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Abstract. Critical points and singularities are encountered in the study of critical phenomena in proba-
bility and physics. We present recent results concerning the values of such critical points and the nature
of the singularities for two prominent probabilistic models, namely percolation and the more general
random-cluster model. The main topic is the statement and proof of the criticality and universality of
the canonical measure of bond percolation on isoradial graphs (due to the author and Ioan Manolescu).
The key technique used in this work is the star–triangle transformation, known also as the Yang–Baxter
equation. The second topic reported here is the identification of the critical point of the random-cluster
model on the square lattice (due to Beffara and Duminil-Copin), and of the criticality of the canonical
measure of the random-cluster model with q ≥ 4 on periodic isoradial graphs (by the same authors
with Smirnov). The proof of universality for percolation is expected to extend to the random-cluster
model on isoradial graphs.
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1. Introduction

One of the most provocative and elusive problems in the mathematics of critical phenomena
is the issue of universality. Disordered physical systems manifest phase transitions, the
nature of which is believed to be independent of the local structure of space. Very little
about universality is known rigorously for systems below their upper critical dimension. It
is frequently said that “renormalization” is the key to universality, but rigorous applications
of renormalization in the context of universality are rare.

There has been serious recent progress in the “exactly solvable” setting of the two-
dimensional Ising model, and a handful of special cases for other models. Our principal
purpose here is to outline recent progress concerning the identification of critical surfaces
and the issue of universality for bond percolation and the random-cluster model on isoradial
graphs, with emphasis on the general method, the current limitations, and the open problems.

For bond percolation on an extensive family of isoradial graphs, the canonical process,
in which the star–triangle transformation is in harmony with the geometry, is shown to be
critical. Furthermore, universality has been proved for this class of systems, at least for the
critical exponents at the critical surface. These results, found in recent papers by the author
and Manolescu, [27–29], vastly extend earlier calculations of critical values for the square
lattice etc, with the added ingredient of universality. Note that, to date, we are able to prove
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only conditional universality: if a certain exponent exists for at least one isoradial graph,
then a family of exponents exist for an extensive collection of isoradial graphs, and they are
universal across this collection.

The picture for the general random-cluster model is more restrained, but significant
progress has been achieved on the identification of critical points. The longstanding conjec-
ture for the critical value of the square lattice has been proved by Beffara and Duminil-Copin
[4], using a development of classical tools. Jointly with Smirnov [5], the same authors have
used Smirnov’s parafermionic observable in the first-order setting of q ≥ 4 to identify the
critical surface of a periodic isoradial graph. It is conjectured that the methods of [29] may
be extended to obtain universality for the random-cluster model on isoradial graphs.

The results reported in this survey are closely related to certain famous ‘exact results’ in
the physics literature. Prominent in the latter regard is the book of Baxter [3], from whose
preface we quote selectively as follows:

“. . . the phrase ‘exactly solved’ has been chosen with care. It is not necessarily
the same as ‘rigorously solved’. . . . There is of course still much to be done.”

Percolation is summarized in Section 2, and isoradial graphs in Section 3. Progress with
criticality and universality for percolation are described in Section 4. Section 6 is devoted
to recent progress with critical surfaces of random-cluster models on isoradial graphs, and
open problems for percolation and the random-cluster model may be found in Sections 5 and
7.

2. Percolation

2.1. Background. Percolation is the fundamental stochastic model for spatial disorder.
Since its introduction by Broadbent and Hammersley in 1957, it has emerged as a key topic
in probability theory, with connections and impact across all areas of applied science in
which disorder meets geometry. It is in addition a source of beautiful and apparently dif-
ficult mathematical problems, the solutions to which often require the development of new
tools with broader applications.

Here is the percolation process in its basic form. Let G = (V,E) be an infinite, con-
nected graph, typically a crystalline lattice such as the d-dimensional hypercubic lattice. We
are provided with a coin that shows heads with some fixed probability p. For each edge e of
G, we flip the coin, and we designate e open if heads shows, and closed otherwise. The open
edges are considered open to the passage of material such as liquid, disease, or rumour.1

Liquid is supplied at a source vertex s, and it flows along the open edges and is blocked
by the closed edges. The basic problem is to determine the geometrical properties (such as
size, shape, and so on) of the region Cs that is wetted by the liquid. More generally, one is
interested in the geometry of the connected subgraphs ofG induced by the set of open edges.
The components of this graph are called the open clusters.

Broadbent and Hammersley proved in [10, 30, 31] that there exists a critical probability
pc = pc(G) such that: every open cluster is bounded if p < pc, and some open cluster is
unbounded if p > pc. There are two phases: the subcritical phase when p < pc and the

1This is the process known as bond percolation. Later we shall refer to site percolation, in which the vertices
(rather than the edges) receive random states.
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supercritical phase when p > pc. The singularity that occurs when p is near or equal to pc
has attracted a great deal of attention from mathematicians and physicists, and many of the
principal problems remain unsolved even after several decades of study. See [22, 25] for
general accounts of the theory of percolation.

Percolation is one of a large family of models of classical and quantum statistical physics
that manifest phase transitions, and its theory is near the heart of the extensive scientific
project to understand phase transitions and critical phenomena. Key aspects of its special
position in the general theory include: (i) its deceptively simple formulation as a probabilistic
model, (ii) its use as a comparator for more complicated systems, and (iii) its role in the
development of new methodology.

