
Introspective Classification for Robot

Perception and Decision Making

Hugo Grimmett

New College

Supervisor:

Ingmar Posner

Mobile Robotics Group

Department of Engineering Science

University of Oxford

August 2016

Hugo Grimmett Doctor of Philosophy

New College August 2016

Introspective Classification for Robot Perception and Decision Making

Abstract

In robotics, a classifier is often a core component of the decision-making framework.

Precision and recall have been widely adopted as canonical metrics to quantify the

performance of a classifier, but for applications involving mission-critical decision

making, good performance in relation to these metrics is insufficient. The use of a

classification framework which produces scores with inappropriate confidences will

ultimately lead to the robot making bad decisions, thereby compromising robot or

user safety. In order to select a classifier which will make decisions reflecting the

nature of the costs, we should pay careful attention to the ways in which it generates

scores. We introduce and motivate the importance of a classifier’s introspective

capacity: the ability to give an appropriate assessment of confidence with any test

case. Classification made confidently must be correct, and mistakes should be made

with high uncertainty. A classifier’s capacity to do so must remain consistent despite

unusual or surprising test cases. We propose that a key ingredient for introspection

is a classifier’s potential to increase its uncertainty with the distance between a test

datum and its training data.

We define the ideal introspective behaviour, and derive idealised classifiers which

serve to benchmark a number of commonly used classification frameworks in a vari-

ety of decision-making tasks. We show that classifiers that offer predictive variance

at test-time are more cautious and less over-confident than those which consider

a single hypothesis or discriminant. However, in high-cost (or high-risk) decision

making, none of the classifiers evaluated in this thesis are sufficiently introspective

to prevent all potential catastrophic mistakes. We show that in sequential decision-

making, when the mapping from score to class is explicitly stated, a classifier’s ability

to behave consistently despite non-stationary test data is of primary importance.

Statement of Authorship

This thesis is submitted to the Department of Engineering Science, University of

Oxford, in fulfilment of the requirements for the degree of Doctor of Philosophy.

This thesis is entirely my own work, and except where otherwise stated, describes

my own research.

Hugo Grimmett, New College

Funding

The work described in this thesis was funded under the European Community’s

Seventh Framework Programme (FP7/2007-2013) under Grant Agreement Number

269916 (V-CHARGE).

Acknowledgements

First and foremost I would like to thank my supervisor, Professor Ingmar Posner.

His support, direction, and collaboration know no bounds, and I am immensely

grateful for having had the opportunity to work together. I would also like to thank

Professor Paul Newman, who inspired me to begin this journey and made me feel

at home at MRG.

Secondly, I would like to thank my thesis examiners Professors Mike Osbourne

and Tom Duckett for their insightful questions and feedback during and after the viva

examination. Their thorough treatment of my work has brought to light interesting

aspects that I had not previously considered, and for that I have great appreciation.

I give great thanks to my friends and coauthors, Drs Rohan Paul, Rudi Triebel,

Lina Paz, and Pedro Pinies. The late nights writing papers together are my fondest

and most formative memories from the past years.

I owe a great deal to countless enlightening discussions with Dr Chi Tong, Ge-

off Hester, and Dr Dominic Wang. Their generosity of their immense collective

knowledge empowers all of those around them.

The funding from the V-Charge project allowed me to pursue this work, and col-

laborate and find friends in Paul Furgale, Wojciech Derendarz, Ulrich Schwesinger,

and Matthias Buerki to name a few. It has been a pleasure to work with you all,

and to contribute to the success that is the V-Charge autonomous valet car.

My thanks to all of MRG, who have supported and inspired me throughout

the years. To name but a few: Colin McManus, Terry Scott, Dan Withers, Peter

Ondruska, Corina Gurau, Matt Gadd, Winston Churchill, Julie Dequaire, Chris

Prahacs, Tom Wilcox, and Anita Hancox. Also thank you to those who have since

left the group for your immeasurable wisdom, Alastair Harrison, Ashley Napier,

Bonolo Mathibela, Ben Davis, and Ian Baldwin. My heartfelt gratitude also goes

to my friend Amaury Dame, whose perspectives on life guide me always.

I am indebted to those outside robotics who supported me throughout my time in

Oxford, most notably but not limited to Philippa Harris, Leila Denniston, Michael

West, Alex Nevitte, Jonny Sadler, Christine Moore, Jon Daly, Joanna Hamer, Isaac

Black, and Rachel James. Thank you for believing in me.

Finally I would like to thank my parents, Geoffrey and Rosine, for their over-

whelming and unconditional love and support. Their selflessness and trust are both

my inspiration and aspiration.

Hugo Grimmett

August 11, 2016

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Introspection . 2

1.3 Contributions . 3

1.4 Thesis Structure . 4

1.5 Publications . 5

2 Semantic Mapping: A Case Study 7

2.1 The V-Charge Vehicle . 9

2.2 Related Works . 10

2.3 Semantic Mapping . 11

2.3.1 The Road Network . 12

2.3.2 Parking Space Locations . 17

2.3.3 Recommended Driving Speed 22

2.4 Integrating Metric and Semantic Layers 23

2.5 Conclusions . 29

3 Data Sets, Features, and Performance Metrics 31

3.1 Traffic Lights Recognition . 32

3.2 GTSRB . 34

3.3 Daimler Pedestrian . 34

CONTENTS

3.4 KITTI . 35

3.5 Synthetic Data . 35

3.6 Features . 37

3.6.1 Template Features . 37

3.6.2 Histogram of Oriented Gradients (HOG) 40

3.7 Performance Metrics . 40

3.7.1 Precision, Recall, Accuracy, and F-measure 40

4 Introspection 43

4.1 The Ideal Classifier . 44

4.2 Related Works . 48

4.3 Idealised Classifiers . 51

4.3.1 Determining the Density Functions 55

4.4 Summary . 60

5 Introspection in Practice 61

5.1 Notation . 63

5.2 Measures of Uncertainty . 63

5.3 A Distance-Based View on Introspection 65

5.4 Related Works . 67

5.5 Commonly-Used Classification Frameworks 69

5.5.1 Gaussian Processes Classification 70

5.5.2 Support Vector Machine . 74

5.5.3 LogitBoost . 76

5.5.4 Random Forests . 77

5.5.5 Kernels . 79

5.6 Analysis of Non-Stationary Data . 81

5.6.1 Synthetic Data . 83

CONTENTS

5.6.2 Real Data . 88

5.6.3 Discussion . 94

5.7 Uncertainty in Detection . 95

5.8 Conclusions . 106

6 Introspection in Decision Making 109

6.1 Making Errors with Uncertainty . 110

6.2 Active Learning . 113

6.2.1 Related Works . 115

6.2.2 The Cross-Over Experiment 116

6.2.3 Discussion . 117

6.3 Decision Making with Costs . 121

6.3.1 Bayesian Decision Theory . 122

6.3.2 Relating Costs to ε-bounds . 125

6.3.3 Experiments . 126

6.4 Conclusions . 129

7 Introspection in Sequential Decision Making 133

7.1 The Observation Probability Function as a Classifier 135

7.2 Related Works . 137

7.3 Test Scenarios . 139

7.3.1 Grid World . 139

7.3.2 Wumpus World . 142

7.4 Entropy . 144

7.5 Experiments . 147

7.5.1 The Ill Effects of Non-stationarity 149

7.5.2 Consistent and Appropriate Sensors 155

7.5.3 Changing the Size of the World 161

CONTENTS

7.5.4 Changing the Number of Sensors 163

7.6 Conclusions . 165

8 Conclusions and Future Work 167

8.1 Conclusions . 167

8.2 Future Work . 170

8.2.1 Introspection . 170

8.2.2 Semantic Mapping . 175

8.2.3 Active Learning . 175

8.2.4 Classical Decision Making . 176

8.2.5 Sequential Decision Making 177

Appendices 180

A Road Graph Generation Algorithms 181

B Classifier Probability Contours 184

C Idealised Classifier Error Functions 187

D Empirical Probability Density Functions of Real Classifiers 189

E MDPs and POMDPs 192

E.1 Markov Decision Process (MDP) . 192

E.2 Partially Observable Markov Decision Processes (POMDP) 197

Bibliography 202

Chapter 1

Introduction

1.1 Motivation

An autonomous robot operating in an environment such as a city street will see

so many varied inputs that it is impossible to have prepared it by labelling each

one. In practice we attempt to forewarn it by selecting training exemplars and

generating a model, hoping that together they will be sufficient to generalise well to

its future experiences. However, these exemplars will almost never fully characterise

the problem. This is either because they are too few to cover the domain or because

the domain is non-stationary and shifts unexpectedly over time. Nevertheless, this

is how we typically perform classification, and the classification scores are used for

making potentially safety-critical decisions. We hope that when our robot encounters

a test which is not represented in its training set, the model it learned will allow it to

generalise and correctly classify the object. However, we will inevitably encounter

a test datum which is perplexing – one that is not similar to the things we have

seen before. This could be due to lighting, perspective change, inter-class variation,

and many other factors. What should we expect our classifier to do with these, and

what will be its resulting decision?

1

1.2 Introspection

For example, if a robot is tasked with safely crossing the road, we need it to

wait cautiously when it sees something unexpected, rather than confidently and

erroneously determine that the way is clear.

1.2 Introspection

In this thesis we evaluate the abilities of a number of commonly-used classification

frameworks to make appropriate decisions in robotics. Specifically, we are concerned

with the situation where a classifier makes a decision about a test datum which is

unlike anything it has seen during training. We argue that this situation is com-

monplace, and that we can associate the appropriateness of the decision with that

classifier’s treatment of distance in feature space. Data which are far away from

the training set should be regarded with suspicion, or high uncertainty. Familiar

examples, on the other hand, those more similar to the training examples, should

be perceived with greater confidence, because indeed their classification is likely to

be correct.

We propose that a classifier’s incorrect decisions should be made with greater

suspicion or uncertainty, while the ones made with confidence should also tend

to be correct. This tendency we term, ‘introspection’. A classifier with a great

introspective capacity will correlate1 confidence to correctness. This behaviour is not

captured by precision, recall, or accuracy, and yet can critically affect any resulting

decisions.

We will define the ideal introspective behaviour, and compare a number of pop-

ular classification frameworks to this ideal. We will examine the methods by which

they determine classification confidence, and relate them to distances between data

1in using the word correlation in this context, we mean to say that as confidence increases, so
correctness tends to increase, and vice-versa for decreases. This is more general than the strictly
mathematical meaning of correlation. Some might prefer the term ‘positive association’.

2

1.3 Contributions

or models. Having evaluated their introspective capacity, we investigate the effects

within various domains of robotics:

1. object classification and detection,

2. active learning,

3. high-cost decision making, and finally

4. sequential decision making.

1.3 Contributions

The following contributions are made in this thesis:

• (Chapter 2) We motivate the importance of introspection via a case-study of

a semantic mapping system. Specifically, we build semantic maps of car parks

for an autonomous car to perform valet parking.

• (Chapter 4) The concept of introspection: that it is useful for a classifier to

make its mistakes only with high uncertainty, while simultaneously making

correct classifications with confidence, in order to allow the perception system

to predict when it might be making a mistake. That prediction can then be

used to take an appropriate action.

• (Chapter 4) The ideal behaviour for an introspective classifier, and a number

of idealised example classifiers displaying this behaviour to varying degrees.

• (Chapter 5) The proposition that this introspective tendency is linked to dis-

tances, and that a consistent treatment of distance leads to better introspection

in classification tasks. We determine the introspective capacities of a number

of real classifiers.

3

1.4 Thesis Structure

• (Chapter 6) We evaluate the importance of introspection in active learning,

where truly introspective classifiers should have a great advantage. We show

that the more introspective classifier does indeed benefit over the other; the

differences are small but significant to the 99% level.

• (Chapter 6) An investigation of the introspective capacities of the real clas-

sifiers in classical decision-making, particularly in the presence of expensive

outcomes. We show that none of our real classifiers are introspective enough

to avoid high-confidence errors across every data set.

• (Chapter 7) We show that introspection is important in sequential decision

making, and that the ability to differentiate between true and false classifi-

cations leads to achieving the goal faster. In this particular setting we place

value on the information content of the classifiers rather than their correla-

tion of confidence with correctness. We analyse the effects of poorly modelling

classifier behaviour, and the detriment to the quality of the resulting decisions.

1.4 Thesis Structure

We motivate the need for introspection in Chapter 2 with our work on semantic

mapping in the context of an autonomous valet service.

In Chapter 3 we discuss the three data sets used throughout this thesis. This

chapter can be skipped on first reading, and used as a reference in the later chapters.

In Chapter 4 we define and further motivate the ideal introspective behaviour,

and design a number of idealised classifiers which display varying degrees of intro-

spection.

We then develop the idea of the distance-based view of introspection in Chapter

5, proposing that the manner in which various commonly-used frameworks perform

classification has an important effect on their uncertainty when faced with new,

4

1.5 Publications

unseen data. We apply the classifiers to synthetic data, showing how their uncer-

tainties vary with data quantity, dimensionality, and distance between training and

test data. We then apply them to real data, showing that these effects are persistent

when the test data are dissimilar to the training data in classification tasks. Finally,

we apply them to real data in object detection tasks.

In Chapter 6 we consider the two extremes of the uncertainty space. First,

we apply the classifiers to active learning, examining high-uncertainty decisions.

The classifiers choose high-uncertainty test data for labelling by a human oracle,

and we investigating the relative performance increases based on particular choices.

Secondly, we investigate the effect of introspection when we associate costs with

classification tasks, specifically analysing low-uncertainty errors.

In Chapter 7 we apply the idealised classifiers from Chapter 4 to sequential

decision making, showing the effects of introspection in agent-navigation problems

under uncertainty. We consider the Partially Observable Markov Decision Process

(POMDP) framework, and explore how the use of more and less introspective sensors

affects the speed with which a robot achieves its goal. We draw a link between the

information content of a measurement and the agent’s speed of solution.

We conclude with Chapter 8. We discuss the implications of the thesis, sum-

marise our contributions, and propose further avenues for exploration.

1.5 Publications

Some of the work presented in Chapter 2 was presented as “Integrating Metric and

Semantic Maps for Vision-Only Automated Parking” at the International Confer-

ence on Robotics and Automation in Seattle, USA, May 2015 [Grimmett et al.,

2015a]. A further publication featuring our contributions is Furgale et al. [2013].

Part of Chapter 5 is published as “Knowing What We Don’t Know: Introspective

5

1.5 Publications

Classification for Mission-Critical Decision Making” at the International Conference

on Robotics and Automation in Karlsruhe, Germany, May 2013 [Grimmett et al.,

2013].

There are two publications relevant to the material in Chapter 6. The work on

active learning is motivated by the contents of “Driven Learning for Driving: How

Introspection Improves Semantic Mapping”, presented at International Symposium

on Robotics Research in Singapore, December 2013 [Triebel et al., 2013], with further

data sets and conclusions. The work on classical decision making is related to

“Introspective Classification for Robot Perception” in the International Journal of

Robotics Research in 2015 [Grimmett et al., 2015b].

6

Chapter 2

Semantic Mapping: A Case Study

In this chapter we present a case study of semantic mapping, which serves to mo-

tivate the need for introspection in perception systems to be used for autonomous

operation. The case study presented is part of the V-Charge project [vch, 2015]1.

The goal of the V-Charge project is to showcase the feasibility of a system which

provides an autonomous valet service. This system must only use close-to-market

sensors, and require only a wireless network and a server in terms of external in-

frastructure. At the end of the project in the Summer of 2015, the consortium

successfully demonstrated the following scenario: a user manually drives to their

place of work and exits the car at the entrance to the building. On their smart

phone they open the V-Charge app, and press the park button. They now start

their day at the office. Meanwhile, the vehicle communicates with a server, allo-

cating it a charging bay in the car park. The car drives autonomously using the

lanes, stopping for other vehicles (autonomous and non-autonomous alike) where

required, and docks with the charging bay. When charging is complete, the vehicle

relays this information to the server, and is allocated an ordinary parking space in

the car park. Once more it navigates autonomously to its intended parking space

1The majority of this chapter is published in Grimmett et al. [2015a]

7

and performs a parking manoeuvre. If that space is in fact recently taken, it can

search for another. At the end of the day, the user summons the vehicle using the

app, at which time it leaves the parking space and drives once more to the front of

the building for collection.

The project completed on time with a number of demonstrations to the press

and public, and also led to a number of scientific publications by the consortium,

which comprised ETH Zurich, The University of Parma, Braunschweig University,

Volkswagen, and Bosch, as well as Oxford University.

Our contribution to the project is entirely within the offline semantic mapping

stage, allowing the vehicle to navigate and drive naturally around the car park. We

present a system which takes as input (a) the raw data from the vehicle and (b) a

geometric map of the car park produced by ETH Zurich, and outputs a semantic

map of the area, an example of which is shown in Figure 2.1. The semantic map

contains

• the road network of the car park,

• the locations of all the parking and charging bays, and

• the recommended driving speed at any point,

and there are aspects of the map that we would like to detect and label automatically

using classification techniques. The semantic map is then used for planning routes

around the car park which obey the rules of the road. The author’s role in this work

is to design and implement the strategy for how to solve this task, particularly for

the road network and the recommended driving speed, as well as the active learning

components of the parking-space detection.

We distinguish between two types of semantic labels: static semantics which

represent more permanent features of the environment such as fixed obstacles or

points of interaction, and dynamic semantics which represent the way in which the

8

2.1 The V-Charge Vehicle

Figure 2.1: The semantic information placed relative to the metric map. The driving
lanes are shown in green, and the parking spaces in blue.

environment is shared with other users. The static map represents things like road

infrastructure, and is unlikely to change between revisits. The accuracy of this

static map is paramount to the functioning of the vehicle, and so a human operator

is used to verify it. The dynamic map contains estimates of the likelihood of moving

obstacles (in our case, pedestrians) being in any particular location of the robot’s

environment, allowing the robot to drive at an appropriately slower speed in busy

regions of the car park. Dynamic semantics can be recomputed at each revisit in an

unsupervised manner, that is, without requiring further human labelling effort.

After a description of the vehicle in Section 2.1, we present a summary of the

literature on semantic mapping in Section 2.2. In Section 2.3, we detail a semantic

mapping pipeline which satisfies the requirements. Next we present a relative frame-

work for integrating the positions of semantic labels in metric maps in Section 2.4.

We finish by discussing the strengths and limitations of our approach, motivating

introspective behaviour in our classification systems in Section 2.5.

2.1 The V-Charge Vehicle

The primary goal of the V-Charge project is to demonstrate that an autonomous

valet service is possible without using expensive sensors. For this project that means

9

2.2 Related Works

using cameras and ultrasound sensors costing in the low hundreds of pounds, rather

than laser scanners which typically cost in the order of thousands of pounds. The

majority of the vehicle’s capacity for vision comes from four wide-angle, rolling-

shutter cameras, with one on each side of the vehicle. The side cameras are mounted

in the wing-mirrors, and the front and back cameras within the Volkswagen emblems,

one on the nose of the car and one at the back of the boot compartment. Long-

distance forward views are given by a stereo camera mounted on the inside of the

windscreen. There are also ultrasound sensors along the forward and rear bumpers.

2.2 Related Works

Although research into autonomous driving predates the DARPA Grand Challenges

in 2004 and 2005, they motivated the first leaps and bounds in the field. They were

followed by the Urban Challenge in 2007 [Blasch et al., 2006]. There, teams from

around the world competed to complete navigation tasks, first off-road and then

in simulated town environments. The vehicles had to map (at least locally) and

navigate around complex and often dynamic environments in order to reach their

objectives, and all of the winning strategies made use of expensive and experimental

sensors. These included nodding LIDAR range finders, RADAR, and colour cam-

eras [Urmson et al., 2007, Kammel et al., 2008, Urmson et al., 2008]. Most of the

vehicles made use of an Inertial Navigation System (INS) which comprises a GPS

antenna and Inertial Measurement Unit (IMU) to inform their localisation system,

and two more GPS antennas to estimate the vehicle’s absolute heading. Although

the tasks in the Urban Challenge included many similarities to the functional re-

quirements of the V-Charge car, such as on-lane driving, appropriate behaviour

around other manned vehicles and parking manoeuvres, the sensors they used are

still prohibitively expensive for commercial series models.

10

2.3 Semantic Mapping

The PReVENT project [Schulze et al., 2005] makes a step towards autonomous

production cars, making use of cheaper sensors like cameras and RADAR, and fo-

cussing on the communication of hazards to other vehicles. More recently, Furda

and Vlacic [2011] detail a system for making decisions in a two-stage process: the

first selects safe and feasible trajectories, and the second aims to maximise comfort

and efficiency. They test the system in simulations of city driving. Ibisch et al.

[2014] focus on autonomous driving in parking garages, with a collision avoidance

system which relies on cameras embedded within the environment. We wish to

presume the least amount of infrastructure possible for each car park. The City-

Mobil2 project aims to deliver autonomous shuttle pods to several European cities

for use on road and around pedestrianised areas, using LIDAR sensors for collision

avoidance [Alessandrini et al., 2014]. The current AdaptiVe project aims to produce

an autonomous car which helps the user with common driving manoeuvres, such

as parking assistance, a city chauffeur that handles roundabouts and intersections,

and a co-operative merging function for highway entry, exit, and lane changes [ada,

2016]. The project is still in its infancy and so details such as sensor types are not

yet available.

All these cases serve to highlight the V-Charge project as a contribution towards

fully autonomous driving and parking in dynamic urban environments using close-

to-market sensors.

2.3 Semantic Mapping

Initially we expected that mapping the semantics of car parks would be significantly

easier than mapping the open road due to their consistent structure, when in reality

they have the same if not greater variety in appearance. Lanes and parking spaces

are demarcated in many ways (or not at all), making the job of creating a lane

11

2.3 Semantic Mapping

classifier which works across car parks very difficult. Over the course of the project

we mapped three car parks, all of which have very distinct appearances, as shown

in Figure 2.2. As a result, developing a system which inherits knowledge from

previously experienced car parks is of limited use.

The three components of the semantic map, the road network, parking bay

locations, and recommended driving speed are all generated separately, and thus

there is a subsection per component.

2.3.1 The Road Network

The requirement of the road network is to allow the vehicle to plan and subsequently

drive around the car park which would be predictable for other road users, resulting

in a smooth, efficient journey without breaking the rules of the road. The subse-

quent behaviour of the vehicle is outside of our remit, but this layer of the semantic

map contains the information required for the vehicle to be capable of driving ap-

propriately, and thus at least requires knowledge of lanes and intersections.

We experimented with methods for lane marker extraction similar to Aly [2008],

but found that due to the varying appearances of lanes in car parks (and some total

absences of lane markings), generalising across car parks was impossible. Therefore,

we would have needed a hand-tailored solution per car park. This would have not

been a good general solution. Therefore, we propose a novel method requiring the

survey driver to drive along the centre of each lane at least once, such that the trace

of the vehicle centre would map out each lane.

ETH CVG (Computer Vision Group) perform a 3D bundle adjustment over both

the visual landmarks and the vehicle positions to produce a consistent metric map (a

map with distances in some unit, in this case, metres) with loop-closures. Because

this required a survey drive through the car park, driving each lane for the road

network generation came at virtually no overhead. An example of a this metric map

12

2.3 Semantic Mapping

(a) Stuttgart

(b) Zurich

(c) Wolfsburg

Figure 2.2: Here are pictures of each of the three car parks we mapped as part of
the V-Charge project. Note the variety in appearance from one to the next.

13

2.3 Semantic Mapping

Figure 2.3: The metric map produced by ETH Zurich. This follows a full bundle-
adjustment over the vehicle positions and visual landmarks with loop-closure.

is shown in Figure 2.3. After the survey drive and the optimisation of the vehicle

poses, we have a trace that follows the vehicle through the car park. The next

challenge is that some of the lanes are likely to have been driven more than once,

and due to various sources of noise, those traces will not lie perfectly on top of each

other. We need a way of simplifying the overlapping traces to a single skeleton of

the underlying lane and junction structure.

We have developed an algorithm for automatically generating a road network,

whose only requirement is for the vehicle to have been driven through each lane at

least once. To the best of our knowledge, this is the first published system that

performs this task. The algorithm takes as input the three-dimensional positions of

the vehicle at regular time intervals, and outputs both lanes and intersections. The

method is presented in Algorithms 1 and 2 in Appendix A. In summary, we consider

the vehicle positions as nodes in a graph, and connect them to nearby nodes in

order to simplify lanes which are driven several times with slight displacement each

time (see Figure 2.4a). We then repeatedly prune this graph by replacing maximal

cliques by their centre point (or rather, an existing node nearest to their centre

14

2.3 Semantic Mapping

(a) The fully connected graph (Algo-
rithm 1, lines 1 to 12).

(b) The graph after one pruning loop
(Alg. 1, lines 13 to 25).

(c) The finished graph at the end of
Alg. 1. (d) The lanes as calculated by Alg. 2.

Figure 2.4: The process of calculating the road network applied to the Stuttgart car
park.

point, see Figure 2.4b) until we have a skeleton graph (see Figure 2.4c). The final

step involves iteratively exploring the pruned graph to find the distinct lanes and

intersection points, as shown in Figure 2.4d.

Evaluation

In Figure 2.4 we show some of the intermediary steps and the final result of the road

network generation algorithm on the Stuttgart car park. This road structure has

been used for autonomous driving. However, because this particular car park is in

the ground floor of a 7-story parking lot, we cannot use the INS system to collect

ground-truth (combining accelerometer (IMU) and GPS positional information) and

15

2.3 Semantic Mapping

evaluate the accuracy of the road network in the semantic map, and we lack the

infrastructure to measure driving errors with a greater accuracy than the metric

map. In order to appropriately evaluate the accuracy of the system, we require an

outdoor test site, such as the one used for the final demonstrations in Wolfsburg at

the VW MobileLifeCampus.

We used the presented algorithm to generate a road network for the car park

using a simple mapping route, but as a result of a change in requirement for the

demonstrations, large two-way lanes needed to be modelled as two, narrower, one-

way lanes side-by-side. Therefore, we used a manual annotation tool to alter the

road graph. Further adjustments are made to allow the vehicle to plot a smooth

trajectory through narrow barriers. As a result, the final semantic map used in the

demonstration is different from the one generated automatically. Nevertheless, we

use an INS system to evaluate the accuracy of the final road graph. To generate

ground truth, a driver manually drives around each lane as smoothly as possible,

recording vehicle position via the INS system. We then compare the trace of that

ground truth path with that of the semantic map. The displacements between them

can be considered the error, and are shown in Figure 2.5.

The errors are generally very small, with notable exceptions in the North-East

corner, the Western corner, and the junction between the two loops. The first is a

length of a single wide lane, terminating with a very tight turn around a narrow bar-

rier. The ground-truth driver decided to take the corner as wide as possible, drifting

into the adjacent lane going the opposite way as he turned. This is acceptable with

no traffic, but not the ideal trajectory for the map. It should be noted that this is

a difficult corner even for an experienced driver. The second notable area of error,

in the Western corner, is a long stretch of free-driving in a very wide lane. Both the

trajectory of the ground-truth driver and the semantic map are equally valid. In

the third area of error, the junction between the two loops, the ground-truth driver

16

2.3 Semantic Mapping

Figure 2.5: The error between the lanes in the semantic map and the ground truth,
measured using an INS system in the Wolfsburg car park.

passes very close to another vehicle and staying longer than necessary in the lane

going the opposite way. We propose that the trajectory proposed by the semantic

map is in fact preferable in the absence of further information about whether the

opposite lane is occupied by another vehicle. We recognise that there is no single

canonical driving behaviour appropriate for all situations, and so we seek a road

network that describes how a manual driver would behave in the most restrictive

situation, namely, there are numerous other drivers using the car park. We conclude

that despite the worrying nature of the threat of a 1.5m error in the road graph, the

routes in the semantic map were are at least as good as those taken by the ground-

truth driver, if not better in places. This demonstrates a flaw in the ground-truth

data.

2.3.2 Parking Space Locations

The appearance of parking spaces also varies greatly from one car park to the next.

For instance, some parking spaces in Wolfsburg have no painted demarcations at

17

2.3 Semantic Mapping

all, as shown in Figure 2.2c. However, we seek a different solution as for the road

network due to the great expense in time that it would incur. We experimented with

methods inspired by Seo et al. [2009] and found them to be brittle and unreliable,

largely due to the assumptions regarding the structure of the car park, and which line

marking would be visible in the overhead image. Therefore, we learn what parking

spaces look like in each car park individually. First we use the metric map and the

fisheye images from the monocular cameras to produce a synthetic overhead image,

and then perform active learning with a human in the loop to detect the parking

spaces. In this active learning system, a human manually labels some examples, and

trains a classifier which returns the most confident parking-space hypotheses. The

human can then accept or reject those hypotheses, and the classifier is re-learned.

The synthetic overhead image

The synthetic overhead image is made by first rectifying the fisheye images, then

using the vehicle poses from the metric map to project the image pixels onto a

virtual ground plane. When projections from multiple images lie on the same pixel

in the ground plane, the running mean of the values is used. The synthetic overhead

images we created are shown in Figure 2.6. Note that the quality of the overhead

image is determined by the lighting and material properties of the car park, and the

quality of the vehicle poses in the metric map.

Note that we use high-resolution aerial photography as an overhead image for

the Wolfsburg car park in Figure 2.6c, but this photograph has a much greater

resolution than is available in the free online repositories of satellite photography.

The latter would not be sufficient for detailed semantic mapping, and so the creation

of synthetic overhead images would be required in the absence of high-resolution

images.

18

2.3 Semantic Mapping

(a) Stuttgart

(b) Zurich

(c) Wolfsburg

Figure 2.6: The synthetic overhead image from the surveyed car parks. The dif-
ferences in appearance and lighting conditions of the car parks directly affect the
quality and clarity of the synthetic overhead image. No synthetic overhead image
of the Wolfsburg car park is required due to the availability of high-resolution aerial
photography.

19

2.3 Semantic Mapping

Finding parking spaces

In order to find the locations of the parking spaces, we take the synthetic overhead

image (e.g. Figure 2.6) and allow the human annotator to draw rectangles around a

few exemplar parking spaces. Then we start the classifier learning process shown in

Figure 2.7. 500 negative examples are randomly sampled from the image at various

scales. HOG feature descriptors are used [Dalal and Triggs, 2005], and a linear

Gaussian process classifier (see Section 5.5.1) is trained on the examples. Passing

a sliding window across the image, we extract many test patches and apply the

classifier to them. The most confident results are returned to the user as parking

spot hypotheses. The size of the sliding window is learned from the hand-drawn

labels. The user can now mark them as ‘correct’ or ‘incorrect’, and resize them

if desired. This operation is faster than drawing new training examples by hand.

The process is then repeated until all of the parking spaces have been detected. We

performed this in the Stuttgart car park and found that the labelling was very fast,

with the user only manually drawing 14 out of 164 parking spaces over 6 rounds of

active learning to achieve a precision of over 0.93, as shown in Figure 2.8. If we had

to map the remaining floors of this car park, we could re-use this classifier to do so.

Note that the overhead image for the Zurich car park in Figure 2.6b is much

more distorted and blurry than the one for the Stuttgart car park. This reduces

the effectiveness of active learning, and generally the human will have to do more

manual labelling if this is the case.

The Wolfsburg car park (Figure 2.6c) contains large rows of parking areas with

no clear demarcations; vehicles are expected to park orthogonally to the lane in

a considerate manner. This makes classification of individual parking bays very

difficult (there are concrete blocks on the edge of the parking areas to indicate a

possible alignment and spacing for vehicles as shown in Figure 2.2c, but this is

20

2.3 Semantic Mapping

(a) Hand-labelling a number of example parking spaces.

(b) The final output of the system, showing all the parking spaces.

Figure 2.7: Shown are two stages of the graphical interface used to perform active
learning on the synthetic overhead image. In (a) the human operator labels a few
parking spaces, and (b) shows the final output after 6 training rounds. The number
of drawn parking spaces is shown in Figure 2.8.

Training rounds

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

1 2 3 4 5 6
5

10

15

T
o

ta
l
n

u
m

b
e

r
o

f
h

a
n

d
-d

ra
w

n
 l
a

b
e

ls

Figure 2.8: The precision of the parking space detections (solid blue) across active
learning loops for the Stuttgart car park (using the graphical interface shown in
Figure 2.7). The cumulative number of hand-drawn labels is shown as the dashed
green line. Note that at each loop, the user labels some of the classifier hypotheses
as correct and incorrect, the quantities of which are not shown as it is very quick to
label them relative to the effort involved in drawing new labels from scratch.

21

2.3 Semantic Mapping

optional).

2.3.3 Recommended Driving Speed

The third component of the semantic map is the recommended driving speed at any

point in the car park. Typically the speed limit is signed, but the most appropriate

speed is rarely the maximum. In areas with increased pedestrian activity it would

be sensible for the vehicle to drive more slowly. We propose a system which observes

where pedestrian activity takes place, and varies the driving speed accordingly.

In summary, we detect pedestrians in the fisheye images, and given the camera

pose, project their positions into a metric dynamic map. We maintain a function

of pedestrian density over the map, and use it to linearly interpolate between a

minimum and maximum driving speed. The pedestrian detection is performed using

the same system as the parking space detection shown in Figure 2.7, testing over

all the images collected by the vehicle rather than a single overhead image. HOG

features are used, as before, and we use ten detection scales, learned from the labelled

positive examples.

The problem is represented by a graphical model whose nodes are the set of

discrete map locations (or pixels x ∈ N2). A prior probability p(x0) on a node is

assigned by considering the static map at that pixel location x0 ∈ N2. If the static

map indicates a pedestrian crossing or pavement, the prior on pedestrian density is

high, and if it’s a driving lane, it is lowest. Given observations z of pedestrians, the

maximum a posteriori estimate of pedestrian location is calculated by solving

x∗ = arg min
x

(
− log

likelihood︷ ︸︸ ︷
p(z|x) p(x|x0) p(x0)︸ ︷︷ ︸

prior

)
, (2.1)

where the prior distribution p(x0) and likelihood p(z|x) terms are modelled as normal

distributions over the map, making the optimisation linear. To account for the effect

22

2.4 Integrating Metric and Semantic Layers

of a node xi on its neighbours N(i), we impose regularisation by adding linear binary

constraints (the second sum in Equation 2.2).

log p(x|x0) ∝ −
∑

i

‖ xi − xi0 ‖2
2 −

∑

i

∑

j∈N(i)

‖ xi − xj ‖2
2 (2.2)

log p(z|x) ∝ −
∑

i

‖ zi − xi ‖2
2 . (2.3)

Due to the linear nature of the problem, an exact solution is achieved after a single

batch iteration.

Defining minimum and maximum driving speeds (influenced by the signed speed

limit), we use the probability to interpolate linearly between the two. A high likeli-

hood of a pedestrian lowers the recommended speed at that location. This produces

a map such as those on the right hand side of Figure 2.9.

More observations of pedestrians can only improve the quality of the speed map,

and thus we show its gradual improvements over six revisits of the car park. During

the initial drive there are no pedestrians in the car park, but during each revisit

there are pedestrians walking along the pedestrian crossings. Using the same active

learning framework used for detecting parking spaces applied to the raw camera

images, we detect these pedestrians and then use those as observations to update

the graphical model. In Figure 2.9 we show the positions of the pedestrians as

red points on the left, and the evolution of p(pedestrian) on the right. It is also

convenient that as we see more pedestrians, the classifier becomes increasingly good

at detecting them, thus reducing the human labelling effort as time goes on.

2.4 Integrating Metric and Semantic Layers

The environments in which our robots operate often contain some features which

are continually evolving, along with some more permanent features. Alongside these

23

2.4 Integrating Metric and Semantic Layers

(a) Initial drive and speed map prior.

(b) The maps using data up to and including the 3rd revisit.

(c) The maps using data up to and including the 6th revisit.

Figure 2.9: On the left we show the red dots represent projections of the detected
pedestrians into the static map. On the right we show the evolution of the dynamic
map as more pedestrians are detected. In the dynamic map, blue represents lower
danger (higher speed) and yellow represents more danger (lower speed). The top
dynamic map is calculated using only the prior over pedestrians given the static
map.

24

2.4 Integrating Metric and Semantic Layers

Map$summary$
and$seman-c$
mapping$

Automated$
driving$

Offline$
geometric$
alignment$

Output$
of$online$
system$

Updated$
seman-cand
localiza-on$

map$

Lifelong$Vehicle$
Opera-on$

Enriched$$
map$data$

Manual$driving$

Figure 2.10: The cycle of improvement for both metric and semantic maps as a
vehicle autonomously revisits a place.

varying scales of change, certain tasks required for autonomous operation can be

carried out in an unsupervised manner, making them cheap, while others require

significant human involvement due to either the difficulty of the task or the need

for accuracy guarantees. Here we propose a framework which strives for the best

of both worlds: we manage the reprocessing of tasks based on how often they re-

quire updating, and we streamline tasks which require human involvement while

maintaining the accuracies required for safety-critical automated driving.

We envisage a system by which our metric and semantic layers improve as our

robots revisit previously-explored areas, as shown in Figure 2.10. The data collected

during a revisit can be used to refine the metric layer from the previous visit, and

that in turn can be used to refine aspects of the semantics. For instance, better

loop closures improve the metric layer, and those changes propagate through to the

positions of the semantic labels.

We do this by performing the initial labelling in a frame of reference local to

the sensor in which the object is visible. This is such that when the metric map

is recomputed, the new position of the semantic label is an unmodified local trans-

25

2.4 Integrating Metric and Semantic Layers

F�!v1 F�!v2 F�!v3

F�!s

Tv1,g

Tv2,v1
Tv3,v2

Ts,v2

F�!O

(a) Initial visit

F�!v1

F�!v3

F�!v2

F�!s

Ts,v2

T0
v1,G T0

v2,v1

T0
v3,v2

F�!O

(b) Revisiting the same place

Figure 2.11: While the vehicle positions [v1, v2, v3] may be recomputed between (a)
the initial visit and (b) the revisit, the position of the semantic object s relative to
v2 remains unchanged. This allows us to update the metric map without having to
recreate the semantic labels. FO represents the global origin coordinate frame, and
Ta,b represents a 6 d.o.f. transformation from b to a.

formation of the newly computed vehicle frame. Figure 2.11 demonstrates this

principle. Structuring localisation problems in this relative sense is an important

principle in SLAM (Simultaneous Localisation and Mapping), e.g. Durrant-Whyte

and Bailey [2006], Sibley et al. [2009]. It is used in a similar manner in this context.

