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Part 1: Logarithmic Fluctuations
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From random walk to growth model

Internal DLA

» Start with n particles at the origin in the square grid Z2.

» Each particle in turn performs a simple random walk until it
finds an unoccupied site, stays there.
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From random walk to growth model

Internal DLA

» Start with n particles at the origin in the square grid Z2.

» Each particle in turn performs a simple random walk until it
finds an unoccupied site, stays there.

» A(n): the resulting random set of n sites in Z2.

Growth rule:

» Let A(1)={o}, and

A(n+1)=A(n)U{X"(z")}
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From random walk to growth model

Internal DLA

» Start with n particles at the origin in the square grid Z2.

» Each particle in turn performs a simple random walk until it
finds an unoccupied site, stays there.

» A(n): the resulting random set of n sites in Z2.

Growth rule:

» Let A(1)={o}, and
A(n+1)=A(n)u{X"(t")}
where X1, X2, ... are independent random walks, and

T = min {t|X"(t) € A(n)}.
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Internal DLA cluster in Z2.

Closeup of the boundary.
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Questions

> Limiting shape

» Fluctuations
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Meakin & Deutch, J. Chem. Phys. 1986

> "It is also of some fundamental significance to know just how
smooth a surface formed by diffusion limited processes
may be."

T L 1 1 ! ! T
0 n 2 13 14 15 16 .7 18 19 20
In(In{l})

FIG. 2. Dependence of the variance of the surface height (£) on the strip
width / for two-dimensional (square lattice) diffusion limited annihilation
in the long time (A>/) limit.
» “Initially, we plotted In(§) vs In(¢) but the resulting plots were
quite noticably curved. Figure 2 shows the dependence of

In(§) on In[In(¢)].”
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History of the Problem

» Diaconis-Fulton 1991: Addition operation on subsets of Z9.
» Lawler-Bramson-Griffeath 1992: w.p.1,

Bi—¢)r C A(rr?) C B(14e)r eventually.
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History of the Problem

» Diaconis-Fulton 1991: Addition operation on subsets of Z9.
» Lawler-Bramson-Griffeath 1992: w.p.1,

Bi—¢)r C A(rr?) C B(14e)r eventually.
» Lawler 1995: w.p.1,

B, 13102, C A(rr?) C B, 1310g¢, eventually.
“A more interesting question... is whether the errors are o(n®)

for some a0 < 1/3."
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Logarithmic Fluctuations Theorem

Jerison - L. - Sheffield 2010: with probability 1,

Br_ciogr C A(nr2) C Briciogr eventually.
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Logarithmic Fluctuations Theorem

Jerison - L. - Sheffield 2010: with probability 1,

Br_ciogr C A(nr2) C Briciogr eventually.

Asselah - Gaudilliere 2010 independently obtained

B, clogr C A(nr?) C B, clog2, eventually.
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Logarithmic Fluctuations in Higher Dimensions

In dimension d > 3, let Wy be the volume of the unit ball in RY.
Then with probability 1,

Brf(?\/logr C A((z)drd) C B,Jrc\/@ eventually
for a constant C depending only on d.

(Jerison - L. - Sheffield 2010; Asselah - Gaudilliere 2010)
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Elements of the proof

> Thin tentacles are unlikely.
» Martingales to detect fluctuations from circularity.

> “Self-improvement”
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Thin tentacles are unlikely

A thin tentacle.
Lemma. If 0 ¢ B(z, m), then

CefcmZ/Iogm’ d=2

d
P{z € A(n), #(A(n)NB(z,m)) < bm } < {cecm2, i

for constants b, c, C > 0 depending only on the dimension d.
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Early and late points in A(n), for n = mr?
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Early and late points
Definition 1. z is an m-early point if:
ze A(n), n<n(|z|—m)?

