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We consider the task of detecting a salient cluster in a sensor network, that is, an undirected graph with
a random variable attached to each node. Motivated by recent research in environmental statistics and the
drive to compete with the reigning scan statistic, we explore alternatives based on the percolative properties
of the network. The first method is based on the size of the largest connected component after removing the
nodes in the network with a value below a given threshold. The second method is the upper level set scan
test introduced by Patil and Taillie [Statist. Sci. 18 (2003) 457–465]. We establish the performance of these
methods in an asymptotic decision- theoretic framework in which the network size increases. These tests
have two advantages over the more conventional scan statistic: they do not require previous information
about cluster shape, and they are computationally more feasible. We make abundant use of percolation
theory to derive our theoretical results, and complement our theory with some numerical experiments.

Keywords: cluster detection; connected components; largest open cluster within a box; multiple hypothesis
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1. Introduction

We consider the problem of cluster detection in a network. The network is modeled as a graph,
and we assume that a random variable is observed at each node. The task is then to detect a clus-
ter, that is, a connected subset of nodes with values that are larger than usual. There are a mul-
titude of applications for which this model is relevant; examples include detection of hazardous
materials (Hills [25]) and target tracking (Li et al. [35]) in sensor networks (Culler, Estrin and
Srivastava [12]), and detection of disease outbreaks (Heffernan et al. [24]; Rotz and Hughes [49];
Wagner et al. [53]). Pixels in digital images are also sensors, and thus many other applications are
found in the rich literature on image processing, for example, road tracking (Geman and Jedynak
[20]) and fire prevention using satellite imagery (Pozo, Olmo and Alados-Arboledas [47]), and
the detection of cancerous tumors in medical imaging (McInerney and Terzopoulos [36]).

After specifying a distributional model for the observations at the nodes and a class of clusters
to be detected, the generalized likelihood ratio (GLR) test is the first method that comes to mind.
Indeed, this is by far the most popular method in practice, and as such, is given different names
in different fields. The likelihood ratio is known as the scan statistic in spatial statistics (Kull-
dorff [29,30]) and the corresponding test as the method of matched filters in engineering (Jain,
Zhong and Dubuisson-Jolly [27]; McInerney and Terzopoulos [36]). Here we use the former,
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where scanning a given cluster K means computing the likelihood ratio for the simple alternative
where K is the anomalous cluster. Various forms of scan statistic have been proposed, differing
mainly by the assumptions made on the shape of the clusters. Most methods assume that the
clusters are in some parametric family (e.g., circular (Kulldorff and Nagarwalla [33]), elliptical
(Hobolth, Pedersen and Jensen [26]; Kulldorff et al. [32])) or, more generally, deformable tem-
plates (Jain, Zhong and Dubuisson-Jolly [27]). Sometimes no explicit shape is assumed, leading
to nonparametric models (Duczmal and Assunção [16]; Kulldorff, Fang and Walsh [31]; Tango
and Takahashi [51]).

We consider two alternative nonparametric methods, both based on the percolative properties
of the network, that is, based on the connected components of the graph after removing the nodes
with values below a given threshold. The simplest is based on the size of the largest connected
component after thresholding – the threshold is the only parameter of this method. If the graph
is a one-dimensional lattice, then after thresholding, this corresponds to the test based on the
longest run (Balakrishnan and Koutras [4]), which Chen and Huo [9] adapt for path detection
in a thin band. This test has been studied in a similar context in a series of papers1 (Davies,
Langovoy and Wittich [14]; Langovoy and Wittich [34]) under the name of maximum cluster
test. The idea behind this method is simple. When an anomalous cluster is indeed present, the
values at the nodes belonging to this cluster are larger than usual and thus more likely to survive
the threshold, and because these nodes are also likely to clump together – because the cluster
is connected in the graph – the size of the statistic will be (stochastically) larger than when no
anomalous cluster is present.

More sophisticated, and also parameter-free, is the method based on the upper level set scan
statistic of Patil and Taillie [41], subsequently developed in the context of ecological and envi-
ronmental applications (Patil, Joshi and Koli [38]; Patil and Taillie [42]; Patil et al. [37,39]). It
is the result of scanning over the connected components of the graph after thresholding, which
is repeated at all thresholds. This method obviously is closely related to the scan statistic. It can
be seen as attempting to approximate the scan statistic over all possible connected components
of the graph by restricting the class of subsets to be scanned to those surviving a threshold. Our
results indicate that this method is in fact more closely related to the previous one (based on the
size of the largest connected component at a given threshold), and in some sense provides a way
to automatically choose the threshold.

These two percolation-based methods have two significant advantages over the scan statistic.
First, they do not need to be provided with the shape of the clusters to be detected. Thus they
are valuable in settings with less previous spatial information. The second advantage is computa-
tional. The scan statistic tends to be computationally demanding, even in parametric settings, or
even outright intractable, particularly in nonparametric settings. In contrast, these two methods
are computationally feasible, and their implementation is fairly straightforward, even for irregu-
lar networks. On the other hand, the scan statistic often relies on the fast Fourier transform in the
square lattice to scan clusters of known shape over all locations in that network.

In terms of detection performance, we compare these percolation-based methods to the scan
statistic in a standard asymptotic decision theoretic framework where the network is a square

1The authors were not aware of this unpublished line of work until M. Langovoy contacted them in the final stages
manuscript preparation.
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lattice of growing size and the variables at the nodes are assumed i.i.d. for nodes inside (resp.,
outside) the anomalous cluster. The performance of the scan statistic in such a framework is well
understood and known to be (near-) optimal, which makes it the gold standard in detection (Arias-
Castro, Candès and Durand [1]; Arias-Castro, Donoho and Huo [3]; Perone Pacifico et al. [45];
Walther [54]). We find that these two methods are suboptimal for the detection of hypercubes,
an emblematic parametric class, but are near-optimal for the detection of self-avoiding paths, an
emblematic nonparametric class. The main weakness of these percolation-based methods is that
when the per-node signal-to-noise ratio is weak, the connected components after thresholding are
heavily influenced by the whimsical behavior of the values at the nodes. The scan statistic is very
effective in such situations. Although this rationale seems to apply particularly well in the case
of self-avoiding paths, what makes these methods competitive in this case is that the problem of
detecting such objects is intrinsically very hard.

The study of the connected components after thresholding is intrinsically connected to perco-
lation theory (Grimmett [21]), an important branch in probability theory. In fact, when the node
values are i.i.d. – which is the case when no anomalous cluster is present – the only dependence
on the distribution at the nodes is the probability of surviving the threshold, and after threshold-
ing, the network is a site percolation model. (We introduce and discuss these notions in detail
later in the article.) Our contribution is a careful analysis of these two nonparametric methods
using percolation theory (Grimmett [21]) in a substantial way, thus applying percolation theory
in a sophisticated fashion to shed light on an important problem in statistics.

The rest of the paper is organized as follows. In Section 2 we formally introduce the framework
and state some fundamental detection bounds. In Section 3 we describe the standard scan statistic
and present some results on its performance, showing that it is essentially optimal. In Section 4,
we consider the size of the largest connected component after thresholding. In Section 5, we
consider the upper level set scan statistic. We briefly discuss implementation issues and present
some numerical experiments in Section 6. Finally, Section 7 is a discussion section where, in
particular, we mention extensions. We provide proofs in the Appendix.

2. Mathematical framework and fundamental detection bounds

For concreteness, and also for its relevance to signal and image processing, we model the net-
work as a finite subgrid of the regular square lattice in dimension d , denoted Vm := {1, . . . ,m}d .
Our analysis is asymptotic in the sense that the network is assumed to be large, that is, m → ∞.
To each node v ∈ Vm, we attach a random variable, Xv . For example, in the context of a sensor
network, the nodes represent the sensors and the variables represent the information that they
transmit. The random variables {Xv: v ∈ Vm} are assumed to be independent with common dis-
tribution in a certain one-parameter exponential family {Fθ : θ ∈ [0, θ∞)}, defined as follows. Let
θ∞ > 0, let F0 be a distribution function with finite non-zero variance σ 2

0 , and assume the that
moment-generating function ϕ(θ) := ∫

exθ dF0(x) is finite for θ ∈ [0, θ∞). Then Fθ is the distri-
bution function with density fθ (x) = exp(θx − logϕ(θ)) with respect to F0. We assume further
regularity of F0 at later points in this paper. Note that our results apply to other distributional
models as well, as discussed in Section 7.

Examples of such a family {Fθ : θ ∈ [0, θ∞)} include the following:
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• Bernoulli model: Fθ = Ber(pθ ), pθ := logit−1(θ + θ0), relevant in sensor arrays where each
sensor transmits one bit (i.e., makes a binary decision)

• Poisson model: Fθ = Poi(θ +θ0), popular with count data, for example, arising in infectious
disease surveillance systems

• Exponential model: Fθ = Exp(θ0 − θ) (e.g., to model response times)
• Normal location model: Fθ = N (θ + θ0,1), standard in signal and image processing, where

noise is often assumed to be Gaussian.

Let Km be a class of clusters, with a cluster defined as a subset of nodes connected in the
graph. Under the null hypothesis, all of the variables at the nodes have distribution F0, that is,

H
m
0 : Xv ∼ F0 ∀v ∈ Vm.

Under the particular alternative where K ∈ Km is anomalous, the variables indexed by K have
distribution Fθm for some θm > 0, that is,

H
m
1,K : Xv ∼ Fθm ∀v ∈ K; Xv ∼ F0 ∀v /∈ K.

We are interested in the situation where the anomalous cluster K is unknown, namely in testing
H

m
0 against H

m
1 := ⋃

K∈Km
H

m
1,K . We illustrate the setting in Figure 1 in the context of the two-

dimensional square grid.
Let Km denote a cluster class for Vm. As usual, a test T is a function of the data, T =

T (Xv: v ∈ Vm), that takes values in {0,1}, with T = 1 corresponding to a rejection, meaning
a decision in favor of H

m
1 . For a test T , we define its worst-case risk as the sum of its probability

of type I error and its probability of type II maximized over the anomalous clusters in the class

γm(T ) = P(T = 1|Hm
0 ) + max

K∈Km

P(T = 0|Hm
1,K).

Figure 1. This figure illustrates the setting in dimension d = 2 for a beta model where F0 = Unif(0,1) and
Fθ = Beta(θ +1,1), θ ≥ 0. (Left) An instance of the null hypothesis. (Middle) An instance of an alternative
with a square cluster. (Right) An instance of an alternative with a path.
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A method is formally defined as a sequence of tests (Tm) for testing H
m
0 versus H

m
1 . We say that

a method (Tm) is asymptotically powerless if

lim inf
m→∞ γm(Tm) ≥ 1.

This amounts to saying that as the size of the network increases, the method (Tm) is not sub-
stantially better than random guessing. Conversely, a method (Tm) is asymptotically powerful
if

lim
m→∞γm(Tm) = 0.

The minimax risk is defined as γ ∗
m := infT γm(T ), and we say that a method is (Tm) (asymptot-

ically) optimal if γm(Tm) → 0 whenever γ ∗
m → 0. Everything else fixed, the latter depends on

the behavior of θm when m becomes large. We say that (Tm) is optimal up to a multiplicative
constant C ≥ 1 if γm(Tm) → 0 under Cθm whenever γ ∗

m → 0 under θm. We say that (Tm) is
near-optimal if the same is true with C replaced by Cm → ∞ with logCm = o(log θm). (This
occurs here only when θm → 0 polynomially fast and Cm → ∞ poly-logarithmically fast.)

We focus on situations where the clusters in the class Km are of same size, increasing with m

but negligible compared with the size of the entire network. We do so for the sake of simplicity;
more general results could be obtained as in Arias-Castro, Candès and Durand [1], Arias-Castro,
Donoho and Huo [3], Perone Pacifico et al. [45], Walther [54] without additional difficulty. As-
suming a large anomalous cluster allows us to state general results applying to a wide range of
one-parameter exponential families (via the central limit theorem). In addition, note that on the
one hand, reliably detecting a cluster of bounded size is impossible in the Bernoulli model or any
other model where F0 has finite support, whereas on the other hand, detecting a cluster of size
comparable to that of the entire network is in some sense trivial, given that the simple test based
on the total sum

∑
v∈Vm

Xv is optimal up to a multiplicative constant.
We consider two emblematic classes of clusters, in some sense at the opposite extremes:

• Hypercube detection. Let Km denote the class of hypercubes within Vm of sidelength [mα]
with 0 < α < 1. This class is parametric, with the location of the hypercube the only param-
eter.

• Path detection. Let Km denote the class of loopless paths within Vm of length [mα] with
0 < α < 1. This class is nonparametric, in the sense that its cardinality is exponential in the
length of the paths.

See Figure 1 for an illustration. (Note that a hypercube of side length k may be seen as a loopless
path of length kd .) Although we obtain results for both, our main focus is in the setting of hyper-
cube detection, which is relevant to a wider range of applications, in fact any situation where the
task is to detect a shape that is not filamentary. The situation exemplified in the setting of path
detection may be relevant in target tracking from video, or the detection of cracks in materials in
non-destructive testing. Note that the two settings coincide in dimension one.

We state fundamental detection bounds for each setting. The following result is standard (see,
e.g., Arias-Castro, Candès and Durand [1]; Arias-Castro, Donoho and Huo [3]). Remember that
σ 2

0 denotes the variance of F0.
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Lemma 1. In hypercube detection, all methods are asymptotically powerless if

lim sup
m→∞

(logm)−1/2mdα/2θm < σ0

√
2d(1 − α).