For the evaluation of the improvement cycle and automated parking we use an

underground car park in Zurich. There are 80 parking spaces which vary in size

depending on their position relative to the edges and corners. The parking spaces

are delineated by yellow markers as shown in Figure 2.2b.

The data are organised as follows: the car is driven twice around the car park as

an initial visit, and then there are six subsequent ‘revisit’ loops. During each revisit

26

2.4 Integrating Metric and Semantic Layers

(a) Initial visit (b) First revisit

Figure 2.12: The evolution of the semantic map through the original drive, and the
first revisit. The parking spaces are the blue rectangles, lanes are in green and the
intersections are cyan circles. Notice that the top and middle rows of parking spaces
shift from (a) to (b) (see, for instance, the top row of parking spaces) as the changes
in the metric map propagate through to the positions of the semantic labels.

loop, pedestrians walk between the pedestrian crossings; in revisit loops 1 to 3, they

walk along the right-hand pedestrian crossing, and then in loops 4 to 6 they walk

along the left-hand pedestrian crossings, as shown in the left hand side of Figure

2.9.

We then use these loops to emulate the process in Figure 2.10: the base map

(comprising both metric and semantic components) is created using the initial run,

then as we iterate the evolution cycle, the next map comprises the initial loop plus

the 1st revisit. The third map comprises the initial run, the 1st and 2nd revisits, and

so on. In total we have seven maps, each more informed than the previous one.

Because we want to minimise the human labelling effort, we only label the park-

ing spaces and pedestrian crossings once, in the base map. The synthetic overhead

image used for creating those labels is shown in Figure 2.6b. However, because the

labels are associated with the vehicle positions from which they were visible in the

images, the changes in the metric map shifts the global positions of those semantic

labels as the maps evolve. This evolution process is shown in Figure 2.12.

Next we use the first four maps to test the repeatability of the autonomous

parking system. ETH Zurich performed the following actions:

27

2.4 Integrating Metric and Semantic Layers

1. The car is driven to a point 20m away from the desired parking location.

2. The car localises itself in the metric map and uses the semantic map to drive

autonomously along the lane and park in the parking space.

3. Next, the car is manually driven out of the parking space to the same starting

location 20m away, and the process is repeated for a total of five times per

map, resulting in a total of 20 parking manoeuvres.

Calculating the ground truth of localisation systems for mobile platforms is an

open problem, so we have done this by estimating the position of the vehicle relative

to a chequerboard at a fixed position in the car park which is visible in the camera

images. The camera’s intrinsic and extrinsic (relative to the car) parameters are

known, and the size of the chequerboard is known. Having registered the chequer-

board in the image, it is straightforward to calculate the vehicle pose relative to the

chequerboard. The parking positions are shown in Figure 2.13. This shows that

despite the fact that the metric maps are recalculated in an unsupervised manner

and the positions of the semantic labels shift accordingly, the parking accuracy is

very consistent, with a significant cluster of points within 0.13m and the few outliers

never varying by more than 0.3m.

We attribute these outliers to errors in the odometry, and the fact that the

parking planner plotted a bad course for the vehicle during one of the parking

manoeuvres during the first revisit. Ideally we might expect the parking accuracy

to improve over successive revisits. We believe that the accuracy of the base map

is so high that already the parking accuracy is limited by the planning module and

controller noise, rather than by a lack of geometric information.

28

2.5 Conclusions

2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

x (m)

-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

y
 (

m
)

map 0
map 1
map 2
map 3

Figure 2.13: The positions of the five autonomous parking manoeuvres of the vehicle
in map for maps 0 to 3. Map 0 comprises the initial drive, then map 1 includes both
the initial drive and the 1st revisit, then map 2 includes those for map 1 plus the 2nd

revisit, and so on. The displacement between the parking centres and the position
of the parking spot (at the origin) is due to the difference between the vehicle centre
and the centre of the parking spot.

2.5 Conclusions

We have explained and demonstrated a system which creates semantic maps of car

parks, by making use of a survey run of the lanes and the metric map generated from

that survey. As a result of the need for extremely accurate labels in an environment

where humans and robots operate together, we have made use of a human supervisor

to verify, and in some cases create these labels. This is the status quo of semantic

mapping. The system is a success because it leads to a map with the requisite

accuracy, with supervised automation of the individual components. In our system,

the limitations involve the degree to which human input is required. That degree

depends upon the complexity of a particular car park, but ultimately every label

is verified by a human at some stage. This mistrust in the output of our classifiers

is what drives us towards the need for introspection. These semantic mapping

systems must become fully autonomous, and for that we require a better treatment

29

2.5 Conclusions

of classification confidence.

If we temporarily accept a need for human input, we should strive for a system

that minimises the amount of human effort before the maps can be considered suf-

ficiently accurate. We propose that the first step to full autonomy is the accuracy

self-evaluation of a particular semantic map. For example, the most questionable

labels should be checked first, and the most confident sections need not be checked

at all. This motivates the need for a classifier to provide feedback on any particular

classification: how likely is it to be correct? Many classification frameworks have a

method of scoring a classification, and often that score is used to calculate a ‘proba-

bility of class’. However, for us to be able to trust the most confident classifications

without human intervention while checking the most uncertain ones requires the

probability associated with a classification to be correlated with its correctness.

More generally, creating labels in a semantic map is akin to taking decisions, and

indeed our conclusions are general to decision-making in robotics. We would like

decisions which are likely to be wrong to be made with high uncertainty, and the

low-uncertainty decisions to be correct. A classifier which achieves this would have

an appropriate sense of its own knowledge, and could be considered introspective.

If this correlation between correctness and confidence is present, as classifiers im-

prove their confidence will increase, requiring progressively less human intervention.

This will lead us, ultimately, to full automation in semantic mapping.

In Chapter 4 we develop this idea of introspection, and later go on to demonstrate

its importance in a variety of decision-making tasks.

30

Chapter 3

Data Sets, Features, and

Performance Metrics

In order to investigate the consistency of the introspective capacities of the various

frameworks, we evaluate our experiments on commonly-used data sets which encom-

pass several domains of robotics. Those data sets are described here, along with the

features we use to describe them, and the performance metrics typically employed

to compare classifiers.

In Sections 3.1, 3.2, 3.3, and 3.4 we outline the characteristics of the four ‘real’

data sets used in this thesis. In Section 3.5 we describe the synthetic data set used

in Chapter 5 to highlight the indicators for introspective capacity. In Section 3.6 we

describe the feature representations used to encode images from the real data sets

as vectors for classification. Finally, in Section 3.7 we define the standard metrics

of success applied to classification tasks in machine learning and robotics.

31

3.1 Traffic Lights Recognition

Parameter TLR GTSRB DP KITTI

Cropped image height 30 32 96 26
Cropped image width 12 32 48 32
HOG cell size n/a n/a 10 10
N. of orientations n/a n/a 5 6
Final feature dimension 200 200 950 198

Table 3.1: The parameters for the features for the TLR and GTSRB (using template
features) and the DP and KITTI data sets (using HOG features).

3.1 Traffic Lights Recognition

The Traffic Lights Recognition (TLR) dataset [of Mines ParisTech, 2010] is a se-

quence of images taken by a monocular camera from a car driving through central

Paris, an example of which is shown in Figure 3.1a. The TLR dataset comprises

just over 11,000 frames, in which most of the traffic lights have been labelled with

bounding boxes and further metadata such as the colour of the light or whether a

particular label is ambiguous (e.g. the image suffers from motion blur, the scale is

inappropriate, or the viewing angle is oblique). A few traffic lights have been omit-

ted altogether. As recommended by the authors, we exclude from our experiments

any labels of class ambiguous or yellow signal and any instances which are partially

occluded. We split the dataset into two parts (at frame 7,200 of 11,178), with an

approximately equal number of remaining labels in each part and with no physical

traffic lights in common. Positive data are extracted as labelled. Negative back-

ground data are extracted by sampling patches of random size and position from

scenes in the dataset while ensuring that the patches do not overlap with positive

instances. The images are resized according to the parameters in Table 3.1.

32

3.1 Traffic Lights Recognition

(a) TLR

(b) DP

(c) KITTI

Figure 3.1: Example images from the various data sets.

33

3.2 GTSRB

roadworks ahead right ahead stop keep left
(1500) (688) (780) (298)

lorries prohibited speed limit yield
(420) (1980) (2159)

Table 3.2: The seven classes of the German Traffic Sign Recognition Benchmark
(GTSRB) dataset considered in our work. The numbers in brackets indicate the
number of data available per class.

3.2 GTSRB

The German Traffic Sign Recognition Benchmark dataset [Stallkamp et al., 2012]

comprises over 50,000 loosely-cropped images of 42 classes of road signs, with as-

sociated bounding boxes and class labels. From this dataset we specifically focus

on the seven classes shown in Table 3.2, chosen arbitrarily. The images are resized

according to the parameters in Table 3.1.

3.3 Daimler Pedestrian

For pedestrian detection, we use the non-occluded monocular intensity images from

the Daimler multi-cue occluded Pedestrian data set (DP) [Enzweiler et al., 2010],

examples of which are shown in Figure 3.1b. There are over 52,000 positive and

32,000 negative examples split into training and test sets. The images are resized

according to the parameters in Table 3.1.

34

3.4 KITTI

3.4 KITTI

The KITTI data set [Geiger et al., 2012] comprises over 7,400 non-sequential colour

images from a camera pointing out from the front of a car driving through a German

city, an example of which is shown in Figure 3.1c. In this data set we are detecting

vehicles, with 3-5 in a typical frame. The images are cropped and resized according

to the parameters in Table 3.1.

3.5 Synthetic Data

The data in the data sets already described in this section are derived from real

images of complex real scenes captured by noisy cameras and described using var-

ious feature descriptors. As a result, the data sets are difficult to characterise and

visualise, and thus it is problematic to make fundamental conclusions regarding the

nature of the classification frameworks relating to distances in feature space. In

order to carry out an in-depth investigation of the effects of introspection we need

a greater degree of control over the data.

The fundamental effects on classifier uncertainty we want to explore are those

which are apparent as we test the classifiers on data which do not closely resemble

those seen in the training data, as motivated by Section 2.5. We start by creating a

training set from the training distribution

X+
train ∼ Nd(µ+

train, σ
+
train), and (3.1)

X−train ∼ Nd(µ−train, σ
−
train) (3.2)

where {+,−} denote the positive and negative classes, d is the dimensionality of

35

3.5 Synthetic Data

the data, and

µ+
train = 0.8 · u1, (3.3)

σ+
train = 0.3 · u2, (3.4)

µ−train = −0.8 · u3, (3.5)

σ−train = 0.8 · u4, (3.6)

where ui ∼ Ud[0, 1]. (3.7)

These distributions are chosen to allow randomness between runs, and to keep the

training data with a mean close to 0 and a standard deviation under 1. This is

recommended by the SVM training manual [Hsu et al., 2010], for no further data

normalisation takes place after they are drawn from the distributions. These recom-

mendations originate from the implication that the optimisation in the SVM may

be poorly conditioned if the data are distributed very differently from these values.

Note that generally, σ+
train < σ−train. This is because we will largely be tackling

detection tasks, in which the negative background class is inherently more varied

than the positive class (for more information see Section 5.7). We then perturb

the means and standard deviations of the training distributions to create the test

distributions:

µ+
test = µ+

train +M+
µ · n1, (3.8)

σ+
test = σ+

train + |M+
σ · n2|, (3.9)

µ−test = µ−train +M−
µ · n3, (3.10)

σ−test = σ−train + |M−
σ · n4|, (3.11)

where ni ∼ Nd(0, 1). (3.12)

where M+
µ , M+

σ , M−
µ , and M−

σ are scalars and denote the magnitude of the pertur-

36

3.6 Features

bation. Choosing a large value for M could indeed move the test data outside the

recommended bounds for SVM training, but when it comes to real data we cannot

always predict a normalisation of the data which will guarantee that every test da-

tum will also lie in the recommended bounds, so we consider this to be acceptable.

Figure 3.2 shows example of training and test distributions with varying parameters.

3.6 Features

In the previous section we describe the data sets used throughout this thesis, and

here we describe which feature descriptors we use for those data sets. For those

with consistency in appearance for the positive class, the TLR (traffic lights) and

GTSRB (road signs) data sets, we use template features, leveraging the consistent

cropping and aspect ratio of the image windows. For those with a great variety

in the positive class, the KITTI (cars) and DP (pedestrians) data sets, we use

the Histogram of Oriented Gradients (HOG) features which have been shown to

work well in these domains [Dalal and Triggs, 2005, Ziegler et al., 2014]. These are

described in more detail in this section. Note that neither of the features considered

here are rotationally invariant. It is common practice to include many permutations

of each labelled example in the training set by adding small rotations, scalings,

exposures, and blur. However, these techniques are not used in this thesis.

3.6.1 Template Features

A rich body of work on the detection and classification of road signs and traffic

lights has established a successful track record of template-based features for this

purpose. Specifically, we leverage the approach proposed by Torralba et al. [2007] in

which a dictionary of partial templates is constructed, against which test instances

are matched, as described in Figure 3.3a. A single feature consists of an image

37

3.6 Features

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3

x
2

Positive (train)
Negative (train)

(a) Training data only

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3

x2

Positive (train)
Negative (train)
Positive (test)
Negative (test)

(b) M+
µ = M+

σ = M−µ = M−σ = 0

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3

x2

Positive (train)
Negative (train)
Positive (test)
Negative (test)

(c) M+
µ = M−µ = 1, M+

σ = M−σ = 0

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3

x2

Positive (train)
Negative (train)
Positive (test)
Negative (test)

(d) M+
µ = M−µ = 0, M+

σ = M−σ = 1

Figure 3.2: We demonstrate the effects of changing the values for M : the magnitudes
of the differences between the training and test distributions. In this case each
datum is two dimensional, xi = [x1i, x2i]. (a) shows the training data, which are
also superimposed onto (b), (c), and (d). These last three show some test data for
three sets of values of M : in (b) the training and test distributions are the same, in
(c) we perturb the means, and in (d) we perturb the standard deviations. Note that
the training data are all generated from the same process as described in Section
3.5.

38

3.6 Features

(a) (b)

(c)

⌦
⌦

⌦
⌦

⌦

=
=
=
=
=

" #
x1
x2
x3
x4
x5

x =

(d)

Figure 3.3: Generating template features for an image.
(a) First, sample patches from a collection of images.
(b) Their pixel values and positions within the original image form the dictionary.
(c) To calculate the feature for an image, first extract the pixel values at the appro-
priate positions in the image to match the patches in the dictionary, and
(d) evaluate the normalised cross correlation between the patches in the image and
those in the dictionary. The resultant feature vector has one element for each patch
in the dictionary.

patch (ranging in size from 8 × 8 to 14 × 14 pixels) and its location within the

object as indicated by a binary mask (h×w pixels according to Table 3.1). For any

given test instance, the normalised cross-correlation is computed for each feature

in the dictionary and hence the resulting dimensionality of the feature. Therefore,

we obtain a feature vector of length d per test instance, where d is the size of

the dictionary. We found empirically that d > 200 leads to negligible performance

increase in classification. Throughout our experiments we therefore set d = 200.

39

3.7 Performance Metrics

Training data Test data
Data set Positives Negatives Positives Negatives

TLR 250 500 1000 8000
DP 250 500 2000 16000
KITTI 250 500 1000 10000

Table 3.3: The number of training and test data of each class used for the detection
experiments in Section 5.7. The quantities of data from the GTSRB data set for
the classification experiments are detailed in Section 5.6.2.

3.6.2 Histogram of Oriented Gradients (HOG)

For the Daimler Pedestrian and KITTI data sets, we have chosen to use Histogram

of Oriented Gradients (HOG) [Dalal and Triggs, 2005] as features. These have been

shown to perform well for pedestrian detection [ibid]. We use the implementation

in vlfeat [Vedaldi and Fulkerson, 2010] and use parameters as detailed in Table 3.1.

3.7 Performance Metrics

In this section we outline some of the standard classification performance metrics

used in machine learning and robotics, particularly the ones we refer to in this thesis.

For further details, see Powers [2011].

The metrics described here use a vector of classification scores and the ground

truth information to measure some aspect of performance. In the context of this

thesis, these scores all lie in the range [0, 1] and the ground truth is binary.

3.7.1 Precision, Recall, Accuracy, and F-measure

Given the scores, the ground truth, and a decision boundary, we can calculate the

number of the following outcomes: true positives, true negatives, false positives, and

false negatives. These totals are denoted by tp, tn, fp, and fn, respectively. They

40

3.7 Performance Metrics

are used to calculate precision (P), recall (R), and accuracy (A):

P =
tp

tp + fp
(3.13)

R =
tp

tp + fn
(3.14)

A =
tp + tn

tp + tn + fp + fn
. (3.15)

Precision answers the question: “out of all the examples which test positive,

what proportion of them are actually positive?”. Recall answers the slightly different

question: “out of all the examples which are actually positive, what proportion of

them tested positive?”.

Accuracy is the proportion of the tests which were correct. For this reason,

in very biased data sets a classifier can report very good accuracy despite always

misclassifying the rarer class. Given that many of the data sets used in this paper

are biased, we prefer to use F-measure, which is a combination of precision and

recall. F-measure takes an extra parameter β ∈ R+, which may be interpreted as

the relative importance of precision to recall. Fβ is defined as the weighted harmonic

mean of precision and recall given by

1

Fβ
=

1

1 + β2

(1

P
+
β2

R

)
. (3.16)

We rearrange this to give the standard form

Fβ = (1 + β2)
P× R

β2 × P + R
. (3.17)

Throughout this thesis we weight precision and recall equally, setting β to 1 and

41

3.7 Performance Metrics

therefore reducing the equation to

F1 = 2 · P× R

P + R
. (3.18)

All of these metrics require a decision threshold on the classification scores in

order to count the number of each potential outcome. A common approach is to

calculate the desired metrics for many values of the decision threshold from −∞

(where all tests are positive, so precision is 0 and recall is 1) to +∞ (where all tests

are negative, and so the precision is 1 and recall is 0). The values for precision and

recall for each decision threshold are plotted on a graph (called a precision-recall or

P-R curve). The decision boundary is then chosen by the user for an appropriate

trade-off of precision and recall suitable for the task at hand.

Where we report these metrics by a single value rather than a P-R curve, the

decision threshold has been set to 0.5.

42

Chapter 4

Introspection

In Chapter 2 we motivated the importance of knowing the confidence in a semantic

label, on the basis that we could prioritise the human oversight of the labels which are

least likely to be correct. More generally, all decisions made by robots should made

with a sense of confidence in mind. In this chapter we consider the requirements for

a classifier to make appropriate decisions.

In Section 4.1 we present a novel basis for the ideal classifier. We model a

classifier as a set of probability distribution functions, one per class. This model is

used to define the ideal behaviour of an imperfect classifier. After an examination of

the literature in Section 4.2, we derive a number of these idealised classifiers which

satisfy that ideality to varying degrees in Section 4.3. Despite their varying levels

of idealness, they will all have the same accuracy, and thus perform equivalently

in terms of traditional metrics. It is not the overall number of errors which differs

between them, but rather the confidence of those errors. These will be used as

a baseline to examine the behaviours of a number of commonly-used classification

frameworks introduced in Chapter 5.

43

4.1 The Ideal Classifier

4.1 The Ideal Classifier

The ideal classifier is one which, given some vector x representing a test datum,

determines to which class in the set C = {C1, . . . , Cc} the datum belongs, while

never making an error. This is a lofty goal in the context of object detection in

images, where for instance the top rated algorithm detecting cars in the KITTI

vision benchmark [Geiger et al., 2012] does not exceed 90% average precision (in the

‘moderate’ difficulty category) at the time of writing.

A classifier with limited knowledge placed within an open-world situation cannot

make perfect decisions. Therefore, rather than demanding that a classifier be perfect,

we might demand that it be perfect some of the time, and the rest of the time it will

say, ‘I don’t know’. This would allow a robot to take some alternative, safe action

when it encounters an object it cannot classify, thereby guaranteeing safe operation

without requiring perfection. The key advantage of this behaviour would be that

the user or decision-making system can determine which classifications are correct

and which may be wrong.

We restrict ourselves henceforth to binary classification frameworks, which de-

termine inputs to be on some scale with extremities indicating the respective classes

C1 and C2. This may be done via scores in the interval [0, 1], in which scores near

0 are more indicative of C1 and scores near 1 are more indicative of C2.

Consider a situation in which a robot wants to cross the road. On board the

robot is a classifier, which informs it about whether the road is clear, or a car is

approaching. The robot has two possible actions to choose from: it can go or it can

wait. The ideal behaviour of the robot is to go when the way is clear, or wait when

a car is approaching. Based upon the output from the classifier, the robot decides

which action to execute.

The state of the road can be in either of two classes, C1 denoting that the road

44

4.1 The Ideal Classifier

is clear, and C2 denoting that a car is approaching. The go action is denoted by a1,

and the wait action is denoted by a2. In the moment of the decision, the classifier

provides the robot with a score (or measurement) z ∈ [0, 1] which gives information

about the state of the road (as above). Let z be a draw (or sample) from a random

variable Z. Crucially, let us define a classifier to be a pair of functions f1(z) and

f2(z), where fi(z) is the probability density function of the measurement associated

with class Ci, or fi(z) = f(z |Ci).

Note that this is not a parallel mechanism to the real classifiers considered later

on in this thesis. Those real classifiers take as input a feature of an image patch, x,

and can be modelled as p(z | x). That is to say, given the feature x, the classifier

gives the following measurement or output. The idealised classifiers considered here

are simulations of classification output given the ground truth, and should not be

thought of as mechanisms to classify data. With the idealised classifiers, at no

point in the process is there a feature x. As a result of this, they are less data set

dependent than real classifiers; to simulate their output on a data set, you only need

know the ratio of positives to negatives.

Consider a decision making process in which there is a threshold T such that:

action a1 (go) is taken if z < T and action a2 (wait) is taken if z > T .

For a perfect classifier, the probability density functions f1(z) and f2(z) might

resemble those in Figure 4.1. In this case the optimal threshold is given by T = 0.5,

perfectly separating the two density functions. If the true class is C1 (the way is

clear), the resulting value of z is always in the range [0, 0.5), so the robot will always

choose to go, which is the correct decision. Conversely, if the class is C2 (a car is

approaching), the resulting measurement z will lie in the range (0.5, 1], and so the

robot will wait, which again is the correct decision. If we were to plot the probability

of an error given some measurement z, it would be zero over the entire range [0, 1].

Drawing inspiration from probability theory, we might interpret z = 0 to mean

45

4.1 The Ideal Classifier

f 1
(z

)
z

0 0.5 1

2

z

0 0.5 1

2

f 2
(z

)

Figure 4.1: The probability density functions for a perfect classifier in the binary
case. A ‘classifier’ here returns a measurement z given a test datum. fi(z) is the
probability density function of the random variable Z when the test data are from
class Ci. A test datum from class C1 will always return a measurement z < 0.5,
and conversely a test datum from class C2 will always yield a measurement z > 0.5.
With a decision threshold T of 0.5, the chosen decision will be perfect.

f 1
(z

)

z

0 0.5 1

2

z

0 0.5 1

2

f 2
(z

)

f 1
(z

)

z

0 0.5 1

z

0 0.5 1

f 2
(z

)

z

0 0.5 1
p
(e

|z
)

4/34/3 0.5

(a) The probability density functions for a classifier
which can make errors between 0.25 < z < 0.75, but
is perfect elsewhere.

f 1
(z

)

z

0 0.5 1

2

z

0 0.5 1

2

f 2
(z

)

f 1
(z

)

z

0 0.5 1

z

0 0.5 1

f 2
(z

)

z

0 0.5 1

p
(e

|z
)

4/34/3 0.5

(b) The resulting error
function given the
probability density
functions in (a). Let
e be the event of a
classification error.

Figure 4.2

the classifier is very confident that the way is clear (C1), and z = 1 to mean it

is very confident that there is a car approaching (C2). In the absence of further

information, measurements within the region around z = 0.5 would be the most

ambiguous. For example, if we consider the functions fi(z) in Figure 4.2a, the

interval 0.25 ≤ z ≤ 0.75 is the region within which mistakes can be made. This is

illustrated by showing the probability of error given the measurement, p(error | z) in

Figure 4.2b, assuming equal likelihoods of C1 and C2. Henceforth in this thesis we

refer to p(error | z) as an error function.

For this scenario and imperfect classifier, we might decide that the robot should

46

4.1 The Ideal Classifier

only cross the road if there is no chance of a car approaching, thus always avoiding a

collision. Therefore, if there is a strictly positive probability of a false negative error

(choosing the go action if there is a car approaching, C2), the robot should wait.

For this ‘top hat’ classifier (the error function resembles a top hat), the optimal

decision boundary would be T = 0.25, such that half of all opportunities to cross

the road are taken, and whenever there is a chance of error it chooses to wait. Thus,

it satisfies the requirements as outlined earlier in this section.

If we modify this top hat classifier by changing f2(z) (the right hand side of

Figure 4.2a) such that there is a small but non-zero probability of z lying in the

range [0, 0.25], the optimal decision boundary with the requirement of never making

a false negative error will be T = 0, resulting in the robot always waiting and

never going. This is safe, but even if the likelihood of an error is extremely small,

the robot will never cross. Desiring a behaviour which reflects the likelihood of an

error, we might choose to relax the constraint, instead choosing some acceptable

likelihood of a false negative error, which we call ε. The choice of ε together with

the characteristics of the classifier (f1(z) and f2(z)) allow us to optimise

min
T
p(e) (4.1)

subject to p(e |Ci) ≤ ε (4.2)

for some predetermined i in {1, 2, ...}. (4.3)

A classifier with some p(e) subject to (4.3) will make more appropriate decisions

than another with a larger p(e). One way to reduce p(e) is to find a classifier

whose f1(z) and f2(z) overlap as little as possible, allowing an apt choice of the

threshold T to effectively separate true and potentially erroneous classifications.

Thus, the classifier from Figure 4.2 is very effective in decision making. Intuitively,

the classifications near z = 0 and z = 1 are confident, and those near z = 0.5 are

47

4.2 Related Works

uncertain. Crucially, it is the ability to make correct decisions with confidence while

making mistakes with uncertainty which causes this separation, and therefore allows

the classifier to make good decisions. We call this behaviour introspection, because

the classifier is introspective if it is able to make an appropriate assessment of how

qualified it is to make a particular classification. Good introspection means a strong

correlation between confidence and correctness.

In order to apply this principle to a real classifier, we can derive the empirical

distribution function using a classifier’s measurements from a labelled test set, and

calculate T from a pre-determined ε by (4.3). However, how can we say that this

bound will not be violated during future testing? Crucially, this relies on the clas-

sifier being able to generalise consistently over all future data. In the next chapter

we propose that non-stationarity between training and testing is commonplace, and

that this consistency over unseen data is a vital component of introspection.

We therefore seek a classifier which:

• Makes few errors overall (scoring highly by conventional metrics),

• Makes errors with high uncertainty, and is correct when confident, and where

• These properties are consistent despite surprising and unseen test data.

After summarising the literature on classification uncertainty in decision making,

we expand our example in Figure 4.2 by introducing a number of idealised classifiers

with varying degrees of introspective ability. These will be used in subsequent

chapters for comparison against real classification frameworks.

4.2 Related Works

Using classifiers as a source of information for making decisions is extremely com-

mon. Successful applications are as diverse as the detection of ground traversability

48

4.2 Related Works

(e.g. Thrun et al. [2006]), the detection of lanes for autonomous driving (e.g. Huang

and Teller [2010]), the consideration of classifier output to guide trajectory planning

and exploration (see, for example, Meger et al. [2008], Velez et al. [2011]). These

works typically use classification output on a model-trust basis; systems are op-

timised with respect to precision and recall, and egregious misclassifications are

accepted as par for the course. However, the suitability of the classification frame-

work employed with respect to its introspective capacity has not previously been

considered in robotics. Thus, we consider motivating, defining, and investigating

introspection in a robotics context to be the primary contribution of our work.

In the related field of reinforcement learning, the authors of Li et al. [2008]

present a general framework which determines whether enough labelled data have

been provided to constrain certain problems. If the learner’s space of solutions is

insufficiently constrained such that its output cannot be guaranteed to be within

ε of the true solution with probability 1 − δ, it asks for more labelled data. This

decision considers both false positive and false negative errors equally, and thus the

framework is not appropriate for situations in which costs associated with those er-

rors are unbalanced. In the context of autonomous systems, the costs are commonly

unbalanced.

Sayedi et al. [2010] extend Li et al. [2008]’s paper by considering the trade-off

between allowing no mistakes (as Li et al. [2008] do) and frequently saying don’t

know, and allowing mistakes but never saying don’t know. The authors present

an algorithm which minimises the number of don’t know responses for a user-set

tolerance on the number of errors. This is very similar to setting a value for ε, as

we propose, except that we are defining the tolerance of the number of type I errors

(false positives) and allowing the system to choose the optimal threshold which

minimises the number of type II errors (false negatives). An ε value of 0 would be

analogous to the original paper.

49

4.2 Related Works

Rather than using classifier uncertainty as a measure of correctness, the computer

vision community have used a separate learner, mapping input to classifier reliability,

alongside a standard detector [Zhang et al., 2014]. This concept has been applied

to quality estimation of fingerprints [Tabassi et al., 2004, Grother and Tabassi,

2007] (where a neural network was used) and face detection [Abhishek et al., 2015],

where image quality features such as face pose and lighting are used as input. In

a sense, this out-sources the introspection requirement to another learner. But

will that separate learner itself be introspective? We suggest that while this may

improve decision making, it is still valuable to evaluate the confidences offered by

our detectors.

Boshra and Bhanu [2000] also use a secondary learner to estimate performance,

but also seek to answer why prediction might be poor, which could be a result of

noise, similarity between classes, and distance between training and test examples.

We share this opinion that distance is important in estimating performance.

Marsland et al. [2005] use a neural network to detect unseen test data in a

novelty detection system. Their network uses habituation synapses, which decrease

in strength as their end nodes fire. In this way, they desensitise the network to the

training data.

In PAC learning [Valiant, 1984, Angluin, 1988] we try to learn, with high proba-

bility, a hypothesis which is a good approximation of the target hypothesis. Hence,

probably approximately correct. This can be used to determine the number of train-

ing data to guarantee the predetermined error bounds for a learner. However, the

bounds will be violated if the data set is non-stationary after training.

Torralba and Efros [2011] and Khosla et al. [2012] discuss the issue of data set

bias, recognising the non-stationarity between labelled data sets commonly used for

benchmarking perception systems and the real world in which our robots operate.

We share the opinion that this is detrimental to the subsequent performance of our

50

4.3 Idealised Classifiers

robots.

Introspection is closely related to calibration [Dawid, 1982, DeGroot and Fien-

berg, 1983], which is the degree to which a forecaster’s probabilistic predictions hold

true in the limit (the original context of calibration is weather forecasting). That

is, if of “those events to which [the forecaster] assigns a probability 30 percent, the

long-run proportion that actually occurs turns out to be 30 percent” [Dawid, 1982].

This is used in Platt [1999], where the empirical calibration curve is plotted for a

hold-out data set, and each classifier is compared to the diagonal, indicating good

calibration. However, this analysis ignores the question of whether there is station-

arity between training and test sets, which is a clear case when a classifier will go

out of calibration. Calibration in theory should lead to good introspection, but in

practice classifiers are calibrated by learning a constant mapping from their output

to more appropriate probabilities given some hold-out set. This implicitly assumes

stationarity between the training data and future test data, an assumption we argue

is dangerous in robotics.

The density distributions fi(z) can be thought of as second order probabilities

[Pearl, 1987]. These were developed to distinguish, “between uncertainty about

truths from uncertainty about probabilistic assessments” [ibid], which is exactly

what we are evaluating in this thesis. We use these second order probabilities to

indicate whether the probabilistic assessments are likely to lead to truths, and to

characterise them when they do not.

4.3 Idealised Classifiers

In Section 4.1 we introduced the concept of introspection, which is a classifier’s ca-

pacity to associate, with any classification, a degree of confidence which correlates

to the likelihood that it is wrong. We used the illustration of the ‘top hat’ classifier

51

4.3 Idealised Classifiers

from Figure 4.2, which draws a very clear boundary in uncertainty between clas-

sifications which are correct, and those which could be erroneous. In this section

we design a number of idealised classifiers, similar to the top hat classifier, with

varying levels of introspective capacity. Despite their varying levels of introspection,

they will all have the same overall accuracy. Thus, their differences highlight the

importance of appropriate confidence levels rather than performance according to

traditional metrics such as F-measure. They will then be used as benchmarks for

real classifiers used commonly in robotics.

By using idealised classifiers we are free to explore the effects of changing the

error functions (the probability of error given some value of z, or p(e | z)) without

exposure to confounding factors such as data set peculiarities or classifier implemen-

tation differences. In choosing the density functions f1(z) and f2(z) we can generate

measurements from a classifier which are consistent in a way that real classifiers are

not. However, the conclusions we eventually draw will result solely from the subtle

differences between the error functions, and thus allow us to examine the importance

of where errors are made along in the range of z. We are not primarily concerned

with the total frequency of errors, but with where they occur in z.

There are infinitely many possible idealised classifiers, so we choose to restrict

ourselves to those which adhere to some reasonable expectations of real-world clas-

sifiers. We have motivated the top hat classifier from Figure 4.2 as a desirable

optimum (given some level of total error) and show it in Figure 4.3. Next, we con-

sider a classifier which has no introspective quality because there is zero correlation

between confidence and correctness. It is shown in continuous blue and is called the

uniform error function, because the probability of error is uniform across the range

of z.

Intuitively we expect real classifiers to lie somewhere between the top hat and

uniform error functions. We expect that there is some positive correlation between

52

4.3 Idealised Classifiers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z

0

0.1

0.2

0.3

0.4

0.5
p

(e
rr

o
r|

z
)

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

Figure 4.3: Here we see the likelihood of making an error given some probability
measurement z (or error function) for various idealised classifiers given by Equations
(C.1) to (C.7). We choose these examples of classifiers because the first four increas-
ingly make their mistakes around z = 0.5, making them more introspective. The
error function for the top hat classifier is the extreme case of making zero mistakes
in the range 0 ≤ z < 0.25 and 0.75 < z ≤ 1, and the error function for the reverse
classifier is the exact opposite. Note that the perfect classifier makes no mistakes,
so p(e | z) = 0 ∀z, and is used as a baseline. (Best viewed in colour.)

correctness and confidence. Therefore, we define three error functions which lie

between the two. These are called the overconfident, triangle, and under-confident

error functions, and are shown in red, yellow, and purple, respectively. The triangle

error function is perhaps the most intuitive, with a gradual increase in error rate as

the measurement becomes more uncertain. However, we will show that it does not

perform as well as the top hat classifier. The overconfident error function is closest

to the uninformative uniform error function, and the under-confident error function

is closest to the top hat error function. These shapes are chosen such that the area

underneath them is the same, which helps keep the total error rate p(e) the same for

each. The calculation of the error rate is discussed in detail later in Section 4.3.1.

Lastly, we show two more interesting error functions, included as reference points

to contextualise the others. The first is the reverse error function, which negatively

correlates confidence with correctness, and is thus the reverse profile of the top hat

classifier. We would expect this classifier to perform very badly in classical decision-

53

4.3 Idealised Classifiers

f 1
(z

)

z
0 0.5 1

z
0 0.5 1

f 2
(z

)

z
0 0.5 1

p
(e

|z
) 0.5

f 1
(z

)

z
0 0.5 1

z
0 0.5 1

f 2
(z

)
f 1

(z
)

z
0 0.5 1

z
0 0.5 1

f 2
(z

)

Figure 4.4: We demonstrate that the red error function on the left is not sufficient
to define a classifier: either of the blue or the dashed green f1(z), f2(z) pairs will
generate the red top hat error function. However, the blue densities define a far
superior classifier to the dashed green, because less of their mass is within the
uncertain and erroneous central region 0.25 < z < 0.75, and much more of the mass
is within the confident and correct regions z < 0.25 and z > 0.75.

making frameworks, because it will make errors with extremely high confidence.

The second error function is the perfect classifier, which makes no mistakes. It does

not correlate confidence with correctness, but it makes no errors and so regardless

of the chosen threshold T , it will always indicate the correct decision to make.

We have proposed some idealised classifiers in terms of where they make errors

along the range of Z. However, an error function itself is not sufficient to define a

classifier, because for any given error function there are an infinite number of pairs

of densities p(z |Ci) which can generate it. An example is shown in Figure 4.4,

where the red top-hat error function can be generated from either the blue or the

dashed green pairs of density functions. The classifier defined by the dashed green

density functions is far inferior to the blue, because much more of the masses of each

density function lie within the central, disputed region, and much less are within

the confident and correct surrounding regions. The classifier defined by the blue

densities will have a lower value for p(e) than the classifier defined by the dashed

green densities.

In the next section we present full definitions of the idealised classifiers by deriv-

ing a method of mapping each error function to a pair of density functions, subject

to a few assumptions.

54

4.3 Idealised Classifiers

4.3.1 Determining the Density Functions

We have chosen a number of error functions to describe some idealised classifiers,

but in order to define them fully we need the probability density functions f1(z) and

f2(z). Having shown that there is more than one pair of density functions which gen-

erate a given error function (see Figure 4.4), here we describe the process of choosing

a pair while maintaining the same p(e) for each classifier. Thus, each classifier will

have the same accuracy according to the conventional metrics of classification, but

they will behave differently in terms of their classification uncertainties. This is to

demonstrate that the standard metrics of classification are insufficient to capture

important differences in classifier behaviour.

First, let

E(z) = p(e | z), (4.4)

p1 = p(c = C1), and (4.5)

p2 = p(c = C2), (4.6)

and recall that T is a threshold on z, below which the decision-making process

chooses action a1, and above which it chooses a2. By the definition of conditional

probability,

E(z) =
p(e, z)

f(z)
, (4.7)

where

p(e, z) = p1p(e, z | c = C1) + p2p(e, z | c = C2) (4.8)

= p1f1(z)I(z > T) + p2f2(z)I(z < T), (4.9)

55

4.3 Idealised Classifiers

I is the indicator function, and

f(z) = p1f1(z) + p2f2(z). (4.10)

Therefore,

E(z) =





p2f2(z)

p1f1(z) + p2f2(z)
, if z < T

p1f1(z)

p1f1(z) + p2f2(z)
, if z > T.

