ2
j is given in (4.4), and Φσ is the distribution function of the N(0, σ2) distri-

bution. Therefore, by (4.3) (see (4.5)),

(4.8)

∣∣∣∣∣βj −
∫ qW+wj

qW−wj

φσj
(z) dz

∣∣∣∣∣ ≤ 2C

∑
k 6=j w

3
k(∑

k 6=j w
2
k

)3/2
,

where 2C ≤ 1.12.

Example 4.2. Suppose s = 27 and the State populations N1, N2, . . . , N27 are the
QMV2017 figures for the Member States of the EU, as in [29, Table 1]. We write
N1 > N2 > · · · > N27, so that Nmax = N1, and we choose wj =

√
Nj and q = q∗

with q∗ as in (3.6).
The integral on the left side of (4.8) may be expressed as

(4.9)

∫ (
√
N+wj)/

√
N−Nj

(
√
N−wj)/

√
N−Nj

φ(z) dz,

and its numerical value decreases monotonically from 0.207 (when j = 1) to 0.015
(when j = 27). The Berry–Esseen bound on the right side of (4.8) takes the value
0.332 (when j = 1), 0.349 (when j = 5), and 0.334 (when j = 27), and is monotone
on each of the two intervals j ∈ [1, 5] and j ∈ [5, 27]. The bounds are too large to
yield useful information about the βj, and thus they cannot be estimated using the
Berry–Esseen bound. In contrast, the values of the integral in (4.9) are notably close
to the exact values given in Table 1.

A similar analysis is valid when q = 0, and this case dominates all other possible
choices of q ∈ R. Indeed, with q = 0, the right side of (4.8) is strictly less than the
integral if and only if j = 1, and this is therefore the unique case for which (4.8)
rules out the possibility that βj = 0.

The above decimals are given to three significant digits. The calculations have been
performed using Microsoft Excel.

We emphasise that the above observations do not invalidate the JagCom. Prefer-
able to the Berry–Esseen bound would be sufficiently precise rate of convergence in the
local central limit theorem for discrete, non-identically distributed random variables.
We are unaware of such a result.
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We conclude this subsection as follows. No mathematical proof is known of the
optimality of the choice (3.6) of the quota q∗ in the JagCom. Even if a rate can be
proved in the appropriate central limit theorem, it is unlikely to be sufficiently tight
to justify the choice q∗ (see also the end of Section 4.3).

4.3. The argument via numerical methods. Once one has accepted the thesis
that voters are independent and unbiased, there is a clear and transparent logic to
the choice of weights wj =

√
Nj. Attention then turns to the choice of quota q.

It was shown in Section 4.2 that the mathematical argument of S lomczyński and
Życzkowski [35], while neat, is at best incomplete. The numerical evidence of [33],
in favour of q = q∗, retains some persuasive power. Similar numerical work has been
carried out for the current article using QMV2017 population data taken from [29],
with the results reported in Table 1. These results are exact rather than being based
on simulation.

Table 1 lends some support to the choice q = q∗.

(a) The ratios of normalised influences βj to normalised weights wj are very close
to 1 when q = q∗.

(b) Further calculations show that the sum of squared differences T =
∑

j(wj −
βj)

2, considered as a function of q = 0, 1
2
q∗, q∗, 3

2
q∗, is a minimum when q = q∗.

(More refined calculations are possible.)

We note, however, the following.

(i) The choice q = q∗ lacks transparency. In contrast, the choice q = 0 is simple
and easy to explain.

(ii) The ratios βj/wj are also close to 1 when q = 0. They are not quite so perfect
as when q = q∗, but the differences are minor.

(iii) The sum T is similarly close to 0 when q = 0, albeit not so close as when
q = q∗.

(iv) The influences βj are largest when q = 0. (See also [35, App.].)

In summary, the numerics are best when q = q∗, but the improvements relative to
the more transparent choice of q = 0 are minor. The numerical differences between
these two cases (and indeed other reasonable values of q) are so small that they are
unlikely to be separated by any technical analysis of the type of Section 4.2. We
conclude that, on the basis of the theoretical and numerical evidence, there is no
convincing evidence that any one value of the quota is materially preferable to any
other.1

1Large positive or negative values are evidently poor, but we consider here only values q such
that qW/

√
N has order 1. Other choices for q have been considered in, for example, [6, 8].
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Member State weights q = 0 q = q∗

j wj wj βj βj βj/wj βj βj βj/wj
1 Germany 9.059 9.963 0.357 10.414 1.045 0.211 9.937 0.997
2 France 8.165 8.979 0.317 9.239 1.029 0.191 8.984 1.001
3 Italy 7.830 8.611 0.302 8.816 1.024 0.183 8.619 1.001
4 Spain 6.815 7.495 0.260 7.575 1.011 0.159 7.507 1.002
5 Poland 6.162 6.777 0.233 6.802 1.004 0.144 6.787 1.001
6 Romania 4.445 4.888 0.166 4.839 0.990 0.104 4.891 1.001
7 Netherlands 4.152 4.566 0.155 4.512 0.988 0.097 4.568 1.000
8 Belgium 3.360 3.695 0.125 3.636 0.984 0.078 3.696 1.000
9 Greece 3.285 3.613 0.122 3.554 0.984 0.077 3.613 1.000