In fact, the conclusions of Lemma 1 apply for a wide variety of parametric classes, such as
discs, a popular model in disease outbreak detection (Kulldorff and Nagarwalla [33]), as well as
to nonparametric classes of blob-like clusters (see Arias-Castro, Candès and Durand [1]; Arias-
Castro, Donoho and Huo [3]).

The following result is taken from Arias-Castro et al. [2].

Lemma 2. In path detection, all methods are asymptotically powerless if limm→∞ θm ×
(logm)(log logm)1/2 = 0, in dimension d = 2, and the same is true in dimension d ≥ 3 if
lim supm→∞ θm < θ∗, where θ∗ > 0 depends only on d .

In dimension d ≥ 4, θ∗ may be taken to be the unique solution to

ρϕ(2θ) − ϕ(θ)2 = 0,

where ρ is the return probability of a symmetric random walk in dimension d .

3. The scan statistic

For a subset of nodes K ⊂ V, let |K| denote its size and define

X̄K = 1

|K|
∑
v∈K

Xv.

Given a cluster class K, we define the (simple) scan statistic as

max
K∈K

√|K|(X̄K − μ0), (1)

where μ0 is the mean of F0. If μ0 is not available, we may use the grand mean X̄Vm
instead. In

Appendix B, we derive this form of the scan statistic as an approximation to the scan statistic
of Kulldorff [29], which is, strictly speaking, the GLR and arguably the most popular version,
particularly in spatial statistics. We use this simpler form to streamline our theoretical analysis.

The test that rejects for large values of the scan statistic (1), which we call the scan test, is
near-optimal in a wide range of settings (Arias-Castro, Candès and Durand [1]; Arias-Castro,
Donoho and Huo [3]; Walther [54]). In particular, in the context of a class of hypercubes, and in
fact many other parametric classes, this test is asymptotically optimal to the exact multiplicative
constant.

Lemma 3. In hypercube detection, the scan test is asymptotically powerful if

lim inf
m→∞ (logm)−1/2mdα/2θm > σ0

√
2d(1 − α).
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In the context of a class of paths, the following result states that the scan test detects if θm is
bounded away from 0 and sufficiently large. Note that this does not match the order of magnitude
of the lower bound given in dimension d = 2. Let �(θ) = logϕ(θ) and �∗(x) = supθ≥0[θx −
�(θ)]. (�∗ is the rate function of F0 when x ≥ μ0.) The following result is established in Arias-
Castro et al. [2].

Lemma 4. In path detection, the scan test is asymptotically powerful if

lim inf
m→∞ θm > θ∗ := (�∗ ◦ �′)−1(log(2d)).

4. Size of the largest open cluster

We study the test based on the size of the largest connected component after thresholding the val-
ues at the nodes. This test was independently considered in a series of papers (Davies, Langovoy
and Wittich [14]; Langovoy and Wittich [34]). Our results are seen to sharpen and elaborate on
these results. In particular, we study this test under all three regimes (subcritical, supercritical,
and critical).

Adapting terminology from percolation theory (Grimmett [21]), for a threshold t ∈ R, we say
that a subset K ⊂ V is open (at threshold t ) if Xv > t for all v ∈ K . Let Sm(t) (resp., SK(t))
denote the size of the largest open cluster within Vm (resp., within K). The analysis of the
test based on Sm(t), which we call the largest open cluster (LOC) test, boils down to bounding
the size of Sm(t) from above, under H

m
0 , and, because Sm(t) ≥ SK(t), bounding the size of

SK(t) from below, under H
m
1,K . Define ξv(t) = I{Xv > t}, which is Bernoulli with parameter

pθ(t) := Pθ (Xv > t). The process (ξv(t): v ∈ Vm) is a site percolation model (Grimmett [21]).
In general, consider a process (ξv: v ∈ Vm) i.i.d. Bernoulli with parameter p, and let Sm denote
the size of the largest open cluster within Vm. In dimension d = 1, this process may be seen as a
sequence of coin tosses, and Sm viewed as the longest heads run in that sequence. In this context,
the Erdős–Rényi Law (Erdős and Rényi [17]) says that

Sm

logm
→ 1

log(1/p)
, almost surely. (2)

In higher dimensions d ≥ 2, the situation is much more involved. Let pc denote the critical
probability for site percolation in Z

d , defined as the supremum over all p ∈ (0,1) such that the
size of the open cluster at the origin, denoted by S, is finite with probability 1. (The dependency
in d is left implicit.) We consider the subcritical (p0(t) < pc), supercritical (p0(t) > pc), and
near-critical (p0(t) ≈ pc) cases separately.

4.1. Subcritical percolation

In the subcritical case, where t is such that p0(t) < pc , we are able to obtain precise, rigorous
results on the performance of the test based on Sm(t) in terms of the function ζp , implicitly
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defined as

ζp := − lim
k→∞

1

k
logP(S ≥ k) = − lim

k→∞
1

k
log P(S = k) (3)

(see Grimmett [21], Section 6.3). Again, the dependency in d is left implicit. As a function of
p ∈ (0,pc), ζp is continuous and strictly decreasing, with limits ∞ at p = 0 and 0 at p = pc (see
Lemma A.1), whereas ζp = 0 for p ≥ pc. In the Appendix, we include a proof that

Sm

logm
→ d

ζp

, in probability (4)

for a subcritical threshold p < pc .
The convergence result in (4) may be used to bound Sm(t) under the null by taking p = p0(t).

Under the alternative, if we consider a class of hypercubes, then (4) also may be used to bound
SK(t), because K is a scaled version of Vm.

Theorem 1. In hypercube detection, the test based on Sm(t), with t fixed such that 0 <

p0(t) < pc, is asymptotically powerful if lim infm→∞ θm > θ∗(t), and asymptotically powerless
if lim supm→∞ θm < θ∗(t), where θ∗(t) is the unique solution to ζpθ (t) = αζp0(t).

Note that when t is fixed, ζpθ (t) as a function of θ is continuous and strictly strictly decreasing,
by the fact that pθ(t) is continuous and strictly increasing in θ (Brown [7], Cor. 2.6, 2.22) and ζp

is continuous and strictly decreasing in p (Lemma A.1). Therefore, θ∗(t) in the theorem is well
defined.

If instead, we consider a class of paths, then (2) may be used to bound SK(t), because K is a
scaled version of the lattice in dimension 1. In congruence with (2), we define ζ 1

p = log(1/p).

Theorem 2. In path detection, the test based on Sm(t), with t fixed such that 0 < p0(t) <

pc, is asymptotically powerful if lim infm→∞ θm > θ+∗ (t), and asymptotically powerless if
lim supm→∞ θm < θ−∗ (t), where θ+∗ (t) (resp., θ−∗ (t)) is the unique solution to dζ 1

pθ (t) = αζp0(t)

(resp., dζ 1
pθ (t) = αζp0(t)).

Note that in dimension d ≥ 2, the result is not sharp, because we always have θ+∗ (t) > θ−∗ (t).
We believe that sharper forms of this result may be substantially more involved, and for this
reason we have not pursued this.

Qualitatively, the message is that for both hypercube detection and path detection, the subcrit-
ical LOC test requires that θm be larger than a constant to be effective. Compared with the scan
statistic, this makes it grossly suboptimal when detecting hypercubes and comparable (up to a
multiplicative constant in θm) when detecting self-avoiding paths.

What if we let t = tm → ∞, so that p0(tm) → 0? Then the test based on Sm(tm) is powerless
under some additional conditions on F0. For b,C ≥ 0, consider the following class of approxi-
mately exponential power (AEP) distributions, sometimes called Subbotin distributions:

AEP(b,C) = {F : x−b log F̄ (x) → −C,x → ∞}.
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(F̄ (x) := 1 − F(x) is the survival distribution function of X ∼ F .) For example, Exp(λ) ∈
AEP(1, λ) and N (μ,σ 2) ∈ AEP(2,1/(2σ 2)), whereas Poi(λ) behaves roughly as a distribution
in AEP(1,C).

Proposition 1. Assume that F0 ∈ AEP(b,C) for some b > 1 and C > 0. In hypercube detection,
the test based on Sm(t) is asymptotically powerless when t = tm → ∞, unless θm → ∞.

4.2. Supercritical percolation

Here we consider the supercritical regime, where p0(t) > pc. (Note that necessarily d ≥ 2 for
pc = 1 in dimension 1.) In this setting, too, the size of the largest cluster is well understood.
Let �p be the probability that the open cluster at the origin is infinite, and note that �p > 0 for
p > pc, by the definition of pc. We have with probability 1 that

Sm

|Vm| → �p

(see Falconer and Grimmett [18], Lemma 2 and proof, Penrose and Pisztora [44], Theorem 4,
Pisztora [46]). In fact (with probability 1 − o(1)), the largest open cluster within Vm is unique,
and the foregoing statement says that it occupies a non-negligible fraction of Vm. With a super-
critical choice of threshold, the LOC test is powerless for any θ if the anomalous cluster is too
small, specifically if α < 1/2 in the setting of hypercube detection. Indeed, we have the following
result.

Theorem 3. In hypercube detection, the test based on Sm(t), with t fixed such that pc < p0(t) <

1, is asymptotically powerful if α ≥ 1/2 and limm→∞ θmm(α−1/2)d = ∞, and asymptotically
powerless if α < 1/2 or if limm→∞ θmm(α−1/2)d = 0.

Thus, for the detection of small clusters, a supercritical LOC test is potentially worthless,
whereas for larger clusters it improves substantially on the performance of a subcritical LOC test,
although it is still suboptimal compared with the scan statistic. (Indeed, comparing the exponents
when α ≥ 1/2, we have (α − 1/2)d < αd/2, because α < 1.) We mention that in the context
of path detection, the same arguments show that the LOC test for any choice of supercritical
threshold is asymptotically powerless.

4.3. Critical percolation

If our goal is to choose a threshold t so as to maximize the difference in size for the largest open
cluster under the null and under an alternative, then we are necessarily in the neighborhood of
the percolation phase transition, which is to say that |p − pc| is small. (Again, here we assume
d ≥ 2.) The percolation model is not fully understood in the critical regime, which poses a serious
obstacle to a rigorous statistical analysis. (See Grimmett [21], Chapter 9, for a general discussion
of this percolation regime.) We base our discussion on the work of Borgs et al. [6]. Let πm(p)
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denote the probability that the open cluster at the origin reaches outside the box [−m,m]d , and
let ξ(p) denote the correlation length, defined as

1

ξ(p)
:= − lim

m→∞
1

m
logπm(p).

Note that, with ξ thus defined, ξ(p) < ∞ if and only if p < pc . The critical exponent for (sub-
critical) correlation length is postulated to be

ν := − lim
p↗pc

log ξ(p)

log |p − pc| .

It is not known whether the limit exists for all dimensions, but it is known that 0 < ν < ∞
whenever it exists. It is shown in Borgs et al. [6] that, subject to the existence of this limit
together with other scaling assumptions, when p = pm varies with m,

Sm �P

{
logm, if, for some ν′ > ν,m1/ν′

(pm − pc) → −∞,
md, if, for some ν′ > ν,m1/ν′

(pm − pc) → ∞,
(5)

where Xm �P Ym means that there exists a constant C ∈ (0,∞) such that C−1 ≤ Xm/Ym ≤ C

in probability. The scaling assumptions of Borgs et al. [6] are believed to hold if and only if the
number d of dimensions satisfies 2 ≤ d ≤ 6, and they are proved for d = 2. The work of Borgs et
al. [6] was directed at bond percolation only, but similar results are expected for site percolation.

It is known that ν = 4/3 for site percolation on the triangular lattice (see Smirnov and Werner
[50]), and it is believed that this holds for percolation on any two-dimensional lattice. As de-
scribed in Grimmett [21], Section 10.4, it is believed that ν = 1/2 for d ≥ 6, and this has been
proved for d ≥ 19 and for the so-called “spread-out model” in 7 and more dimensions (Hara, van
der Hofstad and Slade [23]).

Subject to the assumption that (5) holds, we establish the power of the test based on Sm(t)

when choosing t = tm near criticality. We assume that there exists tc such that p0(tc) = pc , and
that p0(t) is a continuous function of t in a neighborhood of tc.

Theorem 4. Let tm ≥ tc be such that pc − p0(tm) � m−1/ν′
for some ν′ > ν. In hypercube

detection, assuming that (5) holds, the test based on Sm(tm) is asymptotically powerful if
lim infm→∞ θmmα/ν′

is sufficiently large.

Compared with a subcritical choice of threshold, which requires that θm be bounded away from
0 for the test to have any power, as seen in Theorem 1, with a near-critical choice of threshold,
the test is able to detect at polynomially small θm. In particular, with a proper choice of threshold,
the test is powerful for θm of order m−α/ν′

with ν′ > ν. Note that, by Lemma 1, all methods are
asymptotically powerless if θm is of order m−dα/2, implying that α/ν ≤ dα/2. We thus obtain
the inequality ν ≥ 2/d . This may be compared with the scaling relation (Grimmett [21], Equa-
tion (9.23)) stating that dν = 2−a, where a (< 0) is the percolation critical exponent for the num-
ber of clusters per vertex. It is believed that a = − 2

3 when d = 2 and a = −1 when d ≥ 6. Com-
pared with the performance at supercriticality, the test at near-criticality (with a proper choice
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of threshold) is superior if (α − 1
2 )d < α/ν, which is equivalent to α < (1 − a/2)/(1 − a). For

example, with a = − 2
3 , the near-critical LOC test is superior when α < 3

4 .