(4.11)

First let us derive a general solution for p1f1 and p2f2, and then we will motivate

a particular case for further study. By (4.10) and (4.11),

p1f1(z) =





f(z)(1− E(z)), if z < T

f(z)E(z), if z > T

(4.12)

p2f2(z) =





f(z)E(z), if z < T

f(z)(1− E(z)), if z > T.

(4.13)

By making some assumptions, we can use (4.12) and (4.13) to derive classifiers, that

is, pairs of f1(z) and f2(z), given the error functions E(z).

Assumptions

Thus far we have made no assumptions about p1, p2, f(z), E(z), or T , aside from

their inherent nature as probabilities, probability density functions, or conditional

probability functions. These are free to be chosen, although there are consistency

conditions between them.

We wish to compare various predetermined choices of E(z). We have stated our

desire for z to be interpreted probabilistically with maximum uncertainty at z = 0.5,

so the first assumption is that all of our error functions are symmetrical about this

56

4.3 Idealised Classifiers

value of z (like commonly-used measures of uncertainty, see Section 5.2 for more

details). The objective is to find a pair of probability density functions f1(z) and

f2(z) that generate each of the error functions with a predetermined total error rate.

By the same reasoning, the location of maximum uncertainty indicates the

boundary between favouring one class over the other. It is therefore natural to

set T = 0.5, which is our second assumption.

Choosing these idealised classifiers to be without class bias, we assume that

p1 = p2 = 0.5. We believe this is reasonable in the absence of problem-specific

information.

Lastly, we must choose a constraint on f(z). There is merit in choosing exemplar

density functions f1(z) and f2(z) which are simple to interpret. This is achieved if

we allow fair representation across z and determine f(z) to be the uniform density

function, therefore

f(z) = 1. (4.14)

This implies that no value of z is more likely to occur than any other value. While

this is a bold assumption, we value simplicity and interpretability, and it will not

lead to a loss of generality. The benefit of this assumption is that the expected error

rate, defined as

p(e) =

∫ 1

0

p(e | z)f(z)dz (4.15)

becomes equal to the area under the error functions. Analytically we can show that

the integral of all error functions is equal to 0.25 (with the exception of the perfect

error function, for which error rate is 0), meaning that they are expected to make an

error in one of every four measurements, and will perform equivalently in terms of

overall accuracy. This accuracy is chosen owing to the desire for the triangle error

function together with the uniform density in (4.14).

57

4.3 Idealised Classifiers

0 0.25 0.5 0.75 1
z

0

0.5

1

1.5

2
f 1

(z
)

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(a) f(z | c = C1)

0 0.25 0.5 0.75 1
z

0

0.5

1

1.5

2

f 2
(z

)

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(b) f(z | c = C2)

Figure 4.5: Here we show some probability density functions that generate Figure
4.3. We draw samples from these distributions to simulate the classifiers’ behaviours.
Note the similarity between the densities for the perfect classifier and those in Figure
4.2. (Best viewed in colour.)

By the above assumptions, together with equations (4.12) and (4.13),

f1(z) =





2(1− E(z)), if z < T

2E(z), if z > T

(4.16)

f2(z) =





2E(z), if z < T

2(1− E(z)), if z > T.

(4.17)

We calculate the density functions f1(z) and f2(z) for each error function E(z) and

show them in Figure 4.5. These probability density functions f1(z) and f2(z) are

sufficient to define the idealised classifiers.

Upon examining the density functions, we see that for the more introspective

classifiers the mean of fi(z) is closer to the extremes, i.e. nearer to 0 for f1(z)

and nearer to 1 for f2(z). This is a consequence of correlating correctness with

confidence.

If we do not assume that p1 = p2 or that f(z) = 1, the densities would be skewed

to one side, and the error rates would be different for the error functions we have

58

4.3 Idealised Classifiers

0 0.25 0.5 0.75 1
z

0

0.25

0.5

0.75

1
F

1 uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(a)

0 0.25 0.5 0.75 1
z

0

0.25

0.5

0.75

1

F
2

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(b)

Figure 4.6: Here we show the cumulative distribution functions from Figure 4.5.
Note the clear ordering of the functions in (a), which is reversed in (b). (Best viewed
in colour.)

specified.

Cumulative distribution functions

Knowledge of the cumulative distribution functions (shown in Figure 4.6) is useful for

the process of sampling measurements z from a classifier given a class label i. Given

a particular density function fi(z) where i ∈ {1, 2} we calculate the cumulative

distribution function Fi(x) = p(Z < x) and use it to perform inverse transform

sampling to generate a measurement, given by

z = F−1
i (u), (4.18)

where u is a random number generated from the uniform distribution on [0, 1] [De-

vroye, 1986].

59

4.4 Summary

4.4 Summary

In this chapter we have discussed the ideal behaviour of a classifier, and motivated

the importance of correlating correctness with confidence, a quality which we term

introspection. We have alluded to the fact that this quality must be consistent for

future test data, an idea which we develop in the following chapter. We have derived

a number of idealised classifiers, which we can later use to benchmark a number of

commonly-used real classification frameworks used in robotics. The idealisations

allow us to simulate decision-making scenarios and to measure the effects of varying

the introspective capacity, without results being affected by overall error rate or

data set peculiarities.

In the next chapter we introduce those real classification frameworks, and exam-

ine their introspective capabilities in simple scenarios. In Chapter 6 we choose two

different decision-making scenarios and compare the quality of the decisions made

by the real classifiers by comparing them against the idealisations.

60

Chapter 5

Introspection in Practice

In Chapters 2 and 4 we proposed a desired classifier behaviour in order for a robot to

make appropriate decisions: to correlate confidence with correctness. In this chapter

we examine a number of commonly-used classification frameworks and predict, based

on their internal methodology, which are likely to possess this introspective trait.

We do so specifically by examining their treatment of distance between points in

feature space. We then apply them to situations in which they are destined to

give a wrong answer, and examine their uncertainties. Those exhibiting higher

uncertainties indicate stronger correlations between incorrectness and uncertainty,

indicating an introspective capacity.

Intuitively, a test datum which is far away in feature space from the training

data should be more likely to be misclassified than one which lies in the middle of

a dense cluster of one class. Thus, an introspective classifier should exhibit greater

uncertainty for data which are far away from the training data. Most classifica-

tion frameworks use a model to represent the training data, such that instead of

comparing the test datum to all the training data, the model is used to generate a

measure of similarity between the two. The nature of the model and the measure

of distance determine the uncertainty with which a classification is made. Some

61

frameworks consider one single discriminant to separate the classes, while others

consider a variety of possible discriminants and combine their responses. Often this

is done ‘under the hood’ of the classification algorithm. The results we present in

this chapter indicate that the latter tends to be characteristic of classifiers with a

better sense of introspection, as a result of their ability to consider the variance in

the numerous responses to reflect uncertainty.

After outlining the notation used in this chapter, we motivate the use of nor-

malised entropy as a measure of uncertainty, which is used henceforth. Then we give

an intuition as to why multiple-discriminant classifiers are likely to exhibit more in-

trospective behaviour than single-discriminant classifiers in Section 5.3. In Section

5.4 we examine the literature on the use of distance and the number of discriminants

in classification.

In Section 5.5 we introduce a number of commonly-used classification frame-

works, specifically examining their treatment of distance, and making predictions

about their introspective capacities.

Next, in Section 5.6 we test these real classifiers on what we call the ‘third class

experiment’, in which classifiers are trained on two classes and tested on a third,

unseen class. We expect introspective classifiers to respond with high uncertainty.

We do this with both the synthetic and real data sets described in Chapter 3. We

argue that third class examples occur commonly in scenarios where our robots are

expected to function for long periods of time in extremely varied worlds, such as

autonomous driving in urban environments. This is due to non-stationarity between

the training and testing data.

We move away from the explicit third class experiment in Section 5.7, examining

the uncertainties of the classifiers in scenarios where they must find a distinct,

positive class against a broad background class that contains all other classes. In

this setting we see rather different behaviours to the third class experiments. We

62

5.1 Notation

conclude with a discussion of why the behaviour changes in Section 5.8.

5.1 Notation

Let a classifier map an input x ∈ Rd to one of a set of classes C = {C1, . . . , Cc}

via an associated label y ∈ {1, . . . , c}, where c is the number of classes and d is

the dimensionality of the data. The training data set is defined by {X ,Y}, where

X = {x1, . . . ,xN} denotes the set of N feature vectors and Y denotes the set of

corresponding class labels. Test data and labels are denoted by the use of a star,

for instance {x∗, y∗}.

During training, a classification framework may converge, given the training

data, on a particular model m from a family of possible models M. The space of

M is called the hypothesis space, of which the version space is the subset which

correctly classifies the training data.

5.2 Measures of Uncertainty

In this thesis we frequently refer to uncertainty, particularly for its relationship with

a classifier’s correctness. Specifically, we look for a relationship between both con-

fidence with correctness, and lack of confidence with incorrectness. Most binary

classification frameworks can be calibrated to take a test datum and return a ‘prob-

ability’, generally with little justification for being called as such, except for the fact

that it lies within the range [0, 1], and the extrema represent the two possible classes.

The values between allow the framework to express confusion between the two. If we

consider a mapping from probability to this confusion or uncertainty, there are some

obvious constraints: the values for p(Ci) = 0 and p(Ci) = 1 denote the least uncer-

tain positions on the scale, and in the absence of further information, p(Ci) = 0.5

63

5.2 Measures of Uncertainty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n
c
e
rt

a
in

ty

Normalised Entropy
Best vs Second Best

Figure 5.1: Normalised entropy and best-versus-second-best as measures of uncer-
tainty in the binary classification case.

denotes the highest uncertainty. With these constraints, there are infinitely many

possible mappings between probability and uncertainty. The literature promulgates

these two metrics: normalised entropy (NE), and best-versus-second-best (BvSB)

[Joshi et al., 2009].

Normalised entropy HN is defined as

HN(x) = −
c∑

i=1

p(y = Ci |x) logc [p(y = Ci |x)]. (5.1)

This is equivalent to the Shannon entropy measure normalised by its maximum,

which is the entropy of the c-dimensional uniform distribution, log(c). The result is a

measure ranging between 0 and 1 where a higher value indicates greater uncertainty

in the classifier’s belief, as shown by the blue curve in Figure 5.1.

An alternative uncertainty measure proposed in the active learning literature is

the best-versus-second-best heuristic [Joshi et al., 2009] which equals 1 minus the

difference between the largest and the second largest class likelihood estimates, as

shown by the red curve in Figure 5.1 for the binary case. This measure attempts to

characterise the reliability of the maximum likelihood estimate rather than encoding

the shape of the full distribution over class labels. BvSB is used by Joshi et al.

64

5.3 A Distance-Based View on Introspection

[2012] to obtain a measure of uncertainty which is unbiased by large numbers of

unlikely classes. The BvSB and normalised entropy measures are closely related in

the binary-classification setting, which is that of this thesis.

We use normalised entropy throughout this thesis for two reasons: firstly, it is

formed by an information-theoretic argument, compared to BvSB which is an ad-hoc

heuristic; secondly, in multi-class settings it considers the entire distribution over

classes, rather than BvSB which only takes into account only the two classes with

the highest probability.

5.3 A Distance-Based View on Introspection

Introspection concerns not the final class decision but rather the confidence with

which this decision is made. The concept is motivated by the desire to take appro-

priate action when a classifier indicates high uncertainty. Prior to training, domain-

specific knowledge is often used to constrain the family of classification models em-

ployed (for example in the form of a kernel or a type of base classifier). Classifier

training then involves learning a set of (hyper-) parameters given a training dataset

{X ,Y}. The training data implicitly give rise to a probability distribution over the

set of all possible models (or discriminants) within the chosen familyM, such that

{X ,Y} → p(m | X ,Y) , m ∈M. (5.2)

With a slight abuse of notation, m here denotes any member of the family of possible

models, M. In the following we make this relationship explicit by conditioning on

both a model (or family of models) as well as on a test datum x∗. Typically, training

leads to the selection of a single model, m̃ from M such that a prediction y∗ for a

65

5.3 A Distance-Based View on Introspection

Class 2
Training

Class 1
Training

x⇤

C1 C2

p(
y ⇤

|m̃
,x

⇤)

C1 C2

p(
y ⇤

|m̃
,x

⇤)
(a)

C1 C2

p(
y ⇤

|m̃
,x

⇤)

C1 C2

p(
y ⇤

|m̃
,x

⇤)

C1 C2

p(
y ⇤

|m̃
,x

⇤)

C1 C2

p(
y ⇤

|m̃
,x

⇤)

C1 C2

p
(y

⇤
|M

,x
⇤)

Class 2
Training

Class 1
Training

x⇤

(b)

Figure 5.2: An illustration of the two types of classification frameworks considered:
(a) during training a single model is selected to classify an unknown datum x∗
some way removed from the training data; (b) training leads to a distribution over
models which is considered entirely to arrive at the final prediction. This illustration
is for the family of linear models (indicated by solid (a) and dashed (b) lines).
Each predictor is further annotated with its individual prediction for a point at
the blue star. The overall predictive distribution is shown in the bottom right of
each subplot. The shading in part (b) indicates the probability weights associated
with individual models. Darker regions contain more weight. Note that the overall
predictive distribution in (a) stems from the single model used and is, in this case,
inappropriately confident. In part (b), however, the overall predictive distribution is
moderated by computing the expectation over all models. This gives rise to a much
more appropriate uncertainty estimate — the introspective quality we seek. (Best
viewed in colour.)

new, unseen feature vector x∗ is obtained by approximating

p(y∗ | X ,Y ,x∗) ≈ p(y∗ | m̃,x∗) , m̃ ∈M. (5.3)

This is illustrated in Figure 5.2a. Common examples of this type of classification

framework include SVMs and Boosting classifiers, where an optimisation is per-

formed to select the single best model given the training data (see Section 5.5). The

iid assumption here is inherent since it is assumed that m̃ remains the best model

for all predictions of unseen data. Breaking this assumption therefore often renders

the chosen model suboptimal. We call these methods single-discriminant. A real

example of this is shown by the linear SVM in Figure B.1e.

66

5.4 Related Works

An alternative to the single model approach are classification frameworks which

take into account the entire set of possible models in the specified family conditioned

on the training data, such that

p(y∗ | X ,Y ,x∗) ≈ p(y∗ |M,x∗). (5.4)

This case is illustrated in Figure 5.2b. Here the shading indicates the distribution

p(m|X ,Y) with darker shades indicating increased probability. To aid intuition,

predictions of four randomly selected members of M are also illustrated. Final

predictions are made by taking into account opinions from all members ofM, often

via the computation of an expectation such as for a Gaussian Process Classifier

(GPC, see Section 5.5.1). Crucially, when considering an expectation over all ofM,

the increased variance in feasible (and therefore likely) models at a distance from

the training data leads to a moderation of the class predictions. The linear GPC in

Figure B.1c demonstrates this.

Between the two extremes lies the random forest, which chooses a number of

differing samples from M, and averages over their responses. We call classifiers

which consider more than one model multi-discriminant.

We believe that this marginalisation over plausible models in version space is

a key component of an introspective classifier. A great variation in test response

between models indicates that, given the training data, there are multiple valid

interpretations, and thus that the uncertainty should be high. A single-discriminant

classifier is incapable of such moderation.

5.4 Related Works

The concept of introspection as introduced here is closely related to considerations

in active learning, where uncertainty estimates and model selection steps are often

67

5.4 Related Works

employed to guide data selection and gathering for an incremental learning algo-

rithm. Kapoor et al. [2010], for example, present an active learning framework for

object categorisation using a GPC where classifications with large uncertainty (as

judged by posterior variance) lead to a query for a ground-truth label and are sub-

sequently used to improve classification performance. Joshi et al. [2009] address

multi-class image classification using SVMs and propose criteria based on entropy

and best-versus-second-best measures (see Section 5.2) for disambiguating uncertain

classifications. Holub et al. [2008] propose an information-theoretic criterion that

maximises expected information gain with respect to the entire pool of unlabelled

data available. Hospedales et al. [2013] discuss optimising rare class discovery and

classification using a combination of generative and discriminative classifiers.

Our treatment of introspection is further informed by an ongoing discussion in

the machine learning community regarding how best to account for variance in the

space of feasible classifier models when training on, essentially, an incomplete set

of data. For example, Tong and Koller [2002] present an incremental algorithm for

text classification using SVMs and the notion of a version space, the set of consistent

hyperplanes separating the data in a feature space induced by the kernel function.

Zhang et al. [2012] introduce an SVM formulation which weights each training datum

by how uncertain it is, based on how close it is to the opposite class. Distance is

measured orthogonal to a hyperplane. A global classifier then incorporates these

uncertainties as margin constraints, yielding a classifier that places less confusing

instances farther away from the global decision boundary. We share the intuition

that accounting for variance in version space when selecting a model leads to an

increased introspective capacity. As a secondary contribution, therefore, our results

serve to further corroborate this intuition.

Niculescu-Mizil and Caruana [2005] recognise that the question of whether the

probabilities produced by various classification frameworks are appropriate is impor-

68

5.5 Commonly-Used Classification Frameworks

tant, a sentiment we clearly share. They conclude that poorly-calibrated frameworks

(in a probabilistic sense) can be effectively corrected using an additional learned

calibration using either Platt’s method or isotonic regression. They find random

forests to perform well pre-calibration (although they did exhibit a tendency to

be under confident, consistently with our findings), and that SVMs perform well

post-calibration. They associate the need for further calibration specifically to the

classifiers using max-margin optimisation, rather than the treatment of distances in

feature space and the distribution of models over version space as we do. They also

do not explore the effects of making decisions using these probabilities.

Berczi et al. [2015] have confirmed the introspective power of multi-discriminant

GPCs over single-discriminant SVMs, employing them to avoid areas of terrain for

which the height may be misclassified.

5.5 Commonly-Used Classification Frameworks

In this section we examine the methods by which a number of classification frame-

works derive probabilities (and therefore uncertainties), and then make predictions

regarding the introspective properties of each. In particular, we examine their treat-

ment of distance to determine those probabilities. We consider and compare three

types of Gaussian Process classifiers (linear and non-linear kernels, and the sparse

non-linear IVM), two Support Vector Machines (SVMs, with linear and non-linear

kernels), the boosted classifier LogitBoost, and random forests.

We consider these classification frameworks because they represent some key

ideas within the hundreds of available classification algorithms available. While one

classifier may outperform another given a specific application, there is no ‘silver

bullet’ when it comes to classification. As Wolpert and Macready [1997] show, “any

two algorithms are equivalent when their performance is averaged across all possible

69

5.5 Commonly-Used Classification Frameworks

problems” [Wolpert and Macready, 2005]. Therefore, one classification framework

may be superior for one subset of problems, but there is no guarantee that it will be

superior for another. This is why it is important to consider multiple frameworks

over multiple problems. Of course, in this thesis we restrict ourselves to a particular

subset of problems, but nevertheless we are looking for consistency in behaviour

across these problems rather than superiority in one or two.

We note that we ran tests with the K-nearest-neighbour (KNN) classifier, but

found that it did not perform well in terms of classical metrics like precision, recall,

and F-measure. As a result, it is not a commensurate alternative to the classifiers

considered in this thesis, and so has not been included in our analysis.

5.5.1 Gaussian Processes Classification

Binary classification using a Gaussian Process (GP) [Williams and Barber, 1998,

Rasmussen and Williams, 2006] is formulated by first introducing a latent function

f(x) and then applying a sigmoid function Φ (similar to the sigmoid described later

in Section 5.5.2, except that the predictive variance of the GP is used as well as

the predictive mean) to obtain the prediction p(y∗ = C1 |x∗) = Φ(f(x∗)). A GP

prior is placed on the latent function f(x) ∼ GP(µ(x), k(x,x′)) characterised by

a mean function µ(x) and a covariance (or kernel) function k(x,x′). GPC train-

ing establishes values for the hyper-parameters specifying the kernel function k by

maximising the log marginal likelihood of the training data.

Probabilistic predictions for a test point are obtained in two steps. First, the

distribution over the latent variable corresponding to the test input is obtained using

p(f∗ | X ,Y ,x∗) =

∫
p(f∗ | X ,x∗, f)p(f | X ,Y)df, (5.5)

where p(f | X ,Y) = p(Y | f)p(f | X)/p(Y |X) is the posterior distribution over latent

70

5.5 Commonly-Used Classification Frameworks

variables. This is followed by marginalising over the latent f∗ to yield the class

likelihood p(y∗=C1 | X ,Y ,x∗) as

p(y∗ = C1 | X ,Y ,x∗) =

∫
σ(f∗)p(f∗ | X ,Y ,x∗)df∗. (5.6)

Exact inference is analytically intractable due to the sigmoid likelihood function.

Instead, we leverage expectation propagation (EP) [Minka, 2001], a method widely

used for this purpose.

The GPC framework offers two key benefits over the other approaches discussed

here [Rasmussen and Williams, 2006]. Firstly, the classification output has a clear

probabilistic interpretation as it directly results in the class likelihood. In contrast,

neither the SVM nor the Boosting framework provide an inherently probabilistic

output in the Bayesian sense, but instead estimate a suitable calibration. Secondly,

and crucially, the GP formulation addresses uncertainty or predictive variance in

the latent function f(x) via marginalisation (or averaging) over all models induced

by the training set resulting in the estimate p(y∗ = C1 | X ,Y ,x∗) from Equation

(5.6). This process also gives rise to the well known property of increased variance

while far away from the data in GP regression (at least with the squared-exponential

kernel and many others). Again this is in contrast to the SVM or Boosting estimate

p(y = Ci | f̂ ,x∗) that rely on a single discriminant estimate f̂ : X → Y learnt via

minimisation. In the context of introspection, the ability to account for predictive

variance is a key advantage of Bayesian classification approaches.

GPCs are used in many domains, including terrain classification [Paul et al.,

2012], failure detection [Plagemann et al., 2007], and terrain traversability [Berczi

et al., 2015]. Kulick et al. [2013] use GPCs to classify geometric relations between

objects, or ‘symbols’, for use in an active learning scenario where a robot learns these

symbols via interactions with a human. In most of these works the authors state

71

5.5 Commonly-Used Classification Frameworks

that their choice of classifier is based upon the information-theoretic probabilities

that it produces.

Throughout this work we use the GPML toolbox [Rasmussen and Nickisch, 2010]

for GPC training and testing. In this implementation, the hyper-parameters are op-

timised by minimisation using conjugate gradients. This method chooses a single

value for each hyper-parameter, and is prone to finding a local rather than a global

minimum. Instead of choosing a single value for each hyper-parameter as we do, it

is possible to instead consider a distribution over it (a hyper-prior) [Rasmussen and

Williams, 2006]. Due to the potential intractability of considering the entire hyper-

prior, it is often approximated using methods such as Markov chain Monte-Carlo

(MCMC). More commonly, a cruder Laplace approximation is used. It has been

found that in terms of traditional metrics, choosing a single value often gives com-

mensurate performance to a more thorough treatment [MacKay, 1999]. However,

it is possible that by effectively considering the aggregate responses of multiple,

different GPCs, an even more informative predictive variance can be calculated.

The quality of this predictive variance is what we consider to give an introspective

advantage to the GPC.

The Informative Vector Machine

A key drawback of a GPC is its significant computational demand in terms of

memory and run time during training and testing, more than any of the other

frameworks considered here. This is due to the fact that the GP maintains a mean

µ, as well as a covariance matrix Σ, which is computed from a kernel function and

is of size N ×N . A number of sparsification methods have been proposed in order

to mitigate this computational burden. For efficiency, in this work we adopt one

such sparsification method: the Informative Vector Machine (IVM) [Lawrence et al.,

2002].

72

5.5 Commonly-Used Classification Frameworks

The IVM has been used primarily in the signal processing domain. Elattar [2013]

using it to predict short-term fluctuations in the price of electricity. Lu et al. [2012]

wish to optimise the locations of mobile sensors to measure some spatial function,

and use an IVM to inform the placement of the nodes based on spacial uncertainty

estimates. It has also been used in image classification, where Bazi and Melgani

[2010] use the IVM for classification of ground types in hyper-spectral images.

The main idea of this algorithm is to only use a subset of the training points

denoted the active set, I, from which an approximation q(f | X,y) = N (f |µ,Σ)

of the posterior distribution p(f |X,y) is computed. The IVM algorithm computes

µ and Σ incrementally, and at every iteration j selects the training point (xk, yk)

which maximises the entropy difference ∆Hjk between qj−1 and qj for inclusion into

the active set. As q is Gaussian, ∆Hjk can be computed by

∆Hjk = −1

2
log |Σjk|+

1

2
log |Σj−1|. (5.7)

We use an efficient form of this, the details of which can be found in Lawrence et al.

[2005]. The algorithm stops when the active set has reached a desired size. We

choose this size to be a fixed fraction q of the training set, which we set to be 0.8.

Throughout this work we use the IVM MATLAB toolbox [Lawrence, 2012] for both

training and testing.

To find the kernel hyper-parameters θ of an IVM, two steps are processed in a

loop for a given number of times: estimation of I from θ and minimising the marginal

likelihood q(y |X), thereby keeping I fixed. Although there are no convergence

guarantees, in practice a small number of iterations is sufficient to find good kernel

hyper-parameters.

Importantly for our work, since inference with the IVM is similar to that with a

GPC, the IVM retains the model averaging described in (5.6). We argue, therefore,

73

5.5 Commonly-Used Classification Frameworks

that the IVM provides a significant and well-established improvement in processing

speed over a GPC without affecting its introspective capacity.

5.5.2 Support Vector Machine

SVM classification is well established in robotics so that we provide here only an

overview. For a detailed account the reader is referred to, for example, Burges

[1998]. SVMs are based on a linear discriminant framework which aims to maximise

the margin between two classes. The model parameters are found by solving a

convex optimisation problem, thereby guaranteeing the final classifier to be the best

feasible discriminant given the training data. Once training is complete, predictions

on future observations are made based on the signed distance of the observed feature

vector from the optimal hyperplane, defined by the weight vector w and bias w0,

such that

f(x∗) = w>φ(x∗) + w0 =
N∑

i=1

αiyik(xi,x∗) + w0, (5.8)

where N is the size of the training set, αi refers to a Lagrange multiplier associated

with datum i, w0 denotes a bias parameter, φ refers to the feature map, and k(xi,xj)

denotes the kernel function.

The parameters αi and w0 characterising the discriminant function are obtained

by an optimisation procedure, and αi is then non-zero only for support vectors xi.

The SVM algorithm selects a particular weight vector (as defined by the support

vectors), which gives rise to a maximum margin separator.

The kernel function amounts to a scalar product between two data, which have

been transformed from d-dimensional feature space into some higher dimensional

space. The nature of this mapping between spaces is inherent in the choice of kernel

and need not be specified explicitly (the kernel trick). The regularisation and kernel

parameters are learnt over a grid of powers of two, from 2−4 to 24, using ten-fold

74

5.5 Commonly-Used Classification Frameworks

cross-validation. We discuss our choices of kernel functions in Section 5.5.5.

In its original form, the SVM classifier output is an uncalibrated real value.

A common means of obtaining a probabilistic interpretation is by using Platt’s

method [Platt, 1999]. This algorithm was later improved by Lin et al. [2007], which

is implemented in the library we use for all SVM training, calibration, and testing,

LIBSVM [Chang and Lin, 2011]. Here, using a hold-out set not used for classifier

training, a parametric sigmoid model is fit directly to the class posterior p(y∗ =

C2 | f(x∗)), such that

p(y∗ = C2 | f(x∗)) =
1

1 + exp(Af(x∗) +B)
. (5.9)

The sigmoid parameters A and B are determined using Newton’s method with

backtracking line search. Note that class likelihoods are derived here using only a

single estimate of the discriminative boundary obtained from the classifier training

procedure. No other feasible solutions are considered. Hence, the predictive variance

of the discriminant f(x) is not taken into account while determining probabilistic

output [Rasmussen and Williams, 2006]. Although there is no guarantee that the

method converges, in general it works very well and finds the global optimum owing

to the convexity of the objective function.

SVMs are an extremely popular method for classification in a multitude of set-

tings, including but not limited to the classification of human gestures in videos

[Schüldt et al., 2004], regions of images into semantic groups such as sky, building,

skin, road [Cusano et al., 2003], face detection in images [Osuna et al., 1997], the

angle of a face in an image [Huang et al., 1998], text classification [Tong and Koller,

2002], and protein classification [Eskin et al., 2002]. Their reasonable training times,

readily available source code, and competitive accuracy across many domains have

made them particularly attractive for machine learning applications. The linear

75

5.5 Commonly-Used Classification Frameworks

SVM especially is popular for object detection in video due to the number of meth-

ods available to make testing images very fast [Dubout and Fleuret, 2012]. SVMs

are also being used as the classification step for image detection systems in which

the features are learned via a deep neural network [Weston et al., 2012].

5.5.3 LogitBoost

Boosting is a widely used classification framework which involves training an ensem-

ble of weak learners in sequence [Bishop, 2006]. Each weak learner h(x) is trained

using a weighted combination of the points in the dataset, where the importance of

each point depends on whether it was correctly classified by the previous classifiers.

Predictions from a boosted classifier are obtained using a weighted combination of

the individual weak learner outputs such that

sign(f(x∗)) = sign

(
M∑

i=1

wihi(x∗)

)
, (5.10)

where M is the number of weak learners used.

LogitBoost [Friedman et al., 1998] is a popular choice for a boosting-based clas-

sifier as it natively outputs class probability estimates following a calibration via

a sigmoid. Weak learners are often chosen to be decision trees and training is

conducted by fitting additive logistic regression models by stage-wise optimisation

(using Newton steps) of the Bernoulli log-likelihood. The algorithm works in the

logistic framework and yields a predictor function f(x) learnt from iterative hypoth-

esis training. Cross-validation is used to set parameters like the learning rate, tree

depth, and the number of boosting rounds. The class-conditional probabilities are

obtained from the predictor function via

p(y∗ = C1 |x∗) =
exp(f(x∗))

exp(f(x∗)) + exp(−f(x∗))
, (5.11)

76

5.5 Commonly-Used Classification Frameworks

which is the same sigmoid used in the SVM in Section 5.5.2 with parameters A = −2

and B = 0. The procedure possesses asymptotic optimality as a maximum likelihood

predictor [Friedman et al., 1998, Hastie and Tibshirani, 1990]. However, the method

of converting the output of the predictor function to class-conditional probabilities is

not fully probabilistic and does not account for variance in the underlying predictor

function. In our experiments we use 500 learners for training. Throughout this

work we use the MATLAB implementation of LogitBoost for classifier training and

testing.

LogitBoost has been used for classifying protein structures [Cai et al., 2006],

text classification [Kotsiantis et al., 2006], and speech segmentation [Ziólko et al.,

2008]. Dettling and Bühlmann [2003] use LogitBoost for tumor classification, on

the basis that it outperforms AdaBoost in cases with particularly noisy data or

class imbalances. Boosted decision trees in particular appear to be popular for

applications with large quantities of data, because the trees are very quick to train.

Because the LogitBoost classifier does not consider a variety of possible models,

we consider it to be a single-discriminant classifier and expect that it will suffer from

the same introspective issues as the SVM.

5.5.4 Random Forests

Random Forests [Breiman, 2001] are made up of an ensemble of decision trees gen-

erated via bagging. Bagging (a partial portmanteau of “bootstrap aggregating”)

involves creating multiple classifiers using different subsets of some aspect of the

training data, in this case two aspects are bagged simultaneously: the training data,

and the feature dimensions. During testing, the output p(C2) is the fraction of the

individual trees which classified the datum as being from that class.

The trees contain multiple binary nodes or branches, each of which thresholds

on a particular feature dimension of the data, learning the threshold which helps

77

5.5 Commonly-Used Classification Frameworks

split the training data into the two classes. We have set each tree to use a number

of feature dimensions equal to the square root of the total number, as recommended

by the literature, with a total of 500 trees. Throughout this work we use the Bagged

Decision Tree functions in the MATLAB statistics toolbox (which is an implemen-

tation of Random Forests) for both training and testing.

Random Forests have been used for classifying invasive plant species and rare

lichen species in various US national parks [Cutler et al., 2007], land cover in re-

mote sensing scenarios [Gislason et al., 2006], road signs [Zaklouta et al., 2011],

ranking the importance of certain driver and environmental characteristics on pre-

crash manoeuvres in car accidents [Harb et al., 2009], and object segmentation in

images [Schroff et al., 2008]. Fernández-Delgado et al. [2014] compare 179 classifi-

cation algorithms on 121 data sets and find Random Forests to be the best family

of classifiers of all in terms of accuracy.

This combination of many differing decision boundaries (one boundary per tree)

represents a sampling and then averaging over the version space, similar to the

marginalisation over version space which takes place in the Gaussian process clas-

sifier. A crucial difference is that in the GPC, each possible model is weighted

by its likelihood, and in Random Forests each tree is weighted equally. However,

these trees are carefully selected to separate the chosen subset of training data, so

this biasing is in a sense a {0, 1} weighting. This could be thought of as sampling

500 decision boundaries from the shaded region in Figure 5.2b and taking an ex-

pectation over their responses. This suggests that they should behave in a more

introspective manner than the other single-discriminant frameworks like LogitBoost

and the SVMs, but perhaps a more sensitively weighted combination of the trees

could perform better.

78

5.5 Commonly-Used Classification Frameworks

5.5.5 Kernels

Evaluation of the discriminant function for an SVM and the covariance matrix for

GPC inference both require the specification of a kernel (or covariance) function,

k(·, ·). A rich body of literature exists on different choices of kernels for both frame-

works. However, since our focus here is on a like-for-like comparison of different

classification frameworks we choose two representative kernels rather than perform-

ing exhaustive model selection to optimise performance for a particular application.

Firstly, as an example of a simple kernel function, we consider the linear kernel

defined as

kLIN(xi,xj) = xTi xj + r, (5.12)

where r is a constant real number. The linear kernel is an apt choice where a linear

separation of the data in feature space leads to adequate performance or where

computational efficiency is of the essence. Often, however, a more sophisticated,

non-linear kernel is required. In this category we use the squared exponential (SE)

function as a canonical representative. The SE kernel with length scale parameter l

and variance σ2 is defined as

kSE(xi,xj) = σ2 · exp
(
− 1

2l2
||xi − xj||2

)
. (5.13)

In the context of an SVM, the SE function is more commonly known as a radial

basis function (RBF).

We expect the choice of kernel to be crucial to a classifier’s introspective capacity.

A classifier using a SE kernel is able to ‘wrap’ the training data in a way that a

classifier using a linear kernel cannot, allowing it to envelop a much larger volume

of the feature space with high uncertainty. This is shown in Appendix B, where in

79

5.5 Commonly-Used Classification Frameworks

Figure B.1d we see the SVM with a non-linear kernel enclose the data, with much of

the surrounding space near p = 0.5. However, the linear SVM in Figure B.1e is only

uncertain for the narrow band between the green contours. The same is true for the

linear GPC, although the contours fan out away from the data, resulting in a larger

proportion of the space away from the training data being high-uncertainty. We

therefore expect a classifier with a non-linear kernel to be more uncertain than its

linear counterpart when the test data are far from the training data, and therefore

to be more introspective.

Cover’s theorem states that any collection of binary data are more likely to be

linearly separable if the dimensionality is increased [Cover, 1965]. One effect of this

is that for high-dimensional data, classifiers with linear kernels can have commen-

surate accuracy to those with non-linear kernels [Garrett et al., 2003]. However, the

linear kernel is a degenerate case of the SE kernel, and so in theory the linear classi-

fier should never outperform a non-linear kernel with the correct hyper-parameters

[Keerthi and Lin, 2003]. However, to our knowledge the effects of kernels and di-

mensionality on introspection have not yet been investigated.

Because the kernel function is the metric used to determine the distance between

two points, this choice is tightly bound up with our proposition that a good treat-

ment of distance leads to introspective power. It is common to choose a kernel based

on knowledge of the structure of the data in question, for instance the periodic ker-

nel can be used to classify astronomy star surveys based on the changing variance

of their brightness [Wachman et al., 2009]. If more flexibility is required, one can

use a locally-periodic kernel, allowing us to model data for which the length scales

or amplitudes of the periodicity change over time [Duvenaud, 2014].

Kernels can be combined to produce interesting effects, often by adding or multi-

plying two existing kernels together to produce another [Duvenaud, 2014]. Another

variation is to use a kernel that changes its properties depending on the particular

80

5.6 Analysis of Non-Stationary Data

element of the input in question. In this thesis we use multiple-input kernels because

our features are represented by a vector xd (where d is the dimensionality or number

of inputs) rather than a scalar (where d = 1), but the SE kernel we use is isotropic.

This means that there is a single length scale for all the input dimensions. Alter-

natively, it is common to use Automatic Relevance Determination (ARD), which is

a SE kernel for which there is a length scale per dimension. However, this results

in a number of hyper parameters which scales with the dimensionality of the input,

leading to much longer training times.

Another possible way to improve introspection could be to use particular non-

stationary kernels. In this thesis we use both: the SE kernel is non-stationary (it

depends only on xi − xj), and the linear kernel is stationary (the values of xi and

xj are relevant, not just their separation from each other). Perhaps it is possible to

use a kernel which is explicitly more uncertain in some regions of feature space. We

leave this as future work.

5.6 Analysis of Non-Stationary Data

In order to determine a classifier’s behaviour when it makes incorrect classifications,

we must first consider when a classifier can be wrong. The trained classifier will

partition the feature space into regions, where any point within a particular region

will return a corresponding probability value. Typically, we hope that the training

procedure will use the training data to create this set of regions to correspond to

accurate classification of the test data. There are many cases in which the regions

will be chosen in such a way that this is not achieved. A simple case is where the

training data are incorrect. Erroneous class labels for the training set will shape the

model and hence the regions in such a way that they will generalise poorly to the

test set. However, in this thesis we assume that the labels are correct. Another is

81

5.6 Analysis of Non-Stationary Data

where the model is incorrectly learned or poorly chosen for the data. However, the

case we wish to dwell on is one where the training set does not capture every aspect

of the test set, otherwise known as non-stationarity between training and testing.