One concrete connection between percolation and models for ferromagnetism is its mem-
bership of the one-parameter family of so-called random-cluster models. That is, percolation
is the q = 1 random-cluster model. The q = 2 random-cluster model corresponds to the
Ising model, and the q = 3, 4, . . . random-cluster models to the q-state Potts models. The
q ↓ 0 limit is connected to electrical networks, uniform spanning trees, and uniform con-
nected subgraphs. The geometry of the random-cluster model corresponds to the correlation
structure of the Ising/Potts models, and thus its critical point pc may be expressed in terms
of the critical temperature of the latter systems. See [23, 64] for a general account of the
random-cluster model.

The theory of percolation is extensive and influential. Not only is percolation a bench-
mark model for studying random spatial processes in general, but also it has been, and
continues to be, a source of intriguing and beautiful open problems. Percolation in two
dimensions has been especially prominent in the last decade by virtue of its connections to
conformal invariance and conformal field theory. Interested readers are referred to the papers
[14, 26, 54, 56, 57, 61, 63] and the books [6, 22, 25].

2.2. Formalities. For x, y ∈ V , we write x ↔ y if there exists an open path joining x and
y. The open cluster at the vertex x is the set Cx = {y : x↔ y} of all vertices reached along
open paths from x, and we write C = C0 where 0 is a fixed vertex called the origin. Write
Pp for the relevant product probability measure, and Ep for expectation with respect to Pp.

The percolation probability is the function θ(p) given by

θ(p) = Pp(|C| =∞),

and the critical probability is defined by

pc = pc(G) = sup{p : θ(p) = 0}. (2.1)

It is elementary that θ is a non-decreasing function, and therefore,

θ(p)

{
= 0 if p < pc,

> 0 if p > pc.

It is not hard to see, by the Harris–FKG inequality, that the value pc(G) does not depend on
the choice of origin.

Let d ≥ 2, and letL be a d-dimensional lattice. It is a fundamental fact that 0 < pc(L) < 1,
but it is unproven in general that no infinite open cluster exists when p = pc

Conjecture 2.1. For any lattice L in d ≥ 2 dimensions, we have that θ(pc) = 0.
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The claim of the conjecture is known to be valid for certain lattices when d = 2 and
for large d, currently d ≥ 15. This conjecture has been the ‘next open problem’ since the
intensive study of the late 1980s.

Whereas the above process is defined in terms of a single parameter p, we are concerned
here with the richer multi-parameter setting in which an edge e is designated open with some
probability pe. In such a case, the critical probability pc is replaced by a so-called ‘critical
surface’.

2.3. Critical exponents and universality. A great deal of effort has been directed towards
understanding the nature of the percolation phase transition. The picture is now fairly clear
for one specific model in two dimensions (site percolation on the triangular lattice), owing
to the very significant progress in recent years linking critical percolation to the Schramm–
Löwner curve SLE6. There remain however substantial difficulties to be overcome even
when d = 2, associated largely with the extension of such results to general two-dimensional
systems. The case of large d (currently, d ≥ 15) is also well understood, through work based
on the so-called ‘lace expansion’ (see [1]). Many problems remain open in the prominent
case d = 3.

Let L be a d-dimensional lattice. The nature of the percolation singularity on L is ex-
pected to share general features with phase transitions of other models of statistical me-
chanics. These features are sometimes referred to as ‘scaling theory’ and they relate to the
‘critical exponents’ occurring in the power-law singularities (see [22, Chap. 9]). There are
two sets of critical exponents, arising firstly in the limit as p→ pc, and secondly in the limit
over increasing spatial scales when p = pc. The definitions of the critical exponents are
found in Table 2.1 (taken from [22]).

The notation of Table 2.1 is as follows. We write f(x) ≈ g(x) as x → x0 ∈ [0,∞] if
log f(x)/ log g(x)→ 1. The radius of the open cluster C at the origin x is defined by

rad(C) = sup{‖y‖ : x↔ y},

where
‖y‖ = sup

i
|yi|, y = (y1, y2, . . . , yd) ∈ Rd,

is the supremum (L∞) norm on Rd. The limit as p → pc should be interpreted in a manner
appropriate for the function in question (for example, as p ↓ pc for θ(p), but as p → pc for
κ(p)). The indicator function of an event A is denoted 1A.

Eight critical exponents are listed in Table 2.1, denoted α, β, γ, δ, ν, η, ρ, ∆, but there is
no general proof of the existence of any of these exponents for arbitrary d ≥ 2. Such critical
exponents may be defined for phase transitions in a large family of physical systems. The
exponents are not believed to be independent variables, but rather to satisfy the so-called
scaling relations

2− α = γ + 2β = β(δ + 1),

∆ = δβ, γ = ν(2− η),

and, when d is not too large, the hyperscaling relations

dρ = δ + 1, 2− α = dν.