5. The upper level set scan statistic

For a threshold t , let Q(t)
m denote the (random) class of clusters within Vm open at t , and let

Q∗
m = ⋃

t Q(t)
m , which is also random. Patil and Taillie [41] suggested scanning the clusters in

Q∗
m. To facilitate a rigorous mathematical analysis of its performance, we consider the upper

level set (ULS) scan at a given threshold t , and use the simple scan described in Section 3.
Specifically, in correspondence with (1), we define the (simple) ULS scan statistic at threshold t

as

Um(t, km) = max
{√|K|(X̄K − μ0|t ): K ∈ Q(t)

m , |K| ≥ km

}
, (6)

where μ0|t (resp., σ 2
0|t ) is the the mean (resp., variance) of Xv|Xv > t when Xv ∼ F0, and (km)

is a non-decreasing sequence of positive integers. The ULS scan statistic of Patil and Taillie [41]
corresponds (in its simple form) to

ULSm = max
t∈R

Um(t,1)

σ0|t
. (7)

If μ0|t and/or σ 2
0|t are not available, we may use their empirical versions based on the Xv that

survive the threshold t . We restrict the scan to clusters of size at least km to increase power,
because the behavior of Um(t) is, as we show later, completely driven by the smallest open
clusters that are scanned, at least when t is subcritical. We present the rest of our discussion in
terms of subcritical, supercritical, and near-critical choices of threshold. We then conclude with
a result on the performance of the ULS scan test across all thresholds.

5.1. Subcritical threshold

We start by describing the behavior of Um(t, km) under the null. Let Fθ |t denote the distribution of
Xv|Xv > t under Fθ , and let μθ |t and �∗

θ |t denote its mean and rate function, respectively. Also,
when 0 < β < 1/ζpθ (t), or β = 0 and F0 ∈ AEP(b,C) for some b ≥ 2 and C > 0, let γθ |t (β) :=
γ (Fθ |t ,μ0|t , ζpθ (t), β), where γ is the function defined in Lemma A.9. Note that γθ |t (β) can
be computed explicitly in some cases, like the normal location model, and γθ |t (β) ∼ (μθ |t −
μ0|t )2/ζpθ (t) when θ ↗ θc(t), defined (when it exists) as the solution to pθ(t) = pc.

Lemma 5. Assume that θ ≥ 0 and t is fixed such that 0 < pθ(t) < pc and that km/ logm → dβ

for some β ≥ 0. Then, under Fθ on Vm, the following holds in probability:

1. If β > 1/ζpθ (t), then Um(t, km) = 0 for m large enough.
2. If 0 < β < 1/ζpθ (t), then

(logm)−1/2Um(t, km) → (dγθ |t (β))1/2.
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3. If β = 0 and F0 ∈ AEP(b,C) for some b ≥ 1 and C > 0, then
(a) If b ≥ 2, the convergence in Part 2 applies;
(b) If b < 2,

k
1/b−1/2
m (logm)−1/bUm(t, km) → (d/C)1/b.

In the last case, where β = 0, the behavior of Um(t) is influenced by the very large deviations
of F ∗k

θ |t for k ≥ km. (The symbol ∗ denotes convolution.) We choose to state a result for AEP
distributions, for which the very large deviations resemble the large deviations.

Based on Lemma 5, we establish the performance of the ULS scan statistic. We start by arguing
that choosing km such that km/ logm → 0 leads to a test that may potentially have less power
than the test based on the largest cluster after thresholding. Indeed, the behavior of the ULS scan
statistic does not depend on θ as long as θ < θc(t).

Proposition 2. Assume that F0 ∈ AEP(b,C) for some b ∈ (1,2) and C > 0. In hypercube de-
tection, the test based on Um(t, km), with t fixed such that 0 < p0(t) < pc and km/ logm → 0, is
asymptotically powerless if lim supm→∞ θm < θc(t).

For example, in the setting just described with d = 1, the ULS scan test has (asymptotically)
no power unless θm → ∞, whereas the test based on the size of the largest cluster after threshold-
ing is, by Theorem 1, asymptotically powerful if lim infm→∞ θm is large enough. We therefore
choose a sequence km comparable in magnitude to logm and state the performance of the ULS
scan test in this case.

Theorem 5. In hypercube detection, the test based on Um(t, km), with t fixed such that
0 < p0(t) < pc and km/ logm → dβ with 0 < β < 1/ζp0(t), is asymptotically powerful if
lim infm→∞ θm > θ∗(t) and asymptotically powerless if lim supm→∞ θm < θ∗(t), where θ∗(t)
is the unique solution to αγθ |t (β) = γ0|t (β).

Note that θ∗(t) is well defined by Lemma A.10 and that θ∗(t) < θc as long as α > 0. In any
case, the test based on Um(t, km) with a subcritical threshold t is, in the setting of hypercube
detection, asymptotically powerless when θm → 0, just like the LOC test. In essence, the two
tests are qualitatively comparable in this setting. This is also true in the context of path detection.
Let γ 1

θ |t (β) denote γθ |t (β) in dimension 1.

Theorem 6. In path detection, the test based on Um(t, km), with t fixed such that 0 < p0(t) <

pc and km/ logm → dβ with 0 < β < 1/ζp0(t), is asymptotically powerful if lim infm→∞ θm >

θ+∗ (t), and asymptotically powerless if lim supm→∞ θm < θ−∗ (t), where θ+∗ (t) (resp., θ−∗ (t)) is
the unique solution to αγ 1

θ |t (β) = γ0|t (β) (resp., αγθ |t (β) = γ0|t (β)).

As in Theorem 2, the result is not as sharp.
Qualitatively, we see that the performance of the subcritical ULS scan and LOC tests are

comparable for both hypercube detection and path detection.
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5.2. Supercritical threshold

Here we consider the choice of a supercritical threshold, where t is fixed such that p0(t) > pc. We
already saw in Section 4.2 that the largest open cluster is unique and occupies a non-negligible
fraction of the entire network. This is actually true both under the null and under an alternative.
The ULS scan test based solely on the largest open cluster is comparable to the test based on the
grand mean after thresholding. In turn, assuming t is fixed, this test is asymptotically powerful
when m(α−1/2)dθm → ∞, and asymptotically powerless if α ≤ 1/2 and θm is bounded. (This is
easily seen using Chebyshev’s inequality.) This is comparable to the LOC test at supercriticality.

In general, the ULS scan statistic includes other (smaller) open clusters. The story of the
second-largest cluster of supercritical percolation in a box is not yet complete, and for this reason
the behavior of the ULS scan statistic remains incompletely understood. The difficulty arises
from the possibility that the second-largest cluster in Vm might lie at its boundary. Whether or
not this occurs depends on the outcome of a calculation (yet to be done) of energy/entropy type
involving so-called “droplets” near the boundary of Vm (see, e.g., Bodineau, Ioffe and Velenik
[5]). To simplify the discussion, we finesse this problem by working where necessary on Vm with
toroidal boundary conditions. That is, whenever we make statements concerning supercritical
percolation on the graph Vm, we may add edges connecting sites on its boundary as follows:
when d = 2, for k = 1,2, . . . ,m, an additional edge is placed between site (1, k) and site (m, k),
and similarly between (k,1) and (k,m).

In proving exact asymptotics for test statistics under the null, we assume toroidal boundary
conditions. Our results on asymptotic power do not require such exact results but require only
orders of magnitude, which do not need the toroidal assumption. We emphasize that similar re-
sults are expected to hold with “free” (i.e., without the extra edges) rather than toroidal boundary
conditions. Once the percolation picture is better understood, such results will follow in the same
manner as those presented in this paper. Our results for the torus are also valid if instead we
discount open clusters that touch the boundary of Vm. Details of this are omitted, and the proofs
are essentially the same.

When working on the torus, the second-largest cluster is controlled through the following
calculation. Cerf [8] proved that the limit

δp := − lim
k→∞k−(d−1)/d logP(∞ > S ≥ k) = − lim

k→∞k−(d−1)/d logP(S = k), (8)

exists, with 0 < δp < ∞ for all fixed p ∈ (pc,1). The dependency on d is left implicit.
A result similar to Lemma 5 holds with δp playing the role of ζp and the exponent of logm

changed in places. It turns out that we need this result only when θ = 0. For β > 0 and a super-
critical t , let γ0|t (β) := γ (F0|t ,μ0|t ,0, β), defined in Lemma A.9.

Lemma 6. Assume that t is fixed such that pc < p0(t) < 1 and that km/ logm → dβ and
k
(d−1)/d
m / logm → dβ ′ for some 0 ≤ β,β ′ ≤ ∞. Then, under the null, the following holds in

probability on the torus Vm:

1. If β ′ > 1/δp0(t), then Um(t, km) = O(1).
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2. If 0 ≤ β ′ < 1/δp0(t) and β = ∞, then

(logm)−1/2Um(t, km) → σ0|t
[
2d

(
1 − β ′δp0(t)

)]1/2
,

where σ 2
0|t := Var(F0|t ).

3. If β < ∞, then the conclusions of Lemma 5 apply. (Note that ζp0(t) = 0.)

Based on Lemma 6, we obtain the following result on the performance of the ULS scan
test at supercriticality. As before, we restrict ourselves to the case where Um(t, km) is of order
(logm)1/2. We also chose to state a simple result instead of a more precise result with multiple
subcases. This result holds irrespective of the type of boundary condition assumed on Vm.

Theorem 7. In hypercube detection, the test based on Um(t, km), with t fixed such that pc <

p0(t) < 1 and lim infkm/ logm > 0 and lim supk
(d−1)/d
m / logm < αd/δp0(t), is asymptotically

powerful (resp., powerless) if

θm

[
m(α−1/2)d + (logm)d/(2d−2)

]
(logm)−1/2 → ∞ (resp., → 0).

We also mention that the equivalent of Theorem 6 holds here as well.
The improvement of the supercritical ULS scan test compared with the supercritical LOC test

is a weaker requirement on θm by a logarithmic factor. Thus, this test’s performance is still much
worse than that of the scan statistic when detecting hypercubes.

5.3. Critical threshold

If we choose a threshold as described in Section 4.3, and if (5) is true, then the power of the ULS
scan statistic is greatly improved, as in the case of the LOC test. In fact, it can be proven that
Theorem 4 remains valid with S(tm) replaced with Um(tm, km), as long as km = o(m)αd so that
the largest open cluster under the alternative is scanned. This boils down to showing that under
the null, the ULS scan statistic is at most a power of logm, which we do in Lemma 7 below.
However, the ULS scan test does not seem to offer any substantial gain in power over the LOC
test, given that θm is still required to be large enough to change the regime of the percolation
process within an alternative K from subcritical to supercritical. That said, actually proving this
would require information on the smaller open clusters near criticality, which is scarce and very
difficult to obtain (see Borgs et al. [6] for some partial results and postulates).

5.4. Across all thresholds

Finally, we discuss the (simple) ULS scan test across all thresholds, as suggested in Patil and
Taillie [41]. To take advantage of a phase transition near criticality, we assume, as in Section 4.3,
that there exists tc such that p0(tc) = pc and that p0(t) is a continuous function of t in a neigh-
borhood of tc. We also assume that (5) holds. In Proposition 2, we showed that scanning small
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clusters may lead to a decrease in power. For this reason, and also to facilitate the analysis, we
limit ourselves to clusters of size at least km; that is, we consider the test based on

ULSm(km) = max
t∈R

Um(t, km)

σ0|t
, (9)

where, for definiteness, Um(t, km) is calculated on the torus Vm when t < tc .
Let �θ(β) = inft γθ |t (β)/σ 2

0|t , where, in congruence with Sections 5.1 and 5.2,

γθ |t (β) =
{

γ
(
Fθ |t ,μ0|t , ζpθ (t), β

)
, t > tc,

γ (Fθ |t ,μ0|t ,0, β), t < tc,

with γ being the function defined in Lemma A.9. We first establish the behavior of ULSm(km)

under the null.

Lemma 7. Let km = β logm where β > 0, and let tβ be such that d/β ≤ ζp0(tβ ) < ∞. Define
η(β) := sup{σ0|t /σ0|s : s ≤ t ≤ tβ}. With probability tending to 1, under F0,

lim sup
m→∞

(logm)−1/2 ULSm(km) ≤ η(β)(d�θ (β))1/2.

If in addition, either σ0|t is non-decreasing in t or F0 has no atoms on (−∞, tβ ], then, in proba-
bility under F0,

(logm)−1/2 ULSm(km) → (d�θ (β))1/2.

In fact, a result as precise as Lemma 7 is superfluous, given the behavior of the ULS scan
statistic under the alternative at supercriticality and near-criticality, which is polynomial in m.
The next theorem does not require the use of toroidal boundary conditions.

Theorem 8. In hypercube detection and assuming that (5) holds, the test based on ULSm(km),
with km = [β logm] for some β > 0, is asymptotically powerful if θmmλ → ∞, for some 0 < λ <

α/ν satisfying λ < (α − 1/2)d if α > 1/2.