This occurs commonly, for instance if we train a car classifier on only frontoparallel

views, but then test it on images containing oblique views, or if the illumination of

the test images is different.

We argue that regardless of the size of the training set, it will inevitably omit

certain facets of the data. Consider, for example, the space of pictures of cars. Many

aspects of the appearance of cars are captured by these data: their shapes, colours,

illumination, possible occlusions, orientations of the viewer, and more. Typically

the assumption is that the training and test data are independent and identically

distributed (i.i.d.), and thus we hope that a representative subset of the space will

allow the classifier to generalise well. However, this assumption is routinely violated

in robotics, and in practice the test sets may appear to be from a different distri-

bution from the training set. One possible result of this is that test data will stray

further away from the training set in feature space. It is these data which are likely

to be misclassified, and thus should be regarded with high uncertainty.

The choice of features is clearly important here. On the one hand, we can

use a particular feature type which mitigates the effect of illumination, or perhaps

rotation. However, we simultaneously desire it to be sufficiently rich to represent

aspects of the data that allow a classifier to separate the classes. If this desire is

achieved it is more likely that the less representative the training set is, the greater

its distance in feature space to the test points. This would allow introspection to

lead to error prevention. We desire the uncertainty of a classifier to increase as we

query it on points further away from the training set. Therefore, we propose that

it is the classifiers’ treatment of distance in feature space which determines their

introspective capacities.

82

5.6 Analysis of Non-Stationary Data

In this section we test the commonly-used classification frameworks from Section

5.5 first on synthetic data, and then on data from real images of road signs. Specif-

ically, we analyse the uncertainties of the classifiers as we test them on data which

are not represented within the training set, and looking for those which consistently

give higher uncertainty in these cases.

5.6.1 Synthetic Data

We start by analysing the uncertainty of the classifiers when tested on simple, multi-

dimensional Gaussian data as described in Section 3.5. We hold the number of

feature dimensions constant at 64, and vary the magnitude of the differences be-

tween the means of the training and test sets M+
µ and M−

µ from 0 to 2, while

M+
σ = M−

σ = 0. Note that except where otherwise stated, the classifiers are trained

on 50 positive examples and 50 negative examples. Figure 5.3 shows the uncer-

tainties of the classifiers for the test sets. Each point on the graph is the mean

of 10 experiments using the same methodology but with differing random draws.

The main observation is that for the multi-discriminant classifiers (the GPC vari-

ants and the random forest) the uncertainty grows to unity as the test set diverges

from the training set. However, for the single-discriminant classifiers (the SVMs

and LogitBoost) the uncertainty is constant and seems relatively unaffected by this

increase in distance. An introspective capacity would be evidenced by an increase

in uncertainty as distance increases, so the multi-discriminant classifiers appear to

be more introspective. We can repeat this experiment while changing M+
σ and

M−
σ , and keeping M+

µ and M−
µ fixed at 0, the results of which are shown in Figure

5.4. Here we see exactly the same behaviour: the multi-discriminant classifiers be-

come increasingly uncertain as the variance of the test distributions increase, but

the single-discriminant classifiers remain approximately constant in terms of uncer-

tainty.

83

5.6 Analysis of Non-Stationary Data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

M
µ

+=M
µ

-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n
c
e
rt

a
in

ty

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

Figure 5.3: We show the test uncertainties of the classifiers as we change M+
µ and

M−
µ , affecting the means of the test distributions. As we travel along the horizontal

axis, the test distribution is increasingly different from the training distribution, so
an introspective classifier would show increasing uncertainty. There are 64 dimen-
sions to the data. The error bars show the standard error of the mean uncertainty
over 10 independent runs.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

M
σ

+=M
σ

-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

Figure 5.4: The test uncertainties of the classifiers as we change M+
σ and M−

σ , affect-
ing the standard deviations of the test distributions. As we travel along the horizon-
tal axis, the test distribution is increasingly different from the training distribution,
so an introspective classifier would show increasing uncertainty. The dimensionality
is 50, and the error bars show the standard error of the mean uncertainty over 10
independent runs.

84

5.6 Analysis of Non-Stationary Data

What aspects of the data can affect this behaviour? The concept of distance in

high-dimensional space is complex and unintuitive, with various interesting effects.

For instance, the majority of the points drawn from a 1D Gaussian distribution

will lie near to the mean. However, as dimensionality increases, the distribution of

points is distributed far from the mean, like the skin of an orange [MacKay, 2003].

Therefore if dimensionality plays a role in distance, it is reasonable to expect it to

affect uncertainty. Setting M+
µ = M−

µ = 3, and M+
σ = M−

σ = 0 to ensure that the

test means are far from the training means, we vary the dimensionality of the data

from 1 to 256 in powers of 2. The results shown in Figure 5.5 demonstrate that the

dimensionality does indeed greatly affect the uncertainties of some of the classifiers.

The non-linear SVM starts off very uncertain, and then becomes more and more

confident as the dimensionality increases. The non-linear GPC-based classifiers are

consistently uncertain regardless of dimensionality. The classifiers with non-linear

kernels are confident in a low-dimensional space, but as the dimensionality increases

they diverge. The multi-discriminant linear-kernel classifiers become very uncertain,

and the single-discriminant linear-kernel SVM and LogitBoost do not. Interestingly,

the two SVMs converge in high-dimension. This shows evidence to support the

proposition that increased feature space dimensionality decreases the effectiveness

of using a non-linear kernel, as implied by Cover’s theorem [Cover, 1965]. It further

suggests that it is not the kernel which produces the difference between the GPCs

and the SVMs in high-dimensionality, but the underlying algorithms.

We expect that the effects of increasing the dimensionality can be, to some ex-

tent, counteracted by an increase in the number of training data. An increase in

the number of training data will likely result in more of the space being ‘close’ to

a training datum, shrinking the version space and thus reducing the uncertainty of

multi-discriminant classifiers. In Figure 5.6 we see that indeed, uncertainty generally

decreases as we increase the number of training data. For the multi-discriminant

85

5.6 Analysis of Non-Stationary Data

1 2 4 8 16 32 64 128 256
Number of feature dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

Figure 5.5: The test uncertainties of the classifiers as we vary the dimensionality of
the data. The parameters of the test distributions are M+

µ = M−
µ = 3, and M+

σ =
M−

σ = 0. The test distributions are very different from the training distribution, so
an introspective classifier would show high uncertainty. Here, the single-discriminant
classifiers are more confident than the multi-discriminant classifiers once we exceed 8
feature dimensions. The error bars show the standard error of the mean uncertainty
over 10 independent runs.

classifiers, increasing the training data becomes less effective as the dimensionality

increases. However, beyond four dimensions the SVMs and LogitBoost seem rela-

tively invariant to dimensionality (as in Figure 5.5), but still become more confident

with more training data, even in 64 dimensions. We propose that this is because

the SVM is designed to be relatively insensitive to feature dimensionality, in that

its generalisation error is independent of the feature dimension [Vapnik and Vapnik,

1998].

We have shown that with real classifiers on synthetic data, the multi-discriminant

classifiers exhibit the desired high uncertainty when we test them on data which are

far away from the training data, providing that the dimensionality is at least 8.

This tendency generally increases with dimensionality and decreases with number

of training data. The single-discriminant classifiers, however, seem to be more af-

fected by number of training data than dimensionality, and overall exhibit much less

uncertainty for distant test data.

86

5.6 Analysis of Non-Stationary Data

4 8 16 32 64 128 256 512
No. training data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
U

n
ce

rt
a

in
ty

IVM Non-linear GPC Linear GPC Non-linear SVM Linear SVM LogitBoost Random Forests

4 8 16 32 64 128 256 512
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U

n
c
e
rt

a
in

ty

(a) 2 feature dimensions

4 8 16 32 64 128 256 512 1024
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

(b) 4 feature dimensions

4 8 16 32 64 128 256 512
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n
c
e
rt

a
in

ty

(c) 8 feature dimensions

4 8 16 32 64 128 256 512
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n
c
e
rt

a
in

ty

(d) 16 feature dimensions

4 8 16 32 64 128 256 512
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e
rt

a
in

ty

(e) 32 feature dimensions

4 8 16 32 64 128 256 512
No. training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e
rt

a
in

ty

(f) 64 feature dimensions

Figure 5.6: Here we show the test uncertainties of the classifiers as we vary the
number of training data for a given feature dimensionality. The test distributions are
very different from the training distributions, and thus an introspective classifier will
exhibit high uncertainty. As we increase the dimensionality, the multi-discriminant
and single-discriminant classifiers diverge, with the former exhibiting a stronger
introspective behaviour. The data are split evenly between positive and negative
classes, and error bars show the standard error of the mean over 10 independent
experiments.

87

5.6 Analysis of Non-Stationary Data

Next we will explore the effects on real data, in order to examine the consistency

our expectations and conclusions from this experiment.

5.6.2 Real Data

Now that we have an indication of the introspective tendencies of multi-discriminant

classifiers on synthetic data, we must validate and confirm that the findings are

consistent for real data. We push the idea of a ‘distant’ test class to the extreme by

training classifiers on two distinct classes, and then testing them on a completely

different class. The uncertainties of this unseen or ‘third’ class will demonstrate

the behaviours of the classifiers when they are trained and tested on extremely

non-stationary data. Similarly to the previous section, the best result is a high

uncertainty for this third class. As examples of classes typically encountered in

autonomous driving applications we use a subset of the GTSRB dataset (see Section

3.2).

We arbitrarily select two classes for training: stop and lorries prohibited. Classi-

fiers are trained on these two classes using a balanced training set of 400 data (200

per class). Classifier performance is evaluated using standard metrics on a hold-

out set of another 400 class instances (200 of each class) of the same two classes.

The results are shown in Table 5.1, and show that classification performance by the

commonly-used metrics (precision, recall, and F1 measure, as discussed in Section

3.7) is commensurate across all classifiers. The corresponding precision-recall curve

confirms the perfect separation of the classes and has been omitted here as it is

otherwise uninformative. The classifiers are then tested on 200 instances of previ-

ously unseen classes roadworks ahead, keep left, 70kph, yield, and right ahead. The

uncertainty histograms for both the seen and the unseen test classes are shown in

Figure 5.7.

All classifiers are confident when tested on classes which were present in the

88

5.6 Analysis of Non-Stationary Data

10

Lorry Stop Roadworks Keep left

BDT

IVM

Linear
GPC

Linear
SVM

Logit
Boost

Non-linear
SVM

Non-linear
GPC

Trained classes Unseen classes� �

0 0.5 1
0

5

10

15

20

70kph

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

5

10

15

20

25

Right ahead

0 0.5 1
0

50

100

150

0 0.5 1
0

5

10

15

20

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

50

100

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

10

20

30

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

0 0.5 1
0

5

10

15

20

0 0.5 1
0

50

100

150

0 0.5 1
0

10

20

30

40

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

50

100

150

0 0.5 1
0

10

20

30

40

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

5

10

15

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

10

20

30

0 0.5 1
0

50

100

150

0 0.5 1
0

5

10

15

20

0 0.5 1
0

50

100

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

10

20

30

40

0 0.5 1
0

10

20

30

40

0 0.5 1
0

50

100

150

0 0.5 1
0

50

100

0 0.5 1
0

20

40

60

0 0.5 1
0

50

100

Fig. 4: Normalised entropy histograms (frequency vs NE) of the marginal probabilities for a variety of classifiers trained on
the road sign classes stop and lorries prohibited and tested on 200 instances of the unseen classes roadworks ahead and keep
left. Higher normalised entropy implies more uncertainty in classifier output, so we expect the classifiers to be certain (low
NE) on the trained classes and uncertain (high NE) for the unseen classes.

10

Lorry Stop Roadworks Keep left

BDT

IVM

Linear
GPC

Linear
SVM

Logit
Boost

Non-linear
SVM

Non-linear
GPC

Trained classes Unseen classes� �
0 0.5 1
0

5

10

15

20

70kph

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

5

10

15

20

25

Right ahead

0 0.5 1
0

50

100

150

0 0.5 1
0

5

10

15

20

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

50

100

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

10

20

30

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

20

40

60

80

0 0.5 1
0

5

10

15

20

0 0.5 1
0

50

100

150

0 0.5 1
0

10

20

30

40

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

10

20

30

40

50

0 0.5 1
0

50

100

150

0 0.5 1
0

10

20

30

40

0 0.5 1
0

20

40

60

80

100

0 0.5 1
0

5

10

15

0 0.5 1
0

5

10

15

20

25

0 0.5 1
0

10

20

30

0 0.5 1
0

50

100

150

0 0.5 1
0

5

10

15

20

0 0.5 1
0

50

100

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

50

100

150

200

0 0.5 1
0

10

20

30

40

0 0.5 1
0

10

20

30

40

0 0.5 1
0

50

100

150

0 0.5 1
0

50

100

0 0.5 1
0

20

40

60

0 0.5 1
0

50

100

Fig. 4: Normalised entropy histograms (frequency vs NE) of the marginal probabilities for a variety of classifiers trained on
the road sign classes stop and lorries prohibited and tested on 200 instances of the unseen classes roadworks ahead and keep
left. Higher normalised entropy implies more uncertainty in classifier output, so we expect the classifiers to be certain (low
NE) on the trained classes and uncertain (high NE) for the unseen classes.

Random
Forest

Figure 5.7: Normalised Entropy (NE, uncertainty) histograms of the marginal
probabilities for a variety of classifiers trained on the road sign classes stop and
lorries prohibited and tested on not only the training classes, but also classes which
do not appear in the training set (roadworks ahead, keep left, 70kph, and right ahead).
Higher values for normalised entropy imply more uncertainty in classifier output, so
we expect the more introspective classifiers to be certain (low NE, left-hand end of
the horizontal axis) on the trained classes and uncertain (high NE, right-hand end
of the horizontal axis) for the unseen classes.

89

5.6 Analysis of Non-Stationary Data

Classifier Precision Recall F1

IVM 1.000 1.000 1.000
Non-linear GPC 1.000 1.000 1.000
Linear GPC 1.000 1.000 1.000
Non-linear SVM 1.000 1.000 1.000
Linear SVM 1.000 1.000 1.000
LogitBoost 1.000 1.000 1.000
random forest 1.000 1.000 1.000

Table 5.1: The classification performance when separating stop sign from the lorries
prohibited signs from the GTSRB data set. Note that different class combinations
were found to yield classifiers of similar quality.

training set, which is what we would expect. For the unseen test classes, the mean

uncertainties for the GPC-based classifiers (IVM, non-linear GPC, and linear GPC)

and the random forests are more consistently high than those of the other clas-

sification frameworks, indicating that they reliably exhibit greater uncertainty in

their judgement. Conversely, the LogitBoost classifier is extremely confident in all

of its classifications with a very narrow distribution, and the non-linear and linear

SVMs have inconsistent levels of uncertainty. These are effects consistently observed

throughout our experiments. The unseen sign for which the classifiers respond with

the lowest uncertainty (greatest confidence) is the 70 kph sign. We propose that

this is due to its visual similarity with one of the training classes, namely the ‘lor-

ries prohibited’ sign. This is consistent with our findings on the synthetic data

that multi-discriminant classifiers are more introspective than single-discriminant

classifiers.

In order to mitigate any influences of the specific training and test data selected

we repeated the above experiment across a number of random dictionaries, data

samples, and unseen classes. Specifically, for each of five different unseen classes, we

perform forty iterations of classifier training and testing with a random dictionary

and training and test datasets resampled for each run. The results, presented in

Table 5.2, are consistent with those in Figure 5.7 in that the GPCs and random

90

5.6 Analysis of Non-Stationary Data

forest tend to be more consistently uncertain for the unseen test classes, while SVM

and LogitBoost are more confident with an often significantly narrower distribution

of normalised entropy values. The results in Table 5.2 indicate that the gap in

uncertainty between the different frameworks is more pronounced for some unseen

classes than for others. We attribute this to the varying degree of similarity in

feature space between some unseen class and the classes in the training set. Our

choice of template features results in the circle around the 70kph sign registering

very closely to the one around the lorries prohibited sign.

We draw the conclusion that when faced with test data which are not repre-

sented by the training data, the GPC-based classifiers and random forest are more

consistently uncertain than the other classifiers, which is part of the introspective

behaviour we seek.

Another direct comparison between synthetic and real data we can draw is to

repeat the third class experiment, showing the change in uncertainty as we vary the

dimensionality of the features. By choosing how many patches to use, we choose

how many dimensions describe the data. In Figure 5.8 we show the uncertainties

for the five unseen classes already discussed in this section. Notice that the order

is preserved across all plots: the LogitBoost classifier is the most confident, then

the SVMs, and lastly the multi-discriminant classifiers. Although the shapes of the

plots are not exactly the same as those generated using synthetic data in Figure

5.6, the order of the classifiers is preserved, with the multi-discriminant classifiers

exhibiting higher uncertainty than single-discriminant at 32 dimensions and above.

Is this third class situation relevant in robotics? Our classifiers will not always be

encountering clear-cut third-class cases. More often, they will be used in detection

tasks, where they must locate one particular class in an image against a broad

background class. We expect that third class cases will not be rare in this detection

91

5.6 Analysis of Non-Stationary Data

Test Class Classifier Uncertainty
µ± std. err. σ± std. err.

IVM 0.776 ± 0.081 0.145 ± 0.030
Non-linear GPC 0.751 ± 0.087 0.152 ± 0.029
Linear GPC 0.776 ± 0.108 0.150 ± 0.041
Non-linear SVM 0.476 ± 0.101 0.089 ± 0.056
Linear SVM 0.664 ± 0.122 0.250 ± 0.041
LogitBoost 0.019 ± 0.025 0.041 ± 0.073
random forest 0.756 ± 0.137 0.149 ± 0.053
IVM 0.794 ± 0.117 0.106 ± 0.026
Non-linear GPC 0.779 ± 0.124 0.107 ± 0.024
Linear GPC 0.777 ± 0.202 0.124 ± 0.058
Non-linear SVM 0.537 ± 0.126 0.028 ± 0.036
Linear SVM 0.494 ± 0.239 0.222 ± 0.049
LogitBoost 0.016 ± 0.022 0.031 ± 0.059
random forest 0.736 ± 0.166 0.078 ± 0.027
IVM 0.539 ± 0.140 0.173 ± 0.023
Non-linear GPC 0.546 ± 0.144 0.168 ± 0.023
Linear GPC 0.569 ± 0.166 0.177 ± 0.026
Non-linear SVM 0.407 ± 0.077 0.076 ± 0.053
Linear SVM 0.315 ± 0.195 0.197 ± 0.058
LogitBoost 0.008 ± 0.004 0.012 ± 0.026
random forest 0.394 ± 0.121 0.138 ± 0.029
IVM 0.579 ± 0.133 0.137 ± 0.020
Non-linear GPC 0.577 ± 0.130 0.136 ± 0.019
Linear GPC 0.585 ± 0.188 0.151 ± 0.029
Non-linear SVM 0.488 ± 0.111 0.039 ± 0.034
Linear SVM 0.177 ± 0.127 0.155 ± 0.056
LogitBoost 0.014 ± 0.019 0.030 ± 0.056
random forest 0.668 ± 0.161 0.113 ± 0.027
IVM 0.931 ± 0.025 0.080 ± 0.026
Non-linear GPC 0.934 ± 0.021 0.079 ± 0.023
Linear GPC 0.925 ± 0.031 0.085 ± 0.027
Non-linear SVM 0.641 ± 0.168 0.100 ± 0.047
Linear SVM 0.705 ± 0.142 0.212 ± 0.049
LogitBoost 0.059 ± 0.103 0.077 ± 0.127
random forest 0.904 ± 0.089 0.088 ± 0.043

Table 5.2: The means and standard deviations of uncertainties from 40 iterations
of classifier training and testing, each with a randomly created feature dictionary
and both training and test datasets resampled. Results are presented for classifiers
trained on the road sign classes stop and lorries prohibited and tested on five different
unseen classes as shown. The most uncertain classifier category is consistently multi-
discriminant.

92

5.6 Analysis of Non-Stationary Data

4 8 16 32 64 128 256 512
No. training data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
U

n
ce

rt
a

in
ty

IVM Non-linear GPC Linear GPC Non-linear SVM Linear SVM LogitBoost Random Forests

8 16 32 64 128 256 512
No. dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U

n
c
e

rt
a

in
ty

(a) 70kph

8 16 32 64 128 256 512
No. dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

(b) Digging man

8 16 32 64 128 256 512
No. dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

(c) Keep left

8 16 32 64 128 256 512
No. dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

(d) Right ahead

8 16 32 64 128 256 512
No. dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U
n

c
e

rt
a

in
ty

(e) Yield

Figure 5.8: Having trained the classifiers to differentiate between stop and lorry
prohibited signs (380 of each), we test on clusters of new road signs, unseen in
the training set. A high uncertainty is desirable. We vary the number of features
used to describe each datum from 8 to 512, and perform 10 randomised train+test
experiments per sign per feature size. The error bars show the standard error of the
mean.

93

5.6 Analysis of Non-Stationary Data

scenario. We may think of large data sets as being dominated by a few common

modes (or classes or sub-classes). However, while a few classes may indeed be

common, the majority of the data set is often made up of many rare classes. This is

has been shown to be true across various domains, and is known as the long tail of big

data (first documented in the context of book sales by Brynjolfsson et al. [2003]).

The relevance of this to introspection is that in big data situations, a significant

number of test cases are likely to be significant deviations from the training data,

and thus the ability to detect ‘third class’ situations is likely to be important in

decision-making.

5.6.3 Discussion

How much does the choice of kernel affect the introspective capacity of a classifier?

Varying the choice of kernel produces different behaviours, and it appears to be

possible to instil an improved introspective sense with an appropriate choice of

kernel, particularly when the feature dimensionality is low. This is due to the

relationship between classification confidence and distance in kernel space. In the

GPC, a test datum which lies far away from the training data (in kernel space) yields

a higher predictive variance and therefore a more uncertain classification. As we

have illustrated, single discriminant models like the SVM function similarly, but one

failing is that distance is only measured orthogonal to the decision plane, and that

distance along the decision plane is not taken into account. But can we guarantee

that new, unseen classes will be far away from our training data? We believe not.

When using non-linear kernels, we expect that the kernel has found a warping of the

feature space which adequately separates the two classes of training data, and that

new, unseen classes will be sufficiently disparate from the training data in kernel

space to yield an uncertain classification, but the latter is not guaranteed. Owing

to the opaque nature of the kernel mapping, we cannot assume that points which

94

5.7 Uncertainty in Detection

are desirably far apart in feature space will also be distant in kernel space.

It is also possible to be limited by the choice of feature with which to represent

the data. We must also choose features which allow the distinction not only between

the classes but which adequately represent the variations within them. Introspection

would lead to a classifier which exhibits higher uncertainty in classification if the

features are too rudimentary to make accurate decisions.

5.7 Uncertainty in Detection

In this section we examine the uncertainties of the classifiers when used in the

context of image-based object detection leading to a decision. Specifically, we plot

the uncertainties for each of the four possible decision outcomes: true positives, true

negatives, false positives, and false negatives.

In both the synthetic and real experiments in Section 5.6 we deal with classifi-

cation problems in which there are two distinct classes, and then we test on a third

unseen class. The detection case is arguably more commonplace, in which a single

class is separated from a broad (in terms of intra-class variation) background class.

Here, the concept of a previously unseen class does not exist explicitly: the inherent

assumption is that the data representing the background class capture any non-class

object likely to be encountered. In practice this is rarely true, leading to a significant

number of novel instances which often result in misclassification. While it could be

argued that this issue can be ameliorated by increasing the size of the dataset used

for training, we propose that the complexity of the feature space encountered dur-

ing persistent, long-term autonomy will keep perplexing even the most expansively

trained classifiers. This implies that it is reasonable to generalise from results on

modestly sized data sets to what we might refer to as ‘big data’ [Murphy, 2012]. Our

approach to introspection is grounded in the fact that the often cited assumption of

95

5.7 Uncertainty in Detection

independent and identically distributed training and test data is routinely violated

in robotics, because many ‘rare’ instances will be seen during testing that were not

present during training.

We investigate the same classification frameworks as before on various detection

tasks, which each have a salient positive class and a broad background class. We

evaluate the classifiers on three data sets: TLR (traffic lights), Daimler Pedestrian,

and KITTI (cars), as detailed in Chapter 3.

Number of data

As with the classification task, we first verify the efficacy of the features selected and

the training procedures employed. Table 5.3 shows the classification performance

for classifiers trained using the number of data shown in Table 3.3. We have chosen

these quantities of data for several reasons.

Firstly, we are trying to highlight low-probability catastrophic events, which will

be few in number for the size of the test sets we are considering here, but over the

life-long autonomy we envisage for our robots will occur in non-negligible numbers;

larger training sets reduce the prevalence of these low-probability events, but will

never be able to eliminate them because of the aforementioned long tail characteristic

of data sets.

Secondly, we are using off-the-shelf implementations of commonly-used classifica-

tion frameworks to keep the comparisons relevant for the average user, and some of

these (namely the GPC implementations) struggle to train successfully when using

many (approximately 1000 or more) data with the numbers of feature dimensions we

are considering here (shown in Table 3.1). In order to keep the numbers of training

data below this while maintaining a reasonable number of positive examples, the

training data are in the ratio 1:2 of positives to negatives.

The ratio of positive to negative data can vary wildly from application to appli-

96

5.7 Uncertainty in Detection

cation. A very simple perception pipeline might use a sliding-window detector over

an entire image, which may yield 0 to 100 positives to approximately 105 negatives.

However, due to the fact that even the state of the art classifiers would make many

false positive detections with this pipeline, it is common to use 3D information or

prior maps to greatly reduce the portion of the image that needs to be searched

[Enzweiler et al., 2012, Fairfield and Urmson, 2011]. Benenson et al. [2011] do this

by creating a ‘stixel world’ directly from a stereo image, reducing the number of

test windows in an image to 650. Barnes et al. [2015] use 3D ‘scene priors’ in which

traffic lights have been labelled in order to predict where they will appear in images

as the car revisits the same area. This prediction returns a confidence ellipse on the

pixel location of the traffic light based on the accuracy of the vehicle’s localisation

within the prior map. This ellipse greatly reduces the search area for the traffic

light. Gerónimo et al. [2010] reduce the number of test windows to around 2000

by computing a rudimentary depth image of the road using a stereo camera. Kalal

et al. [2012] reject test windows with a small grey-value variance, eliminating “more

than 50% of non-object patches (e.g. sky, street)”.

Taking into account the plausibility of reducing the number of test windows in

each image, we choose the sizes in the test sets to roughly contain a 1:10 ratio of

positives to negatives.

Experimental set up

In the following experiment we train each of the classifiers on the same random

subset of the training data, and test them on the same random subset of the test

data. If the data set is a contiguous collection of frames, the overlap between the

training and test sets is minimised by using the first N frames for training and

the rest for testing, where no same positive instance is common to both. From

the data sets which provide full images (TLR and KITTI), we extract a number of

97

5.7 Uncertainty in Detection

random well-cropped positive instances, and a number of random negative instances

at various scales such that there is never more than a 50% overlap with a positive

window. The DP data set is available already cropped, so no further processing is

required. Note that the KITTI data set contains a great many occluded and blurry

positive examples in the ground truth, and so we expect that this data set will be

the most challenging for the classifiers.

Having extracted the positive and negative training and test instances, we train

each classifier on the training set. Each classifier then gives a probability of each test

instance belonging to the positive class. We then calculate the normalised entropy

for each probability using (5.1).

We wish to examine ‘rare’ classifier errors, and thus we use well cropped windows

rather than performing sliding window detection over frames in order to avoid the

need for any non-maximal suppression techniques. These techniques can use the

relative strength of some well-classified overlapping windows (at various scales) to

overcome a poorly-classified window in the same region. We are adamant that we

must examine each possible test example individually in order to measure the effects

of the varying levels of introspection that the classifiers exhibit. We carry out this

process 20 times per data set, thus varying the exact training and test data each

time.

Results

Figure 5.9 shows the corresponding precision-recall curves for the classifiers across

the data sets. The detection task, having a varied background class and generally

greater variation within the positive class, is more challenging than the classification

task. Whereas in the classification setting the two distinct classes are likely to be

more grouped in feature space, in the detection setting the broad background class

is likely to be much more spread over the feature space than the positive class.

98

5.7 Uncertainty in Detection

TLR DP KITTI
Classifier P R F1 P R F1 P R F1

IVM 0.995 0.916 0.954 0.953 0.872 0.911 0.868 0.725 0.790
Non-lin. GPC 0.992 0.912 0.950 0.956 0.874 0.913 0.853 0.735 0.790
Linear GPC 0.988 0.899 0.941 0.956 0.875 0.914 0.816 0.708 0.758
Non-lin. SVM 0.996 0.920 0.956 0.959 0.869 0.912 0.836 0.749 0.790
Linear SVM 0.967 0.910 0.938 0.932 0.876 0.903 0.813 0.709 0.757
LogitBoost 0.978 0.908 0.942 0.961 0.794 0.869 0.826 0.681 0.747
Random F. 1.000 0.897 0.946 0.984 0.598 0.744 0.894 0.551 0.682

Table 5.3: The classifiers’ performances for the detection tasks across data sets ac-
cording to conventional metrics. Precision, recall, and F-measure are calculated by
thresholding the classifiers’ probabilities at 0.5. The SVMs and GPCs give very sim-
ilar results across the data sets, with the LogitBoost and random forest performing
slightly worse than the others with the more difficult data sets.

That said, classification performance according to the conventional metrics is still

commensurate across all frameworks. According to Figure 5.9, the random forest

performs best for the TLR data set, and the non-linear SVM and IVM perform

consistently highly in the Daimler Pedestrian and KITTI data sets. The GPC-based

classifiers all have commensurate performance in terms of precision and recall.

In Figures 5.10, 5.11, and 5.12 we show the frequency of each potential outcome

(true positive, true negative, false positive, and false negative), specifically how

many of each occurs below a certain threshold of uncertainty. In other words, we

show the number of each outcome when examining decisions made with up to a

certain level of confidence. There is one figure per data set.

The intuition here is that if we have an additional safe action such as waiting and

gathering more data (e.g. [Velez et al., 2011]) or asking a human for guidance, we

might use it for all test data that the robot perceives to be above a certain threshold

of uncertainty [Lewis and Gale, 1994]. In that case, we are looking at how many

correct and incorrect classifications (and therefore decisions) the robot considered

safe.

It is desirable for a classifier to be close to the top left hand corner of the

99

5.7 Uncertainty in Detection

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forest

(a) TLR

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forest

(b) DP

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forest

(c) KITTI

Figure 5.9: Precision-recall curves for the three data sets. Note the increasing
difficulty of the data sets, and the consistency and commensurate nature of the
classifiers in terms of these metrics. In general we can see that the non-linear
classifiers tend to perform better than the linear classifiers. (Best viewed in colour.)

100

5.7 Uncertainty in Detection

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

200

400

600

800

1000

T
ru

e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(a)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

2000

4000

6000

8000

T
ru

e
 N

e
g

a
ti
v
e

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(b)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

20

40

60

80

F
a
ls

e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(c)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

50

100

150

200
F

a
ls

e
 N

e
g

a
ti
v
e

s
IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(d)

Figure 5.10: TLR: Cumulative frequency plots of classification confusion (true posi-
tives, true negatives, false positives, and false negatives) against classification uncer-
tainty. The classifiers have been trained on 250 traffic lights against 500 background
patches, and tested on 1,000 instances of traffic lights and 8,000 background patches.
A more introspective classifier is one that simultaneously exhibits higher uncertainty
when processing difficult instances (bottom right corner for false positives and neg-
atives) and is more confident when it is correct (top left corner for true positives
and negatives). Consequently, class decisions above a given uncertainty threshold
are deferred since the output is deemed ambiguous. This is desirable since a single
bad decision can have disastrous consequences. Note that of the linear classifiers,
the GP and the random forest are most uncertain when they make mistakes, and
thus more introspective than the linear SVM and LogitBoost classifiers. Of the non-
linear classifiers, the SVM is more confident when making false negative errors than
the GPC-variants. The error bars indicate the standard error over 20 independent
runs. (Best viewed in colour.)

101

5.7 Uncertainty in Detection

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

500

1000

1500

2000

T
ru

e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(a)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

5000

10000

15000

T
ru

e
 N

e
g

a
ti
v
e

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(b)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

100

200

300

400

F
a

ls
e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(c)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

200

400

600

800

F
a
ls

e
 N

e
g

a
ti
v
e

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(d)

Figure 5.11: DP: Cumulative frequency plots of classification confusion (true pos-
itives, true negatives, false positives, and false negatives) against classification un-
certainty. The classifiers are trained on 250 and 500 instances of pedestrians and
background respectively, and are tested on 2,000 and 16,000 of those classes. See the
caption for Figure 5.10 for more detail. Note that the multi-discriminant classifiers
(IVM, both GPCs, and the random forest) are more uncertain when they make mis-
takes than the single-discriminant classifiers. The error bars indicate the standard
error over 20 independent runs. (Best viewed in colour.)

102

5.7 Uncertainty in Detection

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

200

400

600

800

1000

T
ru

e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(a)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

2000

4000

6000

8000

10000

T
ru

e
 N

e
g

a
ti
v
e

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(b)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

100

200

300

400

500

600

F
a
ls

e
 P

o
s
it
iv

e
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(c)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

50

100

150

200

250

300

350

F
a

ls
e
 N

e
g

a
ti
v
e

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(d)

Figure 5.12: KITTI: Cumulative frequency plots of classification confusion (true pos-
itives, true negatives, false positives, and false negatives) against normalised entropy
(uncertainty). The classifiers are trained on 200 and 500 instances of pedestrians
and background respectively, and are tested on 2,000 and 5,000 of those classes. See
the caption for Figure 5.10 for more detail. Note that on this particularly difficult
data set, the difference between the classifiers is smaller than in Figures 5.10 and
5.11, although the LogitBoost is consistently confident in all graphs, and the random
forest is consistently uncertain. The error bars indicate the standard error over 20
independent runs. (Best viewed in colour.)

103

5.7 Uncertainty in Detection

graphs pertaining to true classifications (top row) and close to the bottom right of

the graphs pertaining to false classifications (bottom row). This would correspond

to making true classifications with low uncertainty (high confidence) and making

incorrect decisions with high uncertainty. That in turn would allow us to correlate

confidence with correctness.

Note that test points with a high classification uncertainty are not misclassified,

but rather marked such that some other remedial action might be taken, for example

obtaining label confirmation from a human or gathering otherwise additional data

to aid disambiguation (e.g. Rosenthal et al. [2011]). This will indeed be a key

component of our experiments in Chapter 6.

Examining first the true decisions (the top row of each figure), we notice that

the single-discriminant classifiers are consistently more confident than the multi-

discriminant classifiers. The LogitBoost is often the most confident, and the ran-

dom forests are always the least confident by a large margin. In our desire to

correlate confidence with correctness, we might initially consider this a strength of

single-discriminant classifiers. However, we propose that the overall classification

confidence of the classifier over the test set should reflect the difficulty of the prob-

lem. Introspection in robotics should, however, always focus on making mistakes

with high uncertainty. The ability to disambiguate correct and incorrect decisions

based on uncertainty is what leads to excellence in decision-making, but an intro-

spective classifier applied to a difficult problem could be reasonably uncertain about

most of its decisions.

Examining the false or incorrectly-made decisions (the bottom row of each fig-

ure), we see that for every data set, the non-linear GPCs are slightly more uncertain

than the non-linear SVM, and equally the linear GPC is more uncertain than the

linear SVM. Uncertainty in making errors is crucial in terms of introspection. De-

spite the differences being consistent, they are not large in magnitude. Secondly, in

104

5.7 Uncertainty in Detection

the TLR data set the kernel appears to play a role, with the linear-kernel classifiers

being less uncertain than the non-linear kernel classifiers. This is not true for DP

and KITTI data sets, where all the GPC-based classifiers are more uncertain than

the SVMs regardless of the kernel used. Thirdly, the LogitBoost is always most

confident, and the random forest is always least confident. This is consistent with

the correctly made decisions.

From the PR curves in Figure 5.9, the difficulties of the data sets clearly vary,

with TLR being the easiest, followed by Daimler Pedestrian data set, and then

KITTI being the most challenging. This is likely to be a result of the variation

within the positive class paired with the modest number of positive exemplars in

the training set (see Table 3.3). Ideally an introspective classifier would express a

higher overall level of uncertainty for more difficult data sets. None of the classifiers

seem to exhibit this behaviour.

We can compare these behaviours to those of the idealised classifiers described in

Chapter 4. The equivalent plots are shown in Figure 5.13. Notice that the classifiers

are tightly grouped in the true decisions, but exhibit much greater variation for the

false decisions. This reinforces the idea that introspection is most concerned with

uncertainty in incorrectly-made decisions. However, the top hat classifier is indeed

the one which best allow us to relate confidence with correctness, by being the most

confident for the true decisions and the least confident for the false decisions.

Comparing first the profiles of the bottom row of curves between Figure 5.13 and

Figures 5.10, 5.11, and 5.12, we see that most real classifiers lie between the top hat

and the uniform idealised classifiers. This supports our choice of idealised classifiers,

with the LogitBoost and linear SVM demonstrating comparable introspection to the

uniform classifier, which does not correlate confidence with correctness.

Examining the correct decisions, we see that the idealised classifiers are typically

much more uncertain than the real classifiers (with the exception of the random for-

105

5.8 Conclusions

est). This discrepancy lies in the difference between f(z) for our idealised classifiers

(which is the uniform distribution) and the empirical density functions of our real

classifiers, examples of which are shown in Figures D.1 and D.2. There we see that

the empirical f(z) is a heavily bimodal distribution around z ≈ 0 and z ≈ 1 for

all classifiers save the random forest. The empirical distribution functions for the

random forests resembles bell-shaped distributions which are much closer to z = 0.5

than the other classifiers. In order to reflect this tendency, to change f(z) of our

idealised classifiers to a bimodal distribution we could make the functions f1(z) and

f2(z) more peaked, and decrease the mass near z = 0.5. This could also change the

error profiles.