More generally, a ‘scaling relation’ is any equation involving critical exponents which is
believed to be ‘universally’ valid. The upper critical dimension is the largest value dc such
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Function Behaviour Exp.

percolation θ(p) = Pp(|C| =∞) θ(p) ≈ (p− pc)
β β

probability

truncated χf(p) = Ep(|C|1|C|<∞) χf(p) ≈ |p− pc|−γ γ
mean cluster-size

number of κ(p) = Ep(|C|−1) κ′′′(p) ≈ |p− pc|−1−α α
clusters per vertex

cluster moments χf
k(p) = Ep(|C|k1|C|<∞)

χf
k+1(p)

χf
k(p)

≈ |p− pc|−∆ ∆

correlation length ξ(p) ξ(p) ≈ |p− pc|−ν ν

cluster volume Ppc (|C| = n) ≈ n−1−1/δ δ

cluster radius Ppc

(
rad(C) = n

)
≈ n−1−1/ρ ρ

connectivity function Ppc (0↔ x) ≈ ‖x‖2−d−η η

Table 2.1. Eight functions and their critical exponents. The first five exponents arise in the limit as
p → pc, and the remaining three as n → ∞ with p = pc. See [22, p. 127] for a definition of the
correlation length ξ(p).

that the hyperscaling relations hold for d ≤ dc and not otherwise. It is believed that dc = 6
for percolation. There is no general proof of the validity of the scaling and hyperscaling
relations for percolation, although quite a lot is known when either d = 2 or d is large. The
case of large d is studied via the lace expansion, and this is expected to be valid for d > 6.

We note some further points in the context of percolation.

(a) Universality. The numerical values of critical exponents are believed to depend only
on the value of d, and to be independent of the choice of lattice, and of the type of
percolation under study.

(b) Two dimensions. When d = 2, it is believed that

α = − 2
3 , β = 5

36 , γ = 43
18 , δ = 91

5 , . . . .

These values (other than α) have been proved (essentially only) in the special case of
site percolation on the triangular lattice, see [45, 60].

(c) Large dimensions. When d is sufficiently large (in fact, d ≥ dc) it is believed that
the critical exponents are the same as those for percolation on a tree (the ‘mean-field
model’), namely δ = 2, γ = 1, ν = 1

2 , ρ = 1
2 , and so on. Using the first hyperscaling
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relation, this is consistent with the contention that dc = 6. Several such statements are
known to hold for d ≥ 15, see [20, 32, 33, 41].

Open challenges include the following:

1. prove the existence of critical exponents for general lattices,

2. prove some version of universality,

3. prove the scaling and hyperscaling relations in general dimensions,

4. calculate the critical exponents for general models in two dimensions,

5. prove the mean-field values of critical exponents when d ≥ 6.

Progress towards these goals has been substantial but patchy. As noted above, for suffi-
ciently large d, the lace expansion has enabled proofs of exact values for many exponents,
for a restricted class of lattices. There has been remarkable progress in recent years when
d = 2, inspired largely by work of Cardy [14] and Schramm [53], enacted by Smirnov [56],
and confirmed by the programme pursued by Lawler, Schramm, Werner, Camia, Newman,
Sheffield and others to understand SLE curves and conformal ensembles.

In this paper, we concentrate on recent progress concerning isoradial embeddings of
planar graphs, and particularly the identification of their critical surfaces and the issue of
universality.

3. Isoradial graphs

Let G be an infinite, planar graph embedded in R2 in such a way that edges intersect only at
vertices. For simplicity, we assume that the embedding has only bounded faces. The graph
G is called isoradial if (i) every face has a circumcircle which passes through every vertex
of the face, (ii) the centre of each circumcircle lies in the interior of the corresponding face,
and (iii) all such circumcircles have the same radius. We may assume by re-scaling that the
common radius is 1.

The family of isoradial graphs is in two-to-one correspondence with the family of tilings
of the plane with rhombi of side-length 1, in the following sense. Consider a rhombic tiling
of the plane, as in Figure 3.1. The tiling, when viewed as a graph, is bipartite with vertex-
sets coloured red and white, say. Fix a colour and join any two vertices of that colour
whenever they are the opposite vertices of a rhombus. The resulting graph G is isoradial. If
the other colour is chosen, the resulting graph is the (isoradial) dual of G. This is illustrated
in Figures 3.1 and 3.2. Conversely, given an isoradial graph G, the corresponding rhombic
tiling is obtained by augmenting its vertex-set by the circumcentres of the faces, and each
circumcentre is joined to the vertices of the enclosing face.

Isoradial graphs were introduced by Duffin [17], and are related to the so-called Z-
invariant graphs of Baxter [2]. They were named thus by Kenyon, whose expository pa-
per [36] proposes the connection between percolation and isoradiality (and much more).
Isoradial graphs have two important properties, the first of which is their connection to pre-
holomorphic functions. This was discovered by Duffin, and is summarized by Smirnov [59]
and developed further in the context of probability by Chelkak and Smirnov [15]. This prop-
erty is key to the work on the random-cluster model on isoradial graphs reviewed in Section
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Figure 3.1. On the left is part of a rhombic tiling of the plane. Since all cycles have even length, this is
a bipartite graph, with vertex-sets coloured red and white. The graph on the right is obtained by joining
pairs of red vertices across faces. Each red face of the latter graph contains a unique white vertex, and
this is the centre of the circumcircle of that face. Joining the white vertices, instead, yields another
isoradial graph that is dual to the first.

Figure 3.2. An illustration of the isoradiality of the red graph of Figure 3.1.

6. A recent review of connections between isoradiality and aspects of statistical mechanics
may be found in [8].

The second property of isoradial graphs is of special relevance in the current work,
namely that they provide the ‘right’ setting for the star–triangle transformation. This is
explained next.