Definition 2. z is an /-late point if:

z¢ A(n), n>n(|z|+£)?
Em[n] = event that some point in A(n) is m-early

Ly[n] = event that some point in B 7., is {-late
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Structure of the argument: Self-improvement

LEMMA 1. No {-late points implies no m-early points:
If m> C/, then
P(Em[n] N LnN]) < n 0.
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Structure of the argument: Self-improvement

LEMMA 1. No {-late points implies no m-early points:
If m> C/, then
P(Em[n] N LnN]) < n 0.

LEMMA 2. No m-early points implies no /-late points:

If £ > /C(logn)m, then

P(Ly[n] N Em[n]°) < n~20.

Iterate, ¢+ / C(logn)C¥, which is decreasing until

¢ = C?logn.
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Iterating Lemmas 1 and 2

m ¥ m

» Fix n and let £, m be the maximal lateness and earliness
occurring by time n. lIterate starting from mg = n:

» (¢, m) unlikely to belong to a vertical rectangle by Lemma 1.

» (¢,m) unlikely to belong to a horizontal rectangle by Lemma 2.
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Early and late point detector

To detect early points near { € Z2, we use the martingale

Mc(n)= ), (Hc(z)— H(0))

zeA(n)

where Hy is a discrete harmonic function approximating Re (%@g)

0By¢| ¢
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Early and late point detector

To detect early points near { € Z2, we use the martingale

Mc(n)= ), (Hc(z)— H(0))

zeA(n)

where Hy is a discrete harmonic function approximating Re (%@g)

0By¢| ¢

The fine print:
» Discrete harmonicity fails at three points z={,{+1,{+1+.

» Modified growth process A(n) stops at 9By (0).

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Time change of Brownian motion

> To get a continuous time martingale, we use Brownian
motions on the grid Z x RUR x Z instead of random walks.

» Then there is a standard Brownian motion BC such that

M (t) = B(s(t))

where

is the quadratic variation of M.
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LEMMA 1. No /-late implies no m = C/-early
Event Q[z,k]:
» z€ A(k)\A(k—1).
> zis m-early (z € A(nr?) for r =|z| — m).
» Emlk —1]¢: No previous point is m-early.
» Ly[n]: No point is ¢-late.

We will use My for {=(1+4m/r)z to show for 0 < k < n,

P(Q[z,k]) < n=%°.
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Main idea: Early but no late would be a large deviation!

» Recall there is a Brownian motion B such that
M¢(n) = Be(s¢(n)).
» On the event Q[z, k]
P (M (k) > com) >1—n"2° (1)
and
P (s¢(k) < 100logn) > 1— n20. (2)

» On the other hand, (s =100logn)

P ( sup By(s') > s) < e 52 =50,

s’€[0,s]
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Proof of (1)
On the event Q[z, K]

P(M¢(k) > com) >1—n"20.

» Since z € A(k) and thin tentacles are unlikely, we have with
high probability,

#(A(k)NB(z,m)) > bm?.
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Proof of (1)
On the event Q[z, K]

P(M¢(k) > com) >1—n"20.

» Since z € A(k) and thin tentacles are unlikely, we have with
high probability,

#(A(k)NB(z,m)) > bm?.

» For each of these bm? points, the value of HC is order 1/m, so
their total contribution to M¢(k) is order m.

» No /-late points means that points elsewhere cannot
compensate.

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Proof of (2): Controlling the Quadratic Variation
On the event Q[z, k]

P(s¢(k) < 100logn) >1—n"2.

» Lemma: There are independent standard Brownian motions
B',B2,... such that

SC(I' +1)— Sg;(l') <7
where T; is the first exit time of B’ from the interval (a;, b;).
ai= min H(z)— H(0)

2€dA(i)

bi = max H(z)— H(0).
z€IA(F)
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Proof of (2): Controlling the Quadratic Variation
On the event Q[z, k]
P(s¢(k) < 100logn) >1—n"2.
» By independence of the 1,
Ee%(¥) < Ee(nT7%) = (Ee™). .- (Ee™).
» By large deviations for Brownian exit times,

Ee*(—2b) < 11 10ab.
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Proof of (2): Controlling the Quadratic Variation
On the event Q[z, k]

P(s¢(k) < 100logn) >1—n"2.