5.8 Conclusions

In this chapter we have introduced the idea that introspection could be achieved via

an appropriate treatment of distance in feature space. We have examined a number

of common classification frameworks, making predictions about how introspective

they are likely to be based on their treatment of distance. In order to examine the

effects of distance on non-stationary data, we have trained and tested those classifiers

on synthetic data, exploring the effects of non-stationarity between the training and

test distributions, the feature dimensionality, and the number of training data. From

these experiments we deduce that the multi-discriminant classifiers are generally

more uncertain in the face of unseen classes. We note that this is most visible when

the dimensionality of the data is greater than 32 in our experiments with synthetic

data.

We confirmed that these observations are also shown for the third-class exper-

iments with real data for the GTSRB data set. The multi-discriminant classifiers

tend to be more uncertain than the single-discriminant classifiers, and dimensional-

106

5.8 Conclusions

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

2000

4000

6000

8000

T
ru

e
 P

o
s
it
iv

e
s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(a)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

5000

10000

15000

T
ru

e
 N

e
g

a
ti
v
e

s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(b)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

1000

2000

3000

4000

F
a
ls

e
 P

o
s
it
iv

e
s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(c)

0 0.2 0.4 0.6 0.8 1
Uncertainty

0

500

1000

1500

2000

F
a

ls
e
 N

e
g

a
ti
v
e

s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

(d)

Figure 5.13: Idealised classifiers: cumulative frequency plots of classification con-
fusion (true positives, true negatives, false positives, and false negatives) against
classification uncertainty. A more introspective classifier is one that simultaneously
exhibits higher uncertainty when processing difficult instances (bottom right corner
for false positives and negatives) and is more confident when it is correct (top left
corner for true positives and negatives). Consequently, class decisions above a given
uncertainty threshold are deferred since the output is deemed ambiguous. This is
desirable since a single bad decision can have disastrous consequences. For each run,
the classifiers generated 8,000 measurements from the positive class and 16,000 from
the negative class. The error bars indicate the standard error over 20 independent
runs. (Best viewed in colour.)

107

5.8 Conclusions

ity plays an important part.

In the detection experiment we have confirmed that indeed the multi-discriminant

classifiers tend to be more uncertain than the single-discriminant classifiers in terms

of incorrect decisions, as the third-class experiments suggested. However, more gen-

erally we can say that the multi-discriminant classifiers tend to be more uncertain

about all decisions, true and false alike. We consider the uncertainty of incorrect

decisions to be of paramount importance, but a simultaneous confidence in correct

decisions is what allows us to reduce p(e) (see (4.3)). Thus, we conclude that the

multi-discriminant classifiers do exhibit a greater introspective capability, but the

difference is not overwhelming so far.

We have investigated a variety of applications, feature types, class types and

quantities, as well as the nuances between classification and detection. This is

because it is not always possible to determine the introspective quality of a clas-

sification framework based on a single classifier and test set. Can we say whether

a classifier which is uncertain about all decisions (like the random forest) is intro-

spective or not? We suggest that it is perhaps introspective, but certainly not as

useful as one which can also make correct classifications confidently. The overall

uncertainty should reflect the difficulty of the data set. We have not seen evidence

of this behaviour from any of our real classifiers.

In the next chapter, we apply the real classifiers to two decision-making scenarios.

In the first scenario we examine the most uncertain classifications for each classifier,

and apply some of them to active learning, where a human oracle labels some data

chosen by the classifier. In the second scenario we examine the decisions made as

a result of each classifier’s most confident classifications. We apply large costs to

particular outcomes and calculate the total cost of the decisions for each.

108

Chapter 6

Introspection in Decision Making

In Chapter 5 we investigated the ability of a number of real classification algorithms

to correlate correctness with confidence. In this chapter we apply those classifiers

to two decision-making scenarios, benchmarking their performance against the ide-

alised classifiers motivated in Chapter 4.

The two decision-making scenarios we investigate represent the two ends of the

uncertainty spectrum. The first is active learning, where the ideal behaviour will

require mistakes to be made with high uncertainty. The second is decision making

under large costs, where the ideal behaviour requires the most confident classifica-

tions to be made correctly.

In Section 6.2 we apply two classifiers to active learning. We allow the classifiers

to choose a number of high-uncertainty queries from an unlabelled test set. These

points are relabelled and added to the original training set. We attempt to determine

which of the two classifiers chooses the best queries in terms of F-measure.

In Section 6.3 we examine the real classifiers’ abilities to make decisions which

risk incurring large losses, for instance the cost of a collision with a car or person.

We illustrate the importance of introspection via the performance of the idealised

classifiers, and in so doing, show the dissatisfactory nature of the real classifiers.

109

6.1 Making Errors with Uncertainty

No real classifiers avoid costly errors in all data sets. We conclude the chapter by

discussing the wider ramifications of introspection in robot decision making, and

what can affect the introspective properties of these classifiers.

6.1 Making Errors with Uncertainty

Part of our requirement for introspection, correlating confidence with correctness, is

to make errors with high uncertainty (see Section 4.1). In this section we show the

extent to which this is true for our real classifiers.

In Figure 6.1 we examine the proportion of a classifier’s errors which are made

with high uncertainty by examining its error function, of which two examples are

shown in Figure 6.1a. To do this we show the integral of the error function from

0.5−w to 0.5 +w (where w is the half-length of the orange window shown in Figure

6.1b). This window can be thought of as an uncertainty window. We show the shape

induced by a more introspective classifier in blue, and a less introspective classifier

in dashed purple in Figure 6.1c. A classifier which makes its mistakes with high

uncertainty will induce a curve which is close to the top-left of the figure. We will

plot this integral for both the idealised classifiers and the real classifiers from their

empirical distribution functions, clearly showing the variations between similar error

functions.

Applying this to our real classifiers in Figure 6.2, we see the proportion of errors

made as we increase the window half-length in Figure 6.1c. Note that this is a

combination and re-parameterisation of the bottom rows of Figures 5.10, 5.11, and

5.12. This re-parameterisation amplifies the density of errors in the most uncertain

classifications. Another crucial difference between these representations of the data

is that Figure 6.2 is scaled to show the proportion of the total number of errors for

that classifier, and so no benefit is shown for a classifier which makes fewer errors

110

6.1 Making Errors with Uncertainty

Window half-length
0 0.5%

er
ro

rs
co

n
ta

in
ed 100

0 1
p(C2)

Window half-length
0 0.5%

er
ro

rs
co

n
ta

in
ed 100

p
(m

is
ta

ke
)

0 1
p(C2)

p
(e

rr
o
r|z

)

(a)

Window half-length

0 1
p(C2)

p
(e

rr
o
r|z

)

(b)

Window half-length
0 0.5%

er
ro

rs
co

n
ta

in
ed 100

p
(m

is
ta

ke
)

0 1
p(C2)

Window half-length
0 0.5%

er
ro

rs
co

n
ta

in
ed 100

p
(m

is
ta

ke
)

0 1
p(C2)

(c)

Figure 6.1: (a) A more introspective classifier (blue) will make most of its errors
with high uncertainty, when p(C2) is near 0.5. Less introspective classifiers (dashed
purple) will make errors with low uncertainty. (b) As we grow the orange window
outward from the centre, we can calculate how many errors are contained for a
particular distribution in (a). (c) We show the result of plotting the number of
errors contained as we grow the orange window for the two idealised classifiers
in (a). The blue (more introspective) classifier catches more errors when the box
is small than for the dashed purple (less introspective) classifier. It also reaches
steady-state because there are very few errors around p(C2) = 0 and p(C2) = 1,
where the classifier is confident.

overall, it only shows the distribution of those errors over z.

First, we confirm that the random forest is much more uncertain than the other

classifiers when it makes mistakes. Secondly, we confirm that the GPC-based classi-

fiers outperform the SVMs and LogitBoost when it comes to being uncertain when

they make mistakes. The KITTI data set, however, appears to be most difficult for

the GPC-based classifiers.

In Figure 6.2d we show the same process as applied to our idealised classifiers.

As we expect, the more introspective classifiers make more mistakes with high un-

certainty, and so have a steeper initial gradient. They have been designed with this

situation in mind, by making mistakes with high uncertainty.

The real classifiers range from being similar to the under-confident idealised

classifier (in the case of the random forest) to being slightly worse than the uniform

idealised classifier (for the LogitBoost, and occasionally the SVMs). The GPC-

based classifiers are close to the overconfident idealised classifier for the TLR and

DP data sets, and close to uniform for the more difficult KITTI data set. All the

111

6.1 Making Errors with Uncertainty

0 0.1 0.2 0.3 0.4 0.5
Error window half-length

0

10

20

30

40

50

60

70

80

90

100

%
 e

rr
o

rs
 c

o
n

ta
in

e
d

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(a) TLR

0 0.1 0.2 0.3 0.4 0.5
Error window half-length

0

10

20

30

40

50

60

70

80

90

100

%
 e

rr
o

rs
 c

o
n

ta
in

e
d

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(b) DP

0 0.1 0.2 0.3 0.4 0.5
Error window half-length

0

10

20

30

40

50

60

70

80

90

100

%
 e

rr
o

rs
 c

o
n

ta
in

e
d

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(c) KITTI

0 0.1 0.2 0.3 0.4 0.5
Error window half-length

0

10

20

30

40

50

60

70

80

90

100

%
 e

rr
o

rs
 c

o
n

ta
in

e
d

uniform
overconfident
triangle
underconfident
top hat
reverse

(d) Idealised classifiers

Figure 6.2: We show the proportion of errors made by a classifier contained within
a region around p(C2) = 0.5. The horizontal axis shows the size of that region, the
orange window as described in Figure 6.1. To generate these curves, we randomly
sample 1,000 positive and 1,000 negative test data and count the number of errors
within a certain window. Note that a classifier which is uncertain when it makes
mistakes will be closer to the top left of each plot. Benchmarking the real classifiers
against the idealised classifiers, we see that generally they lie within the range of
under-confident to slightly worse than uniform. We show the mean and standard
error over 20 independent runs.

112

6.2 Active Learning

classifiers seem to perform least introspectively on the KITTI data set, exhibiting

overconfidence when making errors. The KITTI data set is the most challenging

by the traditional metrics, but ideally this would lead to an increase in overall

uncertainty rather than overconfidence in errors as we see here.

Making mistakes with high uncertainty is crucial for active learning. Next we

investigate the behaviours of two of our real classifiers on an active learning task.

6.2 Active Learning

In this section we concern ourselves with the classifications made with high uncer-

tainty. An introspective classifier, which correlates truth with confidence, should

harbour its potential errors in areas of high uncertainty. Therefore, we expect that

if we label the test points in those high uncertainty areas and retrain the classifier,

its performance should improve. This is the idea behind active learning: allow a

classifier to choose some queries which are then labelled by a human (or algorithmic

oracle) and fed back into the learner [Cohn et al., 1996]. In this section we are in-

terested in uncertainty sampling, where the classifier chooses queries with maximum

classification uncertainty.

Given our findings in Section 6.1, we would expect that the classifiers with more

errors contained in the windows with smaller half-lengths will do better. However,

it is important to note that if all classifications are made with high uncertainty,

thresholding on uncertainty alone might catch many errors but also many true de-

tections. The value of labelling true detections is expected to be less than labelling

errors. Therefore, a classifier must correlate correctness with confidence in order to

gain the most from the procedure.

Whereas in the later sections of this chapter there will be one action corre-

sponding to each of the two classes that a datum may belong to, here we explicitly

113

6.2 Active Learning

introduce a third action: help. This help action is the classifier’s declaration that,

given its training data and resulting model, it is not qualified to take appropriate

action on its own. Having humans label data sets is the status quo in fields such as

semantic mapping (see Chapter 2), but it is an expensive task. Human operators

may not be able to determine which subset of an unlabelled body of test data will

be the most beneficial for a classifier if labelled, so we hope that by allowing the

classifier to choose, fewer data need to be labelled for equal classification perfor-

mance. The expectation for us, therefore, is that an enhanced introspective quality

will allow a classifier to accurately discern which test data will be most useful, and

thus have a larger performance boost relative to a non-introspective classifier.

The power of an active learning framework lies in its ability to select a suitable

training set in an application-oriented way. It thus should inherently allow the

system to adapt naturally to the non-stationarity of the data often encountered

in long-term robotics applications, if the non-stationarity of the data reflects in a

higher level of classification uncertainty.

After a literature review in Section 6.2.1, we test the relative increase in value

of two classifiers, the IVM and non-linear SVM, based on test points they consider

to be the most uncertain. We choose these classifiers because they represent both

single and multi-discriminant classification frameworks, and are the best-calibrated

of those considered in this thesis. The random forest is too uncertain to be discerning

in active learning, and LogitBoost is too confident and would never select any points.

Using the original training set together with each classifier’s (different) selection of

now-labelled points, we retrain both classifiers on both augmented training sets

and examine their performances. We call this the cross-over experiment, and it is

described in more detail in Section 6.2.2.

114

6.2 Active Learning

6.2.1 Related Works

A variety of methods have been proposed for data selection on the basis of infor-

mation. One method is to consider disagreement within a committee of classifiers

[Freund et al., 1997] as a criterion for active data selection. A similar approach

has been applied to text classification [McCallum and Nigam, 1998]. More recently,

Joshi et al. [2009] address multi-class image classification using SVMs and propose

criteria based on entropy and best-versus-second-best (BvSB) measures (see Section

5.2) based on closeness to a hyperplane for determining uncertain points. Similarly

to the work reported in this section, an active learning system using a GPC has been

used for object categorisation, using the posterior mean and variance to estimate

the test uncertainties. Those with the highest uncertainties are labelled and added

to the training set [Kapoor et al., 2010].

More specific to robotics, active learning and directed information acquisition

has received attention in recognition, planning and mapping tasks. Dima et al.

[2004] aim to reduce the number of labelled training examples for outdoor terrain

classification through the use of a kernel density estimator. The unlabelled data are

sorted according to how ‘surprising’ they appear given the estimator, and the most

surprising are hand-labelled and added to the training data. Verbal human-robot

interaction is also a topic for active learning. Tellex et al. [2013] show that a robot

can improve its understanding of the world based on confusing natural language

utterance by using an information-theoretic approach to asking a specific question

which resolves the confusion, using the new information to better understand the

state of the world.

This section is based largely upon [Triebel et al., 2013], which applied active

learning to a semantic mapping task. A characteristic of this work is that it intro-

duced and demonstrated the benefits of introspective active learning. Note that the

related work of Kapoor et al. [2010] also uses an inherently introspective classifier,

115

6.2 Active Learning

but its use is not explicitly motivated by its quality of introspection.

Next, we describe the active learning cross-over experiment we use to determine

the value of the query selection for two classifiers.

6.2.2 The Cross-Over Experiment

We are investigating whether the use of a more introspective classifier leads to more

informative questions being asked of the human expert. The information gain from

retraining with a particular set of labelled questions can be expected to improve

subsequent classification performance. In order to test this expectation we perform

a cross-over experiment (see Figure 6.3 for a visual description) which starts by

training an IVM and a non-linear SVM on the same data, 200 positive examples

and 200 negative background examples. Then, 1,000 new data (with a class balance

of 1:1, the same as during training) are shown to both classifiers for testing. For each

classifier, the test examples with an uncertainty over 0.99 are manually labelled, up

to a maximum of 50 examples. We do this to give each classifier the opportunity

to express how many points are needed. In a scenario where classification is trivial,

the classifiers might require no additional points. Because the classifiers can choose

different examples, we form two new training sets: the ‘IVM set’ and the ‘SVM set’,

which comprise the original training points together with that classifier’s choice of

manually labelled test examples. A new IVM and SVM are now trained on each of

the two new training sets and evaluated on a further 1,000 new data points. This

process thus gives rise to four classifiers: two IVMs trained on data selected by an

IVM and a SVM respectively, and two equivalent SVMs. We compute the F-measure

for all four classifiers (see Section 3.7). Then we must compare the two final IVMs

against each other, the only difference between them being which queries were used

for their training, and equally for the two final SVMs.

In Section 6.1 we found that neither the IVM nor the non-linear SVM make all

116

6.2 Active Learning

their mistakes with high uncertainty, although the IVM is superior in this regard.

We therefore suspect a slightly larger increase in performance for classifiers trained

on the IVM set than on the SVM set.

The results for each data set after 80 repetitions of this experiment are shown

in Figures 6.4. As expected, if you consider the two final IVMs, the one trained on

the IVM set performs better than the one trained on the SVM set. This, perhaps,

is to be expected, but the same is true for the SVM: the final SVM trained on the

IVM set performs better than the final SVM trained on the SVM set. In all three

data sets, this increase is statistically significant to the 99% level, following a 1-sided

paired t-test.

The uncertainty (normalised entropy) threshold of 0.99 means that we only re-

label test points for which the scores 0.4412 < z < 0.5588, which can be validated

by visual inspection of Figure 5.1. This equates to a window half-length of 0.0588,

indicating that we are only catching the errors in the very left-most region of Figure

6.2.

Although the increases are consistent, they are small. They are also in keeping

with the fact that high-uncertainty behaviour of the IVM and SVM are most similar

for the KITTI data set, and more distant in the other two.

In the next section we discuss the implications of these findings.

6.2.3 Discussion

Using the linear SVM as an example, the points with highest uncertainty will be

those closest to the decision boundary, as shown in Figure B.1e. If we consider this

SVM trained on linearly-inseparable data (see Figure B.2e), there are likely to be

many points around the decision boundary, and we note that the position of that

boundary is influenced by the amount of error incurred by the points in the soft

margin. A test point lying on the boundary itself will yield a maximum uncertainty,

117

6.2 Active Learning

Training data

IVM SVM

Test data #1

Augmented
training data

IVM SVM IVM SVM

Test data #2

Augmented
training data

Ask questionsAsk questions

Figure 6.3: Here we show the procedure for the cross-over experiment, designed to
test whether one classifier chooses points which do not only benefit itself in the next
round, but are consistently more useful for the other type of classifier as well. We
compare an IVM and an SVM, and choose the test points with highest normalised
entropy to be labelled to augment the original training set.

118

6.2 Active Learning

IV
M

, I
V
M

 S
V
M

, I
V
M

IV
M

,
S
V
M

 S
V
M

,
S
V
M

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

F
-m

e
a
s
u
re

(a) TLR

IV
M

, I
V
M

 S
V
M

, I
V
M

IV
M

,
S
V
M

 S
V
M

,
S
V
M

0.92

0.93

0.94

0.95

0.96

0.97

F
-m

e
a
s
u
re

(b) DP

IV
M

, I
V
M

 S
V
M

, I
V
M

IV
M

,
S
V
M

 S
V
M

,
S
V
M

0.88

0.89

0.9

0.91

0.92

0.93

0.94

F
-m

e
a
s
u
re

(c) KITTI

Figure 6.4: Data selected by the IVM lead to an improved learning rate in terms of
F-measure for both an IVM and SVM over those selected by the SVM. The x-axis
labels indicate which of the four classifiers from Figure 6.3 we are showing: ‘IVM,
SVM’ indicates an SVM trained on the data set augmented by queries from the IVM.
The box shows the interquartile range, the red line is the median, the whiskers show
the range, and the red crosses are outliers as determined by their distance from the
interquartile range. Here we show that classifiers trained on the IVM set (IVM, *)
perform better than those trained on the SVM set (SVM, *). Results are shown for
80 experimental runs, and increases are significant to the 99% level.

119

6.2 Active Learning

but adding that training label will not incur a large misclassification error, and thus

is unlikely to provoke a significant change in the position of the boundary upon

retraining. The greatest change would be effected by a heavily mis-classified point,

incurring a large training error. This is the aim of hard negative mining [Dalal

and Triggs, 2005], but requires a labelled test set. In the case of a linear decision

boundary such as the SVM, this unlabelled but misclassified test point would be

labelled with confidence, and thus not chosen by the active learning algorithm.

Therein lies the strength of an introspective classifier: the misclassified point far

from the decision boundary has a chance of being labelled with high uncertainty

if it lies far from any training data, and thus it may be chosen as a query and

significantly affect the position of the decision boundary. However, it is also desirable

for points close to the decision boundary to be classified with high uncertainty, so

ideally we seek a manner to distinguish between the two: one point close to the

decision boundary, and another far away from both the decision boundary and any

training data. We propose that perhaps the latter is preferable when dealing with

active learning queries. It is possible that the use of the GPC’s posterior mean

and variance could be used to distinguish between the two. Uncertainty alone will

not permit this distinction. We suggest that this is another strength of multi-

discriminant classifiers, which are able to provide a predictive variance. This is a

promising avenue for further research.

One issue with uncertainty sampling is that it is myopic, that is, in each itera-

tion we select the k most uncertain test data without considering their information

content relative to each other. They may be very similar, in which case selecting

different data may be more informative. There exist non-myopic solutions, such as

GLASSES [González et al., 2016], which approximates what is called the ‘look-ahead

loss function’, which might allow us to select k points offer the most information

gain as a collective.

120

6.3 Decision Making with Costs

Classifiers with different models will not necessarily benefit equally from the same

queries, and that benefit is difficult to predict. We have noticed that the non-linear

SVM tends to have a slight class bias in terms of its probability contours, even when

the training data are normally distributed with the same standard deviation. This

tendency is suggested in Figures B.1d and B.2d, where we can see that the space

far away from the data is not at exactly z = 0.5. In the case of this experiment, we

might therefore expect the IVM to query points which are far away from the training

data slightly more than the SVM. These more distant queries may contribute to the

increase in performance.

One concern is that a classifier which asks for the maximum number of queries is

likely to create a training set which benefits the classifiers by virtue of quantity and

not quality. We suggest that the desired behaviour would be to ask an appropriate

number of questions, given how generally competent the classifier is at a particular

task. We might hope for that number of questions to decrease as the size of the

initial training set increases. This is another avenue for further work.

6.3 Decision Making with Costs

In Sections 6.1 we examined one half of the introspective coin: which classifiers

made mistakes with high uncertainty, and how that can be of use. In this section

we examine the other half, that is whether the most confident classifications also

tend to be true. We do this in the context of making decisions where the costs of

particular outcomes are significantly imbalanced.

We compare the real classifiers with the idealised classifiers in a scenario similar

to the ‘robot crossing the road’ problem discussed in Chapter 4. The robot must

choose to go or wait depending on what the classifier tells it about whether the road

is clear or not. The cost of going when the path is blocked incurs a collision and with

121

6.3 Decision Making with Costs

it a large cost. The cost of waiting unnecessarily, however, incurs only a small cost.

In Section 6.3.1 we discuss the classical theory of decision making with costs. In

Section 6.3.2 we consider an alternative manner of choosing a probability-threshold,

by calibrating it given a test set. Finally we apply the classical decision making

theory to a real scenario in Section 6.3.3.

6.3.1 Bayesian Decision Theory

Autonomous robots typically have a set of actions at their disposal, with varying

degrees of appropriateness in particular situations. The difficulty lies in estimating

which action is most appropriate when there is uncertainty about the state of the

world. Following standard decision theory (e.g. LaValle [2006]), we calculate the

expected loss of performing a particular action when we have a distribution repre-

senting the likelihood for each state of the world (p(C1), p(C2), . . . , p(C|C|)), defined

as:

E[L(a)] =

|C|∑

i=1

L(a, Ci)p(Ci), (6.1)

where L(a, Ci) is the cost or loss associated with each potential outcome. We then

choose to perform the action a which minimises this expected loss. There are many

ways in which to choose the values of the loss function L(a, Ci). A user might

estimate the financial or time cost or the effort involved, or the utility to a patient

[Pauker and Kassirer, 1980], and use those values. A user might prefer to limit a

particular outcome to occurring, say, once every N tests.

In robotics it is common to use a classifier to estimate the likelihood of the

state of the world (p(C1), p(C2), . . . , p(C|C|)). As we have established earlier in this

chapter, many of the classifiers considered in this thesis are overconfident, and thus

provide uncertainty estimates of varying quality. The question we wish to answer

is: which classifiers give estimates which allow us to make decisions which capture

122

6.3 Decision Making with Costs

the priorities imposed by our loss function?

For our classical decision-making experiments we revisit the ‘robot crossing the

road’ problem discussed in Chapter 4. To summarise, there are two states the world

can be in: either there is an object in the way (C2, e.g. a pedestrian, car, or traffic

light), or there is not (C1). There are also two available actions a ∈ {wait, go}. We

wish our robot to wait if there is an object in its path, or go if the way is clear.

In the case of autonomous driving it is sensible to associate a very high cost to

performing the go action when there is in fact an object in the way (C2), resulting

in a collision, and a lesser cost to performing the action wait when the path is clear

(C1), resulting in an unnecessary delay. While inefficient, this false positive error is

more desirable than running a red light or colliding with another vehicle.

In the case of driver assistance systems (e.g. automatic emergency braking)

the costs are reversed: the loss associated with a false positive (an un-necessary

emergency stop) is very large, and a false negative (a missed opportunity to perform

an emergency stop) is a less undesirable outcome.

In Figure 6.5a we show the expected losses of the two actions when there is

equal cost associated with each type of error. We can see that the intersection

between the two lines occurs at p(C1) = p(C2) = 0.5. Therefore, by (6.1) the

robot should stop if p(C2) > 0.5 and go otherwise. As we increase the cost of a

false negative (performing the go action when there is a person, C2), the range of

detection probabilities p(C2) which result in a go action reduces, as seen in Figure

6.5b. These actions are optimal if the probabilities p(Ci) are correct, but since we

are using estimates of the probability there is no guarantee that the actions will be

optimal. Since an introspective classifier is uncertain when it makes mistakes, these

high-uncertainty errors will be close to p(C2) = 0.5. When the costs are imbalanced,

those errors will largely be subsumed by the wait action, such as in Figure 6.5b. A

less introspective classifier will make more mistakes near the extremes of z and so

123

6.3 Decision Making with Costs

Wait

Go Wait

Go

0
1

1

p(C2)

E[
L

(a
ct

io
n
)]

(a)

Go

Wait

Go Wait0
1

1

3

p(C2)

E[
L

(a
ct

io
n
)]

(b)

Figure 6.5: (a) We have set equal cost to a false positive (take the wait action when
there is, in fact, no person: C1) and the false negative (take the go action when
there is a person: C2). The expected losses E[L(a)] from the two actions meet at
p(C1) = p(C2) = 0.5, and we choose the action which minimises the expected loss.
(b) We have made the cost of a false negative three times the cost of a false positive,
which reduces the probability region for which we choose the go action. By increasing
the cost of accidentally hitting a pedestrian, we are trying to create a more cautious
system, which will take the wait action more of the time.

more of those errors will occur in the go region, resulting in a greater prevalence of

very expensive errors.

Thus, ideally, as we make the cost of a false negative much greater than that of a

false positive, our classifiers should become more and more cautious, employing the

safer wait action when the test datum is challenging, and incurring less overall cost.

Crucially, this relies upon the assumption that most of a classifier’s mistakes lie in

the middle of the probability spectrum. The top hat classifier is designed with this

in mind. The threshold T = 0.25 (which occurs when the cost of a false negative

error is 3) will result in all expensive potential false negative errors being avoided

by waiting. For all higher cost ratios, no false negative errors can occur.

It may be tempting to tune the costs in order to steer the robot towards the

‘desired’ behaviour. Instead, we perhaps ought to focus on whether the costs are

appropriate, and allow the decision theory to enact a behaviour which is true to

that cost function. This is only possible if the classifier is introspective.

124

6.3 Decision Making with Costs

6.3.2 Relating Costs to ε-bounds

By defining the loss matrix and adopting the decision-making system in Section

6.3.1, we are choosing the decision threshold T by the process illustrated in Figure

6.5. We then choose the go action for all measurements below the threshold, and wait

for those above it. As we stated in Section 6.3.1, this assumes that the measurement

is a probability of class, and therefore does not take into account the non-ideal

characteristics of a real classifier.

More pragmatically, we might instead apply a classifier to a labelled test set and

choose a threshold which results in the best decisions given the tendencies of that

particular classifier. For instance, we could determine an acceptable probability that

any decision results in, say, a false negative error. This probability is ε in Section

4.1. The threshold T is then determined by

T = F−1
2 (ε), (6.2)

where F2(z) is the empirical cumulative distribution function of z given that c = C2,

and F−1
2 (x) is its inverse. This method is, in certain situations, likely to produce

better decision-making than the classical pipeline described in Section 6.3.1. How-

ever, this perpetuates the assumption that the training and test data are stationary,

because we are choosing a threshold based on a classifier applied to a a particu-

lar test set. If that test set is not representative of future test sets, the choice of

threshold will result in the future violation of the ε-bound. Both problem-specific

and classifier-specific thresholds will result in poor decisions if the classifier is not

introspective in its ability to deal with unseen test data. As a result, in this thesis

we have chosen to focus on problem-specific thresholds, and describe the alternative

strategy here.

125

6.3 Decision Making with Costs

6.3.3 Experiments

In Section 6.3.1 we discussed the importance of the loss function L(a, Ci) and how

it shapes the decision of which action a to choose, given a distribution of the state

of the environment (p(C1), . . . , p(C|C|)). Here, we apply those principles to the clas-

sifiers we trained in Section 5.7, and examine the costs incurred, comparing them to

the idealised classifiers. The more introspective idealised classifiers, designed with

decision-making in mind (in Section 4.1), will perform well in this task.

We seek classification frameworks which allow our robots to make decisions which

are faithful to the loss function. For instance, if we make the cost associated with

a particular outcome very large, then the actions which can lead to that outcome

should be chosen more infrequently, or at least only when the classifier gives a very

confident estimate of the state of the environment. We characterise the ‘appropri-

ateness’ of a classifier’s decisions by comparing the total cost incurred when it is

employed as part of the decision-making pipeline. We vary the ratio of the costs

of false negative and false positive outcomes. The ideal behaviour is to incur a

consistently low overall cost at any particular cost ratio.

We use the measurements from the classifiers as input to the decision-making

system, and evaluate the decisions made. We set the costs of true positive and

true negative outcomes as 0, and the cost of a false positive outcome as 1. The

cost for the last outcome, the false negative or missed pedestrian, is varied from 1

to 107. Mission-critical decisions are likely to come with high costs associated with

particular outcomes, so we need our classifiers to be consistent across a wide range of

high costs. We plot two things: (a) the number of true outcomes (both positive and

negative together), and (b) the total cost of all the decisions made. (b) is effectively

a function of (a), weighted by the costs.

In Figure 6.6 we show these graphs for the idealised classifiers. We sample

measurements from f1(z) and f2(z) and apply them to the decision-making system.

126

6.3 Decision Making with Costs

As we increase the cost of a false negative error, we see that the more introspective

classifiers (a) make the greater total number of true decisions, while eventually

becoming very conservative, and (b) incur lower total cost at any cost. Notice that

for these classifiers, performing well in terms of costs corresponds to a high number

of true decisions. This is expected because they have been designed with decision-

making specifically in mind.

These pairs of graphs demonstrate the trade-off between classifiers which avoid

catastrophic decisions, and those which might be so cautious that they never take

the higher-risk action. The left-hand graphs demonstrate the rate at which the

classifiers’ decisions become more and more cautious as the cost of a false negative

increases. On the right-hand graphs, the ideal is for a curve to be as low as possible

(close to the horizontal axis) at every cost ratio. This would represent the classifier

which makes better decisions given any particular cost ratio.

In Figure 6.7 we show the results for the real classifiers. Firstly, we see that the

classifiers are more spread in terms of true decisions than the idealised classifiers.

The confidences of the decisions varies substantially, from the random forests to Log-

itBoost. Unlike for the idealised classifiers, performing confidently in the left-hand

graph does not guarantee good performance in the right-hand graph. In fact, the

overconfidence of making many true decisions in the face of high costs is apparently

associated with catastrophic errors. We do this to demonstrate the fact that making

the most true decisions given a particular set of costs is not sufficient for mission-

critical decision making processes in robotics. Secondly, we see that the classifiers

with non-linear kernels appear to perform better than those with linear kernels. In

Grimmett et al. [2015b] we see that no classifiers perform safely across all three data

sets, with the non-linear SVM causing catastrophic decisions in the DP data set. In

that publication, we train the same number of data as in these results, but test on

8,000 positive examples per run, with 10 runs (rather than 2,000 positives and 20

127

6.3 Decision Making with Costs

100 101 102

Ratio of cost of FN to FP

0

0.5

1

1.5

2

T
o

ta
l t

ru
e

 d
e

ci
si

o
n

s

×104

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

100 101 102 103 104 105 106 107

Ratio of cost of FN to FP

0

0.5

1

1.5

2

T
o

ta
l t

ru
e

 d
e

ci
si

o
n

s

×104

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

100 101 102

Ratio of cost of FN to FP

103

104

T
o

ta
l c

o
st

 o
f

d
e

ci
si

o
n

s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

100 101 102 103 104 105 106 107

Ratio of cost of FN to FP

104

105

106

107

T
o

ta
l c

o
st

 o
f

d
e

ci
si

o
n

s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

Figure 6.6: Decision making for the idealised classifiers. The horizontal axes repre-
sent the cost of a false negative (FN) error, while the cost of a false positive (FP)
error is 1. On the left we show the number of correct decisions made (positive and
negative), and on the right we show the total cost of all decisions (correct decisions
carry 0 cost). Ideal behaviour is to incur minimal total cost at every point on the
horizontal axis. The error bars indicate the standard error of the mean, from 20 runs
each comprising 8,000 samples from the positive class and 16,000 from the negative
class. The second row of graphs shows the magnification of the top row without
error bars.

128

6.4 Conclusions

runs, as seen here). This failure of the non-linear SVM is visible due to an increase

of possible false negatives at testing. In Figure 6.7, the non-linear SVM, IVM, and

non-linear GPC perform well on two of three data sets, but generate some dangerous

errors in the KITTI data set. In summary of both sets of results, no classifier is

capable of avoiding all catastrophic errors in all three data sets. This implies that

they are all overconfident to some extent.

Note that the right-hand graphs are very unforgiving of high-confidence errors.

The spike in the linear GPC in Figure 6.7c is the result of a single error over the 20

runs, each with 1,000 possible false negatives. However, when one single error costs

106 more than any other, it must be avoided.

We cannot conclude that the multi-discriminant classifiers benchmarked here

avoid more catastrophic errors than the single-discriminant classifiers. The difference

in introspection between the classifiers is not sufficient to highlight a preference

here, perhaps due to an insufficient degree of non-stationarity in the data. The

test samples are drawn from separate, but visually similar video sequences. If the

weather or time of day were varying, we may see the effects we expect given the

previous experiments in this thesis.

6.4 Conclusions

In this chapter we benchmarked the real classifiers against the idealisations in the

contexts of active learning and high-confidence decision-making. In the active learn-

ing experiment, we saw that the multi-discriminant classifiers are more uncertain

than the single-discriminant classifiers when making mistakes, and that the IVM

asked questions which were of more benefit than the non-linear SVM in terms of

F-measure. The benefit is small but consistent. In the high-confidence decision-

making experiment, we see that all the real classifiers are overconfident and capable

129

6.4 Conclusions

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
o

ta
l
tr

u
e

 d
e

c
is

io
n

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

10
2

10
3

10
4

10
5

10
6

T
o
ta

l
c
o
s
t
o
f
d
e
c
is

io
n
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(a) TLR - 1,000 positive and 8,000 negative examples

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
o

ta
l
tr

u
e

 d
e

c
is

io
n

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

10
2

10
3

10
4

10
5

T
o
ta

l
c
o
s
t
o
f
d
e
c
is

io
n
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(b) DP - 2,000 positive and 16,000 negative examples

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

T
o

ta
l
tr

u
e

 d
e

c
is

io
n

s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ratio of cost of FN to FP

10
2

10
3

10
4

10
5

T
o
ta

l
c
o
s
t
o
f
d
e
c
is

io
n
s

IVM
Non-linear GPC
Linear GPC
Non-linear SVM
Linear SVM
LogitBoost
Random Forests

(c) KITTI - 1,000 positive and 10,000 negative examples

Figure 6.7: High-confidence decision making. The error bars indicate the standard
error of the mean over 20 independent runs. See the caption of Figure 6.6 for more
information.

130

6.4 Conclusions

of making expensive errors. We see that there a large improvement will be required

until they behave with the caution of of the top-four idealised classifiers (top hat ,

under-confident, triangle, and overconfident).

In both contexts, introspection enables good decision making. In the active

learning experiment, a large proportion of the top hat classifier’s mistakes are made

near z = 0.5 and so a small window will capture significant errors. These errors,

once labelled, will likely result in a larger classifier improvement than for the other

idealised classifiers. In the high-cost scenario, the top hat classifier maintains the

highest number of true decisions for a given cost ratio, inducing the lowest total

cost (excluding the perfect classifier). The cost ratio corresponding to a threshold of

T = 0.25 results in the selection of the wait action for all the potential false negative

errors. For all higher cost ratios it performs equally to the perfect classifier. The

way it could be improved is to reduce the region around z = 0.5 in which it makes

errors.

We propose that while we have seen differences in the third class experiments,

the data sets we are using in this chapter are not significantly non-stationary to

demonstrate the effects to the same extent. Applying them to data sets which are

more different between training and testing is left as further work.

The work in this chapter demonstrates how performance metrics traditionally

used in machine learning for classifier training and evaluation may be insufficient to

characterise system performance in a robotics context, where a single misjudgement

can have disastrous consequences.

We have designed an experiment which highlights unlikely events. The expensive

mistakes in Figure 6.7 are often as the result of only a handful of errors over tens

of thousands of opportunities for expensive mistakes. Regardless of the small total

number of mistakes, we consider them to be unacceptable. With larger labelled data

sets, it would be possible to more accurately estimate the frequency of such catas-

131

6.4 Conclusions

trophic errors. We expect the number of mistakes to decrease with an increase in

training data, but that the non-stationary nature of the data sets precludes complete

prevention of these mistakes.

Having examined a multitude of one-off decisions, we wish to see the effects of

introspection in sequential decision making. When an agent must aggregate a series

of measurements in order to maintain a state estimate, the differences between the

classifiers will be apparent. We explore this in the next chapter.

132

Chapter 7

Introspection in Sequential

Decision Making

In Chapter 6 we investigated the effects of applying classical decision-making to

the outputs of real classifiers, whose measurements were used to make one-off deci-

sions. In this chapter we allow the decision-making module (or planning module) to

learn how a classifier behaves, allowing it to make more informed inferences given

a measurement. However, we then present that planning module with measure-

ments generated from classifiers exhibiting different behaviours from those learned,

demonstrating the importance of measurement consistency, a tendency not shown

by non-introspective classifiers in the face of non-stationary test data.