Consider an inhomogeneous bond percolation process on the isoradial graph G, whose
edge-probabilities pe are given as follows in terms of the graph-embedding. Each edge e
of G is the diagonal of a unique rhombus in the corresponding rhombic tiling of the plane,
and its parameter pe is given in terms of the geometry of this rhombus. With θe the opposite
angle of the rhombus, as illustrated in Figure 3.3, let pe ∈ (0, 1) satisfy

pe
1− pe

=
sin( 1

3 [π − θe])
sin( 1

3θe)
. (3.1)

We consider inhomogeneous bond percolation onG in which each edge e is designated open
with probability pe, and we refer to this as the canonical percolation process on G, with
associated probability measure PG. The special property of the vector p = (pe : e ∈ E) is
explained in Section 4.2.
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θ
e

e

Figure 3.3. The edge e is the diagonal of some rhombus, with opposite angle θe as illustrated.

Figure 3.4. An illustration of the track system of the rhombic tiling of Figure 3.1.

In a beautiful series of papers [11–13], de Bruijn introduced the geometrical construct
of ‘ribbons’ or ‘train tracks’ via which he was able to build a theory of rhombic tilings.
Consider a tiling T of the plane in which each tile is convex with four sides. We pursue a
walk on the faces of T according to the following rules. The walk starts in some given tile,
and crosses some edge to a neighbouring tile. It next traverses the opposite edge of this tile,
and so on. The walk may be extended backwards according to the same rule, and a doubly-
infinite walk ensues. Such a walk is called a ribbon or track. De Bruijn pointed out that, if T
is a rhombic tiling, then no walk intersects itself, and two walks may intersect once but not
twice. This property turns out to be both necessary and sufficient for a track system to be
homeomorphic to that of a rhombic tiling (see [37]).

We impose two restrictions on the isoradial graphs under study. Firstly, we say that an
isoradial graphG = (V,E) satisfies the bounded-angles property (BAP) if there exists ε > 0
such that

ε < θe < π − ε for all e ∈ E,

where θe is as in Figure 3.3. This amounts to the condition that the rhombi in the cor-
responding tiling are not ‘too flat’. We say that G has the square-grid property (SGP)
if its track system, viewed as a graph, contains a square grid such that those tracks not
in the grid have boundedly many intersections with the grid within any bounded region
(see [29, Sect. 4.2] for a more careful statement of this property).
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Figure 3.5. On the left, an isoradial graph obtained from part of the Penrose rhombic tiling. On the
right, the associated track system comprises a pentagrid: five sets of non-intersecting doubly-infinite
lines.

An isoradial graph may be viewed as both a graph and a planar embedding of a graph. Of
the many examples of isoradial graphs, we mention first the conventional embeddings of the
square, triangular, and hexagonal lattices. These are symmetric embeddings, and the edges
have the same p-value. There are also non-symmetric isoradial embeddings of the same
lattices, and indeed embeddings with no non-trivial symmetry, for which the corresponding
percolation measures are ‘highly inhomogeneous’.

The isoradial family is much richer than the above examples might indicate, and includes
graphs obtained from aperiodic tilings including the classic Penrose tiling [49, 50], illustrated
in Figure 3.5. All isoradial graphs mentioned above satisfy the SGP, and also the BAP so
long as the associated tiling comprises rhombi with flatness uniformly bounded from 0.

4. Criticality and universality for percolation

4.1. Two main theorems. The first main theorem of [29] is the identification of the criti-
cality of the canonical percolation measure PG on an isoradial graph G. The second is the
universality of PG across an extensive family of isoradial graphs G.

In order to state the criticality theorem, we introduce notation that is appropriate for
a perturbation of the canonical measure PG, and we borrow that of [5]. For e ∈ E and
β ∈ (0,∞), let pe(β) satisfy

pe(β)

1− pe(β)
= β

sin( 1
3 [π − θe])

sin( 1
3θe)

, (4.1)
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and write PG,β for the corresponding product measure on G. Thus PG,1 = PG.

Theorem 4.1 (Criticality [29]). Let G = (V,E) be an isoradial graph with the bounded-
angles property and the square-grid property. The canonical percolation measure PG is
critical in that

(a) there exist a, b, c, d > 0 such that

ak−b ≤ PG
(
rad(Cv) ≥ k

)
≤ ck−d, k ≥ 1, v ∈ V,

(b) there exists, PG-a.s., no infinite open cluster,

(c) for β < 1, there exist f, g > 0 such that

PG,β(|Cv| ≥ k) ≤ fe−gk, k ≥ 0, v ∈ V,

(d) for β > 1, there exists, PG,β-a.s., a unique infinite open cluster.

This theorem includes as special cases a number of known results for homogeneous and
inhomogenous percolation on the square, triangular, and hexagonal lattices beginning with
Kesten’s theorem that pc = 1

2 for the square lattice, see [38, 39, 65].
We turn now to the universality of critical exponents. Recall the exponents ρ, η, and

δ of Table 2.1. The exponent ρ2j is the so-called 2j alternating-arm critical exponent, see
[26, 29]. An exponent is said to be G-invariant if its value is constant across the family G.

Theorem 4.2 (Universality [29]). Let G be the class of isoradial graphs with the bounded-
angles property and the square-grid property.

(a) Let π ∈ {ρ} ∪ {ρ2j : j ≥ 1}. If π exists for some G ∈ G, then it is G-invariant.