» By independence of the 1,
EeSC(k) S Ee(T1+"'+Tk) — (Eerl) e (Eerk).
» By large deviations for Brownian exit times,
Ee"—2b) <14+ 10ab.

» Easy to estimate a;, and use the fact that no previous point is
m-early to bound b;. Conclude that

E [esi(k)lQ} < n*.
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What changes in higher dimensions?

> In dimension d > 3 the quadratic variation s¢(n) is constant
order instead of logn.

» So the fluctuations are instead dominated by thin tentacles,
which can grow to length +/logn.
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What changes in higher dimensions?

> In dimension d > 3 the quadratic variation s¢(n) is constant
order instead of logn.

» So the fluctuations are instead dominated by thin tentacles,
which can grow to length +/logn.

» Still open: prove matching lower bounds on the fluctuations
of order logn in dimension 2 and +/logn in dimensions d > 3.
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Part 2: Limiting Shapes
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Internal DLA with Multiple Sources

» Finite set of points xi,...,xx € Z9.

» Start with m particles at each site x;.
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Internal DLA with Multiple Sources

» Finite set of points xi,...,xx € Z9.
» Start with m particles at each site x;.

» Each particle performs simple random walk in Z9 until
reaching an unoccupied site.

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Internal DLA with Multiple Sources

» Finite set of points xi,...,xx € Z9.
» Start with m particles at each site x;.

» Each particle performs simple random walk in Z9 until
reaching an unoccupied site.

» Get a random set of km occupied sites in Z9.

» The distribution of this random set does not depend on the
order of the walks (Diaconis-Fulton "91).

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Questions

» Fix sources x1,...,x, € RY.

> Run internal DLA on 1Z< with n9 particles per source.
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Questions

» Fix sources xi,...,x; € RY.
> Run internal DLA on 1Z< with n9 particles per source.

> As the lattice spacing goes to zero, is there a scaling limit?
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Questions

» Fix sources x1,...,x, € RY.

> Run internal DLA on 1Z< with n9 particles per source.

v

As the lattice spacing goes to zero, is there a scaling limit?

v

If so, can we describe the limiting shape?
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Questions

Fix sources xi,...,x. € RY.
Run internal DLA on 179 with n? particles per source.
As the lattice spacing goes to zero, is there a scaling limit?

If so, can we describe the limiting shape?

Recall from part 1: If kK =1, then the limiting shape is a ball
in RY. (Lawler-Bramson-Griffeath ’'92)
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Two-source internal DLA cluster built from overlapping
single-source clusters.
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Diaconis-Fulton Addition

» Finite sets A, B C Z9.

> In our application, A and B will be overlapping internal DLA
clusters from two different sources.
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Diaconis-Fulton Addition

» Finite sets A, B C Z9.
> In our application, A and B will be overlapping internal DLA
clusters from two different sources.

» Write ANB ={y1,..., ¥k}
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Diaconis-Fulton Addition

» Finite sets A, B C Z9.

> In our application, A and B will be overlapping internal DLA
clusters from two different sources.

» Write ANB = {y1,..., ¥k}
» To form A+ B, let (o =AUB and

G =G 1U{z)

where z; is the endpoint of a simple random walk started at y;
and stopped on exiting C;_1.
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Diaconis-Fulton Addition

» Finite sets A, B C Z9.

> In our application, A and B will be overlapping internal DLA
clusters from two different sources.

» Write ANB = {y1,..., ¥k}
» To form A+ B, let (o =AUB and

G =G 1U{z)

where z; is the endpoint of a simple random walk started at y;
and stopped on exiting C;_1.

» Define A+ B = (.
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Diaconis-Fulton Addition

» Finite sets A, B C Z9.

> In our application, A and B will be overlapping internal DLA
clusters from two different sources.

» Write ANB = {y1,..., ¥k}
» To form A+ B, let (o =AUB and

G=Gauiz}
where z; is the endpoint of a simple random walk started at y;
and stopped on exiting C;_1.