10 Czech Rep. 3.232 3.554 0.120 3.495 0.983 0.075 3.554 1.000
11 Portugal 3.216 3.537 0.119 3.478 0.983 0.075 3.537 1.000
12 Sweden 3.162 3.477 0.117 3.418 0.983 0.074 3.477 1.000
13 Hungary 3.135 3.448 0.116 3.389 0.983 0.073 3.447 1.000
14 Austria 2.952 3.246 0.109 3.189 0.982 0.069 3.246 1.000
15 Bulgaria 2.675 2.942 0.099 2.886 0.981 0.062 2.941 1.000
16 Denmark 2.388 2.626 0.088 2.574 0.980 0.056 2.625 1.000
17 Finland 2.338 2.571 0.086 2.520 0.980 0.055 2.570 1.000
18 Slovakia 2.326 2.558 0.086 2.507 0.980 0.054 2.557 1.000

19 Ireland 2.160 2.375 0.080 2.327 0.980 0.050 2.374 1.000
20 Croatia 2.047 2.251 0.076 2.204 0.979 0.048 2.250 1.000
21 Lithuania 1.700 1.870 0.063 1.829 0.978 0.040 1.868 0.999
22 Slovenia 1.437 1.580 0.053 1.545 0.978 0.034 1.579 0.999
23 Latvia 1.403 1.543 0.052 1.508 0.977 0.033 1.542 0.999
24 Estonia 1.147 1.261 0.042 1.233 0.978 0.027 1.260 0.999
25 Cyprus 0.921 1.013 0.034 0.990 0.977 0.021 1.012 0.999
26 Luxembourg 0.759 0.835 0.028 0.815 0.976 0.018 0.834 0.999
27 Malta 0.659 0.725 0.024 0.708 0.977 0.015 0.724 0.999

Totals 90.930 100 3.429 100 2.123 100

Table 1. Member State j has weight wj =
√
Nj and normalised

weight wj = 100wj/W , where W =
∑

j wj. Two values of the quota

q are considered, namely, q = 0 and q = q∗ (see (3.6)). For each,
the influences βj have been computed, and the normalised influences

βj = 100βj/B are given above, where B =
∑

j βj. The ratios βj/wj are

presented alongside the βj. The ratios lie in the interval [0.976, 1.045]
when q = 0, and in the interval [0.997, 1.002] when q = q∗. It turns
out that the βj are in quite close agreement with the integrals of (4.9).
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5. Some remarks on the Jagiellonian Compromise

Theoreticians propose, politicians dispose (and certain Presidents of the United
States have historically played on both teams). Members of each group have interests
and potential conflicts. The theoretician earns respect through honest assessment
of the virtues (or not) of, and principles underlying, a particular proposal. They
hope that politicians will accord fair weight and balance to principled proposals
irrespective of personal advantage. While theoreticians are usually free of conflicts
arising out of employment within a politically aligned organization, politicians are
usually heavily conflicted (see, for example, [29]).

Communication between the two groups can be challenging. The use of language
such as “local limit theorems” and “Berry–Esseen bound” has a tendency to create
barriers. Such methodology is however key to proper study of the two-tier voting
system of Sections 3–4, and practitioners have worked diligently to communicate its
relevance.

The JagCom proposes the use of square-root weights wj =
√
Nj with a specific

choice of the quota q. The square-root weights of equation (1.1) and Proposition 3.4
may be justified if: (i) there is no bias, and (ii) there is no “long-range order” (in the
language of statistical mechanics). To the current author, each of these assumptions
seems perfectionist. Issues before the Council may be systematically more popular
in some States than in others, and such bias risks undermining either or both of the
above two assumptions. The ‘collective bias’ model of Kirsch and others (see Section
2) is both more flexible and more empirical, at some cost to the square-root laws
for influence and majority (see [22]). That said, no concrete proposal to displace
square-root weights is made in the current work.

The identification of the ‘exact’ quota q∗ of (3.6) hinges on the above assumptions,
in combination with numerical data and the Gaussian approximation of Section
4.2. The last is unproven and numerically unreliable in the current context of the
QMV2017 population data of the States of the EU. In their favour, the proposed
square-root weights and the exact quota q∗ have been derived via a set of principles
that can be stated unambiguously and analysed rigorously, and which are robust
with respect to changes in population data.

If the ratios βj/wj in Table 1 are close to 1, then the total influences Ij = αjβj of
(3.5) are almost constant across Member States. As indicated in the shaded columns
of the table, this holds for both q = 0 and q = q∗ (they are nearly perfect when
q = q∗, and very close for other values of q). One may deduce that, from a practical
point of view, there is little to choose between different values of q. This may be a
situation in which political considerations may have the final word.

Overall, the details of the JagCom rely on a number of assumptions that appear
fragile. This potential weakness needs to be acknowledged when making the case
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for the JagCom. The JagCom is a valid proposal for the two-tier voting system of
the Council of the EU, whose finer details may profit from input by politicians in
choosing a system judged to serve well the needs of the nearly 500 million residents
of the 27 Member States of the European Union. Our closing quote (Machover
[26, Abs.] accords a balanced responsibility to both theoreticians and politicians:
“This is essentially a political matter; but a political decision ought to be made in a
theoretically enlightened way.”
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