Thus, scanning all thresholds elicits the best performance of the LOC tests. Nevertheless, the
overall test is still suboptimal when detecting hypercubes compared with the scan statistic. We
mention in passing that the same result holds for the simpler test that scans only the largest open
cluster at each threshold.

6. Implementation and numerical experiments

The scan test has been shown to be near-optimal in a wide variety of settings, differing in terms
of both network structure and cluster class (Arias-Castro, Candès and Durand [1]; Arias-Castro,
Donoho and Huo [3]). It is computationally demanding, however. For the simple situation of
detecting a hypercube, the scan statistic can be computed in O(N logN) flops, where N :=
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md is the network size if the size of the hypercube is known. If one scans over all possible
hypercubes, then computing the scan statistic requires O(N2 logN) flops. For nonparametric
shapes, the computational cost is even higher; in fact, for the problem of detecting a loopless
path, computing the scan statistic corresponds to the reward-budget problem of DasGupta et al.
[13], shown there to be NP-hard. Because the scan statistic is so computationally burdensome,
the cluster class is most often taken to be parametric in practice, even though the underlying
clusters may take a much wider range of shapes. For instance, discs are the prevalent shape used
in disease outbreak detection (Kulldorff and Nagarwalla [33]), with variants such as ellipses
(Hobolth, Pedersen and Jensen [26]; Kulldorff et al. [32]). For a wide range of parametric shapes,
Arias-Castro, Donoho and Huo [3] recommended a multiscale approximation to the scan statistic.
Efforts to move beyond parametric models include tree-based approaches (Kulldorff, Fang and
Walsh [31]), simulated annealing (Duczmal and Assunção [16]) and an exhaustive search among
arbitrarily shaped clusters of small size (Tango and Takahashi [51]).

The LOC test does not assume any parametric form for the anomalous cluster, and in that
sense is nonparametric. Its computational complexity at a given threshold is of order the number
of nodes plus the number of edges in the network (Cormen et al. [10]), and so of order O(N)

flops for the square lattice.
The ULS scan statistic is nonparametric as well. Computing Um(t, km) requires determining

Q(t)
m , which takes O(N) flops, and then scanning over Q(t)

m . Because the clusters in Q(t)
m do not

intersect, scanning over them takes order O(N) flops. Therefore, computing ULSm can be done
in O(M · N) flops, where M is the number of distinct values at the nodes. Patil and Taillie [42]
argued that this can be done faster by using the tree structure of Q∗

m, where the root is the entire
network Vm and a cluster K ∈ Km(tj ) is the parent of any cluster L ∈ Km(tj+1) such that L ⊂ K ,
where t1 < · · · < tM denote the distinct values at the nodes.

We complement our theoretical analysis with some small-scale numerical experiments. Specif-
ically, we explore the power properties of the LOC test of Section 4 and the ULS scan test of
Section 5 in the context of detecting a hypercube in the two-dimensional square lattice. Patil,
Modarres and Patankar [40] are developing sophisticated software implementing the ULS scan
statistic for use in real-life situations, with more recent variations Patil, Joshi and Koli [38].
However, this software is not yet available, so we implemented our own (basic) routines.

We used the statistical software R (R Core Team [48]) with the package igraph (Csardi
[11]). Our (basic) implementation of the ULS scan statistic for a given threshold is much slower
than both the scan statistic with a given mask and the LOC statistic, especially when there is
no constraint on the size of the open clusters to be scanned, that is, when km = 1. In all of our
experiments, we chose the square lattice in dimension d = 2 with side length m = 500 for a total
of 250,000 nodes, and we considered three alternatives: squares of side length � ∈ {10,50,100},
corresponding roughly to α ∈ {0.4,0.7,0.8}. The squares were fixed away from the boundary of
the lattice, given that the methods are essentially location-independent. (This is rigorously true
of the scan statistic.) We assessed the performance of a method in a given situation by estimating
its risk, which we define as the sum of the probabilities of type I and type II errors optimized
over all rejection regions.

We first ran some experiments to quickly assess the power of the scan test. We found that
the test agrees very well with the theory (i.e., Lemma 3), which we already knew from previous
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Figure 2. The risk of the scan test against each of the three alternatives. The x-axis is θ , and the y-axis is
the estimated risk based on 100 replicates.

experience. Specifically, we assumed a normal location model and simulated 100 realizations of
the null and each of the three alternatives with θ ∈ {j/�: j = 1,3,5,7,9} (see Figure 2).

Next, we performed some larger experiments to assess the power of the LOC test. We simply
assumed a site percolation model with probability p ∈ {0.05,0.10, . . . ,0.90,0.95}. Note that pc

is not known for site percolation in the square lattice, although pc ≈ 0.593 from extensive nu-
merical experiments (Feng, Deng and Blöte [19]). We simulated the null and each of the three
alternatives with q ∈ {0.05,0.10, . . . ,0.90,0.95}, q > p, within the anomalous cluster. We repli-
cated each situation 1000 times. The risk curves are shown in Figure 3. The test seems to behave
similarly above and below criticality. At near-criticality, the test is rather erratic. However, when
the size of the anomalous cluster is large enough, � = 100, the risk curve is steepest just under
pc , at p = 0.55 in our experiments, with full power against q ≥ 0.65. Figure 4 shows boxplots of
the test statistic for the case where � = 100 and p = 0.40 (subcritical), p = 0.55 (near-critical),
and p = 0.70 (supercritical).

Figure 3. The risk of the LOC test against each of the three alternatives. The x-axis is the percolation
probability q on the anomalous cluster, and the y-axis is the estimated risk based on 1000 replicates. Each
curve corresponds to a different percolation probability p.
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Figure 4. The size of the largest open cluster in log10 scale (y-axis) versus the percolation probability
q , for the alternative � = 100 and p ∈ {0.40,0.55,0.70} (from left to right). Each boxplot represent 1000
replicates.

If we were to use this test in the context of a normal location model, then the corre-
spondence would be t = �̄−1(p) (the threshold) and θ = t − �̄−1(q), where �̄ denotes
the normal survival distribution function. Figure 5 plots the risk curves in this context for
p ∈ {0.40,0.50,0.55,0.60,0.70}. In particular, the test at near-criticality with t = �̄−1(0.55) =
−0.126 has full power against the alternative with � = 100 and θ = 0.26.

Finally, we experimented with the ULS scan test. To limit the size of our simulations, we
considered alternatives with θ = �−1(q) with q ∈ {0.55,0.6,0.65,0.70,0.80,0.90} and chose
t = �−1(p) with p ∈ {0.40,0.50,0.55,0.60,0.70} as thresholds. We restricted scanning to open
clusters of size not smaller than 1/10 of the size of largest open cluster, essentially falling in the
regime of Part 2 of Lemma 5, and also making the computation much faster. We used 200 repli-
cates. We again see that the risk curve is sharpest near criticality when the size of the anomalous
cluster is sufficiently large, here for � ≥ 50. Compared with the LOC test, the ULS scan test has

Figure 5. The risk of the LOC test in the context of a normal location model. The x-axis is θ , and
the y-axis is the estimated risk based on 1000 replicates. Each curve corresponds to a different thresh-
old t . The solid (—), dashed (- -), dotted (· · ·), dot-dashed (-·-) and long-dashed (– –) curves correspond to
p = 0.40,0.50,0.55,0.60 and 0.70, respectively.
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Figure 6. The risk of the ULS scan test against each of the three alternatives. On the x-axis is θ , and
on the y-axis is the estimated risk based on 200 replicates. Each curve corresponds to a different thresh-
old t . The solid (—), dashed (- -), dotted (· · ·), dot-dashed (-·-) and long-dashed (– –) curves correspond to
p = 0.40,0.50,0.55,0.60 and 0.70, respectively.

more power at large θ when the cluster is small � = 10 (as predicted) and, more interestingly,
slightly more power when the cluster is larger. Compared with the scan statistic, which knows
the size and shape of the anomalous cluster, the ULS scan test with the best choice of threshold
(corresponding to p = 0.55) requires approximately threefold greater signal amplitude.

7. Discussion

The contribution of this paper is a rigorous mathematical analysis of the performance of the
LOC test independent of, and more extensively than Davies, Langovoy and Wittich [14] and
Langovoy and Wittich [34], and of the ULS scan test, both nonparametric and computationally
tractable methods. We made abundant use of percolation theory to establish these results. We
compared the power of these tests with that of the scan statistic, which is known to be near-
optimal in a wide array of settings. Although these tests are comparable in power with the scan
statistic for the detection of a path, they may be substantially less powerful for the detection
of a hypercube. Note, however, that the scan statistic is provided with knowledge about the
shape and size of the anomalous cluster. In theory, we argued that this was the case based on
some heuristics and conjectures from percolation theory. Numerically, this appears to be the
case when the anomalous cluster is large enough. In our experiments, the ULS scan test was
slightly more powerful than the LOC test, and required a θ three to four times larger than the
scan statistic, which has the advantage of knowing the shape and size of the cluster. This result
is promising, and further numerical experiments are needed to evaluate the power of these tests
in truly nonparametric settings, because they do not require previous information about cluster
shape, and are computationally more feasible in general.

Our theoretical results generalize to other networks that resemble the lattice, with a different
critical percolation probability pc and different functions ζp and δp . In particular, we used the
self-similarity property of the square lattice and the fact that it has polynomial growth. Our
results also generalize to other cluster classes; in the setting of the square lattice, they extend
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immediately to any class of clusters that includes a hypercube of comparable size (e.g., the class
Km of clusters K of size |K| = [mα]d ), such that there is a hypercube K0 ⊂ K with |K0|/|K| ≥
ωm, where ωm → 0 more slowly than any negative power of m. In addition, the class might
contain clusters of different sizes, although in that case the worst-case risk would be driven by
the smallest clusters. Implementation of the scan statistic may be much more demanding in this
case. The main results of Section 4 require only that Fθ(t) be twice differentiable in (t, θ), with
∂θFθ (t) < 0 for all (t, θ), which is the case, for example, for location models and scale models
if F0 is twice differentiable with a strictly positive first derivate. With some additional work,
we also can obtain results for classes of “thin” clusters as defined in Arias-Castro, Candès and
Durand [1]. The key is to understand the percolation behavior within and near such clusters.
Some results are available for slabs (Grimmett [21], Theorem 7.2) and more general subgraphs
of lattices including “wedges,” and these appear to be transferable to other “curved” slabs.

Appendix A: Proofs

Notation. We write fm ∼ gm as n → ∞ if fm/gm → 1. Similarly, we use O(·) and o(·) and
write fm � gm as n → ∞ if fm = O(gm) and vice versa. We also use their random counterparts,
∼P, �P, OP(·), and oP(·). For example, Zm = oP(km) means that Zm/km → 0 in probability,
and Zm = OP(km) means that Zm/km is bounded in probability, which is to say that P(|Zm| ≥
kmlm) → 1 as m → ∞ for any lm satisfying lm → ∞. We use 1{A} to denote the indicator
function of the set A. The maximum of k and � is denoted by k ∨ �.

A.1. On the size of percolation clusters

Here we state and prove some results on the sizes of percolation clusters in Z
d . We start by

proving some properties of ζp . Recall that S denotes the size of the open cluster at the origin.
Besides the limit in (3), the following bound holds for p < pc and all k ≥ 1:

Pp(S ≥ k) ≤ (1 − p)2 ke−kζp

(1 − e−ζp )2
, (A.1)

by Grimmett [21], Equation (6.80), adapted to site percolation.

Lemma A.1. The function ζp defined in (3) is continuous and strictly decreasing over (0,pc],
and satisfies limp→0 ζp = ∞ and limp→pc ζp = 0.

Proof. Let 0 ≤ p < p′ ≤ 1. By coupling Pp and Pp′ in the usual way,

Pp(S = k) ≥ (p/p′)kPp′(S = k),

so that ζp ≤ ζp′ + log(p′/p). Applying Grimmett [21], Theorem 2.38, to the event {S ≥ k}, we
find that, as in the proof of Grimmett [21], Equation (6.16), ζp/ logp ≤ ζp′/ logp′. In summary,

ζp

(
1 − log(1/p′)

log(1/p)

)
≤ ζp − ζp′ ≤ log(p′/p). (A.2)
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Therefore, ζp is continuous and strictly decreasing on (0,pc). Moreover, by fixing p′ ∈ (0,pc)

and letting p → 0, we have

ζp ≥ ζp′
log(1/p)

log(1/p′)
→ ∞.

Finally, by Grimmett [21], Equations (6.83), (6.56), ζp → 0 = ζpc as p ↑ pc. �

Next, we prove (4). We do this by standard means, and the claim may be strengthened (see
also Grimmett [22]; Hofstad and Redig [52]).

Lemma A.2. Consider site percolation on Z
d with parameter p < pc, and let Sm denote the size

of the largest open cluster within Vm. Then (4) holds, namely

Sm

logm
→ d

ζp

, in probability.