(b) If either ρ or η exists for some G ∈ G, then ρ, η, δ are G-invariant and satisfy the
scaling relations ηρ = 2 and 2ρ = δ + 1.

The theorem establishes universality for bond percolation on isoradial graphs, but re-
stricted to the exponents ρ, η, δ at the critical point. The method of proof does not seem to
extend to the near-critical exponents β, γ, etc (see Problem E of Section 5).

It is in fact ‘known’ that, for reasonable two-dimensional lattices,

ρ = 48
5 , η = 5

24 , δ = 91
5 , (4.2)

although these values (and more), long predicted in the physics literature, have been proved
rigorously only for (essentially) site percolation on the triangular lattice. See Lawler,
Schramm, Werner [45] and Smirnov and Werner [60]. Note that site percolation on the
triangular lattice does not lie within the ambit of Theorems 4.1 and 4.2.

To summarize, there is currently no known proof of the existence of critical exponents
for any graph belonging to G. However, if certain exponents exist for any such graph, then
they exist for all G and are G-invariant. If one could establish a result such as in (4.2) for
any such graph, then this result would be valid across the entire family G.

The main ideas of the proofs of Theorems 4.1 and 4.2 are as follows. The first element is
the so-called box-crossing property. Loosely speaking, this is the property that the probabil-
ity of an open crossing of a box with given aspect-ratio is bounded away from 0, uniformly
in the position, orientation, and size of the box. The box-crossing property was proved by
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Russo [52] and Seymour/Welsh [55] for homogeneous percolation on the square lattice, us-
ing its properties of symmetry and self-duality. It may be shown using classical methods
that the box-crossing property is a certificate of a critical or supercritical percolation model.
It may be deduced that, if both the primal and dual models have the box-crossing property,
then they are both critical.

The star–triangle transformation of the next section provides a method for transforming
one isoradial graph into another. The key step in the proofs is to show that this transformation
preserves the box-crossing property. It follows that any isoradial graph that can be obtained
by a sequence of transformations from the square lattice has the box-crossing property, and
is therefore critical. It is proved in [29] that this includes any isoradial graph with both the
BAP and SGP.

4.2. Star–triangle transformation. The central fact that permits proofs of criticality and
universality is that the star–triangle transformation has a geometric representation that acts
locally on rhombic tilings. Consider three rhombi assembled to form a hexagon as in the
upper left of Figure 4.1. The interior of the hexagon may be tiled by (three) rhombi in either
of two ways, the other such tiling being drawn at the upper right of the figure. The switch
from the first to the second has two effects: (i) the track system is altered as indicated there,
with one track being moved over the intersection of the other two, and (ii) the triangle in
the isoradial graph of the upper left is transformed into a star. These observations are graph-
theoretic rather than model-specific. We next parametrize the system in such a way that the
parameters mutate in the canonical way under the above transformation. That is, for a given
probabilistic model, we seek a parametrization under which the geometrical switch induces
the appropriate parametric change.

Here is the star–triangle transformation for percolation. Consider the triangle T =
(V,E) and the star S = (V ′, E′) as drawn in Figure 4.2. Let p = (p0, p1, p2) ∈ [0, 1)3,
and suppose the edges in the figure are declared open with the stated probabilities. The two
ensuing configurations induce two connectivity relations on the set {A,B,C} within S and
T , respectively. It turns out that these two connectivity relations are equi-distributed so long
as κ(p) = 0, where

κ(p) = p0 + p1 + p2 − p1p2p3 − 1. (4.3)

The star–triangle transformation is used as follows. Suppose, in a graph G, one finds a
triangle whose edge-probabilities satisfy (4.3). Then this triangle may be replaced by a star
having the complementary probabilities of Figure 4.2 without altering the probabilities of
any long-range connections in G. Similarly, stars may be transformed into triangles. One
complicating feature of the transformation is the creation of a new vertex when passing from
a triangle to a star (and its destruction when passing in the reverse direction).

The star–triangle transformation was discovered first in the context of electrical networks
by Kennelly [35] in 1899, and it was adapted in 1944 by Onsager [48] to the Ising model
in conjunction with Kramers–Wannier duality. It is a key element in the work of Baxter
[2, 3] on exactly solvable models in statistical mechanics, where it has become known as
the Yang–Baxter equation (see [51] for a history of its importance in physics). Sykes and
Essam [62] used the star–triangle transformation to predict the critical surfaces of certain
inhomogeneous (but periodic) bond percolation processes on the triangular and hexagonal
lattices, and furthermore the star–triangle transformation is a tool in the study of the random-
cluster model [23, Sect. 6.6], and the dimer model [7].

Let us now explore the operation of the star–triangle transformation in the context of the
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Figure 4.1. There are two ways of tiling the hexagon in the upper figure, and switching between these
amounts to a star–triangle transformation for the isoradial graph. The effect on the track system is
illustrated in the lower figure.

p0

p1p2
1− p0

1− p1 1− p2

AA

BB CC

O

Figure 4.2. The star–triangle transformation for bond percolation.

rhombic switch of Figure 4.1. Let G be an isoradial graph containing the upper left hexagon
of the figure, and letG′ be the new graph after the rhombic switch. The definition (3.1) of the
edge-probabilities has been chosen in such a way that the values on the triangle satisfy (4.3)
and those on the star are as given in Figure 4.2. It follows that the connection probabilities on
G andG′ are equal. Graphs which have been thus parametrized but not embedded isoradially
were called Z-invariant by Baxter [2]. See [44] for a recent account of the application of the
above rhombic switch to Glauber dynamics of lozenge tilings of the triangular lattice.