The measurements in Chapter 6 were used to make one-off decisions, by weighing

up potential outcomes. In robotics it is common for decisions to follow from each

other, for instance an agent choosing the next driving direction based on an estimate

of its current position, and for errors in judgement to accumulate over time. In this

chapter we apply the idealised classifiers to a sequential planning problem modelled

by a POMDP, or Partially Observable Markov Decision process. This allows us to

teach an agent to navigate across standard POMDP benchmark problems while re-

133

ceiving information about the environment according to its noisy sensor or classifier.

Specifically, we compare agent efficiency given a particular idealised classifier. We

will see that the characteristics for success are different to those in in Chapter 6:

that introspection is sufficient but not necessary for good decision-making in this

context. It turns out that the entropy of the probability density functions is more

relevant than correlating confidence with correctness. That said, an introspective

classifier will still achieve the best result.

However, we restate the importance of consistent behaviour in non-stationary

data streams. Recall that for a classifier to be introspective, it needs not only to

correlate confidence with correctness, but to do so consistently in the face of pre-

viously unseen data. We demonstrate that a change in the sensor characteristics

without compensation by the decision-making system will result in bad decisions,

even if that change is to a classifier which increasingly correlates confidence with

correctness or provides more informative measurements. This consistency require-

ment to our sensors is paramount. We restate that if an autonomous vehicle enters

a novel environment and its classifier returns specious measurements, the resulting

decisions will be poor.

In the interests of thematic continuity, we present basic MDP and POMDP

theory in Appendix E. In Section 7.1 we detail how we apply the concept of a

classifier to the POMDP. In Section 7.2 we outline the related work in the field. In

Section 7.3 we describe the two example scenarios which will be used for testing. In

Section 7.4 we discuss the relevance of entropy to the efficiency with which agents

solve the tasks, which is one of our main contributions. In Section 7.5 we present

the results of the experiments, and our conclusions are discussed in Section 7.6.

134

7.1 The Observation Probability Function as a Classifier

State Sensor/classifier

?
image z

Observation

Figure 7.1: Here we model the sensor or classifier as the process which maps the agent
state to an observation z. In the context of Chapter 6 it encompasses the physical
processes mapping the world through a camera via an image to the measurement.

7.1 The Observation Probability Function as a

Classifier

In the background section in Appendix E we have only considered the measurement

as a function of the agent’s true state: p(z | a, s′). Let us assume that all actions

elicit measurements with the same distribution, so that p(z | a, s′) = p(z | s′). This

is the true model of the sensor. This might represent the mapping from the agent’s

position in a particular world (the state) to an observation, as in the grid world

scenario described in Section 7.3.1. In a more practical case, and indeed in the

context of Chapter 6, it might represent the physical processes which map, say,

the lighting and geometry of a scene, via a camera, via a classifier, before finally

yielding an observation, e.g. p(car) = 0.8. However, here we do away with the

complexity of the image and simply consider a sensor (or classifier, we use the terms

interchangeably in this chapter) to take a state s and return an observation z, as

shown in Figure 7.1.

So far in this thesis we have considered the observation or measurement coming

from a classifier as a probability in the range [0, 1]. While there exist formulations of

the POMDP framework that incorporate continuous observations (e.g. [Hoey and

135

7.1 The Observation Probability Function as a Classifier

Poupart, 2005]), we choose to deal with this in a simple manner by discretising the

observation space [0, 1] (the output of the classifier) into eight equally sized bins.

As a result, the POMDP models use a fairly crude approximation to the probability

density functions and error functions. On the other hand, the computational com-

plexity grows exponentially with the number of bins, and the number used here is

sufficient to demonstrate the effects in which we are interested. We experimented

with the number of bins, and found that there was a negligible effect in performance

in both scenarios by increasing the number of bins from eight to twelve or sixteen,

but a huge increase in computation time.

Consider an agent as possessing an onboard sensor, and that the observation

probability function is the agent’s model of how that sensor behaves. That model is

going to be based on one of the idealised classifiers from Section 4.3. This onboard

sensor, like the idealised classifiers, returns a measurement of some binary aspect of

the world. Recall that these observations are discrete rather than continuous, with

8 possible values. Therefore, for each state s we can use the discrete probability

density functions p(z | c = C1) and p(z | c = C2) to calculate p(z | s). These density

functions are approximations to the probability density functions f1(z) and f2(z)

used throughout this thesis. Thus, there is one observation probability function per

idealised classifier. This is the agent’s model of the sensor.

In order to generate measurements during the live running of an agent through

a test scenario, we perform inverse transform sampling given the cumulative distri-

bution functions, as described in Section 4.3.1.

After a literature review, we describe the two problem scenarios used for the

rest of the chapter in Section 7.3. In both we consider the observation probability

distribution p(z | s) to represent a classifier.

136

7.2 Related Works

7.2 Related Works

The concept of POMDPs in robotics dates back to the 1970’s [Sondik, 1971], but

had little impact in the robotics community until a resurgence in the 2000’s due

to the development of point-based approximations. These permit useful solutions

to problems with up to a few thousand states, when previously the algorithms and

computational power limited POMDP use to applications with a dozen or so states.

POMDPs have been used in a variety of situations, including but not limited to the

following. Spaan and Vlassis [2004] present a point-based value iteration algorithm

which is effective in planning trajectories for delivering mail around an office envi-

ronment. Outside robotics, Hauskrecht and Fraser [2000] apply POMDPs to medical

therapy planning for patients with ischemic heart disease, reducing the problem’s

complexity by combining dynamic programming and decision tree techniques. The

agent must choose between various tests and treatments in order to correctly diag-

nose and manage the therapy of a patient. Atrash et al. [2009] perform real-time

tracking of the dialogue state between a wheelchair user and his or her wheelchair,

allowing it to move the user around using voice commands. If the wheelchair detects

an error in understanding, it can ask specific queries for the user to clarify certain

parts of the instruction. Hsiao et al. [2007] apply POMDPs to grasping tasks for

robot manipulators. The manipulator has a tactile sensor on it, and the pose and

shape of the target object are unknown.

El Ghaoui and Nilim [2005] and Bertuccelli and How [2008] are both concerned

with MDPs with uncertainty in the state transition matrix. In these cases the state

is fully observable.

Jaulmes et al. [2005] use active learning to address the problem of estimating

noise in the state transition and observation probability models. They present two

formulations. The first adds a query action, which incurs a large cost but returns the

137

7.2 Related Works

true state of the agent. They also add an extra state feature per uncertain parameter

in the model, which takes one of a number of discrete values, indicating constraints

in the likelihood of particular state transitions. They also vary the probability of

the sensor giving the correct solution, giving results for p(correct) = {0.7, 0.8, 0.9}.

They apply this to the so-called tiger problem [Kaelbling et al., 1998], and show that

the agent manages to learn the observation probabilities even when the cost of query

is so high that it is never chosen. This ability to learn is attributed to the use of

the listen action, which can be seen as a noisy and cheap alternative to query. The

authors present a second formulation which is less computationally expensive, in

which state-action pairs where either the state transition or observation probability

functions are uncertain are modelled by Dirichlet distributions. The agent samples

a number of POMDP models using the Dirichlet distribution, and then takes an

action and receives a measurement. Then it can decide whether to obtain the true

state from the oracle, in which case the Dirichlet parameters are updated. These two

steps are iterated until there is sufficient knowledge in the distribution over models.

New models are sampled, and the least probable existing models are removed. This

formulation is applied to the tiger problem again and learns the correct parameters

after 200 to 300 queries, and achieves the optimal reward after 2,000 queries.

Oliehoek et al. [2008] also sample POMDP models, this time using the cross-

entropy (CE) method to estimate the value of a particular policy for a multi-agent

POMDP (or Dec-POMDP). They maintain a distribution over models, and drawing

samples from that distribution, select the most valuable and use them to update the

distribution, much like in Jaulmes et al. [2005] but for policies rather than individual

parameters of the state transition or observation distributions.

138

7.3 Test Scenarios

7.3 Test Scenarios

In this section we motivate and detail the two test scenarios used for evaluation in

this chapter. Shani et al. [2013] provide a summary of six commonly-used POMDP

benchmark problem scenarios. Each benchmark differs from the others, but they

can be grouped into two classes: one where an agent navigates around a known

map where the state is partially observable seeking a goal, and another where the

agent’s position is fully observable but the map is unknown at the start and only

partially observable. We therefore consider a scenario in each of these two classes of

problem in order to examine the effects of the observation models. The two scenarios

we have chosen, a generic grid world scenario and a wumpus scenario [Russell and

Norvig, 2003], are both appropriate for our analysis because the observations can be

made stochastic and the thing being measured is binary. The essence of the popular

RockSample problem [Smith and Simmons, 2004] is captured by the analysis of

the grid world and wumpus problems, because it is a hybrid of the two: the map

is known (like the grid world scenario), and there are multiple objects within the

map, some of which yielding positive and some negative reward (like the wumpus

scenario). We consider the grid world and wumpus problems to be representative of

the body of benchmarks, and hence are the ones we use to demonstrate the idealised

classifiers.

7.3.1 Grid World

An agent moves around a world represented by a discrete, two-dimensional, square

grid of given dimensions. The agent’s goal is to navigate to the exit (marked as

the red square in Figure 7.2). At each time step, the agent must choose one of

four actions a = {up, down, left, right}, and after each move it receives a sensor

measurement z to help it update its belief state, which is a distribution over positions

139

7.3 Test Scenarios

Figure 7.2: Here we show a two-dimensional grid world in which each square is
randomly black or white with p = 0.5. The robot starts in the yellow square in the
top left, and must make its way to the red goal near the bottom right hand corner
as efficiently as possible by estimating its current state and choosing appropriate
actions at each time step.

in the grid. However, the state transition function is stochastic; the chosen action

may not yield its desired result: if, for example, a = right it could skid and end up

moving in a different direction or fail to move entirely. The state in this scenario is

an index into the agent’s position in the world. The belief state is thus a distribution

over the grid locations.

This scenario is episodic, meaning that if the agent occupies the same square as

the exit, it is placed in an absorbing or terminal state (i.e. it stays in that state

forever). At the start of the next episode, the agent restarts in the top left corner

of the grid world. The reward function defined over states is 0 everywhere except

for the goal, which gives reward 1.

The agent has a pre-determined number of sensors which give a reading for the

colour of a pattern of squares adjacent to its current position; for instance it may

have a sensor returning the colour of the currently occupied square, and another

returning the colour of the square immediately above it. These two measurements

are independent given the map. Each sensor will return a measurement z between 0

and 1, where 0 corresponds to a black square and 1 corresponds to a white square.

140

7.3 Test Scenarios

In the classical POMDP formulation there is one single observation per time step,

so we consider each possible combination of the individual sensor outputs to be an

observation. As a result, the observation space is of size (NNs
b), where Nb is the

number of bins used to discretise the otherwise continuous sensor space, and Ns is

the number of sensors. If our agent has three sensors and eight bins per sensor, each

observation takes one of 512 possible values. With a slight abuse of notation, we

do not distinguish between a measurement from a single sensor and the index into

these potential values: both are referred to as z.

For each experiment we start by defining the necessary functions listed in E.2

and generate a policy using SARSOP [Kurniawati et al., 2008]. The method is

outlined in Appendix E.2 and is terminated after a fixed period of time. We choose

the period of time experimentally by increasing it until the performance increases

become small.

The state transition distribution function is determined via the following prop-

erty: once a desired move has been chosen by the policy, there is a distribution over

whether the agent ends up relative to the desired move.

p(agent moves 1 square in desired direction) = 0.4, (7.1)

p(agent moves 2 squares in desired direction) = 0.3, (7.2)

p(agent moves 1 square to the left of desired direction) = 0.1, (7.3)

p(agent moves 1 square to the right of desired direction) = 0.1, (7.4)

p(agent skids and does not move from current square) = 0.1, (7.5)

so for instance if the agent is in some square and it chooses to move right, it will

move right once with p = 0.4, right twice with p = 0.3, down with p = 0.1, up

with p = 0.1, and stay still with p = 0.1. Note that if any of the moves could take

the agent off the boundaries of the map, the probability of making that move is

141

7.3 Test Scenarios

transferred to the skid outcome.

7.3.2 Wumpus World

For this scenario we use a wumpus problem [Russell and Norvig, 2003] in which an

agent also navigates around a grid map, but the configuration of the map is not

known at the start, and thus the state comprises the layout of the map along with

the agent’s position. The map is once again a rectangular grid, one cell of which

contains gold, and some others contain obstacles. The goal of the agent is to grab

(one of the available actions) the gold, while avoiding the deadly wumpus. The

world has the following properties: squares adjacent to a wumpus are smelly, and

the square containing the gold glisters. The agent has two sensors which measure the

smelliness and glister of the agent’s currently occupied square. The agent receives

a measurement from each after it performs an action from the set {up, down, left,

right, grab}. The state space is the number of possible worlds for a fixed size

m × n which do not violate the following constraints: the agent will always start

in the top-left corner and this square can be occupied by neither the gold nor a

wumpus; they must occupy distinct squares and do not move. Here we differentiate

the ‘map’, comprising the unmoving gold and wumpusses, from a ‘world’, which for

this scenario is equivalent to a state and includes the position of the agent as well

as the unmoving map.

The state transition distribution is deterministic with a known starting position

(the top-left square). The reward function is as follows: every move has a reward

of −1; grabbing the gold is terminal and yields a reward of +1000; and entering a

square containing a wumpus is terminal and yields a reward of −1000. The agent

can choose to move into the boundary of the world, but it will stay in the same

place.

For example, we first generate a map and place the agent in the top-left square,

142

7.3 Test Scenarios

as shown in Figure 7.3. This particular agent has a deterministic observation proba-

bility distribution (for the sake of illustration, although this will generally not be the

case later in the chapter), and knows that it is in a 3×3 map containing exactly one

wumpus and one pile of gold. In Figure 7.4 we show the belief distribution become

progressively less uniform as the agent navigates around the map and its sensors give

it information about its surroundings. Figure 7.4a is a list of all possible starting

worlds, and the initial belief is a uniform distribution over these. The agent’s first

action is right which deterministically moves the agent one square to the right. It

then receives a measurement z1 = {smell, glister} (where A means “not A”). As

a result of the move and the measurement, the belief distribution is adjusted to

reflect the agent’s change of position (such that the agent’s position is correct) and

incorporate the new information gained from the measurement (by (E.18)). From

the agent’s new position, there is no smell, therefore there is no wumpus either in

the top-right corner or in the middle square, and those maps are no longer plausi-

ble, so the belief over those worlds becomes zero. All remaining worlds are equally

plausible because of the deterministic observation probability distribution function

in this example. As the agent traverses the map, it narrows down the positions

of the wumpus (which is deduced at t = 4) and the gold, eventually entering a

glistering square at t = 9, prompting it to choose the grab action next, yielding

+1000 reward, with a total reward of −8 + 1000 = 992. Note that the observation

probability distribution is deterministic here for the sake of the example, and that

this function will later be replaced by a distribution function generated using our

idealised classifiers described in the next section.

The most costly part of running the experiment is generating a policy. That

policy is then valid for any map of a predetermined size with a predetermined number

of wumpusses. As with the grid world, the policy is generated using the SARSOP

algorithm [Kurniawati et al., 2008] (outlined in Appendix E.2) that is terminated

143

7.4 Entropy

Figure 7.3: This is the real starting world for our worked example. The agent
occupies the square bordered red, there is one wumpus in the dark blue square, and
the gold is in the yellow square. The goal is for the agent to grab the gold. Figure 7.4
shows the agent’s belief space contract to the solution as it safely navigates around
the map.

after a fixed period of time. In the small problems, we choose the period of time

experimentally by increasing it until the performance increases become small. This

is standard practice. At test time we start by randomly selecting a world from the

set of valid starting worlds of a the appropriate size, and allow each agent (one

per idealised classifier) to explore it until they reach an absorbing state. For each

experiment we choose a number of starting worlds and a number of runs per world,

which are detailed in the caption for each figure.

7.4 Entropy

The choice of a classifier’s probability density functions affects the information value

of a measurement. In order to examine a classifier’s information value, we can cal-

culate the Shannon entropy of its density functions, which encapsulates a measure

of information content. However, Shannon entropy is applicable to discrete distri-

butions, while ours are continuous. Therefore, we consider the continuous entropy

of a density function [Cover and Thomas, 2006], defined as

h(f) = −
∫ 1

0

f(z) logb f(z)dz, (7.6)

where b is the chosen base of the logarithm. For these experiments we choose to

represent information in nats.

144

7.4 Entropy

(a) t = 1, a1 =→ (b) t = 2, z1 = {smell, glister}, a2 =→

(c) t = 3, z2 = {smell, glister}, a3 =← (d) t = 4, z3 = {smell, glister}, a4 =↓

(e) t = 5, z4 = {smell, glister}, a5 =← (f) t = 6, z5 = {smell, glister}, a6 =↓

(g) t = 7, z6 = {smell, glister}, a7 =→ (h) t = 8, z7 = {smell, glister}, a8 = grab

Figure 7.4: We show the plausible states (or worlds) as the agent navigates through
the true 3 × 3 map shown in Figure 7.3. This can also be thought of as the belief
state at each time step, where each world is equally likely. The square containing
the agent is bordered red, the wumpus (to be avoided) is dark blue, and the gold
(to be sought after) is yellow. The agent chooses an action at ∈ {↑, ↓,←,→, grab}.
Immediately after each action is completed, the agent receives a sensor measure-
ment zt ∈ {smelly, glistery, both, neither}; smells indicating the nearby (adjacent)
presence of a wumpus, and glister indicating that the agent’s square contains gold.
As the agent chooses actions and receives measurements, the list of possible worlds
narrows until finally it deduces the true map, and grabs the gold. In this example,
the observation probability function is deterministic and always gives the correct
value.

145

7.4 Entropy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

to
p

ha
t

re
ve

rs
e

pe
rfe

ct
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

E
n

tr
o

p
y

Figure 7.5: Here we show the continuous Shannon entropies of the probability den-
sity functions shown in Figure 4.5. A larger negative entropy is more desirable
because it indicates a greater information content. Note that the entropies of the
f1(z) functions are the same as those of the f2(z) functions because they are mirror
images of each other (see Figure 4.5).

In Figure 7.5 we show h(f1(z)) for each idealised classifier. We would like the

measurement z to contain information about the class of the test datum, and that

information will increase with −h(f1(z)). Therefore, we see that a measurement

from the uniform classifier contains the least information, that the top hat and

reverse classifiers carry the same information, and that the perfect classifier is the

most informative.

The entropy of a density function is invariant to rearrangements of the horizontal

axis. Therefore, because f1(z) is a mirror image of f2(z) for each classifier, their

entropies are the same. This is further demonstrated by the fact that both the top hat

and reverse classifiers have the same entropy. Intuitively, and especially following the

results from Chapter 6, we might expect the reverse classifier to do poorly. However,

this is not the case in the POMDP framework, because the mapping from input z to

class Ci is explicitly stated for each classifier. The classical decision-making system

described in Section 6.3.1 assumes a probability, and with that assumption comes

146

7.5 Experiments

the expectation of an introspective classifier. In the POMDP framework, rather than

a correlation between correctness and confidence, we require a consistent mapping

from measurement to class. That is to say, the classifier providing the measurement

must do so predictably throughout its operation. This mapping is explicitly stated

in the observation probability function.

One of the key findings of this chapter is that the information content of the

classifiers is the most important factor when comparing them in sequential decision

making, and that a more informative sensor allows a robot to achieve its goal more

efficiently, both in terms of number of steps taken and total reward.

7.5 Experiments

The explanation of how the classifiers can be applied to the POMDP framework in

Section 7.1 is somewhat simplified. In reality, there are three places in the sequential

decision-making pipeline which make use of the observation probability distribution

and the probability density functions from Chapter 4:

(A) The sensor model used for the policy generation, specifically the term p(z | a, b)

in Equation (E.19),

(B) The true sensor model, which maps the agent’s true state to the measurement:

the cumulative distribution function F−1
i (x) in Equation (4.18), and

(C) The agent’s decision-making system, or method of interpreting a measurement

and updating its belief state: the p(z | a, s′) term in Equation (E.18).

These are illustrated in Figure 7.6. In this section we apply various combinations

of the idealised classifiers to these three locations to explore the importance of

consistency in non-stationarity and the information content of the measurements.

147

7.5 Experiments

In Section 7.5.1 we illustrate the importance of consistency to introspection. We

simulate a situation in which the decision-making system (C) expects measurements

from a particular sensor 4.18, but the characteristics of that sensor have changed.

This disparity between expectation and reality characterises the non-introspective

lack of consistency in non-stationary data streams. Will our robots be able to cope

with inconsistent sensors? The answer is no, even if the sensor ‘improves’, becoming

one that better correlates confidence with correctness, or provides more informative

measurements.

In Section 7.5.2 we demonstrate the improvement achieved when using sensors

which maintain the same characteristics in the face of potentially non-stationary

data. We show the solution efficiency if (B) and (C) agree with each other, so the

sensor measurements are in keeping with what the decision-making system expects.

In doing so, we also isolate the effects of changing (A), the classifier used to generate

the policy.

In Section 7.5.3 we examine the effects of varying the world size. In this ex-

periment, the sensor provides measurements consistent with the expectations of the

decision-making system, so (B) and (C) are the same. Having already analysed the

effects of (A), we fix this at the start.

Finally, in Section 7.5.4 we investigate the effect of varying the number of sensors

available to the agent traversing the grid world, again with a consistent pairing

between the sensor and decision-making system.

We carry out each of these experiments on both the grid world and wumpus

scenarios wherever possible (we cannot experiment with the number of sensors in

the wumpus scenario), reporting the average number of steps to completion for the

former, and the average reward along with the average number of steps for the latter.

148

7.5 Experiments

Robot

Planning module

Policy
generation

Classifier

Belief update

⇡

z

s

b
a

Environment

(A)

(B)

(C)

Figure 7.6: These are the three places in the sequential decision making pipeline
that make use of the observation probability distribution (or sensor models). (A)
The first is used for the policy generation, specifically in Equation (E.19). (B) The
second is the true sensor model or classifier, mapping from state to measurement in
Equation (4.18), and (C) the third is the belief update: the agent’s interpretation of
that measurement in Equation (E.18).

7.5.1 The Ill Effects of Non-stationarity

In this experiment we simulate the effect of a disjunction between the sensor mea-

surements and the decision-making system. This is exactly the situation we observed

in the high-cost decision-making experiment in Chapter 6. The classical decision-

making system expects probabilities, but receives overconfident measurements, and

the resulting decisions occasionally results in catastrophe.

To do this, we fix the policy ((A), see Figure 7.6) and test every pairwise combi-

nation of (B) and (C), the sensor’s true model and the agent’s model of the sensor.

This forces the decision-making system to misinterpret the measurement given by

the classifier, which could be the result of using a non-introspective classifier, in that

it does not behave consistently in the face of unknown test data.

Note that it is not possible to carry out this experiment for all combinations

of the idealised classifiers. It is only possible for the agent to model the sensor

149

7.5 Experiments

as those which are capable of generating measurements across the entire range of

Z, namely the uniform, overconfident, triangle, and under-confident classifiers. An

agent incorrectly modelling the sensor as top hat , reverse, or perfect will create

logical impossibilities and lead to an invalid belief state.

For example, suppose that the agent is in a region of the grid world in which

its current location and all the squares accessible within the next move are black.

Also imagine that it is in a known starting state, so the belief distribution is zero

everywhere except for the agent’s true state. The agent, believing the sensor to be

perfect, chooses a move and receives an observation. If the observation is in fact

drawn from, say, a uniform sensor, and it happens to be an error (with p = 0.25), it

may report z > 0.5, saying that the agent’s new square is white. As we have stated,

it is not possible for the agent to have moved from its starting square to a white

square within one move. The denominator of the belief update equation (E.18) will

be zero for all s′, making the new belief b′ infinity everywhere, which is not a valid

belief distribution. This outcome is possible for any combination for which the range

of measurements from (B) is not contained within the range of (C).

Grid World

In Figure 7.7 we show the number of steps to completion for every combination of

(A), (B), and (C). Firstly, it is always best for the agent’s model of the sensor to

match the true sensor model. This is to be expected because the agent chooses

actions based on the fact that a measurement carries a certain probability of error

with it, and thus the belief state evolves as a function of that assumption. If that

assumption is incorrect, the belief state will be altered in a way that misrepresents

the agent’s true state, and so it is likely to choose a suboptimal action and take

longer to reach the goal.

Also apparent from Figure 7.7 is that if the agent’s model of the sensor matches

150

7.5 Experiments

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s uniform

overconfident
triangle
underconfident

(a) Uniform policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s uniform

overconfident
triangle
underconfident

(b) Overconfident policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s uniform

overconfident
triangle
underconfident

(c) Triangle policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s uniform

overconfident
triangle
underconfident

(d) Under-confident policy

Figure 7.7: Grid world: here we analyse the effects of using a sensor which does
not behave consistently in the face of non-stationary data. We fix (A), the policy,
and test every pairwise combination of (B) and (C), the sensor’s true model and the
agent’s model of the sensor. Along the horizontal axis lies the true sensor model:
the measurements are generated using these models. The vertical axis shows the
average number of steps to termination, and each curve shows an agent expecting
measurements from a sensor corresponding to the legend. Error bars represent the
standard error over 10,000 independent tests over a single 10× 10 map.

151

7.5 Experiments

the true sensor model, it is best for them to be the under-confident sensor, and worst

for them to be the uniform sensor. This is the introspective case we will examine

in more detail in the next experiment. All non-matched pairings could be the result

of the use of non-introspective classifiers.

Thirdly, the four graphs are almost identical, so the choice of policy seems not

to affect the number of steps required to reach the goal.

Note that the blue uniform curve is approximately horizontal in all the graphs.

Each agent can be thought of as receiving two pieces of information from any sin-

gle measurement: whether z < 0.5 (the square is black, or not) and; within that

interval, the degree of confidence in that assertion (a.k.a. the error rate). An agent

modelling the sensor as uniform is blind to the second piece of information, seeing all

measurements z < 0.5 as equally informative (because f1,uniform(0 < z < 0.5) = 1.5),

and the same for z > 0.5. Therefore, because each sensor has an equal chance of

showing z < 0.5 as z > 0.5, the uniform agent cannot distinguish between the true

sensor models. This results in an invariance to the true sensor model and hence a

near-horizontal curve.

This also explains why the purple under-confident curves are the steepest. The

agent or decision-making system which models the sensor as under-confident makes

the strongest assumption about the information content of a measurement. If it is

correct about the sensor’s true model, it stands much to gain. However, if the true

sensor model is uniform, it will have too much faith in measurements near z = 0

and z = 1, and bias the belief distribution away from the true state.

By expecting the worst and modelling the sensor as the less-informative uniform

model, the agent guarantees a baseline of performance: it will reach the exit in

approximately 28 steps. This is the safe choice, because it bounds the worst possible

performance. However, it is possible to solve the problem more efficiently if we

correctly model the sensor as more informative. By assuming a greater level of

152

7.5 Experiments

information, we stand to gain performance, but if the sensor becomes less informative

than we are expecting, we risk losing by the same amount. This is analogous to using

a classical decision-making system with non-introspective classifiers. Equation 6.1

assumes introspection by using the term p(Ci). If the classifier measurement does

not behave like a probability, the decision-making process is assuming information

which it does not have. This is what leads to catastrophic decisions in Chapter 6.

Wumpus

The results for the wumpus scenario are shown in Figure 7.8. Note that a better

result corresponds to being towards the top of the vertical axis, unlike the grid

world figure. Once more, the blue uniform curves are very close to horizontal, and

the under-confident curves are the steepest. Unlike in the grid world results, (i)

the choice of which model to use for policy generation affects the rewards, (ii) the

tendency of the best choice of the agent’s model of the sensor being to match the

true sensor model is less clear, and (iii) we stand to lose more than we gain by

modelling the sensor as informative, given the available choices.

(i) We see that there is a tendency towards more informative policy models,

yielding higher rewards rewards. Here, the triangle and under-confident policies

yield higher rewards than the uniform and overconfident policies. We will explore

this more explicitly in the next experiment in Section 7.5.2.

(ii) The agent that correctly models its sensor performs very well, but not always

best. When the true sensor is under-confident, we achieve similar performance by

modelling it as overconfident, triangle, or under-confident. We suggest that this is

related to (iii).

(iii) We see that we stand more to lose by incorrectly expecting a more informa-

tive sensor than we do to gain by correctly expecting it. By examining the average

number of steps to completion in Figure 7.9, we see the opposite tendency: that we

153

7.5 Experiments

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

300

350

400

450

500

550

A
v
e
ra

g
e
 r

e
w

a
rd

uniform
overconfident
triangle
underconfident

(a) Uniform policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

250

300

350

400

450

500

550

A
v
e
ra

g
e
 r

e
w

a
rd

uniform
overconfident
triangle
underconfident

(b) Overconfident policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

300

350

400

450

500

550

600

A
v
e
ra

g
e
 r

e
w

a
rd

uniform
overconfident
triangle
underconfident

(c) Triangle policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

300

350

400

450

500

550

600

A
v
e
ra

g
e
 r

e
w

a
rd

uniform
overconfident
triangle
underconfident

(d) Under-confident policy

Figure 7.8: Wumpus, reward: we investigate the effects of using a sensor which is
not consistent in the face of non-stationary data. We fix (A), the policy and test
every pairwise combination of (B) and (C), the sensor’s true model and the agent’s
model of the sensor, showing the average reward. Along the horizontal axis lies the
true sensor model, and each curve shows an agent expecting measurements from a
sensor corresponding to the legend. Error bars represent the standard error over
10,000 independent tests over all 20 possible 2× 3 maps.

154

7.5 Experiments

stand to gain more in terms of speed of solution by modelling the sensor as intro-

spective than we stand to lose if that assumption is incorrect. We propose that this

is the key to understanding the relationship between the agent’s expectation and

the truth about the model. By modelling the sensor as informative, the agent some-

times uses the measurements it receives to greatly increase ‘peakiness’ in the belief

— more than it does when it models the sensor as non-informative. In this way, it

can become overly confident about the true state, and thus rather than gather more

information, it explores the world aggressively. This aggressive behaviour results in

quick terminations, either by picking up the gold quickly, or by straying into the

wumpus and being eaten. Thus, the average number of steps is much lower, but the

risk is greater and the average reward is smaller.

Examining the grid world results in Figure 7.7, the intersection of the uniform

and under-confident curves is approximately in the centre of each figure. This is

not true in Figures 7.8 and 7.9. We attribute this difference to the asymmetry in

the termination outcomes: it is hard to terminate with +1000 reward because the

gold needs to be picked up, whereas terminating with −1000 is much easier because

the agent simply needs to stray into the wrong square. It is this imbalance which

reduces the possible rewards towards the right-hand side in Figure 7.8. If the goal

is to maximise reward and we are aware of a lack of classifier introspection, perhaps

it would be best to assume the minimum of information, rather than overestimate

it as we do in Chapter 6.

7.5.2 Consistent and Appropriate Sensors

In this experiment we examine a subset of the results from those in Section 7.5.1,

notably in the case that the sensor (B) remains consistent with the decision making

system’s expectations (C) despite possibly non-stationary data. This is the case

where our classifiers are more introspective, because their behaviour remains consis-

155

7.5 Experiments

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

5.5

6

6.5

7

7.5

8

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident

(a) Uniform policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

5.5

6

6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident

(b) Overconfident policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

5.5

6

6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident

(c) Triangle policy

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

True sensor model

5.5

6

6.5

7

7.5

8

8.5

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident

(d) Under-confident policy

Figure 7.9: Wumpus, number of steps: we investigate the effects of using a sensor
which is not consistent in the face of non-stationary data. We fix (A), the policy
and test every pairwise combination of (B) and (C), the sensor’s true model and the
agent’s model of the sensor, showing the average reward. Along the horizontal axis
lies the true sensor model, and each curve shows an agent expecting measurements
from a sensor corresponding to the legend. Error bars represent the standard error
over 10,000 independent tests over all 20 possible 2× 3 maps.

156

7.5 Experiments

tent, and the decision-making system is capable of making the best possible decisions

given that sensor.

We also wish to determine the importance of the choice of (A) in terms of policy

quality. The outcome of this experiment indicates whether the information content

is relevant to policy generation, or whether one can simply generate a policy using

any classifier and then use an introspective classifier at run-time. We expect the

choice of sensor model for the policy generation to steer the approximation towards

belief states often seen by that kind of sensor. Therefore, the value function and

hence the policy is likely to be closer to the optimal policy for that chosen sensor.

In most applications it is intractable to explore the whole belief space, so most

POMDP solvers seek to explore the reachable region of the space (as described in

Appendix E.2). The observation distribution is used to determine which areas of the

belief space are reachable, and hence better approximate the optimal policy in those

regions. The analysis of this experiment will aid us to understand the importance of

the direction of this search and whether the resulting policy is effective in generalising

to new regions of the belief space.

Grid World

For this experiment the agent has two sensors, the size of the map is 10 × 10, and

the policy training time is two hours using a single 2.5GHz core. In Figure 7.10

we show the average number of steps for the agent to reach the goal, where the

horizontal axis denotes (A), the sensor model used to generate the policy, and each

curve represents the sensor model used for both (B) and (C), the true sensor model

and the agent’s model of the sensor.

Firstly, the gradient of the curves is close to 0, indicating that the sensor used

to generate the policy is almost irrelevant to the behaviour of the agent. This

indicates that the policy allows the agent to generalise well to new sensor types,

157

7.5 Experiments

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

to
p

ha
t

re
ve

rs
e

pe
rfe

ct

Policy

20

21

22

23

24

25

26

27

28

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

Figure 7.10: Grid world: introspective consistency in sensing. We show the average
number of steps required to attain the goal for each pairwise combination of (i)
classifier used to generate the policy (the horizontal axis), and (ii) the classifier used
by the agent as it traverses the grid world towards the goal (each coloured line). A
smaller number of steps is more desirable. For all classifiers the number of steps is
invariant to the classifier model used to generate the policy. For this experiment the
agent has two sensors, the size of the map is 10× 10, the policy training time is two
hours using a single 2.5GHz core, and the lines and error bars show the means and
standard errors of 104 tests over the same map.

perhaps because all idealised classifiers explore a similar area of the belief space

in this scenario. Secondly, the speed of the agent’s solution is in line with the

predictions made with regards to the entropy in Section 7.4. The agents using more

informative classifiers reach the goal faster, implying that the information content

of the measurement is key to performance. Thus, information content is important

but only at run-time for this scenario, rather than during policy generation.

Wumpus

The average reward is shown in Figure 7.11a. Similarly to the grid world scenario,

the horizontal axis denotes (A), the sensor model used to generate the policy, and

each curve represents the sensor model used for both (B) and (C), the true sensor

model and the agent’s model of the sensor.

Firstly, note the ordering: the more informative classifiers yield a higher average

158

7.5 Experiments

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

to
p

ha
t

re
ve

rs
e

pe
rfe

ct

Policy

450

500

550

600

A
v
e
ra

g
e
 r

e
w

a
rd

uniform
overc.
triangle
underc.
top hat
reverse
perfect

(a)

un
ifo

rm

ov
er

co
nf

id
en

t

tri
an

gl
e

un
de

rc
on

fid
en

t

to
p

ha
t

re
ve

rs
e

pe
rfe

ct

Policy

2

4

6

8

10

12

14

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s

(b)

Figure 7.11: Wumpus: introspective consistency in sensing. (a) the average reward
at termination, and (b) the average no. of steps to termination. The horizontal axis
shows (A), the sensor used to generate the policy, and each trace shows (B) and (C),
the true sensor model and the agent’s model of the sensor. Note that termination
could either be as a result of grabbing the gold (+1000 reward) or being eaten by
the wumpus (−1000 reward). Also note that the top hat and reverse curves are so
similar that they appear as one. The map is 3× 3, the lines and error bars show the
means and standard errors of 104 runs over the same map, and the policy training
time is two hours using a 2.5GHz core.

159

7.5 Experiments

reward. It is important for a classifier to be consistent across non-stationary test

data, and also for it to be informative regarding the class. As in Chapter 6, the

introspective top hat classifier produces the best decisions.

Secondly, the agents carrying the top hat and reverse classifiers are as one line,

and very close to the perfect classifier. This proximity indicates that the three

classifiers are almost as informative as the perfect classifier, although the vertical

difference between them is caused by the increased number steps required by the top

hat and reverse classifiers, as shown in Figure 7.11b. We suggest that because their

measurements are sometimes completely uninformative, these two agents grab more

often in order to receive more measurements. These three agents are also relatively

agnostic to the sensor model used to generate the policy, like in the grid world

scenario. The remaining four agents, however, are not. The under-confident, top

hat , reverse, and perfect policies are the best. Since the policies were generated for

fixed time, it is possible that the policies for these classifiers reached more training

iterations due to the relative sparsity of the belief states, and thus the policy is a

better approximation of the optimal policy. We propose that the reason this effect

is not seen for the grid world experiments in this section is that the state space here

is very much greater, and so in the two hours of training time the resulting grid

world policy is much closer to the optimal policy than in the wumpus scenario.

Although less key, it is interesting to note the number of steps to termination

(resulting from either picking up the gold, or being eaten by the wumpus) in Figure

7.11b. The choice of model for the policy generation seems to bear little importance

on the average number of steps to termination for all except the perfect policy,

where it causes an increase. This increase in the number of steps corresponds to

a divergence in average reward, where the uniform agent performs worse and the

under-confident agent performs better. We propose that this policy results in the

agent performing many more grab actions. For the uniform agent, this increases the

160

7.5 Experiments

length of a run without any significant effect on the reward. For the more informative

agents, however, their belief state improves and they make correspondingly better

decisions.

7.5.3 Changing the Size of the World

In this section we examine the effects on the agent’s speed (and quality) of solution

with world size. An increase in world size leads to an increased number of necessary

moves, and given that the classifiers give varying quantities of information per mea-

surement, we expect the less informative classifiers to have a more uniform belief

than the more informative classifiers. This reduction in ‘peakiness’ of the belief dis-

tribution should lead to a greater ambiguity of action choice, and thus an increase

in number of steps to completion.