Proof. Fix 0 < ε < 1/2. Let Sv be the size of the open cluster at a node v ∈ Z
d , which has the

same distribution as S. We start with the upper bound. By the union bound,

P(Sm ≥ k) ≤
∑

v∈Vm

P(Sv ≥ k) = |Vm| · P(S ≥ k). (A.3)

Thus, using (3), for km(ε) := (1 + ε)(d/ζp) logm and m large enough,

P
(
Sm ≥ km(ε)

) ≤ md exp
(−(1 − ε/2)ζpkm(ε)

) ≤ m−εd/4,

and the term on the right-hand side converges to 0.
For the lower bound, consider N = �md/(logm)2d� nodes v1, . . . , vN ∈ Vm separated from

each other and the boundary of Vm by at least 1
2 (logm)2. Let km(ε) := (1 − ε)(d/ζp) logm. For

sufficiently large m, the events Ei := {|Svi | ≤ km(ε)} are independent. Therefore, using (3), for
large m,

P
(
Sm ≤ km(ε)

) ≤ (
1 − P

(
S ≥ km(ε)

))N

≤ (
1 − exp

(−(1 + ε/2)ζpkm(ε)
))N (A.4)

≤ exp
(−mεd/2/(logm)2d

)
,

and the last term on the right-hand side tends to 0 as m → ∞. �

The following result describes the behavior of size of the open cluster at the origin when p is
small. It may be made more precise, but we do not pursue this here.

Lemma A.3. There exists c > 0 depending only on d such that, for p ∈ (0, (2c)−1),

pk ≤ Pp(S ≥ k) ≤ 1
2 (cp)k ∀k ≥ 1.
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Proof. An animal is a connected subgraph of Z
d containing the origin. The lower bound comes

from considering the probability that any given animal of size k is open. For the upper bound, by
the union bound, we have Pp(S = k) ≤ |Ak|pk , where Ak is the set of animals with k vertices.
There is a constant c > 0 such that |Ak| ≤ ck , so that

Pp(S ≥ k) ≤
∑
�≥k

c�p� = (cp)k

1 − cp
≤ 1

2
(cp)k,

when cp < 1
2 . �

We next present a result on the number of open clusters of a given size that is valid for all
p ∈ (0,1).

Lemma A.4. Consider site percolation on Z
d with parameter p, and let Nm(k) denote the num-

ber of open clusters of size k within Vm. Then, for k ≥ 1,

(m − 2k)d

k
P(S = k) ≤ E(Nm(k)) ≤ md

k
P(∞ > S ≥ k),

In addition, for k, � ≥ 1,

∣∣Cov(Nm(k),Nm(�))
∣∣ ≤ 3d+1(k + �)dE(Nm(k ∨ �)).

Thus, for k ≥ 1,

Var(Nm(k)) ≤ 6d+1kd
E(Nm(k)).

Proof. Let Sv
m be the size of the open cluster at v within the box Vm. Then

Nm(k) =
∑

v∈Vm

Xv(k), (A.5)

where Xv(k) = k−11{Sv
m = k}. We immediately have

E(Nm(k)) ≤
∑

v∈Vm

1

k
P(∞ > Sv ≥ k) = |Vm|

k
P(∞ > S ≥ k).

For the lower bound, we count only nodes away from the boundary, obtaining

E(Nm(k)) ≥ |Vm(k)|1

k
P(S = k),

where Vm(k) := {k, . . . ,m − k}d .
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We turn now to the covariances. By (A.5),

Cov(Nm(k),Nm(�)) =
∑

v,w∈Vm

Cov(Xv(k),Xw(l))

=
∑

v,w∈Vm

‖v−w‖≤k+�

Cov(Xv(k),Xw(l)),

because Xv(k) and Xw(�) are independent if ‖v − w‖ > k + �, where ‖ · ‖ denotes �∞-norm.
Now,

∣∣Cov(Xv(k),Xw(�))
∣∣ = ∣∣E(

Xw(�)|Xv(k) = k−1) − E(Xw(�))
∣∣E(Xv(k))

≤ 1

�
E(Xv(k)),

so that

∣∣Cov(Nm(k),Nm(�))
∣∣ ≤ 1

�
(2k + 2� + 1)dE(Nm(k)),

and the second claim of the lemma follows. �

We now describe some properties of the open clusters within Vm in the supercritical regime.
In this regime, it is known that, with probability 1, there is a unique infinite open cluster in Z

d ,
denoted by Q∞ (see, e.g., Grimmett [21], Section 8.2). With high probability, the largest open
cluster within Vm is a subgraph of this infinite open cluster. Next, we present some additional
information on its size, Sm.

Lemma A.5. Suppose that p > pc. There is a constant C > 0 such that, with probability at least
1− exp(−Cmd−1), there is a unique largest open cluster within Vm, and it is a subgraph of Q∞.
Moreover, as m → ∞, its size Sm satisfies

Sm − E(Sm)√
Var(Sm)

→ N (0,1), in distribution,

with E(Sm) ∼ �p|Vm| and Var(Sm) ∼ σ 2|Vm| for some σ 2 > 0 depending on (d,p).

Proof. For the first part and the limiting behavior of E(Sm) as m → ∞, see the discussion of
Penrose and Pisztora [44], Theorems 4 and 6, and the beginning of this Appendix. For the weak
limit and the limit size of the variance of Sm, see, for example, Penrose [43], Theorem 3.2. �

We next describe some properties of the smaller open clusters. Let S
(2)
m be the size of the

largest open cluster of Z
d that is contained entirely within Vm.
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Lemma A.6. Suppose that p > pc. There exists a positive constant δp such that

S
(2)
m

(logm)d/(d−1)
→

(
d

δp

)d/(d−1)

, in probability.

For any c > 0, there exists σi = σi(p, c) > 0 such that the following holds: With probability
tending to 1, there exist at least σ1m

d exp[−σ2(logm)(d−1)/d ] open clusters of size [c logm] of
Z

d lying within Vm.

Our results on exact asymptotics in the supercritical phase concern Vm with toroidal boundary
conditions. One effect of removing the boundary from Vm is that the asymptotics of the largest
cluster coincide with those of Sm, as well as for the second-largest cluster S

(2)
m . In the proof of

Theorem 7, we need an upper bound on the size of the second-largest cluster inside a box with
“free” boundary conditions. We do not explore this in detail here, because it relies on extensions
of arguments of Kesten and Zhang [28] (see also Grimmett [21], Proof of Theorem 8.65), which
have not yet been not fully explored in the literature. Instead, we note that the the second-largest
open cluster in a supercritical percolation model on Vm with free boundary conditions has size
of order OP((logm)d/(d−1)).

Proof of Lemma A.6. It was proven by Cerf [8] that the limit

δp := − lim
k→∞k−(d−1)/d logP(S = k) (A.6)

exists and is strictly positive and finite when pc < p < 1. It is elementary that δp thus defined is
equal to that of (8) (see also Grimmett [21], Section 8.6). The first part of the lemma follows by
the same proof as used in Lemma A.2.

As in the proof of Lemma A.4, the mean number μm of clusters of size k := [c logm] satisfies

md

c logm
exp

(−δ1(c logm)(d−1)/d
) ≤ μm ≤ md

[c logm] exp
(−δ2(c logm)(d−1)/d

)

for positive constants δi . The number of such clusters has variance no larger than Ckdμm for
some C < ∞. The claim follows by Chebyshev’s inequality. �

A.2. Some distributional properties

Here we present some results for AEP and exponential families of distributions. Our first result
is on the size of the maximum of an i.i.d. sample from an AEP distribution.

Lemma A.7. Let F ∈ AEP(b,C) for some b > 0 and C > 0. Then, for X1, . . . ,Xn
i.i.d.∼ F ,

max(X1, . . . ,Xn)

(logn)1/b
→ C−1/b, in probability.
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Proof. Fix ε ∈ (0,1) and define xn(ε) = ((1 − ε)(logn)/C)1/b . For n large enough, we have, by
independence,

P
(
max(X1, . . . ,Xn) ≤ xn(ε)

) ≤ (
1 − F̄ (xn(ε))

)n

≤ (
1 − exp

(−(1 + ε)Cxn(ε)
b
))n

≤ exp(−nε2
) → 0.

Now redefine xn(ε) = ((1 + ε)(logn)/C)1/b . For n large enough, we have, by the union bound,

P
(
max(X1, . . . ,Xn) ≥ xn(ε)

) ≤ nF̄ (xn(ε))

≤ n exp
(−(1 − ε/3)Cxn(ε)

b
)

≤ n−ε/3 → 0. �

We next describe the behavior at infinity of the logarithmic moment-generating function and
rate function of an AEP distribution.

Lemma A.8. Let F ∈ AEP(b,C) for some b ≥ 1 and C > 0, with logarithmic moment-
generating function � and rate function �∗. Then, as θ → ∞,

θ−b/(b−1)�(θ) → C(b − 1)(Cb)−b/(b−1), b > 1; (A.7)(
log

(
1/(C − θ)

))−1
�(θ) → 1, b = 1; (A.8)

and, as x → ∞,

x−b�∗(x) → C. (A.9)

Proof. Let ϕ be the moment-generating function of F . We focus on the upper bound in (A.7)
– obtaining the bound in (A.8) is analogous – and deduce the lower bound in (A.9). Let b > 1,
C/2 < A < C, and let x1 > 0 be such that F̄ (x) ≤ exp(−Axb) for all x > x1. We start from the
following bound:

ϕ(θ) =
∫ ∞

−∞
θ exp(θx)F̄ (x)dx ≤ exp(θx1) +

∫ ∞

x1

θ exp(θx − Axb)dx.

We again divide the integral into x ≤ x2 and x > x2, where x2 := (2θ/A)1/(b−1). For x ≤
x2, we bound exp(θx − Axb) by its maximum over (0,∞). For x > x2, exp(θx − Axb) ≤
exp(−(C/4)xb). Letting B = A(b − 1)(Ab)−b/(b−1), and assuming that θ is large enough such
that x2 > x1, we get

∫ ∞

x1

θ exp(θx − Axb)dx ≤ (x2 − x1)θ exp
(
Bθb/(b−1)

) + θ

∫ ∞

x2

exp
(−(C/4)xb

)
dx.
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Thus, when θ → ∞,

ϕ(θ) = O
(
θb/(b−1)

)
exp

(
Bθb/(b−1)

)
. (A.10)

Taking logs and letting θ → ∞, we get

lim sup
θ→∞

θ−b/(b−1)�(θ) ≤ A(b − 1)(Ab)−b/(b−1).

Then letting A tend to C, we obtain the upper bound in (A.7).
Now, for x exceeding the mean of F , �∗(x) = supθ≥0(θx − �(θ)), and starting from (A.10),

we obtain

�∗(x) ≥ sup
θ≥0

(
θx − Bθb/(b−1)

) − log 2 = Axb − log 2.

Therefore,

lim
x→∞

x−b�∗(x) ≥ A.

Then, letting A tend to C, we obtain the lower bound in (A.9). �

We now define γ , first appearing in Section 5.1. Our function γ depends on certain quantities
listed in the following lemma. It also depends on the quantity ζ , which we take as that defined in
(3). It is only through its dependence on ζ that γ is affected by the geometry of Vm.

Lemma A.9. Consider a distribution F on the real line, possibly discrete but not a point mass,
with finite mean μ and finite moment-generating function at some positive θ > 0, and let �∗
denote its rate function. Let ν ≤ μ, and fix β, ζ ∈ [0,∞).

1. Assume that ζ �= 0. If 0 < β < 1/ζ , or β = 0 and F ∈ AEP(b,C) for some b ≥ 2 and
C > 0, then there is a unique solution γ = γ (F, ν, ζ,β) to the following equation

inf
β<s<1/ζ

[
s�∗(ν + √

γ /s
) + sζ

] = 1.

2. Assume that ζ = 0. The foregoing holds as long as ν = μ (and with 1/ζ interpreted as ∞).

Proof. Let M = sup{x: �∗(x) < ∞}. Because F is not a point mass, μ < M ≤ ∞. Define

G(s, γ ) = s�∗(ν + √
γ /s

) + sζ.

Note that G(s, γ ) is finite (resp., infinite) if γ /s < (M −ν)2 (resp., γ /s > (M −ν)2). In addition,
G(s, γ ), and its derivatives are continuous wherever G is finite, and thus are uniformly contin-
uous on any compact subset of [0,∞)2 on which G is finite. Furthermore, G(s, γ ) is strictly
increasing in γ on the interval (0, s(M − ν)2). Let

Lβ(γ ) = inf
β<s<1/ζ

G(s, γ ). (A.11)
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Thus Lβ(γ ) is finite if γ ζ < (M − ν)2, and infinite when < is replaced by >. Furthermore,
for γ < (M − ν)2/ζ , the infimum is achieved at some value sγ of s in a neighborhood where
G(s, γ ) < ∞.

Assume first that β > 0. It may be seen that Lβ(γ ) is continuous and strictly increasing in γ

on the interval [0, (M − ν)2/ζ ). Let 0 ≤ γ < γ ′ < (M − ν)2/ζ . Then

0 ≤ Lβ(γ ′) − Lβ(γ ) ≤ G(sγ , γ ′) − G(sγ , γ ), (A.12)

and continuity follows from the properties of G noted earlier. Similarly,

Lβ(γ ′) − Lβ(γ ) ≥ G(sγ ′ , γ ′) − G(sγ ′ , γ ) (A.13)

and strict monotonicity follows similarly.
It suffices to prove that Lβ(γ ) takes values <1 and finite values >1. The first claim follows

from the fact that, with γ = β(μ − ν)2,

Lβ(γ ) ≤ G(β,γ ) = βζ < 1.