One may couple the probability spaces on G and G′ in such a way that the star–triangle
transformation preserves open connections, rather than just their probabilities. Suppose that,
in a given configuration, there exists an open path in G between vertex-sets A and B. On
applying a sequence of star–triangle transformations, we obtain an open path in G′ from the
image of A to the image of B. Thus, star–triangle transformations transport open paths to
open paths, and it is thus that the box-crossing property is transported from G to G′.

In practice, infinitely many star–triangle transformations are required to achieve the nec-
essary transitions between graphs. The difficulties of the proofs of Theorems 4.1–4.2 are
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centred on the need to establish sufficient control on the drifts of paths and their endvertices
under these transformations.

5. Open problems for percolation

We discuss associated open problems in this section.

(A) Existence and equality of critical exponents. It is proved in Theorem 4.2 that, if
the three exponents ρ, η, δ exist for some member of the family G, then they exist
for all members of the family, and are constant across the family. Essentially the only
model for which existence has been proved is the site model on the triangular lattice,
but this does not belong to G. A proof of existence of exponents for the bond model
on the square lattice would imply their existence for the isoradial graphs studied here.
Similarly, if one can show any exact value for the latter bond model, then this value
holds across G.

(B) Cardy’s formula. Smirnov’s proof [56] of Cardy’s formula has resisted extension to
models beyond site percolation on the triangular lattice. It seems likely that Cardy’s
formula is valid for canonical percolation on any reasonable isoradial graph. There is
a strong sense in which the existence of interfaces is preserved under the star–triangle
transformations of the proofs. On the other hand, there is currently only limited control
of the geometrical perturbations of interfaces, and in addition Cardy’s formula is as
yet unproven for all isoradial bond percolation models.

(C) The bounded-angles property. It is normal in working with probability and isoradial
graphs to assume the BAP, see for example [15]. In the language of finite element
methods, [9], the BAP is an example of the Ženíšek–Zlámal condition.

The BAP is a type of uniform non-flatness assumption. It implies an equivalence of
metrics, and enables a uniform boundedness of certain probabilities. It may, however,
not be necessary for the box-crossing property, and hence for the main results above.

As a test case, consider the situation in which all rhombi have angles exactly ε and
π − ε. In the limit as ε ↓ 0, we obtain2 the critical space–time percolation process on
Z × R, see Figure 5.1 and, for example, [24]. Let Bn(α) be an n × n square of R2

inclined at angle α, and let Cn(α) be the event that the square is traversed by an open
path between two given opposite faces. It is elementary using duality that

P
(
Cn( 1

4π)
)
→ 1

2 as n→∞.

Numerical simulations (of A. Holroyd) suggest that the same limit holds when α = 0.
A proof of this would suggest that the limit does not depend on α, and this in turn
would support the possibility that the critical space–time percolation process satisfies
Cardy’s formula.

(D) The square-grid property. The SGP is a useful tool in the proof of Theorem 4.2, but
it may not be necessary. In [29] is presented an isoradial graph without the SGP, and
this example may be handled using an additional ad hoc argument.

2Joint work with Omer Angel.
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Figure 5.1. Space–time percolation. Each line is cut at rate 1, and nearest neighbours are joined at rate
1. One of the open clusters is highlighted. We ask for the probability that the box is traversed by an
open path from its lower left side to its upper right side.

(E) Near-critical exponents. Theorem 4.2 establishes the universality of exponents at
criticality. The method of proof does not appear to be extendable to the near-critical
exponents, and it is an open problem to prove these to be universal for isoradial graphs.
Kesten showed in [40] (see also [47]) that certain properties of a critical percolation
process imply properties of the near-critical process, so long as the underlying graph
has a sufficiently rich automorphism group. In particular, for such graphs, knowledge
of certain critical exponents at criticality implies knowledge of exponents away from
criticality. Only certain special isoradial graphs have sufficient homogeneity for such
arguments to hold without new ideas of substance, and it is an open problem to weaken
these assumptions of homogeneity. See the discussion around [28, Thm 1.2].

(F) Random-cluster models. How far may the proofs be extended to other models? It
may seem at first sight that only a star–triangle transformation is required, but, as usual
in such situations, boundary conditions play a significant role for dependent models
such as the random-cluster model. The control of boundary conditions presents a new
difficulty, so far unexplained. We return to this issue in Section 7.

6. Random-cluster model

6.1. Background. The random-cluster model was introduced by Fortuin and Kasteleyn
around 1970 as a unification of processes satisfying versions of the series and parallel laws.
In its base form, the random-cluster model has two parameters, an edge-parameter p and a
cluster-weighting factor q.

Let G = (V,E) be a finite graph, with associated configuration space Ω = {0, 1}E . For
ω ∈ Ω and e ∈ E, the edge e is designated open if ωe = 1. Let k(ω) be the number of open
clusters of a configuration ω. The random-cluster measure on Ω, with parameters p ∈ [0, 1],
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q ∈ (0,∞), is the probability measure satisfying

φp,q(ω) ∝ qk(ω)Pp(ω), ω ∈ Ω, (6.1)

where Pp is the percolation product-measure with density p. In a more general setting, each
edge e ∈ E has an associated parameter pe.