Like the experiment in Section 7.5.2, we vary (B) and (C) together, but always

using the uniform model for (A). We have shown that the choice of model used

for policy generation is unimportant for the grid world and does not change the

ranking of the results in the wumpus world, so we consider using a single policy to

be sufficient to characterise the effects of world size.

Grid world

In Figure 7.12 we show the number of steps to termination as we increase the world

size. We generate square worlds with the following side lengths: {6, 8, 10, 12, 14,

16, 18, 20, 30, 40}, generate a policy for each using the uniform model, and then

apply the agents 10,000 times to each map. For this scenario we do not expect the

difference between classifiers to be large, because a specific sequence of uninformative

measurements can give a lot of information regarding the agent’s current position.

We see that the agents sporting more informative classifiers reach the goal in

fewer steps, and that as the world size increases, the benefit of a more informative

161

7.5 Experiments

6x
6
8x

8

10
x1

0

12
x1

2

14
x1

4

16
x1

6

18
x1

8

20
x2

0

30
x3

0

40
x4

0

World size

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

Figure 7.12: Grid world: we show that the larger the map, the greater the effect
of the introspective qualities. The differences between the classifiers is 6 steps for a
6× 6 world, but 13 for a 40× 40 world. We also show that the top hat and reverse
classifiers perform equivalently. All of these are using the policy generated using the
uniform classifier with three sensors. Error bars represent the standard error over
10,000 independent tests over the same map.

classifier also increases. The difference in the number of steps required by the

uniform and perfect agents is approximately 6 in a 6× 6 world, but 13 in a 40× 40

world. This increase is consistent with our prediction.

Wumpus

In Figure 7.13a we show the average reward gained by the agents over various world

sizes. We show fewer world sizes than for the grid world because the order of

computational complexity is much larger here. The grid world has one state per

possible agent position, which even for a 100 × 100 world is a modest 104 states.

The wumpus scenario, however, considers a configuration of the map to be a state,

so a 4× 4 map containing the agent, gold, and a wumpus has approximately 34×4 ≈

43 × 106 states. Because the problem complexity here is larger than for the grid

world, and the agent has a significant risk of incurring a large negative reward if it

has a poorly informed state estimate, we expect a larger discrepancy between the

162

7.5 Experiments

classifiers.

Firstly, there is a divergence between the agents as the world size increases,

which is the effect we predicted. Secondly, we see that the average reward does

not change smoothly as the world size is increased. We propose that this results

from not testing the agents on every possible map at each world size. There are

approximately 272 valid 3× 6 maps, and testing 5,000 times on each one would be

very computationally expensive. The particular choice of map has a large effect on

the resulting reward, and so using a subset of 50 of the possible maps will introduce

significant variance. Nevertheless, the difference in reward between the most and

least introspective agents is approximately 110 for the 2× 3 world, but 550 for the

3×6 world. This is indeed larger than the differences in the grid world, as expected.

Lastly, we see the same ordering and divergence as in the grid world scenario, and

the top hat and reverse agents perform equivalently to each other.

7.5.4 Changing the Number of Sensors

Here we vary the number of sensors and examine the average number of steps for the

agent to reach the goal in the grid world. In the wumpus world each of the sensors

is fixed for the scenario formulation, so it would not be useful to add or remove any.

Here, we perform 10,000 independent tests for each matched pairing of (B) and (C)

on a randomly generated 10× 10 grid.

The results are shown in Figure 7.14. As with the previous experiments, the

ordering is preserved: more informative classifiers solve the map faster. The negative

gradient indicates that increasing the number of sensors allows an agent to reach

the goal faster. This is due to a better location estimate (or a less uniform belief)

and results in correspondingly better actions, leading to a shorter path to the goal.

The added value of increasing from one to two sensors is greater than or equal to

that of increasing from four to five. Giving the agent more information is beneficial,

163

7.5 Experiments

2x3 3x3 3x4 3x5 3x6
World size

300

400

500

600

700

800

900

A
v
e

ra
g

e
 r

e
w

a
rd

(a)

2x3 3x3 3x4 3x5 3x6
World size

0

5

10

15

20

25

A
v
e
ra

g
e
 n

o
.
o
f
s
te

p
s

uniform
overc.
triangle
underc.
top hat
reverse
perfect

(b)

Figure 7.13: Wumpus: we show (a) the average reward, and (b) the average number
of steps to termination (which could be either the positive or the negative outcome)
of the agents as a function of world size. The larger the map, the greater the diver-
gence between the classifiers and therefore the greater the effect of the introspective
differences. Note that the number of steps to termination not only increase, but
the classifiers diverge as the world size increases. We show that the larger the map,
the greater the effect of the introspective qualities. Also note that the top hat and
reverse curves are so similar that they appear as one. Error bars represent the
standard error over 5,000 independent tests over up to 50 maps.

164

7.6 Conclusions

1 2 3 4 5

Number of sensors

18

20

22

24

26

28

30

A
v
e

ra
g

e
 n

o
.

o
f

s
te

p
s

uniform
overconfident
triangle
underconfident
top hat
reverse
perfect

Figure 7.14: We show that the more sensors are available to the agent, the greater
the effect of the introspective qualities. We also show that the top hat and reverse
classifiers perform equivalently. All of these are using the policy generated for two
hours on a single 800MHz core using the uniform classifier in a 10× 10 map. Error
bars represent the standard error over 10,000 independent tests over the same map.

so adding a perfect sensor is more valuable than adding a uniform sensor. However,

we see diminishing returns in the number of sensors, as evidenced by the gradients

of the curves becoming less negative as the number of sensors increases. The perfect

agent reaches steady state at three sensors, at which point it knows exactly where

it is in the world at almost every time step, and thus always chooses the best action

that the policy will allow.

7.6 Conclusions

In this chapter we have examined the effects of information content and classifier

consistency when confronted by non-stationary data. We have shown that using a

sensor that changes characteristics unexpectedly will result in poor decision-making.

In the wumpus world, assuming a higher level of information than is available is

worse than the converse due to the greater difficulty in achieving the positive reward

165

7.6 Conclusions

than the negative rewards. This is what we do when applying overconfident class

estimates to classical decision-making systems. We have shown that when we have

a consistent, introspective classifier, the information content of the measurements

determines an agent’s effectiveness. Finally, we demonstrated diminishing returns

when adding additional sensors, and a that the difference between the classifiers was

amplified by increased world size and scenario complexity.

We have found that because the mapping from z to the class is explicitly stated,

unlike in classical decision making, it is not required for mistakes to be made with

high uncertainty. This is shown by the equivalent performance of the top hat and

reverse classifiers. Instead of a correlation between correctness and confidence, the

POMDP framework requires any consistent mapping between z and class. This is

because the POMDP is unaware that the observations might be probabilities. The

information content of a particular classifier as measured by entropy determines the

efficiency with which an agent solves various problem scenarios. However, we empha-

sise that introspection will induce good decision making performance in sequential

decision making, and indeed the element of consistent behaviour is paramount.

166

Chapter 8

Conclusions and Future Work

In this chapter we first present our conclusions in Section 8.1, before outlining a

number of avenues for future work in Section 8.2.

8.1 Conclusions

The following points outline the conclusions and contributions of this thesis:

• Introspection. We introduce and name the concept of introspection, a char-

acteristic that we argue is required of a classifier for it to make good decisions

in robotics. We motivate this in the context of making mission-critical deci-

sions, where the degree of uncertainty with which a classification is made is

key to avoiding catastrophic outcomes. Two examples are semantic mapping,

and a “robot crossing the road” scenario, where the robot must decide whether

it is safe to cross, risking a collision. In Section 4.1 we propose that the ‘ideal’

imperfect classifier (the top hat classifier), which makes correct decisions when

it is confident, and only makes mistakes with high uncertainty. This consistent

correlation between confidence and correctness gives it the important intro-

spective quality. This requirement is rooted within the fact that our classifiers

167

8.1 Conclusions

operate on non-stationary data, where the trained model is unlikely to gen-

eralise well to all future test data. In order to benchmark a number of real

classifiers, we derive several idealised classifiers that have varying degrees of

introspection.

• A treatment of distance. We propose that one way to invoke this introspec-

tive behaviour in a classifier is via a good treatment of distance. We argue that

the data which are unlike the training data are likely to be misclassified, and

so a classifier ought to respond to these with high uncertainty. This in turn

results in a more cautious robot behaviour. This ‘unlikeness’ can be charac-

terised by an increasing distance between the training data and the test datum.

We examine a number of commonly-used classification frameworks and deter-

mine that two factors are relevant to this treatment of distance. The first and

foremost is whether a classifier is single-discriminant or multi-discriminant.

This label relates to whether, at test time, the test datum is evaluated by a

single discriminant, or several which span the hypothesis space. We determine

that multi-discriminant classifiers offer a mechanism of determining whether

a test datum is far away from the training data, by virtue of a predictive vari-

ance: if all the discriminants agree on a classification, it is likely to be near

the training data; if there is discord, it is likely to be further away and should

be treated with suspicion. The multi-discriminant classifiers are determined

to be the Gaussian process classifiers and the random forest, while the single-

discriminant classifiers are the support vector machines and LogitBoost. The

second factor of import is whether the classifier uses a linear or non-linear

kernel. In low-dimensional feature spaces (two or three dimensions), classi-

fiers using a linear kernel are less capable of determining distance between

training and test data. However, this effect dwindles as feature dimensional-

ity increases, leading to the number of discriminants becoming the dominant

168

8.1 Conclusions

factor.

• Examining high-uncertainty decisions. In Section 6.1 we investigate

the uncertainty of classifications which are made erroneously, and conclude

that the multi-discriminant classifiers are more uncertain than the single-

discriminant classifiers. This is consistent across the data sets, although the

margins are small. We predict that this should result in an increased compe-

tency in active learning, where classifiers choose high-uncertainty queries which

are then labelled by an oracle and added to their training set. Comparing a

single-discriminant and a multi-discriminant classifier, we show that indeed

the multi-discriminant IVM chooses queries which are more beneficial than

the single-discriminant SVM in terms of increasing classification performance.

• Examining high-confidence decisions. In Section 6.3 we apply the classi-

fiers’ outputs to a classical decision-making system, simulating a “robot cross-

ing the road” scenario. We test their adherence to the expectation that as

the cost increases, a classifier which makes good decisions will avoid the risky

decision to go unless it is very confident that the way is clear. We show that as

we increase the relative cost of a false negative error, no real classifier avoids

incurring large cost across all three data sets. This highlights the general lack

of introspective capacity of the classifiers. We benchmark the introspective

failings of the real classifiers against the idealised classifiers.

• Examining sequential decisions. We analyse the abilities of various agents

when they must make a sequence of decisions, each receiving measurements

from a particular idealised classifier. We discuss the importance of the informa-

tion content in the measurements, and note that our ‘top hat’ classifier max-

imises this information content. Indeed, the more informative classifiers lead

their respective agents to success faster than the less informative classifiers.

169

8.2 Future Work

Furthermore, we conclude that when the characteristics of the sensor change

unexpectedly, as is likely the case in non-stationary data streams and/or if

using overconfident classifiers, there is no safe assumption for the model. Any

discrepancy here will result in sub-optimal behaviour, and the best strategy is

to choose a classifier which will behave consistently in changing data streams.

It may be helpful to track the statistics of the incoming data in order to gain

awareness of when they have become non-stationary. Generative models can

do this by calculating the probability that a set of data comes from the same

distribution as the training data.

• Final impressions In summary, we have made progress towards a series of

tests which analyse the ability of a classifier to make appropriate decisions in

various settings. We have defined the ideal classifier behaviour as a bench-

mark for real classifiers to strive for, and proposed the importance of multi-

discriminant classifiers that offer predictive variance. Of the real classifiers

benchmarked in this thesis, there is no clear introspective winner. The search

for the introspective classifier is still on.

8.2 Future Work

The work presented in this thesis leads in many directions, and in this section

we outline a number of lines of research which would further contribute to the

understanding and leverage of introspection in robotics.

8.2.1 Introspection

1. Additional classification frameworks: deep neural networks. A huge

amount of attention is being paid to deep neural networks [Mnih et al., 2013]

[Krizhevsky et al., 2012] [Simonyan and Zisserman, 2015], and it would be very

170

8.2 Future Work

interesting to evaluate the introspective capacity of a deep net to the classi-

fication frameworks already examined in this thesis. We share the opinion of

Gal and Ghahramani [2015] that the use of dropout in the learning phase of

the network is a form of model averaging, and could result in introspective be-

haviour. Dropout is a technique used to reduce the risk of overfitting, whereby

a random subset of the computational units are dropped from the optimisation

procedures, resulting in a level of network redundancy [Srivastava et al., 2014].

However, at test time it is possible to employ the same technique on test data,

evaluating several different subsets of the network units to generate multiple

class decisions. This is akin to sampling from the hypothesis space, and the

collection of measurements can be used to calculate the predictive variance we

consider to be key to introspection.

2. Additional classification frameworks: calibrated AdaBoost. As re-

marked in Blair et al. [2014], the LogitBoost classifier we employ in this thesis

has a sigmoid to map scores to a score in [0, 1], but the sigmoid takes two

parameters, scale and offset, which are not learned in LogitBoost. Learning

these parameters via Platt’s method [Platt, 1999] or more appropriately, the

improved algorithm proposed by Lin et al. [2007] will provide a better mapping.

This method is already applied to the SVMs as part of the LIBSVM imple-

mentation Chang and Lin [2011], and is likely to yield a less over-confident

classifier than LogitBoost. Note that this classifier is still single-discriminant

and linear, so given the observations in this thesis we would expect it to per-

form similarly to the linear SVM in terms of introspection.

3. Additional classification frameworks: generative models. All the clas-

sifiers considered in this thesis are discriminative. That is, the learned models

serve to discriminate between classes, but they do not explicitly model the dis-

171

8.2 Future Work

tributions of the training classes themselves. The reason for this choice is that

discriminative models typically outperform generative models in classification

tasks, with the exception of cases with very few training data [Ng and Jordan,

2002]. However, we partially motivate our work through the non-stationarity

of real data, and generative models can be used to determine whether the

training data are representative of the test data. Generative classifiers in-

clude Gaussian Mixture Models (GMM) [Rasmussen, 2000], Kernel Density

Estimation [Bishop, 2006], Naive Bayes [Ng and Jordan, 2002].

4. Additional classification frameworks: different idealised classifiers.

In Chapter 4 we introduced a range of idealised classifiers, designing their error

functions and deriving appropriate probability density functions. In doing so,

we made a number of assumptions. The effects of relaxing those assumptions

would be of interest. For instance, the distribution of f(z) is uniform, but

by examination of Figures D.1 and D.2 we see that this is not the case for

the real classifiers. Secondly, the error functions and density functions are all

symmetrical around z = 0.5, which is a reasonable approximation to most of

the density functions, but not all. The Random Forest, in particular, is very

asymmetrical. Thirdly, all the idealised classifiers have a total expected error

rate of 0.25. We could vary the total error rate along with the entropy of the

density functions to investigate the relative importance of those terms.

5. Introspection in Big Data. In this thesis we have concerned ourselves with

relatively small numbers of training data (from 100 to 750). There are many

semantic mapping and autonomous operation tasks for which labelled data

are scarce. However, labelling data is cheap compared to making catastrophic

mistakes in autonomous tasks, so in some situations a user might have access to

larger bodies of labelled training data. A similar investigation with a hundred

172

8.2 Future Work

or a thousand times the amount of training data would be valuable.

6. The effects of class imbalance. One variable we have not investigated in

this thesis is the imbalance in the number of training data for each class. In

the third-class and classification experiments of Chapter 5 the number of data

is balanced in both training and testing. In the detection case, the training

data have a ratio of 1:2, and the test data have a ratio of approximately 1:10.

We justify the choices in Section 5.7, but we do not examine the effects of

these choices. A further set of experiments which investigate the importance

of these ratios could inform how it is best to train classifiers in the future.

7. Third class relevance in detection. In Section 5.6 we show a clear dif-

ference between the multi-discriminant classifiers and the single-discriminant

classifiers in terms of introspective capacity, but the differences do not seem

to exhibit themselves so strongly in the detection experiments of Section 5.7.

Perhaps the data sets for the detection experiments are particular in their

stationarity, or perhaps the data imbalance or parameters are too different to

be comparable, but a thorough investigation of what aspects of the data bring

out such behaviour is required.

8. More ideal introspective behaviours. An additional ideal behaviour

would be that the overall test uncertainty should decrease as the classification

model approaches the optimal model given full training information. In other

words, a classifier with very few data to characterise complex classes would

ideally be uncertain about most test instances, and as more data are added,

the proportion of test classification with greater confidence should increase.

We have investigated this in part with synthetic data in Section 5.6.1, but a

more detailed investigation into the progress of uncertainty of real classifiers

with increasing training data would be valuable.

173

8.2 Future Work

9. Bias and variance in multi-discriminant classifiers. The concepts of

bias and variance in machine learning relate to the ability for an ensemble

of learners to achieve their target value. An ensemble of learners in which

each individual gives the same measurement for a given test datum have no

variance, and an ensemble which always gives the correct measurement has

no bias. There is a parallel between this and our analysis of single and multi-

discriminant classifiers. We argue that predictive variance ought to be small

near to training data, and large far away from training data. An investigation

of this parallel would be of great interest.

10. A designer feature for introspection. Underlying our proposition that

an appropriate treatment of distance is a way to achieve introspection is the

expectation that we are more likely to correctly classify data nearby training

examples. This is not guaranteed for all feature types. It might be possible to

design a feature which lends itself to increasing the distance between training

data and misclassified test data. One way to do this might be to learn the

feature mapping from the data, like a neural network There may be a benefit

in tailoring a feature to a particular classifier model.

11. Varying the number of discriminants. We argue that multi-discriminant

classifiers are more introspective than single discriminant classifiers. It would

be interesting to sample k discriminants from the version or hypothesis space

and show that introspective quality increases with k. This could possibly be

achieved in GPC by sampling from the predictive distribution f(x∗), or in the

case of the Random Forest, by changing the number of trees.

174

8.2 Future Work

8.2.2 Semantic Mapping

1. Evaluating Map Confidence. In this thesis we have concerned ourselves

with the uncertainty of single classifications. How should we extend this to

the uncertainty of a whole image, or of a section of a semantic map? If we

could consistently and accurately judge map uncertainty, we could automati-

cally determine whether a robot is capable of making safe decisions within a

certain region. This is a crucial component to autonomy on demand, a com-

mon principle in autonomous driving in which the vehicle offers autonomous

operation in some situations but not others.

8.2.3 Active Learning

1. What data yield high-uncertainty classifications? For a well-calibrated

non-linear kernel method such as the IVM, there are two situations which

yield high uncertainty. Either the point lies directly on the decision boundary,

or it lies very far from the training data. These two very different situations

yield the same high-uncertainty response, but intuitively their effect on active

learning will be very different. Labelling such points and retraining will have

varying bearing on the resulting model. Preliminary investigations have shown

that data lying on the decision boundary have very little effect in changing

the model when labelled and retrained. The more distant points, however, can

move the model more and allow it generalise better. How can we determine

which is which? The Gaussian Process regressor, before the sigmoid is applied,

yields a predictive variance which could be used to determine whether the point

is close to the training data or not. This predictive variance could be used as

a criterion for active learning with a Gaussian Process classifier.

2. Testing active learning with explicitly non-stationary data sets. In

175

8.2 Future Work

the experiment in Section 6.2 we carry out an active learning experiment on

the same data sets used in the detection experiment in Section 5.7. The results

from the detection experiment show that there is not a great deal of difference

between the behaviours of the classifiers in that situation, which predicts a

small effect in active learning. However, if we were to carry out an active

learning experiment on an explicitly non-stationary data set, for instance those

in either of the third-class experiments from Section 5.6, we are likely to find

a larger difference between the IVM and the SVM. A half-way solution could

be to use a detection data set, but with a non-stationary positive class. For

instance, training on a set of road signs versus background, and testing on a

different set of road signs vs background.

8.2.4 Classical Decision Making

1. Testing high-cost decision-making in explicitly non-stationary data

sets. Similarly to paragraph 2 in Section 8.2.3, we might expect the more

introspective classifiers following the third-class experiments in Section 5.6 to

outperform the others in a high-cost decision making scenario if the data set is

more explicitly non-stationary. The previous point in this section would also

serve to inform us about this to a greater extent.

2. Decision-making based on ε-bounds. In the high-confidence decision mak-

ing experiment we determine the costs first and then analyse the decisions. We

consider this a problem-centric method to determine the threshold T on the

measurement which results in either waiting or going. In Section 6.3.2 we

propose setting the threshold by considering a specific classifier’s behaviour,

such that the probability of a particular outcome is bounded to some pre-

determined value ε based on a training set. This is a classifier-centric method

176

8.2 Future Work

of choosing the threshold. This is not likely to affect the consistency of the

classifiers, but for stationary data sets it may result in better decision-making

than determining the cost matrix.

8.2.5 Sequential Decision Making

1. Closeness to the optimal policy. Because we follow the authors advice

and terminate the optimisation for generating the policy after a fixed period

of time [Kurniawati et al., 2008], the resulting policy may or may not be close

to the optimal policy. A more detailed evaluation of the role of the length of

time before termination and the quality of the resulting policy would be of

value, particularly in problem scenarios which are computationally expensive.

2. Extending the problem set. We have considered two problem scenarios

which we believe represent the body of standard problems, but it would be

valuable to confirm our findings in a variety of settings.

3. Making the wumpus scenario more efficient. The wumpus problem we

have used in our experiments in Chapter 7 is very simple in that there is

only ever one wumpus. The original problem as set by Russell and Norvig

[2003] allows for more than one wumpus and also a number of pits, which also

terminate the episode with a large negative cost, and squares adjacent to a pit

are breezy. Indeed the agent has a sensor for breeziness. In some formulations

of the problem, the agent also carries a single arrow, which it can fire in one

of the four cardinal directions, and if the arrow passes through a wumpus it

will die and scream, clearing the way for the agent. There would also be a

scream sensor on board the agent. We use a simplified scenario here because

already the state space is very large and generating (and writing to disk) the

observation and state transition distribution functions takes a long time (in

177

8.2 Future Work

the order of hours in a 3 × 5 grid. There will be ways to lessen the file sizes

and computational burdens, enabling experiments on more complex versions

of the scenario and over larger sizes.

4. Practical scenario. Throughout the thesis we compare the real classifiers

and the idealised classifiers, but in Chapter 7 we consider only the latter. Eval-

uating the information gain from real classification frameworks on real data

using a POMDP to make decisions could inform classifier choice in practical

problems.

5. Classifiers without full support in [0, 1]. The support of a function f on

the interval [0, 1] is the set of values z at which f(z) 6= 0. In Section 7.5.1

we evaluate the performance of an agent when its model of the sensor is not

necessarily the true sensor model. This creates a deliberate disparity between

the actual value of an observation and the agent’s perception of its value,

similarly to a non-introspective classifier being tested on a third class or non-

stationary data set; it can be unreasonably overconfident or under-confident.

However, we cannot test on the top hat , reverse, or perfect classifiers because

the lack of full support in z ∈ [0, 1]. If the agent’s model of the sensor is perfect

but the true model is uniform, the sensor can give an erroneous measurement,

but the agent interprets it as being correct. Certain combinations of moves and

erroneous measurements will result in a belief update which cannot account

for a particular measurement given a particular belief, resulting in a perceived

logical impossibility. This occurs in map-building: a robot running a SLAM

(Simultaneous Localisation and Mapping) system with loop closure can detect

a loop which is not consistent with the local odometry. Typically a bundle-

adjustment on the entire set of poses of the robot and its landmarks will be

performed, using the loop-closure as a constraint [Sibley et al., 2010]. This

178

8.2 Future Work

warps the existing poses to make up for the accumulated error in odometry.

The POMDP framework in the form described in Appendix E is not capable

of revisiting previous decisions, owing to the Markov assumption. One might

argue that our robots need to be able to revisit past decisions in order to

compensate for previous errors.

179

Appendices

180

Appendix A

Road Graph Generation

Algorithms

In this appendix we present the two algorithms used in Section 2.3.1 to create a

road network from a collection of ordered vehicle poses. The aim is to reproduce

the skeleton structure of the driving lanes which have been manually driven at least

once.

181

Algorithm 1: Creating and simplifying the adjacency matrix required for
Algorithm 2.

Data: vehicle poses X ∈ R3, connecting distance d, number of pruning loops
P

Result: Symmetric adjacency matrix A
// Connect all nodes within a radius d of each other

1 forall the pairs of poses (xi, xj) ∈ X do
2 if ‖xi − xj‖ ≤ d then Aij ← 1
3 else
4 Aij ← 0; Aji ← 0 // Symmetric A

// Disconnect temporally subsequent nodes within d
5 forall the poses xi ∈ X do
6 n← 1
7 while ‖xi − xi+n‖ ≤ d // Exit if assertion fails

8 do
9 Ai,i+n ← 0;Ai+n,i ← 0

10 n← n+ 1

// Connect nodes in the order they were driven

11 forall the poses xi ∈ X do
12 Ai,i+1 ← 1; Ai+1,i ← 1

// Prune cliques larger than 2, replacing them by the node

nearest to the clique centre

13 for p← 1 to P do
// Produce an ordered list of maximal cliques

14 C ← findMaximalCliques(A)
15 C ← sortDescending(C)
16 R = ∅ // The set of nodes marked for removal

17 forall the cliques c ∈ C such that |c| > 2 do
18 xµ ← mean(xc)
19 xb ← returnNearestNode(xµ,X)
20 N ← returnNeighbours(c, A) // N includes indices i /∈ c but

adjacent to at least one node in c
// Skip cliques containing nodes marked for removal

21 if N ∩R = ∅ then
22 Ab,N ← 1; AN,b ← 1

// Find the dead-end nodes

23 D ← {i ∈ N for which degreeA(i) = 1}
// Mark these nodes for removal

24 R← R ∪ c ∪D \ {b}

25 A← removeRowsAndCols(R,A) // remove the rows and columns of

A which refer to the nodes in R

182

Algorithm 2: Iteratively exploring the adjacency matrix from Algorithm 1 to
discover the road network and its intersections.

Data: Symmetric adjacency matrix A with M rows and columns
Result: Road network R, intersections I∗

1 v ← ∅ // Current node

2 T ← ∅ // Termination nodes

3 R← ∅ // Road network

4 I∗ ← {i ∈ {1, . . . ,M} for which degreeA(i) > 2}
5 while A nonempty do

// Intersection nodes

6 I ← {i ∈ {1, . . . ,M} for which degreeA(i) > 2}
// Dead-end nodes

7 D ← {i ∈ {1, . . . ,M} for which degreeA(i) = 1}
8 if D 6= ∅ then
9 v ← some d ∈ D // Start at a dead-end node

10 T ← I // Terminate at an intersection node

11 else
12 if I 6= ∅ then
13 v ← some i ∈ I
14 T ← I \ {v}
15 else

// Remaining road network is only one loop

16 v ← 1 // Start anywhere

17 T ← ∅

18 L← v // Lane

19 O ← returnNeighbours(v, A) // Options

20 while (i /∈ T) ∧ (O 6= ∅) do
21 v ← some o ∈ O
22 L← (L, v) // add v to the vector L
23 O ← returnNeighbours(v,A) \ L // with L as a set

24 R← R ∪ {L} // R is a set of vectors

25 if L1 ∈ I then
26 L← L \ L1 // don’t include start node

27 if L|L| ∈ I then
28 L← L \ L|L| // don’t include terminal node

29 A← removeRowsAndCols(L,A)

183

Appendix B

Classifier Probability Contours

In this appendix we train each classifier on two-dimensional synthetic data, and show

the contours of the test probabilities. In Figure B.1 we show the contours for classi-

fiers trained on linearly separable data, and in Figure B.2 we show the same for non-

linearly-separable data. Note that these may not extrapolate to higher-dimensional

spaces, and serve only as a simple illustration for low-dimensional space.

184

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) IVM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Non-linear GPC

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Linear GPC

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Non-linear SVM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Linear SVM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) LogitBoost

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(g) Random Forests

Figure B.1: Separable: the probability contours for each classifier on two-
dimensional data which are linearly separable. (Best viewed in colour.)

185

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) IVM

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Non-linear GPC

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Linear GPC

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Non-linear SVM

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) Linear SVM

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) LogitBoost

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(g) Random Forests

Figure B.2: Non-separable: the probability contours for each classifier on two-
dimensional data which are not linearly separable. (Best viewed in colour.)

186

Appendix C

Idealised Classifier Error

Functions

Subject to the assumptions in Section 4.3.1 we wish to construct a number of simple

examples error functions with which to benchmark real classifiers. For simplicity

we consider scenarios in which the two classes are equiprobable, and so the error

functions are symmetrical. In particular, we wish to explore the effects which arise

from varying the extent to which mistakes occur around the decision boundary

z = 0.5, while maintaining the same expected error rate of 0.25 for all classifiers.

We also add a perfect classifier which makes no errors, to contextualise the others.

187

The following define the simple example error functions.

uniform: E(z) = 0.25 (C.1)

overconfident : E(z) =





0.25((4z − 1)3 + 1), if z < 0.5

0.25((−4z + 3)3 + 1), if z ≥ 0.5

(C.2)

triangle: E(z) =





z, if z < 0.5

1− z, if z ≥ 0.5

(C.3)

under-confident : E(z) =





0.25(1 + 3
√

4z − 1), if z < 0.5

0.25(1 + 3
√
−4z + 3), if z ≥ 0.5

(C.4)

top hat : E(z) =





0, if z < 0.25

0.5, if 0.25 ≤ z < 0.75

0, if z ≥ 0.75

(C.5)

reverse: E(z) =





0.5, if z < 0.25

0, if 0.25 ≤ z < 0.75

0.5, if z ≥ 0.75

(C.6)

perfect : E(z) = 0. (C.7)

188

Appendix D

Empirical Probability Density

Functions of Real Classifiers

In this appendix we show the empirical distribution functions of real classifiers

trained and tested on the Daimler Pedestrian data set. Figures D.1 and D.2 show

the distribution of the measurements z for the background class (left columns), and

the pedestrian class (right columns).

It is clear that with the exception of the Random Forests, all classifiers behave

very similarly in terms of measurement distribution, with the majority of the clas-

sifications being made with great confidence, near z = 0 and z = 1. The Random

Forest classifier behaves very differently to the rest, exhibiting much less confidence

in both classes, but especially the pedestrian class, which is extraordinarily uncer-

tain.

189

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

f(
z
|C

1
)

IVM

(a) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.005

0.01

0.015

0.02

0.025

0.03

f(
z
|C

2
)

IVM

(b) Pedestrians

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

f(
z
|C

1
)

Non-linear GPC

(c) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.005

0.01

0.015

0.02

0.025

0.03
f(

z
|C

2
)

Non-linear GPC

(d) Pedestrians

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

f(
z
|C

1
)

Linear GPC

(e) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.005

0.01

0.015

0.02

0.025

0.03

f(
z
|C

2
)

Linear GPC

(f) Pedestrians

Figure D.1: The empirical probability density functions of the classifiers on a single
run from the DP data set. The density functions for C1 (background) show 16,000
samples and the density functions for C2 show 2,000 samples, each across 50 equally-
sized bins. See Figure D.2 for the other classifiers.

190

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(
z
|C

1
)

Non-linear SVM

(a) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.01

0.02

0.03

0.04

0.05

0.06

f(
z
|C

2
)

Non-linear SVM

(b) Pedestrians

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(
z
|C

1
)

Linear SVM

(c) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.01

0.02

0.03

0.04

0.05

0.06

f(
z
|C

2
)

Linear SVM

(d) Pedestrians

0 0.2 0.4 0.6 0.8 1
z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(
z
|C

1
)

LogitBoost

(e) Background

0 0.2 0.4 0.6 0.8 1
z

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

f(
z
|C

2
)

LogitBoost

(f) Pedestrians

0 0.2 0.4 0.6 0.8 1
z

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

f(
z
|C

1
)

Random Forests

(g) Background

0 0.2 0.4 0.6 0.8 1
z

0

1

2

3

4

5

6

7

f(
z
|C

2
)

×10
-3

Random Forests

(h) Pedestrians

Figure D.2: The empirical probability density functions of the classifiers on a single
run from the DP data set. The density functions for C1 (background) show 16,000
samples and the density functions for C2 show 2,000 samples, each across 50 equally-
sized bins. See Figure D.1 for the other classifiers.

191

Appendix E

MDPs and POMDPs

In this appendix we describe the workings of two sequential decision making models,

starting with the Markov Decision Process (MDP) and then adding the complexity

of stochastic sensor measurements with the Partially Observable MDP (POMDP).

These processes can be used to model a wide body of problems.

E.1 Markov Decision Process (MDP)

A Markov Decision Process can be defined by the following [Sutton and Barto, 1998]:

• a set of states S = {s1, s2, . . . , s|S|} in which the agent can be,

• a set of actions A = {a1, a2, . . . , a|A|} that the agent can choose to perform,

• the state transition distribution function p(s′ | s, a) which describes the likeli-

hood of ending up in state s′ if the agent starts in state s and performs action

a, and

• an expected immediate reward function r(s, a, s′) which defines the immediate

reward given to the agent for performing action a in state s, and ending in

state s′.

192

E.1 Markov Decision Process (MDP)

We will restrict ourselves to discrete time planning, where the state can change at

each time step t. The general problem is to find a suitable policy π which maps

state to action:

π : st, st−1, . . . , at−1, at−2, · · · → a. (E.1)

In the MDP, the agent starts in a known state s0, chooses some action a0 and then

is told which resulting state s′0 = s1 it now finds itself. The state is fully observable.

We denote the reward at time t as Rt. The goal is to maximise the total reward.

Central to the MDP is the assumption of the Markov property, being that the

state transition distribution depends only on the chosen action and the current state,

not any previous states or actions. Applying the Markov property to our generalised

planning problem allows us to restrict ourselves to policies

π : s→ a (E.2)

that only depend upon the current state. Thus at any time t, the agent looks up

π(st) and performs that action. Choosing a policy is not as simple as choosing the

action which maximises the immediate reward, because that greedy choice may land

the agent in a state for which all future rewards are smaller than the alternative,

and thus the total reward over the course of its life are very likely to be suboptimal.

If the state transition distribution is deterministic we can sum up the immediate

reward over all future states, but this could be infinite, and thus make it impossible

to compare policies. If the state transition distribution is stochastic, we can instead

calculate an expected total reward, but again, that could be infinite. So how do we

compare policies yielding infinite rewards? Two common approaches are to discount

future reward by a constant factor γ ∈ [0, 1), or to use a finite horizon, where we

total the expected future reward for a fixed number of time-steps into the future

[Sutton and Barto, 1998]. Both of these methods result in the rewards becoming

193

E.1 Markov Decision Process (MDP)

finite, and therefore comparable, in infinite-horizon tasks (where the number of time

steps is infinite) or indefinite-horizon tasks (where the number of time steps may

be infinite, but is generally finite). Discounting future reward is the approach used

by the framework we use for this work (the SARSOP point-based POMDP solver,

under the APPL toolkit by Kurniawati et al. [2008]).

The total discounted future reward at time t is called the return, Gt, defined as

Gt = Rt+1 + γRt+2 + . . . =
∞∑

k=0

γkRt+k+1. (E.3)

Now we can define the state-value function v for a particular policy π, which tells us

the expected return that the agent receives if it follows that policy from each state,

thus:

vπ(s) = Eπ[Gt |St = s]. (E.4)

Note that vπ(s) depends upon s but not on t. One convenient property of this value

function is that it is recursive, relating the value of being in a state s to the value

of being in all possible next states s′:

vπ(s) = Eπ[Gt |St = s] (E.5)

= Eπ

[
∞∑

k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(E.6)

= Eπ

[
Rt+1 +

∞∑

k=0

γk+1Rt+k+2

∣∣∣∣∣St = s

]
. (E.7)

To calculate Eπ[Rt+1] we must sum the immediate rewards, starting in state s, taking

action a, and leading to the new state s′, weighted by the likelihood of the triplet

(s, a, s′) occurring. That is,

Eπ[Rt+1] =
∑

a

π(a | s)
∑

s′

p(s′ | s, a) · r(s, a, s′), (E.8)

194

E.1 Markov Decision Process (MDP)

which we can substitute into (E.7) to obtain Bellman’s equation [Sutton and Barto,

1998]:

vπ(s) =
∑

a

π(a | s)
∑

s′

p(s′ | s, a)

[
r(s, a, s′) + γEπ

[
∞∑

k=0

γkRt+k+2

∣∣∣∣∣St = s

]]
(E.9)

=
∑

a

π(a | s)
∑

s′

p(s′ | s, a)

[
r(s, a, s′) + γvπ(s′)

]
(E.10)

in the case where the policy is stochastic. From now on we assume the policy to be

deterministic. This may be expressed in the form

vπ(s) = r
(
s, π(s)

)
︸ ︷︷ ︸

immediate reward

+

discounted future reward︷ ︸︸ ︷
γ
∑

s′∈S

p
(
s′ | s, π(s)

)
· vπ(s′), (E.11)

where r(s, a) is the immediate reward of being in state s and taking action a, so

that

r(s, a) =
∑

s′∈S

p(s′ | s, a)r(s, a, s′). (E.12)

Now that we have defined the value at a state for a given policy, we are in a

position to compare the values of different policies. If we have two policies π and

π′, we write π ≥ π′ iff vπ(s) ≥ vπ′(s) ∀s ∈ S. It is a principal result that there

exist one or more policies π∗ satisfying π∗ ≥ π for all policies π [Sutton and Barto,

1998], and any such π∗ is called an optimal policy. All optimal policies have the

same state-value function, called the optimal state-value function, v∗, which satisfies

Bellman’s optimality equation,

v∗(s) = max
π

∑

a

π(a | s)
∑

s′

p(s′ | s, a)

[
r(s, a, s′) + γv∗(s

′)

]
. (E.13)

195

E.1 Markov Decision Process (MDP)

Finding the optimal policy using value iteration

Given the optimal state-value function v∗, the optimal policy may be found by

π∗ = arg max
a∈A

(
r(s, a) + γ

∑

s′∈S

p(s′, s, a)v∗(s
′)

)
. (E.14)

One way to compute π∗(s) is to solve (E.13) for v∗(s), but this can be very difficult

when there are a substantial number of states and actions [Shani et al., 2013].

Another way of calculating v∗(s) is to use the process of value iteration, as follows.