We now turn to the second claim, and make use of two general properties of rate functions
that follow from Dembo and Zeitouni [15], Equation (2.2.10), Lemma 2.2.20. It is standard that
�∗(μ + x) ∼ 1

2 (x/σ )2 as x ↓ 0, where σ 2 > 0 is the variance of F . Therefore,

∃T ∈ (0,M) such that �∗(μ + x) ≥ 1
4 (x/σ )2 when 0 ≤ x ≤ T . (A.14)

With T thus chosen, by convexity,

∃A > 0 such that �∗(μ + x) ≥ Ax when x ≥ T . (A.15)

Assume first that ζ > 0 and M = ∞. By (A.15), for sufficiently large γ ,

∞ > Lβ(γ ) ≥ inf
β<s<1/ζ

[
sA

(
ν − μ + √

γ /s
) + sζ

] ≥ A
(
β(ν − μ) + √

γβ
)
> 1.

Suppose next that ζ > 0 and M < ∞. Let 0 < γ < (M − ν)2/ζ . Because �∗(ν +√
γ /s) = ∞

if s < γ/(M − ν)2 =: β0(γ ),

∞ > Lβ(γ ) ≥ β0 inf
β0<s<1/ζ

�∗(ν + √
γ /s

) + β0ζ

(A.16)
= β0�

∗(ν + √
γ ζ

) + β0ζ.

The limit of this, as γ ↑ (M − ν)2/ζ , is strictly greater than 1.
Now let ζ = 0 and ν = μ, and note that Lβ(γ ) < ∞ for all γ ≥ 0. Suppose that M ≤ ∞ and

γ > 0. By dividing the infimum in (A.11) according to whether or not
√

γ /s < T , we find that

∞ > Lβ(γ ) ≥ min
{

inf
β<s<γ/T 2

s�∗(μ + √
γ /s

)
, inf
s>γ/T 2

s�∗(μ + √
γ /s

)}

≥ min

{
A

√
γβ,

1

4
γ /σ 2

}
,
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by (A.14)–(A.15). This diverges as γ → ∞.
When β = 0, some of the arguments fail, because G(s, γ ) might not be continuous at (0,0).

Assume that F ∈ AEP(b,C) for some b ≥ 2 and C > 0. Note that M = ∞ by Lemma A.8. If
b = 2, G(s, γ ) → Cγ when γ > 0 is fixed and s → 0, by Lemma A.8, and taking this limit
as an extension at s = 0, the same arguments used in the case β > 0 apply. If b > 2, we need
slightly different arguments. As before, let sγ be a minimizer of G(s, γ ). We have that sγ is
well defined for all γ and strictly positive, because G is uniformly continuous on any compact
of (0,1/ζ ] × [0,∞) and G(s, γ ) ∼ Cγ b/2s1−b/2 → ∞ when s → 0. Thus we may proceed as
before in (A.12)–(A.13), obtaining that L0(γ ) is strictly increasing and continuous. As before,
we turn to proving that L0 takes values <1 and finite values >1. First, with γ = (μ − ν)2/(2ζ )

and s = 1/(2ζ ),

L0(γ ) ≤ G(s, γ ) = γ ζ/(μ − ν)2 = 1/2 < 1.

Next, showing that L0 takes finite values above 1 is done exactly as before, except that (A.14) is
replaced by

G(s, γ ) ∼ Cs1−b/2γ b/2 ≥ Cζb/2−1γ b/2, γ → ∞
by Lemma A.8. �

The following result describes the variations of γ (defined in Lemma A.9) with the parameter
of an exponential family.

Lemma A.10. Consider a natural exponential family of distributions (Fθ , θ ≥ 0) and let μθ

and �∗
θ denote the mean and the rate function of Fθ , respectively. Let ζθ be a continuous and

decreasing function of θ . Then, for any fixed 0 < β < 1/ζ0, γθ := γ (Fθ ,μ0, ζθ , β) is continuous
and strictly increasing in θ . Moreover, if ζθ → 0 when θ → θc, then γθ → ∞ when θ → θc.

Proof. First, note that μθ ≥ μ0 (Brown [7], Cor. 2.22) so that γθ is well-defined. That γθ is
strictly increasing comes from the fact that both ζθ and �∗

θ (a) (a > μθ fixed) are decreasing.
The latter can be seen from

�∗
θ (a) = − lim

k→∞
1

k
logPθ (X̄k ≥ a),

where X̄k is the average of the sample of size k from Fθ Brown [7], Cor. 2.22, and the fact that
the distribution of X̄k as θ varies forms a natural exponential family with parameter kθ . That γθ

is continuous comes from the continuity of ζθ and �∗
θ (a) (in (θ, a)).

For the behavior near θc, note that �∗
θ (a) = 0 for a ≤ μθ , so that G(1/(2ζθ ), γ ) = 1/2 for any

γ ≤ (μθ − μ0)
2/(2ζθ ). Combine this with the fact that μθ is strictly increasing in θ to see that

γθ is of order at least 1/ζθ . In fact, it is easy to see that γθ ∼ (μθ − μ0)
2/ζθ when θ ↗ θc. �
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A.3. Main proofs

A.3.1. Proof of Theorem 1

By monotonicity, it is sufficient to assume that θm = θ for all m. Fix t and, for short, let p = p0(t)

and p′ = pθ(t). First, assume that θ > θ∗, so that ζp′ < αζp . Fix B such that 1/ζp < B < α/ζp′
and consider the test with rejection region {Sm(t) ≥ dB logm}. Under H

m
0 , we have Sm(t) =

(1+oP(1))(d/ζp) logm by (4), so that P(Sm(t) ≥ dB logm) → 0. Under H
m
1,K , Sm(t) ≥ SK(t) =

(1 + oP(1))(αd/ζp′) logm, so that P(Sm(t) ≥ dB logm) → 1. Thus this test is asymptotically
powerful.

Now assume that θ < θ∗, so that ζp′ > αζp and there is B such that α/ζp′ < B < 1/ζp . Let
Kc = Vm \ K . It is sufficient to show that under both H

m
0 and H

m
1,K , Sm(t) = SKc(t) with

probability tending to 1, so that the values at the nodes in K have no influence on Sm(t). In-
deed, let J be a hypercube within Vm of sidelength [m/3] which does not intersect K . Then
SKc(t) ≥ SJ (t), and the distribution of SJ (t) is the same under both H

m
0 and H

m
1,K . In addi-

tion, P(SJ (t) ≥ dB logm) → 1 by (4). Now, let L be the set of nodes within (supnorm) distance
(logm)2 from K , so that L is a hypercube of side length [mα] + [2(logm)2] containing K in its
interior. In the event that {Sm(t) ≤ (logm)2}, Sm(t) �= SKc(t) only when SL(t) > SKc(t). The dis-
tribution of SL(t) under the null is stochastically bounded by its distribution under H

m
1,K , which

is itself bounded by its distribution under H
m
1,L. Even under the latter, P(SL(t) ≥ dB logm) → 0

by (4). We then conclude the proof using the fact that P(Sm(t) ≤ (logm)2) → 1, again by (4).

A.3.2. Proof of Theorem 2

Here we use the notation and follow the arguments of Section A.3.1. In addition, let ζ 1
p′ =

log(1/p′), that is, the function ζ in dimension one. When θ > θ+∗ , we consider 1/ζp < B <

α/dζ 1
p′ . Under H

m
0 , we still have Sm(t) = (1 + oP(1))(d/ζp) logm. Under H

m
1,K , Sm(t) ≥

SK(t) = (1 + oP(1))(α/ζp′) logm, because K is isomorphic to a subinterval of the one-
dimensional lattice. We conclude as before that the test with rejection region {Sm(t) ≥ dB logm}
is asymptotically powerful.

When θ < θ−∗ , we consider α/dζp′ < B < 1/ζp . As before, let L be the set of nodes within
(supnorm) distance (logm)2 from K , so that L is now a band. As before, it suffices to prove
that P(SL(t) ≥ dB logm) → 0 under H

m
1,L. Although (4) cannot be applied, because L is not

isomorphic to a square lattice, its proof via the union bound and (3) applies. Indeed, fix η > 0
small enough that (1 − η)ζp′dB > α. Then, for m large enough, we have

P
(
SL(t) ≥ dB logm

) ≤ |L| · P(S ≥ dB logm)

≤ O
(
mα(logm)2(d−1)

)
exp

(−(1 − η)ζp′dB logm
)

= O(logm)2(d−1) exp
((

α − (1 − η)ζp′dB
)

logm
) → 0.

A.3.3. Proof of Proposition 1

Let km(ε) = (1−ε)d log(m)/ log(1/p0(tm)) with ε > 0 fixed. We first show that Sm(tm) ≥ km(ε)

with probability tending to 1 under H
m
0 . We use the notation and arguments provided in the proof
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of Lemma A.2. As in (A.4),

P
(
Sm(tm) < km(ε)

) ≤ (
1 − P

(
S ≥ km(ε)

))N

≤ (
1 − p0(tm)km(ε)

)N

≤ exp
(−mεd/(logm)2d

) → 0,

where the second inequality holds for m large enough by Lemma A.3.
Assume that θm ≤ θ < ∞ for all m. Proceeding as in Section A.3.1 and using the slightly

larger region L, it is sufficient to show that for ε small enough, SL(tm) ≤ km(ε) when Xv ∼ Fθ

for all v ∈ L. Using the union bound and the fact that |L| = O(m)αd , we have

P
(
SL(tm) ≥ km(ε)

) ≤ |L| · P
(
S ≥ km(ε)

) ≤ O(m)αd(cpθ (tm))km(ε), (A.17)

where the last inequality is due to Lemma A.3 (and c is the constant that appears there). Through
integration by parts, for θ > 0 and ε ∈ (0,1) fixed, we have pθ(t) ≤ p0((1 − ε)t) for sufficiently
large t . Indeed, for t large enough,

pθ(t) = exp
(
θt − �(θ)

)
p0(t) +

∫ ∞

t

θ exp
(
θx − �(θ)

)
p0(x)dx

≤ exp
(
θt − �(θ) − C(1 − ε/3)btb

) +
∫ ∞

t

θ exp
(
θx − �(θ) − C(1 − ε/3)bxb

)
dx

≤ exp
(−C(1 − ε/2)btb

)
≤ p0

(
(1 − ε)t

)
,

where we used the fact that b > 1 in line 3 and the fact that logp0(t) ∼ −Ctb as t → ∞ (because
F0 ∈ AEP(b,C)) in lines 2 and 4. The last property also implies that p0((1−ε)t) ≤ p0(t)

(1−ε)b+1

for large t . Thus, for m large enough, pθ(tm) ≤ p0(tm)(1−ε)b+1
, so that taking logs in (A.17), we

get

logP
(
SL(tm) ≥ km(ε)

) ≤ O(1) + (d logm)
(
α + O(logp0(tm))−1 − (1 − ε)b+2) → −∞,

when ε < 1−α1/(b+2). (Remember that α < 1 and that p0(tm) → 0, so the middle term is small.)

A.3.4. Proof of Theorem 3

Let Eθ denote the expectation of Xv under Fθ . By Lemma A.5, under the null,

Sm(t) − E0(Sm(t))√
Var0(Sm(t))

→ N (0,1), (A.18)

with Var0(Sm(t)) of order md . Write p := p0(t) and p′ := pθm(t).
We consider the alternative with anomalous cluster K as a two-stage percolation process,

where the first stage is percolation on Vm with probability p, as under the null, and the second
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stage is percolation on the closed nodes within K , that is, K \ {v: Xv > t}, with (conditional)
probability (p′ − p)/(1 − p). An open cluster at the first stage is called small if it is not a largest
open cluster.

We may assume, except where noted below, that θm → 0. Because

∂

∂θ
logpθ(t) = Eθ (Xv|Xv > t) − Eθ (Xv),

which is positive at θ = 0 by choice of t , there exists c ∈ (0,∞) such that

p′ − p ∼ cθm as m → ∞. (A.19)

Let �m ≥ 0 be the difference between the sizes of the largest clusters under the null and the
alternative. For x ∈ K , let Fx be the sum of the sizes of all small clusters of the entire lattice that
contain some neighbor of x. Note that �m ≤ ∑

x∈D(1 + Fx), where D is the set of x ∈ K that
are closed at the first stage and open at the second stage. Therefore, �m has expectation bounded
above by

E(�m) ≤
(

p′ − p

1 − p

)
|K|(1 + 2dμp), (A.20)

where μp < ∞ is the mean size of a finite open cluster in the infinite lattice.
By (A.19) and the foregoing, E(�m) ≤ Cθmmαd for some C < ∞. By Markov’s inequality,

�m = OP(θmmαd).
Thus, if θmm(α−1/2)d → 0, then �m/

√
Var0(Sm(t)) → 0, implying that the same central limit

law as (A.18) holds under the alternative, so that the test based on the largest open cluster is
asymptotically powerless. We also must consider the case where θm �→ 0, for which a similar
argument is valid.

Now assume that α ≥ 1/2 and θmm(α−1/2)d → ∞. By Grimmett [21], Theorem 8.99, and
standard properties of the largest cluster in a box (to be found in, e.g., Falconer and Grimmett
[18]), with probability tending to 1, the largest open cluster increases in size by at least C1(p

′ −
p)|K| for some C1 = C1(p) > 0. By (A.19), this has order θmmαd . Because

θmmαd

√
Var0(Sm(t))

∼ C2θmm(α−1/2)d → ∞

for some C2 = C2(p) > 0, the test based on the largest open cluster is asymptotically powerful.