» Define A+ B = (.

» Abeilan property: the law of A+ B does not depend on the
ordering of yi,..., yk.
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Diaconis-Fulton sum of two squares in Z? overlapping in a
smaller square.
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Divisible Sandpile

» Given A, B C Z9, start with

» 2 units of mass on each site in AN B; and
» 1 unit of mass on each site in AUB— AN B.
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Divisible Sandpile

» Given A, B C Z9, start with
» 2 units of mass on each site in AN B; and
» 1 unit of mass on each site in AUB—ANB.
» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.
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Divisible Sandpile

» Given A, B C Z9, start with
» 2 units of mass on each site in AN B; and
» 1 unit of mass on each site in AUB— AN B.

» At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.

» As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.
» Sites outside have zero mass.
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Divisible Sandpile

Given A, B C Z9, start with

» 2 units of mass on each site in AN B; and

» 1 unit of mass on each site in AUB—ANB.
At each time step, choose x € 79 with mass m(x) > 1, and
distribute the excess mass m(x) —1 equally among the 2d
neighbors of x.
As t — oo, get a limiting region A® B C Z9 of sites with
mass 1.

» Sites in d(A® B) have fractional mass.

» Sites outside have zero mass.

Abelian property: A® B does not depend on the choices.
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Divisible sandpile sum of two squares in Z? overlapping in a
smaller square.
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Diaconis-Fulton sum Divisible sandpile sum
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The Odometer Function

» u(x) = total mass emitted from x. (gross, not net)
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The Odometer Function

» u(x) = total mass emitted from x. (gross, not net)

» Discrete Laplacian:

Au(x) = 55 X uly) ()

y~x
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The Odometer Function

» u(x) = total mass emitted from x. (gross, not net)

» Discrete Laplacian:

Au(x) = 55 X uly) ()

y~x

= mass received — mass emitted
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The Odometer Function

» u(x) = total mass emitted from x. (gross, not net)

» Discrete Laplacian:

Au(x) = 55 X uly) ()

yrXx
= mass received — mass emitted
:1—1A(X)—1B(X), x€ADB.
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The Odometer Function

» u(x) = total mass emitted from x. (gross, not net)

» Discrete Laplacian:

= mass received — mass emitted
:1—1A(X)—1B(X), x€ADB.

» Boundary condition: u=0 on d(A& B).
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The Odometer Function

v

u(x) = total mass emitted from x. (gross, not net)

v

Discrete Laplacian:

= mass received — mass emitted
:1—1A(X)—1B(X), x€ADB.

v

Boundary condition: u=0 on d(A& B).

Need additional information to determine the domain A® B.

v
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.

u>0
Au<l—-1,-1p
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Free Boundary Problem

» Unknown function u, unknown domain D = {u > 0}.
u>0

Au<l—1,—1p
u(Au—1+14+1p)=0.
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The Obstacle Problem

» Given A, B C Z9, we define the “obstacle:”

Y(x)=—[xP= Y glxy)— ¥ glx,y),

yeA yeB
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The Obstacle Problem

» Given A, B C Z9, we define the “obstacle:”

Y(x)=—[xP= Y glxy)— ¥ glx,y),

yeA yeB

where g is the Green function for simple random walk

g(x,y) =Ex#{k| Xk =y}

(In Z2, we use the negative of the potential kernel instead.)
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The Obstacle Problem

» Given A, B C Z9, we define the “obstacle:”

Y(x)=—[xP= Y glxy)— ¥ glx,y),

yeA yeB

where g is the Green function for simple random walk

g(x,y) = Ex#t{k| X = y}.
(In Z2, we use the negative of the potential kernel instead.)

» Let s(x) = inf{d(x) | & is superharmonic on Z9 and ¢ > 7}.
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The Obstacle Problem

» Given A, B C Z9, we define the “obstacle:”

Y(x)=—[xP= Y glxy)— ¥ glx,y),

yeA yeB

where g is the Green function for simple random walk

g(x,y) = Ex#t{k| X = y}.
(In Z2, we use the negative of the potential kernel instead.)