Let v(s) be the value function associated with policy π. If you take action a and

subsequently follow policy π, the expected return is

Eπ[Gt |St = s, At = a] = r(s, a) + γ
∑

s′∈S

p(s′ | s, a)v(s′). (E.15)

If we choose a greedily, such that this is a maximum, we obtain a new value function

v′(s) given by

v′(s) = max
a∈A

(
r(s, a) + γ

∑

s′∈S

p(s′ | s, a)v(s′)

)
. (E.16)

We write v′ = J(v) where J is a function, or an operator, which maps state-value

functions to state-value functions. Hauskrecht [2000] explains that J has a property

of being a contraction, and this implies that successive value-iteration converges to

the optimal value function. In practice we cannot run value iteration forever, so

typically we continue until the difference in value between two successive iterations

is less than some predetermined small ε(1 − γ)/γ, by which point the distance to

the optimal value function is bounded by ε. This bound is shown not to increase

with subsequent iterations.

While the MDP is extremely effective in a number of problems (e.g. Dean et al.

[1993], Laroche et al. [1999]), it assumes that we have full observability over the

state, even if the transition function or policy are stochastic. In practice, our robots

196

E.2 Partially Observable Markov Decision Processes (POMDP)

will often not have this; real sensors are noisy, and so the state could be more

realistically modelled as only partially observable. The need for agents which can

generate useful policies in the absence of full observability has prompted work into

partially observable MDPs, or POMDPs, which is described in the following section

and inherits much from the theory of MDPs presented above.

E.2 Partially Observable Markov Decision Pro-

cesses (POMDP)

The POMDP can be seen as an extension of the MDP, removing the assumption

that the agent’s state is fully observable [Pineau et al., 2006]. Instead, the agent

maintains a probability distribution over possible states, called the belief or belief

state, b(s). At each time step, the agent receives some measurement or observation

z which it uses to update its belief state.

A POMDP model is defined by the four components from the MDP in Appendix

E.1, plus three more:

• a list of possible observations Z = {z1, z2, . . . , z|Z|}, and

• the observation probability distribution p(z | a, s′). This describes the likelihood

of seeing observation z if the agent is in state s′ having performed action a.

Lastly,

• the agent’s initial belief state.

Whereas in the MDP the number of states can be finite, the belief can be any

probability distribution over the states, and there are infinitely many such distribu-

tions. We refer to this space of possible probability distributions as the belief space.

As a sequence of observations are made, the current belief state of the agent evolves

197

E.2 Partially Observable Markov Decision Processes (POMDP)

within the belief space, and as it does so it maintains the Markov property. That

is, the current belief state is sufficient to determine the future belief states. Thus,

given the initial belief state, the agent chooses an action, receives an observation,

and updates its belief accordingly. This allows us to draw an equivalence between

a POMDP and a continuous-space MDP, with the belief space acting as the state

space of the MDP. As a result, we can make use of the theory described in the

previous section.

POMDP Equations

Here we present the POMDP adaptations of the MDP equations discussed in Ap-

pendix E.1 [Pineau et al., 2006].

The value function update is defined as

v′(b) = max
a∈A

[∑

s∈S

r(s, a)b(s) + γ
∑

z∈Z

p(z | a, b)v
(
τ(b, a, z)

)
]
, (E.17)

where τ(b, a, z) is the new belief state b′ having taken action a and received mea-

surement z. It is the element-wise application of

τ(b, a, z)→ b′(s′ | b, a, z) = p(z | a, s′)
∑

s p(s
′ | a, s)b(s)

p(z | b, a)
, (E.18)

over all s′ ∈ S. An element b′(s′) is the belief that the agent has transitioned to

state s′. In practice we do not compute the denominator p(z | b, a) explicitly and

instead normalise the numerator of (E.18) such that
∑

s′ b
′(s′ | b, a, z) = 1.

The policy given a value function v is therefore

π′(b) = arg max
a∈A

[∑

s∈S

r(s, a)b(s) + γ
∑

z∈Z

p(z | a, b)v
(
τ(b, a, z)

)
]
. (E.19)

Further discussion can be found in Shani et al. [2013]. Next, we discuss the

198

E.2 Partially Observable Markov Decision Processes (POMDP)

implications of the fact that the belief space is infinite.

Vector representation of the value function, and exact value iteration

The state-value function of the MDP may be represented by a table with an entry

for each state s. In contrast, a belief state b(s) is continuous and so vπ(b) lies in

an (|S| − 1)-dimensional space. The difficulty is therefore that the calculation of

the value function at any step is not guaranteed to be possible in finite time or to

be representable in finite memory. However, Smallwood and Sondik [1973] show

that the value function can both be computed in finite time and represented in

finite memory when expressed in terms of a convex, piecewise-linear interpolation.

Specifically, they show that, after t iterations, the value function can be represented

in terms of a finite set of vectors Γt = {α1, α2, . . . } by the expression

vt(b) = max
α∈Γt

∑

s∈S

α(s)b(s), (E.20)

where α(s) is the sth element of the vector α. This is illustrated in Figure E.1.

In some cases a hyperplane defined by α can be dominated by one or more other

hyperplanes, for instance the purple α4 in the figure, in which case it can be removed

from Γt. This representation gives rise to an iterative process called exact value

iteration, and proceeds from step to step via an operation called a backup [Sondik,

1978, Cassandra et al., 1997].

The key idea of a backup is as follows [Pineau et al., 2006]. We update Γt−1

by considering the immediate reward (or value) and discounted future value of each

αi ∈ Γt−1, given some action a and observation z (similarly to (E.11)). Let Γa,∗t be

the set containing the single function r(s, a) (defined in (E.12)), which we write in

the form

Γa,∗t ← αa,∗(s) = r(s, a). (E.21)

199

E.2 Partially Observable Markov Decision Processes (POMDP)

0 1
b(s1)

↵1
↵2

↵3

↵4
v t

(b
)

Figure E.1: Representing the value function v at iteration t by a piecewise-linear
convex function Γt = {α1, α2, ...}. The value of a state v(s) is the maximum over all
linear functions evaluated at that point s, shown by the bold coloured lines. The
dotted sections are redundant because they do not contribute to the maximum.

Similarly, we define the set Γa,zt by

Γa,zt ← αa,zi (s) = γ
∑

s′∈S

p(z | a, s′)p(s′ | s, a)αi(s
′), (E.22)

for αi ∈ Γt−1. Let

Γat = Γa,∗t + Γa,z1t ⊕ Γa,z2t ⊕ . . . , (E.23)

where ⊕ is the cross-sum operator, given by

A⊕B = {ai + bj : ai ∈ A, bj ∈ B}. (E.24)

Finally,

Γt =
⋃

a∈A

Γat . (E.25)

As t grows, the size of Γt grows exponentially, and so calculating the exact

value iteration by this method becomes infeasible except in the case of very small

problems.

200

E.2 Partially Observable Markov Decision Processes (POMDP)

Approximating the belief space, and point-based value iteration

Since exact value iteration is generally infeasible, an acceptable strategy is to select

a finite set of belief points to represent the infinite belief space [Shani et al., 2013]. A

naive approach could be to sample a grid of points over the space, but in most prob-

lems there is a section of the space to which no sequence of actions and observations

can lead. This results in computational effort being wasted on estimating the value

of these unreachable areas of the belief space. Therefore, today’s point-based value

iteration algorithms sample from the reachable parts of the belief space, exploring

from the initial belief under arbitrary sequences of actions.

Throughout the experiments in this chapter we use a point-based value iteration

solver called SARSOP, under the APPL toolkit by Kurniawati et al. [2008]. The

key idea here is to maintain upper and lower bounds on the optimal value function,

and through iteration to shrink the distance between these bounds until either they

are within some predetermined value ε or a predetermined time limit elapses. In the

results presented in Chapter 7, SARSOP typically terminates at the time limit.

201

Bibliography

The V-Charge project website. http://www.v-charge.eu/, 2015. Accessed: 2015-

09-28.

The AdaptiVe project website. https://www.adaptive-ip.eu/, 2016. Accessed:

2016-01-27.

D. Abhishek, N. J. V. Raymond, and J. S. Luuk. Predicting Face Recognition

Performance Using Image Quality. CoRR, abs/1510.07119, 2015.

A. Alessandrini, A. Cattivera, C. Holguin, and D. Stam. CityMobil2: Challenges

and Opportunities of Fully Automated Mobility. In Road Vehicle Automation,

pages 169–184. Springer, New York, NY, USA, 2014.

M. Aly. Real Time Detection of Lane Markers in Urban Streets. In Intelligent

Vehicles Symposium, pages 7–12. IEEE, 2008.

D. Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, 1988.

A. Atrash, R. Kaplow, J. Villemure, R. West, H. Yamani, and J. Pineau. Devel-

opment and Validation of a Robust Speech Interface for Improved Human-Robot

Interaction. International Journal of Social Robotics, 1(4):345–356, 2009.

D. Barnes, W. Maddern, and I. Posner. Exploiting 3D Semantic Scene Priors for

Online Traffic Light Interpretation. In Intelligent Vehicles Symposium, pages 573–

578. IEEE, 2015.

202

http://www.v-charge.eu/
https://www.adaptive-ip.eu/

BIBLIOGRAPHY

Y. Bazi and F. Melgani. Gaussian Process Approach to Remote Sensing Image

Classification. Geoscience and Remote Sensing, 48(1):186–197, 2010.

Ro. Benenson, R. Timofte, and L. Van Gool. Stixels Estimation Without Depth

Map Computation. In International Conference on Computer Vision Workshops,

pages 2010–2017. IEEE, 2011.

L.-P. Berczi, I. Posner, and T. D. Barfoot. Learning to Assess Terrain from Human

Demonstration Using an Introspective Gaussian Process Classifier. In Interna-

tional Conference on Robotics and Automation, 2015.

L. F. Bertuccelli and J. P. How. Robust Markov Decision Processes using Sigma

Point Sampling. In American Control Conference, pages 5003–5008. IEEE, 2008.

C. M. Bishop. Pattern Recognition and Machine Learning, volume 4. Springer, New

York, NY, USA, 2006.

C. G. Blair, J. Thompson, and N. M. Robertson. Introspective Classification for

Pedestrian Detection. In Conference on Sensor Signal Processing for Defence.

IEEE, 2014.

E. P. Blasch, A. Lakhotia, and G. Seetharaman. Unmanned Vehicles Come of Age:

The DARPA Grand Challenge. Computer, 39(12):26–29, 2006.

M. Boshra and B. Bhanu. Predicting Performance of Object Recognition. Transac-

tions on Pattern Analysis and Machine Intelligence, 22(9):956–969, 2000.

L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

E. Brynjolfsson, Y. Hu, and M. D. Smith. Consumer Surplus in the Digital Econ-

omy: Estimating the Value of Increased Product Variety at Online Booksellers.

Management Science, 49(11):1580–1596, 2003.

203

BIBLIOGRAPHY

C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

Y.-D. Cai, K.-Y. Feng, W.-C. Lu, and K.-C. Chou. Using LogitBoost Classifier

to Predict Protein Structural Classes. Journal of Theoretical Biology, 238(1):

172–176, 2006.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental Pruning: A Simple,

Fast, Exact Method for Partially Observable Markov Decision Processes. The

Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 54–61, 1997.

C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines.

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active Learning with Statistical

Models. Journal of Artificial Intelligence Research, 4(1):129–145, 1996.

T. M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities

with Applications in Pattern Recognition. Electronic Computers, EC-14(3):326–

334, 1965.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &

Sons, New York, NY, USA, 2nd edition, 2006.

C. Cusano, G. Ciocca, and R. Schettini. Image Annotation Using SVM. In Electronic

Imaging, pages 330–338. International Society for Optics and Photonics, 2003.

D. R. Cutler, T. C. Edwards Jr, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson,

and J. J. Lawler. Random Forests for Classification in Ecology. Ecology, 88(11):

2783–2792, 2007.

204

http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In

Conference on Computer Vision and Pattern Recognition, pages 886–893. IEEE,

2005.

A. P. Dawid. The Well-Calibrated Bayesian. Journal of the American Statistical

Association, 77(379):605–610, 1982.

T. L. Dean, L. P. Kaelbling, J. Kirman, and A. E. Nicholson. Planning With Dead-

lines in Stochastic Domains. In Proceedings of the Eleventh National Conference

on Artificial Intelligence, volume 93, pages 574–579. AAAI, 1993.

M. H. DeGroot and S. E. Fienberg. The Comparison and Evaluation of Forecasters.

The Statistician, pages 12–22, 1983.

M. Dettling and P. Bühlmann. Boosting for Tumor Classification with Gene Ex-

pression Data. Bioinformatics, 19(9):1061–1069, 2003.

L. Devroye. Non-Uniform Random Variate Generation. Springer, New York, NY,

USA, 1986.

C. Dima, M. Hebert, and A. Stentz. Enabling Learning from Large Datasets: Apply-

ing Active Learning to Mobile Robotics. In International Conference on Robotics

and Automation, volume 1, pages 108–114. IEEE, 2004.

C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors. In

Computer Vision, pages 301–311. Springer, New York, NY, USA, 2012.

H. Durrant-Whyte and T. Bailey. Simultaneous Localization and Mapping: Part I.

Robotics & Automation Magazine, 13(2):99–110, 2006.

D. Duvenaud. Automatic Model Construction with Gaussian Processes. PhD the-

sis, Computational and Biological Learning Laboratory, University of Cambridge,

2014.

205

BIBLIOGRAPHY

L. El Ghaoui and A. Nilim. Robust Solutions to Markov Decision Problems with

Uncertain Transition Matrices. Operations Research, 53(5), 2005.

E. E. Elattar. Day-ahead Price Forecasting of Electricity Markets Based on Local

Informative Vector Machine. IET Generation, Transmission & Distribution, 7

(10):1063–1071, 2013.

M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-Cue Pedestrian

Classification with Partial Occlusion Handling. In Conference on Computer Vision

and Pattern Recognition, pages 990–997. IEEE, 2010.

M. Enzweiler, M. Hummel, D. Pfeiffer, and U. Franke. Efficient Stixel-Based Object

Recognition. In Intelligent Vehicles Symposium, pages 1066–1071. IEEE, 2012.

E. Eskin, J. Weston, W. S. Noble, and C. S. Leslie. Mismatch String Kernels

for SVM Protein Classification. In Advances in Neural Information Processing

Systems, pages 1417–1424, 2002.

N. Fairfield and C. Urmson. Traffic Light Mapping and Detection. In International

Conference on Robotics and Automation, pages 5421–5426. IEEE, 2011.

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do We Need Hun-

dreds of Classifiers to Solve Real World Classification Problems? The Journal of

Machine Learning Research, 15(1):3133–3181, 2014.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective Sampling using the

Query by Committee Algorithm. Journal of Machine Learning, 28(2):133–168,

1997.

J. Friedman, T. J. Hastie, and R. J. Tibshirani. Additive Logistic Regression: a

Statistical View of Boosting. Annals of Statistics, 28:2000, 1998.

206

BIBLIOGRAPHY

A. Furda and L. Vlacic. Enabling Safe Autonomous Driving in Real-world City Traf-

fic Using Multiple Criteria Decision Making. Intelligent Transportation Systems

Magazine, 3(1):4–17, 2011.

P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz, H. Grimmett, P. Mühlfellner,

S. Wonneberger, Timpner. J., S. Rottmann, B. Li, B. Schmidt, T. N. Nguyen,

E. Cardarelli, S. Cattani, S. Brüning, S. Horstmann, Stellmacher. M., H. Mielenz,

K. Köser, M. Beermann, C. Häne, L. Heng, G. H. Lee, F. Fraundorfer, R. Iser,

R. Triebel, I. Posner, P. Newman, L. Wolf, M. Pollefeys, S. Brosig, J. Effertz,

C. Pradalier, and R. Siegwart. Toward Automated Driving in Cities using Close-

to-Market Sensors, an Overview of the V-Charge Project. In Intelligent Vehicles

Symposium, pages 809–816, Gold Coast, Australia, 2013. IEEE.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing

Model Uncertainty in Deep Learning. 2015. URL http://arxiv.org/abs/1506.

02142.

D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut. Comparison of

Linear, Nonlinear, and Feature Selection Methods for EEG Signal Classification.

Neural Systems and Rehabilitation Engineering, 11(2):141–144, 2003.

A. Geiger, P. Lenz, and R. Urtasun. Are We Ready for Autonomous Driving? The

KITTI Vision Benchmark Suite. In Conference on Computer Vision and Pattern

Recognition, pages 3354–3361. IEEE, 2012.

D. Gerónimo, A. D. Sappa, D. Ponsa, and A. M. López. 2D–3D-based On-board

Pedestrian Detection System. Computer Vision and Image Understanding, 114

(5):583–595, 2010.

P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson. Random Forests for Land

Cover Classification. Pattern Recognition Letters, 27(4):294–300, 2006.

207

http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/1506.02142

BIBLIOGRAPHY

J. González, M. Osborne, and N. D. Lawrence. GLASSES: Relieving The Myopia

Of Bayesian Optimisation. In Proceedings of the 19th International Conference

on Artificial Intelligence and Statistics. JMLR, 2016.

H. Grimmett, R. Paul, R. Triebel, and I. Posner. Knowing When We Don’t Know:

Introspective Classification for Mission-Critical Decision Making. In International

Conference on Robotics and Automation, pages 4351–4358. IEEE, 2013.

H. Grimmett, M. Buerki, L. Paz, P. Piniés, P. Furgale, I. Posner, and P. Newman.

Integrating Metric and Semantic Maps for Vision-Only Automated Parking. In

Proceedings of the International Conference on Robotics and Automation, Seattle,

WA, USA, 2015a.

H. Grimmett, R. Triebel, R. Paul, and I. Posner. Introspective Classifica-

tion for Robot Perception. International Journal of Robotics Research, 2015b.

Corrigendum-ibid. Grimmett et al. [To appear 2016].

H. Grimmett, R. Triebel, R. Paul, and I. Posner. Corrigendum: Introspective Clas-

sification for Robot Perception. International Journal of Robotics Research, To

appear 2016.

P. Grother and E. Tabassi. Performance of Biometric Quality Measures. Pattern

Analysis and Machine Intelligence, 29(4):531–543, 2007.

R. Harb, X. Yan, E. Radwan, and X. Su. Exploring Precrash Maneuvers Using

Classification Trees and Random Forests. Accident Analysis & Prevention, 41(1):

98–107, 2009.

T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman &

Hall/CRC, 1990.

208

BIBLIOGRAPHY

M. Hauskrecht. Value-Function Approximations for Partially Observable Markov

Decision Processes. Journal of Artificial Intelligence Research, pages 33–94, 2000.

M. Hauskrecht and H. Fraser. Planning Treatment of Ischemic Heart Disease

with Partially Observable Markov Decision Processes. Artificial Intelligence in

Medicine, 18(3):221–244, 2000.

J. Hoey and P. Poupart. Solving POMDPs with Continuous or Large Discrete

Observation Spaces. In International Joint Conference on Artificial Intelligence,

pages 1332–1338, 2005.

A. Holub, P. Perona, and M. C. Burl. Entropy-Based Active Learning for Object

Recognition. In Conference on Computer Vision and Pattern Recognition Work-

shops, pages 1–8. IEEE, 2008.

T. Hospedales, S. Gong, and T. Xiang. Finding Rare Classes: Active Learning with

Generative and Discriminative Models. Transactions on Knowledge and Data

Engineering, 25(2):374–386, 2013.

K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez. Grasping POMDPs. In Interna-

tional Conference on Robotics and Automation, pages 4685–4692. IEEE, 2007.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A Practical Guide to Support Vector Clas-

sification. 2010. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/

guide.pdf.

A. Huang and S. Teller. Probabilistic Lane Estimation using Basis Curves. In

Robotics: Science and Systems VI, Zaragoza, Spain, 2010.

J. Huang, X. Shao, and H. Wechsler. Face Pose Discrimination using Support Vector

Machines (SVM). In International Conference on Pattern Recognition, volume 1,

pages 154–156. IEEE, 1998.

209

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

BIBLIOGRAPHY

A. Ibisch, S. Houben, M. Schlipsing, R. Kesten, P. Reimche, F. Schuller, and H. Al-

tinger. Towards Highly Automated Driving in a Parking Garage: General Object

Localization and Tracking using an Environment-embedded Camera System. In

Intelligent Vehicles Symposium Proceedings, pages 426–431. IEEE, 2014.

R. Jaulmes, J. Pineau, and D. Precup. Active Learning in Partially Observable

Markov Decision Processes. Springer, New York, NY, USA, 2005.

A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class Active Learning for

Image Classification. In Conference on Computer Vision and Pattern Recognition,

pages 2372–2379. IEEE, 2009.

A. J. Joshi, F. Porikli, and N. P. Papanikolopoulos. Scalable Active Learning for

Multiclass Image Classification. Pattern Analysis and Machine Intelligence, 34

(11):2259–2273, 2012.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and Acting in

Partially Observable Stochastic Domains. Artificial Intelligence, 101(1):99–134,

1998.

Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-Detection. Pattern

Analysis and Machine Intelligence, 34(7):1409–1422, 2012.

S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder,

M. Thuy, M. Goebl, F. Hundelshausen, et al. Team AnnieWAY’s Autonomous

System for the 2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9):

615–639, 2008.

A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Gaussian Processes for Object

Categorization. International Journal of Computer Vision, 88(2):169–188, 2010.

210

BIBLIOGRAPHY

S. S. Keerthi and C.-J. Lin. Asymptotic Behaviors of Support Vector Machines with

Gaussian Kernel. Neural Computation, 15(7):1667–1689, 2003.

A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the Dam-

age of Dataset Bias. In Computer Vision–ECCV 2012, pages 158–171. Springer,

New York, NY, USA, 2012.

S. Kotsiantis, E. Athanasopoulou, and P. Pintelas. Logitboost of Multinomial

Bayesian Classifier for Text Classification. International Review on Computers

and Software, 1(3):243–250, 2006.

A. Krizhevsky, I. Sutskever, and G. Hinton. PImageNet Classification with Deep

Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012.

J. Kulick, M. Toussaint, T. Lang, and M. Lopes. Active Learning for Teaching

a Robot Grounded Relational Symbols. In Proceedings of the Twenty-Third In-

ternational Joint Conference on Artificial Intelligence, pages 1451–1457, Menlo

Park, California, 2013. AAAI Press.

H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient Point-Based POMDP

Planning by Approximating Optimally Reachable Belief Spaces. In Proceedings

of Robotics: Science and Systems IV, Zurich, Switzerland, 2008.

P. Laroche, F. Charpillet, and R. Schott. Mobile Robotics Planning using Abstract

Markov Decision Processes. In International Conference on Tools with Artificial

Intelligence, pages 299–306. IEEE, 1999.

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, UK,

2006.

211

BIBLIOGRAPHY

N. D. Lawrence. MLTOOLS, 2012. URL http://staffwww.dcs.shef.ac.uk/

people/N.Lawrence/mltools/.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast Sparse Gaussian Process Methods:

The Informative Vector Machine. Advances in Neural Information Processing

Systems, 15:609–616, 2002.

N. D. Lawrence, J. C. Platt, and M. I. Jordan. Extensions of the Informative Vec-

tor Machine. In First International Conference on Deterministic and Statistical

Methods in Machine Learning, pages 56–87, New York, NY, USA, 2005. Springer.

D. D. Lewis and W. A. Gale. A Sequential Algorithm for Training Text Classifiers. In

Proceedings of the 17th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 3–12, New York, NY, USA,

1994. Springer.

L. Li, M. L. Littman, and T. J. Walsh. Knows What It Knows: A Framework

for Self-aware Learning. In Proceedings of the 25th International Conference on

Machine Learning, ICML ’08, pages 568–575, New York, NY, USA, 2008. ACM.

H.-T. Lin, C.-J. Lin, and R. C. Weng. A Note on Platt’s Probabilistic Outputs for

Support Vector Machines. Journal of Machine Learning, 68(3):267–276, 2007.

B. Lu, D. Gu, H. Hu, and K. McDonald-Maier. Sparse Gaussian Process for Spatial

Function Estimation with Mobile Sensor Networks. In Emerging Security Tech-

nologies (EST), 2012 Third International Conference on, pages 145–148. IEEE,

2012.

D. J. C. MacKay. Comparison of Approximate Methods for Handling Hyperparam-

eters. Neural Computation, 11(5):1035–1068, 1999.

212

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mltools/
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mltools/

BIBLIOGRAPHY

D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cam-

bridge University Press, 2003.

S. Marsland, U. Nehmzow, and J. Shapiro. On-line Novelty Detection for Au-

tonomous Mobile Robots. Robotics and Autonomous Systems, 51(2):191–206,

2005.

A. McCallum and K. Nigam. Employing EM in Pool-Based Active Learning for Text

Classification. In International Conference on Machine Learning, pages 350–358,

1998.

D. Meger, P. E. Forssén, K. Lai, S. Helmer, S. McCann, T. Southey, M. Baumann,

J. J. Little, and D. G. Lowe. Curious George: An Attentive Semantic Robot.

Robotics and Autonomous Systems, 56(6):503–511, 2008.

T. P. Minka. Expectation Propagation for Approximate Bayesian Inference. In Pro-

ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,

pages 362–369, Burlington, MA, USA, 2001. Morgan Kaufmann Publishers Inc.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing Atari with Deep Reinforcement Learning. 2013. URL

http://arXiv.org/abs/1312.5602.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,

Cambridge, MA, USA, 2012.

A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers: A Comparison of

Logistic Regression and Naive Bayes. Advances in Neural Information Processing

Systems, 14:841, 2002.

A. Niculescu-Mizil and R. Caruana. Predicting Good Probabilities with Supervised

213

http://arXiv.org/abs/1312.5602

BIBLIOGRAPHY

Learning. In The 22nd International Conference on Machine Learning, pages

625–632, New York, NY, USA, 2005. ACM.

Robotics Centre of Mines ParisTech. Traffic Lights Recognition (TLR)

Data Set. 2010. URL http://www.lara.prd.fr/benchmarks/

trafficlightsrecognition.

F. A. Oliehoek, J. F. P. Kooij, N. Vlassis, et al. The Cross-Entropy Method for

Policy Search in Decentralized POMDPs. Informatica, 32(4):341–357, 2008.

E. Osuna, R. Freund, and F. Girosi. Training Support Vector Machines: an Appli-

cation to Face Detection. In Computer Society Conference on Computer Vision

and Pattern Recognition, pages 130–136. IEEE, 1997.

S. G. Pauker and J. P. Kassirer. The Threshold Approach to Clinical Decision

Making. New England Journal of Medicine, 302(20):1109–1117, 1980.

R. Paul, R. Triebel, D. Rus, and P. Newman. Semantic Categorization of Outdoor

Scenes with Uncertainty Estimates using Multi-Class Gaussian Process Classifi-

cation. In Intelligent Robots and Systems, pages 2404–2410. IEEE, 2012.

J. Pearl. Do We Need Higher-order Probabilities And, If So, what Do They Mean?

UCLA, Computer Science Department, 1987.

J. Pineau, G. Gordon, and S. Thrun. Anytime Point-Based Approximations for

Large POMDPs. Journal of Artificial Intelligence Research, pages 335–380, 2006.

C. Plagemann, D. Fox, and W. Burgard. Efficient Failure Detection on Mobile

Robots Using Particle Filters with Gaussian Process Proposals. In International

Joint Conference on Artificial Intelligence, pages 2185–2190, 2007.

214

http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
http://www.lara.prd.fr/benchmarks/trafficlightsrecognition

BIBLIOGRAPHY

J. C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to

Regularized Likelihood Methods. In Advances In Large Margin Classifiers, pages

61–74, Cambridge, MA, USA, 1999. The MIT Press.

D. M. Powers. Evaluation: from Precision, Recall and F-measure to ROC, Informed-

ness, Markedness and Correlation. International Journal of Machine Learning

Technology, 2:37–63, 2011.

C. E. Rasmussen. The Infinite Gaussian Mixture Model. In S. A. Solla, T. K. Leen,

and K.-R. Müller, editors, Neural Information Processing Systems 12, pages 554–

560. The MIT Press, 2000.

C. E. Rasmussen and H. Nickisch. Gaussian Processes for Machine Learning

(GPML) Toolbox. Journal of Machine Learning Research, 11:3011–3015, 2010.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

The MIT Press, 2006.

S. Rosenthal, M. M. Veloso, and A. K. Dey. Task Behavior and Interaction Planning

for a Mobile Service Robot that Occasionally Requires Help. In Automated Action

Planning for Autonomous Mobile Robots, 2011.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, London, UK, 2nd edition, 2003.

A. Sayedi, M. Zadimoghaddam, and A. Blum. Trading off Mistakes and Don’t-Know

Predictions. In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and

A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages

2092–2100. Curran Associates, Inc., 2010.

F. Schroff, A. Criminisi, and A. Zisserman. Object Class Segmentation using Ran-

dom Forests. In British Machine Vision Conference, pages 1–10, 2008.

215

BIBLIOGRAPHY

C. Schüldt, I. Laptev, and B. Caputo. Recognizing Human Actions: a Local SVM

Approach. In International Conference on Pattern Recognition, volume 3, pages

32–36. IEEE, 2004.

M. Schulze, G. Nocker, and K. Bohm. PReVENT: A European Program to Improve

Active Safety. In International Conference on Intelligent Transportation Systems

Telecommunications, France, 2005.

Y-W Seo, N. D. Ratliff, and C. Urmson. Self-Supervised Aerial Image Analysis for

Extracting Parking Lot Structure. In Proceedings of the Twenty-First Interna-

tional Joint Conference on Artificial Intelligence, pages 1837–1842, Menlo Park,

California, USA, 2009. AAAI Press.

G. Shani, J. Pineau, and R. Kaplow. A Survey of Point-Based POMDP Solvers.

Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle adjustment.

In Robotics: Science and Systems V, page paper 23, 2009.

G. Sibley, C. Mei, I. Reid, and P. Newman. Vast-Scale Outdoor Navigation using

Adaptive Relative Bundle Adjustment. The International Journal of Robotics

Research, 29(8):958–980, 2010.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale

Image Recognition. In International Conference on Learning Representations,

2015.

R. D. Smallwood and E. J. Sondik. The Optimal Control of Partially Observable

Markov Processes over a Finite Horizon. Operations Research, 21(5):1071–1088,

1973.

216

BIBLIOGRAPHY

T. Smith and R. Simmons. Heuristic Search Value Iteration for POMDPs. In The

20th Conference on Uncertainty in Artificial Intelligence, Uncertainty in Artificial

Intelligence, pages 520–527, Arlington, VA, USA, 2004. AUAI Press.

E. J. Sondik. The Optimal Control of Partially Observable Markov Processes. Tech-

nical report, DTIC Document, 1971.

E. J. Sondik. The Optimal Control of Partially Observable Markov Processes Over

the Infinite Horizon: Discounted Costs. Operations Research, 26(2):282–304, 1978.

M. Spaan and N. Vlassis. A Point-Based POMDP Algorithm for Robot Planning.

In International Conference on Robotics and Automation, volume 3, pages 2399–

2404. IEEE, 2004.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Jour-

nal of Machine Learning Research, 15:1929–1958, 2014.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. Computer: Benchmark-

ing Machine Learning Algorithms for Traffic Sign Recognition. Neural Networks,

32:323–332, 2012.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. The MIT

Press, Cambridge, MA, USA, 1998.

E. Tabassi, C. Wilson, and C. Watson. NIST Fingerprint Image Quality. NIST

Internal Report 7151, pages 34–36, 2004.

S. Tellex, P. Thaker, R. Deits, T. Kollar, and N. Roy. Toward Information Theoretic

Human-Robot Dialog. In Robotics: Science and Systems, page 409, Cambridge,

MA, USA, 2013. The MIT Press.

217

BIBLIOGRAPHY

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey,

C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,

S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The Robot that

Won the DARPA Grand Challenge. Journal of Field Robotics, 23(9):661–692,

2006.

S. Tong and D. Koller. Support Vector Machine Active Learning with Applications

to Text Classification. The Journal of Machine Learning Research, 2:45–66, 2002.

A. Torralba and A. A. Efros. Unbiased Look at Dataset Bias. In Computer Vision

and Pattern Recognition, pages 1521–1528. IEEE, 2011.

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing Visual Features for Mul-

ticlass and Multiview Object Detection. Pattern Analysis and Machince Intelli-

gence, 29(5):854–869, 2007.

R. Triebel, H. Grimmett, R. Paul, and I Posner. Driven Learning for Driving:

How Introspection Improves Semantic Mapping. In International Symposium on

Robotics Research, Singapore, 2013.

C. Urmson, A. Anhalt, J. A. Bagnell, C. R. Baker, R. E. Bittner, J. M. Dolan,

D. Duggins, D. Ferguson, T. Galatali, H. Geyer, M. Gittleman, S. Harbaugh,

M. Hebert, T. Howard, A. Kelly, D. Kohanbash, M. Likhachev, N. Miller, K. Pe-

terson, R Rajkumar, P. Rybski, B. Salesky, S. Scherer, Y-W Seo, R. Simmons,

S. Singh, J. M. Snider, S. Stentz, W. L. Whittaker, and J. Ziglar. Tartan Rac-

ing: A Multi-Modal Approach to the DARPA Urban Challenge. Technical report,

Robotics Institute, Pittsburgh, PA, USA, April 2007.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M.N. Clark, J. Dolan,

218

BIBLIOGRAPHY

D. Duggins, T. Galatali, C. Geyer, et al. Autonomous Driving in Urban Environ-

ments: Boss and the Urban Challenge. Journal of Field Robotics, 25(8):425–466,

2008.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):

1134–1142, 1984.

V. N. Vapnik and V. Vapnik. Statistical Learning Theory, volume 1. Wiley, New

York, NY, USA, 1998.

A. Vedaldi and B. Fulkerson. VLFeat – An Open and Portable Library of Computer

Vision Algorithms. In ACM International Conference on Multimedia, MM ’10,

pages 1469–1472, New York, NY, USA, 2010. ACM.

J. Velez, G. Hemann, A. S. Huang, I. Posner, and N. Roy. Planning to Perceive:

Exploiting Mobility for Robust Object Detection. In F. Bacchus, C. Domshlak,

S. Edelkamp, and M. Helmert, editors, The International Conference on Auto-

mated Planning and Scheduling, pages 266–273, Menlo Park, California, 2011.

The AAAI Press.

G. Wachman, R. Khardon, P. Protopapas, and C. R. Alcock. Kernels for Periodic

Time Series Arising in Astronomy. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 489–505, New York, NY,

USA, 2009. Springer.

J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep Learning via Semi-

supervised Embedding. In Neural Networks: Tricks of the Trade, pages 639–655.

Springer, New York, NY, USA, 2012.

C. K. I. Williams and D. Barber. Bayesian Classification with Gaussian Processes.

Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

219

BIBLIOGRAPHY

D. H. Wolpert and W. G. Macready. No Free Lunch Theorems for Optimization.

Evolutionary Computation, 1(1):67–82, 1997.

D. H. Wolpert and W. G. Macready. Coevolutionary Free Lunches. Evolutionary

Computation, 9(6):721–735, 2005.

F. Zaklouta, B. Stanciulescu, and O. Hamdoun. Traffic Sign Classification Using

KD Trees and Random Forests. In International Joint Conference on Neural

Networks, pages 2151–2155. IEEE, 2011.

P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh. Predicting Failures

of Vision Systems. In Proceedings of the Conference on Computer Vision and

Pattern Recognition, pages 3566–3573. IEEE, 2014.

W. Zhang, X. Stella, and Y. S. Teng. Power SVM: Generalization with Exem-

plar Classification Uncertainty. In Conference on Computer Vision and Pattern

Recognition, pages 2144–2151. IEEE, 2012.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,

U. Franke, N. Appenrodt, C. G. Keller, et al. Making Bertha Drive An Au-

tonomous Journey on a Historic Route. Intelligent Transportation Systems Mag-

azine, 6(2):8–20, 2014.

B. Ziólko, S. Manandhar, R. C. Wilson, and M. Ziólko. Logitboost WEKA Classifier

Speech Segmentation. In International Conference on Multimedia and Expo, pages

1297–1300. IEEE, 2008.

220

	Introduction
	Motivation
	Introspection
	Contributions
	Thesis Structure
	Publications

	Semantic Mapping: A Case Study
	The V-Charge Vehicle
	Related Works
	Semantic Mapping
	The Road Network
	Parking Space Locations
	Recommended Driving Speed

	Integrating Metric and Semantic Layers
	Conclusions

	Data Sets, Features, and Performance Metrics
	Traffic Lights Recognition
	GTSRB
	Daimler Pedestrian
	KITTI
	Synthetic Data
	Features
	Template Features
	Histogram of Oriented Gradients (HOG)

	Performance Metrics
	Precision, Recall, Accuracy, and F-measure

	Introspection
	The Ideal Classifier
	Related Works
	Idealised Classifiers
	Determining the Density Functions

	Summary

	Introspection in Practice
	Notation
	Measures of Uncertainty
	A Distance-Based View on Introspection
	Related Works
	Commonly-Used Classification Frameworks
	Gaussian Processes Classification
	Support Vector Machine
	LogitBoost
	Random Forests
	Kernels

	Analysis of Non-Stationary Data
	Synthetic Data
	Real Data
	Discussion

	Uncertainty in Detection
	Conclusions

	Introspection in Decision Making
	Making Errors with Uncertainty
	Active Learning
	Related Works
	The Cross-Over Experiment
	Discussion

	Decision Making with Costs
	Bayesian Decision Theory
	Relating Costs to -bounds
	Experiments

	Conclusions

	Introspection in Sequential Decision Making
	The Observation Probability Function as a Classifier
	Related Works
	Test Scenarios
	Grid World
	Wumpus World

	Entropy
	Experiments
	The Ill Effects of Non-stationarity
	Consistent and Appropriate Sensors
	Changing the Size of the World
	Changing the Number of Sensors

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work
	Introspection
	Semantic Mapping
	Active Learning
	Classical Decision Making
	Sequential Decision Making

	Appendices
	Road Graph Generation Algorithms
	Classifier Probability Contours
	Idealised Classifier Error Functions
	Empirical Probability Density Functions of Real Classifiers
	MDPs and POMDPs
	Markov Decision Process (MDP)
	Partially Observable Markov Decision Processes (POMDP)

	Bibliography