A.3.5. Proof of Theorem 4

We may assume without loss of generality that θm → 0 as m → ∞. By (5) and the assumption
on tm, we have that Sm(tm) �P logm under the null. Now pθ(t) is infinitely differentiable in θ ,
with each derivative continuous in t and with

∂pθ (t)

∂θ

∣∣∣
θ=0

= p0(t)[E0(Xv|Xv > t) − E0(Xv)] ≥ pc

2
[E0(Xv|Xv > tc) − E0(Xv)] > 0,
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uniformly for t in a neighborhood of tc. Therefore, there exists C > 0 such that

∂pθ (t)

∂θ
≥ 1/C and

∣∣∣∣∂
2pθ(t)

∂θ2

∣∣∣∣ ≤ C

for (θ, t) in some neighborhood of (0, tc). Thus,

pθ(t) − p0(t) ≥ θ/C − C2θ2/2 ≥ θ/(2C),

on such a neighborhood. Let A and B be such that pc − p0(tm) ≤ Am−α/ν′
and θm ≥ Bm−α/ν′

,
and assume that B > 2AC, based on the statement of the theorem. Because θm → 0 and tm → tc,

mα/ν′′(
pθm(tm) − pc

) ≥ mα/ν′′
[

θm

2C
+ (

p0(tm) − pc

)] ≥
[

B

2C
− A

]
mα(1/ν′′−1/ν′) → ∞

for ν′′ < ν′ and sufficiently large m. By (5) applied to K ∈ Km, it follows that SK(tm) �P mαd

under the alternative. Consequently, the test with rejection region {Sm(tm) ≥ (logm)2} is asymp-
totically powerful.

A.3.6. Proof of Lemma 5

Part 1. This follows immediately from Lemma A.2.
Therefore, we focus on the remaining two parts. We use the abbreviated notation F := Fθ |t ,

�∗ := �∗
θ |t , μ := μθ |t , ζ := ζpθ (t), γ := γθ |t (β), Um := Um(t, km), and write ν := μ0|t . Let

Yk = Xk − ν. As in Lemma A.4, let Nm(k) denote the number of open cluster of size k within
Vm, and define

Gk(x) = P(k1/2Ȳk ≤ x),

where Ȳk = X̄k − ν and X̄k is the average of an i.i.d. sample of size k from F . By the indepen-
dence of ȲK and ȲL for K,L ∈ Q(t)

m distinct, we have

P(Um ≤ x) = E

( ∏
k≥km

Gk(x)Nm(k)

)
= E(exp[−Rm(x)]),

where

Rm(x) := −
∑
k≥km

Nm(k) log
(
1 − Ḡk(x)

)
.

Thus, we turn to bounding Rm(x).
Part 2. Define xm = √

γ d logm and fix ε > 0. For the lower bound, let �m be the closest
integer to ad logm between km and (d/ζ ) logm, where

a = arg min
β<s<1/ζ

[
s�∗(ν + √

γ /s
) + sζ

]
. (A.21)

We have

Rm

(
(1 − ε)xm

) ≥ Tm := Nm(�m)Ḡ�m

(
(1 − ε)xm

)
,
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and we show that for ε fixed, Tm → ∞ in probability. Fix η > 0. On the one hand, we use
Lemma A.4 and (3), to get

E(Nm(�m)) ≥ (m − 2�m)d

�m

P(S = �m) ≥ md exp
(−(1 + η)ζ�m

)

for m large enough. On the other hand, we use Cramér’s theorem (Dembo and Zeitouni [15],
Theorem 2.2.3) to get

Ḡ�m

(
(1 − ε)xm

) ≥ P
(
Ȳ�m ≥ (1 − ε/2)

√
γ /a

)
≥ exp

(−(1 + η)�m�∗[ν + (1 − ε/2)
√

γ /a
])

for m large enough. By the definition of γ , a�∗[ν + √
γ /a] + aζ = 1, and thus for ε small

enough,

aζ + a�∗[ν + (1 − ε/2)
√

γ /a
]
< 1,

by strict monotonicity, as in the proof of Lemma A.9. Thus, for η small enough,

�mζ + �m�∗[ν + (1 − ε/2)
√

γ /a
] ≤ (1 − η)d logm.

It follows that

E(Tm) ≥ mη2d .

To bound the corresponding variance, we use Lemma A.4 to obtain

Var(Tm) ≤ O(logm)dE(Tm),

and it follows by Chebyshev’s inequality that indeed Tm → ∞ in probability.
Because Tm ≥ 0, exp(−Tm) → 0 in L1, and thus

P
(
Um ≤ (1 − ε)xm

) → 0.

We next show that E(Rm((1 + ε)xm)) → 0, which will imply the claim of Part 2. Fix η > 0.
We have that

Rm

(
(1 + ε)xm

) ≤ Tm + 2Zm, (A.22)

where

Tm := 2
k
(η)
m∑

k=km

Nm(k)Ḡk

(
(1 + ε)xm

)

and Zm is the number of clusters of size exceeding k
(η)
m := [(1 + η)(d/ζ ) logm]. We first note

that, as in the proof of Lemma A.4, for large m,

E(Zm) ≤ md exp
(− 1

2ζk(η)
m

) → 0. (A.23)



Cluster detection in networks using percolation 709

We next turn to Tm, and show that for ε fixed and η small enough, E(Tm) → 0. On the one
hand, we use Lemma A.4 and (3) to get

E(Nm(k)) ≤ md exp
(−(1 − η)ζk

)

for m large enough. On the other hand, by Chernoff’s bound,

Ḡk

(
(1 + ε)xm

) ≤ exp
(−k�∗[ν + (1 + ε)xm/

√
k
])

.

Taken together, we obtain

E(Tm) ≤ 2
k
(η)
m∑

k=km

md exp
(−(1 − η)

[
kζ + k�∗(ν + (1 + ε)xm/

√
k
)])

≤ O(logm) exp
(
d logm − (1 − η) min

km≤k≤k
(η)
m

[
kζ + k�∗(ν + (1 + ε)xm/

√
k
)])

≤ O(logm) exp
((

1 − (1 − η)A
)
d logm

)
,

where

A := inf
β<a<(1+η)/ζ

[
a�∗(ν + (1 + ε)

√
γ /a

) + aζ
]
. (A.24)

As in the proof of Lemma A.9, A = A(ε,η) is continuous in (ε, η) and strictly increasing in ε.
Because A(0,0) = 1 by definition of γ , for ε fixed, −h := 1 − (1 − η)A(ε, η) < 0 for η small
enough, in which case E(Tm) ≤ m−hd/2 → 0 as m increases.

By (A.22)–(A.23), we have that E(Rm((1 + ε)xm))) → 0. By Jensen’s inequality,

P
(
Um ≤ (1 + ε)xm

) ≥ exp
(−E

(
Rm

(
(1 + ε)xm

))) → 1,

and the proof of this part is complete.
Part 3. We build on the arguments provided so far, which apply essentially unchanged, except

in two places. In the lower bound, instead of Cramér’s theorem, we use

Ḡk(x) ≥ F̄
(
x/

√
k
)k

,

combined with the asymptotic behavior for F̄ . In the upper bound, A defined in (A.24) is evalu-
ated differently when b < 2.

Part 3(a). When b > 2, we have a > 0 in (A.21) (with β = 0), because

h(s) := s�∗(ν + √
γ /s

) + sζ � s1−b/2 → ∞

for γ fixed and s → 0, by Lemma A.8. When b = 2, we take a small enough if the minimum is
at a = 0. Then the other arguments in Part 2 apply unchanged.
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Part 3(b). By the same calculations, a = 0 in (A.21), because h(s) > 0 for all s > 0, and h(s) �
s1−b/2 → 0 when s → 0, because b < 2. This would make A = 0 in (A.24) for any ε > 0, mak-
ing the arguments for the upper bound collapse. Instead, redefine xm = (Cd logm)1/bk

1/2−1/b
m .

Because xm/
√

k → ∞ uniformly over k ≤ k
(η)
m , for η > 0 fixed, we have

kζ + k�∗(ν + (1 + ε)xm/
√

k
) ≥ kζ + (1 − η)Ck1−b/2(1 + ε)bxb

m

for m large enough, by Lemma A.8. Then the term on the right-hand side takes its minimum over
km ≤ k ≤ k

(η)
m at k = km, and from here, the remaining arguments apply.

A.3.7. Proof of Proposition 2

Assume, for simplicity, that θm = θ < θc for all m. The key point is that Fθ |t ∈ AEP(b,C).
Indeed, we have F̄θ |t (x) = F̄θ (x)/F̄θ (t), where the denominator is constant in x and, integrating
by parts,

F̄θ (x) = exp
(
θx − �(θ)

)
F̄0(x) +

∫ ∞

x

θ exp
(
θy − �(θ)

)
F̄0(y)dy.

From here, we reason as in the proof of Proposition 1, using the fact that log F̄0(y) ∼ −Cyb

when y → ∞, with b > 1. Thus Fθ |t and F0|t have same (first-order) asymptotics, and so nothing
distinguishes the asymptotic behavior of Um under the null and under an alternative. In detail, we
proceed as in Section A.3.1, with the enlarged hypercube L, and show that in probability under
H

m
1,L,

lim sup
m→∞

k
1/b−1/2
m (logm)−1/bUL < (d/C)1/b,

where UL is the ULS scan statistic restricted to open clusters within L. Because L is a scaled
version of Vm, Fθ |t ∈ AEP(b,C) and pθ(t) < pc, Lemma 5 applies to yield

k
1/b−1/2
m (α logm)−1/bUL → (d/C)1/b.

We then conclude with the fact that α < 1.

A.3.8. Proof of Theorem 5 and Theorem 6

The proof of Theorem 5 is parallel to that of Theorem 1 in Section A.3.1, but using Lemma 5 in
place of Lemma A.2. Note that we use the fact that for t and β > 0 fixed, γθ |t (β) is continuous
and strictly increasing in θ . This comes from Lemma A.10 and the fact that when t is fixed,
Fθ |t is also a natural exponential family with parameter θ . Similarly, the proof of Theorem 6 is
parallel to that of Theorem 2 in Section A.3.2. Further details are omitted.

A.3.9. Proof of Lemma 6

The proof is parallel to that of Lemma 5. In particular, we use the notation introduced there and
only note where the arguments differ (although never substantially).
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Part 1. In this case, by Lemma A.5 and Lemma A.6, there is only one open cluster with size
km or larger, and the result follows from, for example, Chebyshev’s inequality.

Part 2. Define xm = √
2σ 2d(1 − δβ ′) logm and fix ε > 0. For the lower bound, we have

Rm

(
(1 − ε)xm

) ≥ Tm := Nm(km)Ḡkm

(
(1 − ε)xm

)
.

Fix η > 0. By Lemma A.4 (still valid) and (8),

E(Nm(km)) ≥ md exp
(−(1 + η)δk

(d−1)/d
m

)

for m large enough. By Cramér’s theorem and the fact that �∗(x) ∼ x2/(2σ 2) when x is small,

Ḡkm

(
(1 − ε)xm

) ≥ exp
(−(1 + η)km�∗[(1 − ε)xm/

√
km

])
≥ exp

(−(1 + η)(1 − ε/2)x2
m/(2σ 2)

)
for m large enough. Thus,

E(Tm) ≥ exp
(
d logm − (1 + η)

(
δk

(d−1)/d
m + (1 − ε/2)x2

m/(2σ 2)
)) ≥ mεd(1−δβ ′)/4

for m large enough and η small enough. For the variance, we use Lemma A.4 to get

Var(Tm) ≤ O(logm)d
2/(d−1)

E(Tm).

We then conclude by Chebyshev’s inequality.
We now show that Rm((1 + ε)xm) → 0 in probability. Equation (A.22) holds with k

(η)
m :=

[(1 + η)(d/δ) logm]d/(d−1). As before,

E(Zm) ≤ md exp
{− 1

2δ
(
k(η)
m

)(d−1)/d} → 0 as m → ∞.

By Lemma A.4 and (8),

E(Nm(k)) ≤ md exp
(−(1 − η)δk(d−1)/d

)
for m large enough. The absence of a boundary to Vm is being used here. The tail behavior of
percolation clusters near the boundary of a box is not yet fully understood (see the remark in
Section 5.2). By Chernoff’s bound and the behavior of �∗ near the origin,

Ḡk

(
(1 + ε)xm

) ≤ exp
(−(1 + ε)x2

m/(2σ 2)
)

for any k ≥ km. Thus,

E(Tm) ≤ 2
k
(η)
m∑

k=km

md exp
(−(1 − η)δk(d−1)/d − (1 + ε)x2

m/(2σ 2)
)

≤ O(logm)d/(d−1)m−εd(1−δβ ′)/4
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for m large enough and η small enough.
Part 3. This part is even more similar to what we did in the proof of Lemma 5. The behavior

of Um is driven by the open clusters of size of order logm, with the only difference being that
the term in k(d−1)/d from the bounds on Nm(k) is negligible. Details are omitted.

A.3.10. Proof of Theorem 7

Without loss of generality, we assume that θm is bounded. By Lemma 6 and our assumptions
on km, under the null, Um := Um(t, km) ∼P A(logm)1/2 for a finite constant A > 0. We now
consider the alternative, where the anomalous cluster is K .

The contribution of the largest open cluster, Qm, is

√|Qm|(X̄Qm − μ0|t ) = |Qm ∩ K|√|Qm| (X̄Qm∩K − μθm|t ) + |Qm ∩ Kc|√|Qm| (X̄Qm∩Kc − μ0|t )

+ |Qm ∩ K|√|Qm| (μθm|t − μ0|t ).