» Let s(x) = inf{d(x) | & is superharmonic on Z9 and ¢ > 7}.

» Then the ‘odometer function =s—1.
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» Obstacle for two overlapping disks A and B:
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» Obstacle for two overlapping disks A and B:

T T T
i T A Sy g s
77777 LTS5
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E T ITFAAT TN
~..”...-.:.~:.~ 2\

1) =~ — [ gly)dy— [ g(xp)dy

» Obstacle for two point sources x; and xp:

=7 T
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The Smash Sum of Two Domains in R

» A, B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.
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The Smash Sum of Two Domains in R

» A, B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

» We define their smash sum A® B to be the domain

A®B=AUBU{s >}
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The Smash Sum of Two Domains in R

» A, B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

» We define their smash sum A® B to be the domain
A®B=AUBU{s >}

where

1) =~ = [ gy — [ g(xp)dy
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The Smash Sum of Two Domains in R

» A, B C RY bounded open sets such that dA,dB have zero
d-dimensional Lebesgue measure.

> We define their smash sum A® B to be the domain
A®B=AUBU{s >}
where
1) =~ = [ gy — [ g(xp)dy
and

s(x) = inf{¢(x)|0 is continuous, superharmonic, and ¢ > v}.
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The smash sum
ABB=AUBU{s>7}

of two overlapping disks A, B C R?.
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Properties of the Smash Sum

» AUBCA®B.
» Associativity: (A@B)®C=Ad(Bo C).
» Volume conservation: vol(A@® B) = vol(A) + vol(B).
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Properties of the Smash Sum

AUBCA®B.
Associativity: (A& B)®@C=Ad(Ba ().
Volume conservation: vol(A® B) = vol(A) + vol(B).

Quadrature identity: If h is an integrable superharmonic
function on A® B, then

/A@B h(X)dXS/Ah(X)dX‘i‘/Bh(X)dX.

v

v

v

v
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Scaling Limit of the Discrete Models

» Let A,B C RY be bounded open sets such that dA, 9B have
measure zero.
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Scaling Limit of the Discrete Models

» Let A,B C RY be bounded open sets such that dA, 9B have
measure zero.

» Theorem (L.-Peres) With probability one

Dp, Ry, 1, — ADB as n — oo,
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Scaling Limit of the Discrete Models

» Let A,B C RY be bounded open sets such that dA, 9B have
measure zero.
» Theorem (L.-Peres) With probability one

Dp, Ry, 1, — ADB as n — oo,

where
> Dy, Ry, I, are the smash sums of AN1Z? and BN1Z7,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
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Scaling Limit of the Discrete Models

» Let A,B C RY be bounded open sets such that dA, 9B have
measure zero.

» Theorem (L.-Peres) With probability one
D,,Rp, 1, —A®B as n — oo,

where
> Dy, Ry, I, are the smash sums of AN1Z? and BN1Z7,
computed using divisible sandpile, rotor-router, and
Diaconis-Fulton dynamics, respectively.
» Convergence is in the sense of e-neighborhoods: for all € >0

(A®B); C Dp, Ry, 1, C (ADB)* for all sufficiently large n.
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Internal DLA Divisible Sandpile ~ Rotor-Router Model
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Part 3: Integrality wreaks havoc
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The Abelian Sandpile as a Growth Model

» Start with a pile of n chips at the origin in Z9.
» Each site x = (x1,...,x¢4) € Z9 has 2d neighbors

x:l:e,-, iZl,...,d.

» Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.
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The Abelian Sandpile as a Growth Model

v

Start with a pile of n chips at the origin in Z9.

v

Each site x = (x1,...,x¢) € Z9 has 2d neighbors

x:l:e,-, iZl,...,d.

v

Any site with at least 2d chips is unstable, and topples by
sending one chip to each neighbor.

v

This may create further unstable sites, which also topple.

Continue until there are no more unstable sites.

v
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

6] --» | 1 |112]] 1
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.

» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.
» Sites with 4 or more chips are unstable.

16
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Toppling to Stabilize A Sandpile

» Example: n=16 chips in Z2.

» Sites with 4 or more chips are unstable.

16
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~
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Stable.
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Abelian Property

» The final stable configuration does not depend on the order of
topplings.
» Neither does the number of times a given vertex topples.
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Sandpile of 1,000,000 chips in Z>
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Growth on a General Background

v

Let each site x € Z9 start with 6(x) chips.
(o(x)<2d-1)

We call ¢ the background configuration.

v

v

Place n additional chips at the origin.
Let S, be the set of sites that topple.

v
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Constant Background c = h
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What about background h = 37
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. Never stops toppling!
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The Odometer Function

» u(x) = number of times x topples.
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The Odometer Function

» u(x) = number of times x topples.
» Discrete Laplacian:

Zu —2d u(x)

y~x
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The Odometer Function

» u(x) = number of times x topples.
» Discrete Laplacian:

=Y u(y)—2du(x)

y~x

= chips received — chips emitted
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The Odometer Function

» u(x) = number of times x topples.

» Discrete Laplacian:
Z u(y)—2du(x)
yr~X

= chips received — chips emitted
=1°(x) —1(x)

where T is the initial unstable chip configuration
and 1° is the final stable configuration.
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Stabilizing Functions

» Given a chip configuration T on Z¢ and a function
w7297, call uy stabilizing for 7 if

T+ Aup <2d—1.
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Stabilizing Functions

» Given a chip configuration T on Z¢ and a function
w7297, call uy stabilizing for 7 if

T+ Aup <2d—1.
» If u; and wy are stabilizing for 1, then

T+ Amin(ug, u2) < T+ max(Aui, Aup)
=max(T+ Aup, T+ Aup)
<2d-1

so min(uy,up) is also stabilizing for 7.
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Least Action Principle

» Let T be a chip configuration on Z9 that stabilizes after
finitely many topplings, and let u be its odometer function.

> Least Action Principle:

If up : 29 — Z>q is stabilizing for t, then u < uy.
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Least Action Principle

Let T be a chip configuration on Z9 that stabilizes after
finitely many topplings, and let u be its odometer function.

v

v

Least Action Principle:
If up : 29 — Z>q is stabilizing for t, then u < uy.

So the odometer is minimal among all nonnegative stabilizing
functions:

v

u(x) = min{ui(x)|u1 > 0 is stabilizing for t}.

v

Interpretation: “Sandpiles are lazy.”
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Obstacle Problem with an Integrality Condition

» Lemma. The abelian sandpile odometer function is given by
u=s—y

where

—min! f
st mln{ () and f —7is Z>p-valued

f:729 -Ris superharmonic}
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Obstacle Problem with an Integrality Condition

» Lemma. The abelian sandpile odometer function is given by
u=s—y
where

s(x) = min {f(x)

f:7Z9 — R is superharmonic
and f —7is Z>p-valued '

» The obstacle vy is given by

o (2d - 1)|x|>+n-g(o,x)
Y(x)=— od

where g is the Green's function for simple random walk in Z¢

g(0,x) = Eo#t{k| Xk = x}.
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Abelian sandpile Divisible sandpile
(Integrality constraint) (No integrality constraint)
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Sandpile growth rates

> Let 5, 4. be the set of sites in 74 that topple, if n+ h chips
start at the origin and h chips start at every other site in Z.

Theorem (Fey-L.-Peres) If h <2d —2, then

B_pi/a C Sndh C Bepiya.

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Sandpile growth rates

> Let 5, 4. be the set of sites in 74 that topple, if n+ h chips
start at the origin and h chips start at every other site in Z.

Theorem (Fey-L.-Peres) If h <2d —2, then

B_pi/a C Sndh C Bepiya.

» Extends earlier work of Fey-Redig and Le Borgne-Rossin.
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Bounds for the Abelian Sandpile Shape

(Disk of area n/3) C S, C (Disk of area n/2)

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

A Few Extra Chips Produce An Explosion

> Let (B(x))ycze be independent Bernoulli random variables

1 with probability €
B(x) = ) -
0 with probability 1 —¢.