Bond percolation is retrieved by setting q = 1, and electrical networks arise via the limit
p, q → 0 in such a way that q/p→ 0. The relationship to Ising/Potts models is more compli-
cated and involves a transformation of measures. In brief, two-point connection probabilities
for the random-cluster measure with q ∈ {2, 3, . . . } correspond to two-point correlations for
ferromagnetic q-state Ising/Potts models, and this allows a geometrical interpretation of the
latter’s correlation structure. A fuller account of the random-cluster model and its history and
associations may be found in [23, 64], to which the reader is referred for the basic properties
of the model.

The special cases of percolation and the Ising model are very much better understood
than is the general random-cluster model. We restrict ourselves to two-dimensional systems
in this review, and we concentrate on the question of the identification of critical surfaces for
certain isoradial graphs.

Two pieces of significant recent progress are reported here. Firstly, Beffara and Duminil-
Copin [4] have developed the classical approach of percolation in order to identify the critical
point of the square lattice, thereby solving a longstanding conjecture. Secondly, together
with Smirnov [5], they have made use of the so-called parafermionic observable of [58] in a
study of the critical surfaces of periodic isoradial graphs with q ≥ 4.

6.2. Formalities. The random-cluster measure may not be defined directly on an infinite
graph G. There are two possible ways to proceed in the setting of an infinite graph, namely
via either boundary conditions or the DLR condition. The former approach works as follows.
Let (Gn : n ≥ 1) be an increasing family of finite subgraphs of G that exhaust G in the limit
n → ∞, and let ∂Gn be the boundary of Gn, that is, ∂Gn is the set of vertices of Gn that
are adjacent to a vertex of G not in Gn. A boundary condition is an equivalence relation bn
on ∂Gn; any two vertices u, v ∈ ∂Gn that are equivalent under bn are taken to be part of the
same cluster. The extremal boundary conditions are: the free boundary condition, denoted
bn = 0, for which each vertex is in a separate equivalence class; and the wired boundary
condition, denoted bn = 1, with a unique equivalence class. We now consider the set of
weak limits as n→∞ of the random-cluster measures on Gn with boundary conditions bn.

Assume henceforth that q ≥ 1. Then the random-cluster measures have properties of
positive association and stochastic ordering, and one may deduce that the free and wired
boundary conditions bn = 0 and bn = 1 are extremal in the following sense: (i) there is a
unique weak limit of the free measures (respectively, the wired measures), and (ii) any other
weak limit lies, in the sense of stochastic ordering, between these two limits. We write φ0p,q
and φ1p,q for the free and wired weak limits. It is an important question to determine when
φ0p,q = φ1p,q , and the answer so far is incomplete even when G has a periodic structure, see
[23, Sect. 5.3].

The percolation probabilities are defined by

θb(p, q) = φbp,q(0↔∞), b = 0, 1, (6.2)

and the critical values by

pbc(q) = sup{p : θb(p, q) = 0}, b = 0, 1. (6.3)
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Suppose that G is embedded in Rd in a natural manner. When G is periodic (that is, its
embedding is invariant under a Zd action), there is a general argument using convexity of
pressure (see [21]) that implies that p0c (q) = p1c (q), and in this case we write pc(q) for the
common value.

One of the principal problems is to determine for which q the percolation probability
θ1(p, q) is discontinuous at the critical value pc. This amounts to asking when θ1(pc, q) > 0;
the phase transition is said to be of first order whenever the last inequality holds. The phase
transition is known to be of first order for sufficiently large q, and is believed to be so if and
only if q > Q(d) for some Q(d) depending on the dimension d. Furthermore, it is expected
that

Q(d) =

{
4 if d = 2,

2 if d ≥ 4.

We restrict our attention henceforth to the case d = 2, for which it is believed that the value
q = 4 separates the first and second order transitions. Recall Conjecture 2.1 and note the
recent proof thatQ(2) ≥ 4, for which the reader is referred to [18] and the references therein.

6.3. Critical point on the square lattice. The square lattice Z2 is one of the main play-
grounds of physicists and probabilists. Although the critical points of percolation, the Ising
model and some Potts models on Z2 are long proved, the general answer for random-cluster
models (and hence all Potts models) has been proved only recently.

Theorem 6.1 (Criticality [4]). The random-cluster model on the square lattice with cluster-
weighting factor q ≥ 1 has critical value

pc(q) =

√
q

1 +
√
q
.

This exact value has been ‘known’ for a long time. When q = 1, the statement pc(1) = 1
2

is the Harris–Kesten theorem for bond percolation. When q = 2, it amounts to the well
known calculation of the critical temperature of the Ising model. For large q, the result (and
more) was proved in [42, 43] (q > 25.72 suffices, see [23, Sect. 6.4]). There is a ‘physics
proof’ in [34] for q ≥ 4.

The main contribution of [4] is a proof of a box-crossing property using a clever exten-
sion of the ‘RSW’ arguments of Russo and Seymour–Welsh in the context of the symmetry
illustrated in Figure 6.1, combined with careful control of boundary conditions. An alterna-
tive approach is developed in [19].

6.4. Isoradiality and the star–triangle transformation. The star–triangle transformation
for the random-cluster model is similar to that of percolation, and is illustrated in Figure 6.2.
The three edges of the triangle have parameters p0, p1, p2, and we set y = (y0, y1, y2) where

yi =
pi

1− pi
.