On the right-hand side, the first term is of order oP(1), and the second term is of order OP(1),
by Chebyshev’s inequality and the fact that, with probability tending to 1, |Qm ∩ K| � |K| and
|Qm| � |Vm|, by Lemma A.5. The last term is of (exact) order O(θmm(α−1/2)d ), by the fact that
μθ |t is differentiable at θ = 0 with derivative equal to σ 2

0|t > 0. Therefore, the ULS scan test is

asymptotically powerful when lim inf θmm(α−1/2)d (logm)−1/2 is large enough. (Note that this
requires α > 1/2.) If instead, we have lim sup θmm(α−1/2)d (logm)−1/2 → 0, then the scan over
Qm may be ignored, and we need to consider smaller clusters.

By Lemma A.6 and the upper bound on km, the second-largest cluster entirely within K is
scanned and its contribution is of order O(θm(logm)d/(2d−2)), by the same arguments that estab-
lished the contribution of the largest open cluster. Thus, the ULS scan test is asymptotically pow-
erful when lim inf θm(logm)d/(2d−2)−1/2 is large enough. If instead, θm(logm)d/(2d−2)−1/2 → 0,
the test is asymptotically powerless. Indeed, let L be the set of nodes within distance (logm)3

from K , and let UL be the result of scanning the open clusters of size at least km and entirely
within L. As argued in the proof of Proposition 2, this time using Lemma A.6, it is sufficient to
show that UL ≤ A(logm)1/2 with probability tending to 1 under H

m
1,L. For any open cluster Q

entirely within L,

√|Q|(X̄Q − μ0|t ) = √|Q|(X̄Q − μθm|t ) + √|Q|(μθm|t − μ0|t ),

so that

UL ≤ max
Q

√|Q|(X̄Q − μθm|t ) + oP(1),

where the maximum is over open clusters of size at least km and entirely within L, and the second
term is oP(1) by Lemma A.6 and the size of θm. Although θm → 0 varies, this maximum may be
handled exactly as in Lemma 6, so that it is ∼P A(α logm)1/2, and we conclude.
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A.3.11. Proof of Lemma 7

We prove only the more refined part. We use abbreviated notation as before, in particular, we
omit the subscript 0, using Ft = F0|t , σt = σ0|t , and so on. The lower bound is obtained via
ULSm ≥ Um(t∗)/σt∗ , where t∗ defines �(β), and applying Lemmas 5 or 6 to Um(t∗) depending
on whether t∗ > tc or t∗ < tc. For simplicity, we assume that t∗ �= tc. If t∗ = tc , then we consider a
nearby threshold and argue by continuity. For the upper bound, we prove that P(ULSm ≥ xm) →
0, where xm := √

g logm and g > G := (d�(β))1/2.
As t increases, clusters are created and then destroyed in the coupled percolation processes.

Suppose the removal at time t from the percolation process of vertex v creates some cluster
Qt(w) at some neighbor w of v. If ULSm ≥ xm, there must exist a vertex v and a neighbor w

such that the cluster formed at w at time Xv contributes at some future time t ′ > Xv an amount
at least xm to ULSm. By conditioning on v, Xv , and w, one obtains that

P(ULSm ≥ xm) ≤ o(1) +
∫ tβ

−∞
P

( ⋃
v∈Vm

⋃
w∈∂v

�t (w)

)
dF(t), (A.25)

where the o(1) term covers the probability that the cluster at time −∞, namely Vm, determines
ULSm, or that a cluster at threshold t > tβ is of size at least km := β logm; ∂v is the neighbor set
of v; and �t(w) is the event that:

1. k := |Qt(w)| satisfies k ≥ β logm,
2. there exists a time t ′ ≥ t such that Qt(w) still exists at time t ′ and
3. Yt (k) − E(Yt ′(k)) ≥ xmσt ′

√
k, where Yt (k) is the sum of a k-sample from Ft .

Assume (briefly) that σt is non-decreasing, and note that μt is automatically non-decreasing.
Then as in the proofs of Lemmas 5 and 6, and using similar notation,

∑
v∈Vm

∑
w∈∂v

P(�t (w)) ≤
∑

v∈Vm

∑
w∈∂v

P
(
k := |Qt(w)| ≥ β logm,Yt (k) − E(Yt (k)) ≥ xσt

√
k
)

≤ 2dE(Rt (xm)), Rt (x) :=
∑
k≥km

Nt (k)Ḡt (k, x),

where Nt(k) is the number of t -open clusters of size k and

Ḡt (k, x) = P
(
Yt (k) − E(Yt (k)) ≥ xσt

√
k
)
.

Therefore, by (A.25),

P(ULSm ≥ xm) ≤ o(1) + 2d

(∫ tc−h

−∞
+

∫ tβ

tc+h

E(Rt (xm))dF(t)

)

(A.26)
+ F(tc + h) − F(tc − h)
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for any h > 0. We bound E(Rt (xm)) as we did in the proofs of Lemmas 5 and 6. Explicitly, when
tc + h ≤ t ≤ tβ , we use Lemma A.4 and (A.1), to get

E(Nt (k)) ≤ (
1 − p(t)

)2 ke−kζp(t)

(1 − e−ζp(t) )2

≤ C(h,β)k exp
(−kζp(tc+h)

)
, C(h,β) := (1 − p(tβ))2

(1 − e−ζp(tc+h) )2
.

We use Chernoff’s Bound on Ḡt (k, x), to obtain

E(Rt (xm)) ≤ C(h,β)(kh
m,t )

2 exp
(
(1 − At)d logm

) + exp
(−hd log(m)/2

)
,

where kh
m,t := (1 + h)(d/ζp(t)) logm,

At := inf
β<s<(1+h)/ζp(t)

[
s�∗

t

(
μ + √

g/s
) + sζp(t)

]
,

as in (A.24), and the last term is the probability that a there is a t -open of size exceeding kh
m,t .

Note that At > 1 for all tc + h ≤ t ≤ tβ because g > G. By continuity of At , A+ := inf{At : tc +
h ≤ t ≤ tβ} > 0. Hence, we have the following bound for all tc + h ≤ t ≤ tβ ,

E(Rt (xm)) ≤ C(h,β)
[
(1 + h)

(
d/ζp(tc+h)

)
logm

]2
m−(A+−1)d + exp

(−hd log(m)/2
)
.

When t ≤ tc − h, we simply use the fact that

∑
k

E(Nt (k)) ≤ |Vm| = md,

and bound Ḡt (k, x) in the same way. We get

E(Rt (xm)) ≤ exp
(
(1 − At)d logm

)
,

where

At := inf
β<s

s�∗
t

(
μ + √

g/s
)
.

Again, At > 1 for t < tc − h and At → A−∞ > 1 as t → −∞. Hence, by continuity of At ,
A− := inf{At : t < tc − h} > 0, so that

E(Rt (xm)) ≤ m−(A−−1)d ,

valid for all t < tc −h. Hence, the two integrals in (A.26) tend to zero with m. We then let h → 0
so that F(tc + h) − F(tc − h) → 0, because F is continuous at tc .

Assume now that F has no atoms on (−∞, tβ ]. Then σt is continuous on (−∞, tβ ], and in fact,
is uniformly continuous because σt → σ when t → −∞, because it is positive on that interval
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(because σt = 0 implies that Ft is a point mass), σ := min{σt : t ≤ tβ} > 0. Because g > G we
can find c > 0 such that g′ := g(1 − c)2 > G, and also η > 0 such that

|σs − σt | ≤ cσ , if |s − t | ≤ η, s, t ≤ tβ . (A.27)

Let x′
m = √

g′ logm. We say that a cluster Q scores at time s if it exists at time s and in addition

|Q| ≥ β logm,
∑
v∈Q

Xv ≥ |Q|μs + xmσs

√|Q|.

Without loss of generality, assume that tc is not an integer multiple of η. Fix two neighbors
v,w ∈ Vm, and a time t ≤ tβ . If �t(w) occurs then either:

(a) Qt(w) scores at some time s ∈ [t, ntη], where nt ∈ Z satisfies (nt − 1)η ≤ t < ntη, or
(b) there exists n ≥ nt and s ∈ [nη, (n + 1)η) such that Qnη(w) scores at time s.

The latter possibility arises when Qt(w) scores at some time s not belonging to the interval
[t, ntη). Writing [nη, (n + 1)η) for the interval containing s, Qt(w) must exist at the start of this
interval, which is to say that Qt(w) = Qnη(w).

The probability of (a) is no larger than

P
(
k := |Qt(w)| ≥ β logm,∃s ∈ [t, ntη]: Yt (k)/k ≥ μs + xmσs/

√
k
)
. (A.28)

By (A.27) and the fact that μs is non-decreasing,

μs + xmσs√
k

≥ μt + x′
mσt√

k
, (A.29)

so that (A.28) is no greater than

P
(
k := |Qt(w)| ≥ β logm,Yt (k)/k ≥ μt + x′

mσt/
√

k
)
. (A.30)

Arguing similarly, part (b) has probability no greater than

∑
t/η<n<tβ/η

P
(
k := |Qt(w)| ≥ β logm,Ynη(k)/k ≥ μnη + x′

mσnη/
√

k
)
. (A.31)

We divide the integral in (A.25) as follows

∫ tβ

−∞
=

∫ −1/h

−∞
+

∫ tc−h

−1/h

+
∫ tc+h

tc−h

+
∫ tβ

tc+h

.

The first integral is bounded by F(−1/h) and the third integral by F(tc + h) − F(tc − h), both
terms vanishing as h → 0. For the second and fourth integrals, we do exactly as before, separately
for (A.30) and (A.31) – for the latter, the sum has at most (tβ + 1/h)/η + 1 terms in the second
integral and at most (tβ − tc − h)/η + 1 terms in the fourth integral.
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A.3.12. Proof of Theorem 8

By Lemma 7, ULSm(km) is of order at most
√

logm under the null. Now consider the alternative
with anomalous cluster K . If 0 < (α − 1/2)d < α/ν, consider the contribution of the largest
open cluster at supercritical threshold t and reason as in the proof of Theorem 7. Otherwise,
consider the contribution of the largest open cluster at a threshold tm such that pc − p0(tm) �
m−λ/α . As in Theorem 4, the largest open cluster will be comparable in size to, and occupy a
substantial portion of K . Reasoning again as in the proof of Theorem 7, the contribution is of
order mαd/2θm ≥ mα/νθm ≥ mα/ν−λ, which increases as a positive power of m.

Appendix B: The scan statistic as the GLR

We show that the simple scan statistic defined in (1) approximates the scan statistic of Kulldorff
[29], which is strictly speaking the GLR, defined as follows. The log-likelihood under H

m
1,K is

given by

loglik(K, θ, θ0) := |K|(θX̄K − logϕ(θ)
) + |Kc|(θ0X̄Kc − logϕ(θ0)

)
.

Assuming θ and θ0 are both unknown, the log GLR is defined as

max
K∈Km

sup
θ>θ0

loglik(K, θ, θ0) − sup
θ0

loglik(Vm, θ0, θ0),

which is equal to

max
K∈Km

[|K|�∗(X̄K) + |Kc|�∗(X̄Kc) − |Vm|�∗(X̄Vm
)]+. (B.1)

(The subscript + denotes the positive part.)
Under the normal location model, �∗(x) = x2/2 and (B.1) is equal to

max
K∈Km

|Vm||K|
|Vm| − |K| (X̄K − X̄Vm

)2+.

(We used the fact that X̄K ≥ X̄Kc ⇔ X̄K ≥ X̄Vm
.) If k+

m := max{|K|: K ∈ Km} satisfies
k+
m/|Vm| → 0, which is the case in our examples, the fraction above is equal to |K|(1 +

O(k+
m/|Vm|)). Moreover, knowing that there is always a cluster K such that X̄K ≥ X̄Vm

, we
get that the square root of (B.1) is approximately equal to

max
K∈Km

√|K|(X̄K − X̄Vm
), (B.2)

which is the version of (1) when μ0 is unknown. (Note that X̄Vm
= μ0 + O(|Vm|)−1/2, by the

central limit theorem, so that (B.2) is within O(k+
m/|Vm|)1/2 from (1).) This approximation is

actually valid more generally, at least in a way that suffices for the asymptotic analysis that we
perform in this work. Indeed, with σ 2

0 = Var0(Xv), we have �∗(x) = (x − μ0)
2/(2σ 2

0 ) + O(x −
μ0)

3 in the neighborhood of μ0. Assuming that k−
m := min{|K|: K ∈ Km} satisfies k−

m → ∞,
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which is the case in our examples, the approximation of the square root of (B.1) by (B.2) is
valid under the null, because X̄K = μ0 + O(k−

m)−1/2 and X̄Kc , X̄Vm
= μ0 + O(|Vm|)−1/2, by the

central limit theorem and the fact that k−
m → ∞ and k+

m/|Vm| → 0. The same applies under the
alternative if θm → 0, so that μθm := Eθm(Xv) → μ0, and therefore, X̄K for any K ∈ Km. When
θm is bounded away from 0, the two statistics, square root of (B.1) and (B.2), are both of order√|K|, where K denotes the cluster under the alternative (or in the case of the ULS scan, the
largest open cluster within the anomalous cluster). Taken together, these findings are sufficient
to allow us to conclude that the tests based on (B.1) and (1) behave similarly.
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