» Theorem (Fey-L.-Peres) For any € > 0, with probability 1, the
background 2d — 2+ on Z9 is explosive.
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A Few Extra Chips Produce An Explosion

> Let (B(x))ycze be independent Bernoulli random variables

1 with probability €
B(x) = ) -
0 with probability 1 —¢.

» Theorem (Fey-L.-Peres) For any € > 0, with probability 1, the
background 2d — 2+ on Z9 is explosive.

> i.e., for large enough n, adding n chips at the origin causes
every site in Z9 to topple infinitely many times.
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A Few Extra Chips Produce An Explosion

> Let (B(x))ycze be independent Bernoulli random variables

1 with probability €
B(x) = ) N
0 with probability 1 —¢.
» Theorem (Fey-L.-Peres) For any € > 0, with probability 1, the
background 2d — 2+ on Z9 is explosive.
> i.e., for large enough n, adding n chips at the origin causes
every site in Z9 to topple infinitely many times.
» Same is true if the extra chips start on an arbitrarily sparse
lattice L C Z9, provided L meets every coordinate plane

{X,' = k}
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How to Prove An Explosion

» Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.
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How to Prove An Explosion

» Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.

» Otherwise, let x be the first site to finish toppling.
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How to Prove An Explosion

Claim: If every site in Z9 topples at least once, then
every site topples infinitely often.

Otherwise, let x be the first site to finish toppling.

Each neighbor of x topples at least one more time, so x
receives at least 2d additional chips.

So x must topple again. =<«
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Straley’s Argument for Bootstrap Percolation

» Let Ex be the event that each face of the cube Qi starts with
at least one extra chip. Then

P(ES) < 2d(1—g)*.

» By Borel-Cantelli, with probability 1 almost all Ex occur.
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An Explosion In Progress

» Sites colored black are unstable. All sites in Z? will topple
infinitely often!
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A Mystery: Scale Invariance

» Big sandpiles look like scaled up small sandpiles!

» Let 6,(x) be the final number of chips at x in the sandpile
of n particles on Z9.
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A Mystery: Scale Invariance

» Big sandpiles look like scaled up small sandpiles!

» Let 6,(x) be the final number of chips at x in the sandpile
of n particles on Z9.

» Squint your eyes: for x € R? let

M=% L o)
n yezd

[ly—v/nx||<an
where a, is a sequence of integers such that

apTe and iiO.

Logarithmic Fluctuations From Circularity


http://www.math.cornell.edu/~levine

Scale Invariance Conjecture

» Conjecture: There is a sequence a, and a function
f:RY— R>o which is locally constant on an open dense set,
such that f, — f at all continuity points of f.
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Scale Invariance Conjecture

» Conjecture: There is a sequence a, and a function
f:RY— R>o which is locally constant on an open dense set,
such that f, — f at all continuity points of f.

» Now partly proved! Pegden and Smart (arXiv:1105.0111)
show existence of a weak-x* limit for f,!
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Two Sandpiles of Different Sizes

n=100,000 n = 200,000
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Locally constant “steps” of f correspond to periodic
patterns:
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A Mystery: Dimensional Reduction

» Our argument used simple properties of one-dimensional
sandpiles to bound the diameter of higher-dimensional
sandpiles.

» Deepak Dhar pointed out that there seems to be a deeper
relationship between sandpiles in d and d — 1 dimensions...
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Dimensional Reduction Conjecture

> G, q4: sandpile of n chips on background h=2d —2 in 79,

» Conjecture: For any n there exists m such that

Gn,d(Xla- .. ,Xd_l,O) = 2+Gm,d—1(X1,- .. ,Xd_l)

for almost all x sufficiently far from the origin.
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A Two-Dimensional Slice of A Three-Dimensional Sandpile

d = 3 (slice through origin)
h=4
n=5,000,000
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Thank You!
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