The corresponding edges of the star have parameters y′i where yiy′i = q. Finally, we require
that the yi satisfy ψ(y) = 0 where

ψ(y) = y1y2y3 + y1y2 + y2y3 + y3y1 − q. (6.4)
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L

Figure 6.1. The square lattice and its dual, rotated through π/4. Under reflection in the line L, the
primal is mapped to the dual.

y0

y1y2

y0

y1 y2

AA

BB CC

O

Figure 6.2. The star–triangle transformation for the random-cluster model.

Further details of the star–triangle transformation for the random-cluster model may be found
in [23, Sect. 6.6].

We now follow the discussion of Section 4.2 of the relationship between the star–triangle
transformation and the rhombus-switch of Figure 4.1. In so doing, we arrive (roughly as
in [36, p. 282]) at the ‘right’ parametrization for an isoradial graph G, namely with (3.1)
replaced by

if 1 ≤ q < 4: ye =
√
q

sin( 1
2σ(π − θe))

sin
(
1
2σθe

) , cos( 1
2σπ) = 1

2

√
q,

if q > 4: ye =
√
q

sinh( 1
2σ(π − θe))

sinh
(
1
2σθe

) , cosh( 1
2σπ) = 1

2

√
q,

(6.5)

where θe is given in Figure 3.3. The intermediate case q = 4 is the common limit of the two
expressions as q → 4, namely

ye = 2
π − θe
θe

.

Write φbG,q for the corresponding random-cluster measure on an isoradial graph G with
boundary condition b = 0, 1. We refer to φ0G,q as the ‘canonical random-cluster measure’ on
G.
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6.5. Criticality via the parafermion. Theorem 6.1 is proved in [4] by classical methods,
and it holds for all q ≥ 1. The proof is sensitive to the assumed symmetries of the lat-
tice, and does not currently extend even to the inhomogeneous random-cluster model on
Z2 in which the vertical and horizontal edges have different parameter values. In contrast,
the parafermionic observable introduced by Smirnov [58] has been exploited by Beffara,
Duminil-Copin, and Smirnov [5] to study the critical point of fairly general isoradial graphs
subject to the condition q ≥ 4.

Let G = (V,E) be an isoradial graph. For β ∈ (0,∞), let ye(β) = βye where ye is
given in (6.5). Let

pe(β) =
ye(β)

1 + ye(β)

accordingly, and write φbG,q,β for the corresponding random-cluster measure on G with
boundary condition b. The following result of [5] is proved by a consideration of the
parafermionic observable.

Theorem 6.2 ([5]). Let q ≥ 4, and let G be an isoradial graph satisfying the BAP. For
β < 1, there exists a > 0 such that

φ0G,q,β(u↔ v) ≤ e−a|u−v|, u, v ∈ V.

One deduces from Theorem 6.2 using duality that

(a) for β < 1, φ0G,q,β-a.s., there is no infinite open cluster, and

(b) for β > 1, φ1G,q,β-a.s., there exists a unique infinite open cluster.

This is only a partial verification of the criticality of the canonical measure, since parts (a)
and (b) deal with potentially different measures, namely the free and wired limit measures,
respectively. Further progress may be made for periodic graphs, as follows. Subject to the
assumption of periodicity, it may be proved as in [21] that φ0G,q,β = φ1G,q,β for almost every
β, and hence that part (b) holds with φ1G,q,β replaced by φ0G,q,β . Therefore, for periodic
embeddings, the canonical measure φ0G,q = φ0G,q,1 is critical.

Here is an application of the above remarks to the (periodic) inhomogeneous square
lattice.

Corollary 6.3 ([5]). Let q ≥ 4, and consider the random-cluster model on Z2 with the
variation that horizontal edges have parameter p1 and vertical edges parameter p2. The
critical surface is given by y1y2 = q where yi = pi/(1− pi).

We close with the observation that a great deal more is known in the special case when
q = 2. The q = 2 random-cluster model corresponds to the Ising model, for which the
special arithmetic of the equation 1 + 1 = 2 permits a number of techniques which are
not available in greater generality. In particular, the Ising model and the q = 2 random-
cluster model on an isoradial graph lend themselves to a fairly complete theory using the
parafermionic observable. The interested reader is directed to the work of Smirnov [57, 58]
and Chelkak–Smirnov [16].

7. Open problems for the random-cluster model

(A) Inhomogeneous models. Extend Corollary 6.3 to cover the case 1 ≤ q < 4.
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(B) Periodicity. Remove the assumption of periodicity in the proof of criticality of the
canonical random-cluster measure on isoradial graphs. It would suffice to prove that
φ0G,q,β = φ1G,q,β for almost every β, without the assumption of periodicity. More
generally, it would be useful to have a proof of the uniqueness of Gibbs states for
aperiodic interacting systems, along the lines of that of Lebowitz and Martin-Löf [46]
for a periodic Ising model.

(C) Bounded-angles property. Remove the assumption of the bounded-angles property
in Theorem 6.1.

(D) Criticality and universality for general q. Adapt the arguments of [29] (or other-
wise) to prove criticality and universality for the canonical random-cluster measure on
isoradial graphs either for general q ≥ 1 or subject to the restriction q ≥ 4.
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