Chapter 1

Random-Cluster M easures

Summary. The random-cluster model is introduced, and its relationship to
Ising and Potts models is presented via a coupling of probability measures.
Inthelimit asthe cluster-weighting factor tendsto O, one arrives at electrical
networks and uniform spanning trees and forests.

1.1 Introduction

In 1925 camethelsing model for aferromagnet, and in 1957 the percol ation model
for adisordered medium. Each hassince been the subject of intense study, and their
theories have become elaborate. Each possesses a phase transition marking the
onset of long-range order, defined in terms of correlation functions for the Ising
model and in terms of the unboundedness of paths for percolation. These two
phase transitions have been the scenes of notable exact (and rigorous) calculations
which have since inspired many physicists and mathematicians.

It has been known since at |east 1847 that electrical networks satisfy so-called
‘series/parallel laws' . Piet Kasteleyn noted during the 1960s that the percolation
and Ising models also have such properties. This simple observation led in joint
work with Cees Fortuin to the formulation of the random-cluster model. This
new model has two parameters, an ‘edge-weight’ p and a ‘cluster-weight’ q.
The (bond) percolation model is retrieved by setting g = 1; when q = 2, we
obtain arepresentation of the Ising model, and similarly of the Potts model when
g = 23,.... Thediscovery of the model is described in Kasteleyn’s words in
the Appendix of the current work.

The mathematics begins with a finite graph G = (V, E), and the associated
Ising model® thereon. A random variable oy taking values —1 and +1 is assigned
to each vertex x of G, and the probability of the configurations = (ox : X € V)
is taken to be proportional to e #H () where > 0 and the ‘energy’ H (o) isthe

1The so-called Ising mode! [187] was in fact proposed (to Ising) by Lenz. The Potts model
[103, 271] originated in a proposal (to Potts) by Domb.
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negativeof thesum of ox oy over al edgese = (x, y) of G. Asp increases, greater
probability is assigned to configurations having a large number of neighbouring
pairs of vertices with equal signs. The Ising model has proved extraordinarily
successful in generating beautiful mathematics of relevanceto the physics, and it
has been useful and provocative in the mathematical theory of phase transitions
and cooperative phenomena (see, for example, [115]). The proof of the existence
of a phase transition in two dimensions was completed by Peierls, [259], by way
of hisfamous*argument”.

Therearemany possiblegeneralizationsof thelsing model inwhichtheoy may
takeageneral number g of values, rather than q = 2 only. One such extension, the
so-called ‘ Potts model’, [271], has attracted especial interest amongst physicists,
and hasdisplayed acomplex and varied structure. For example, when g islarge, it
possesses a discontinuous phasetransition, in contrast to the continuoustransition
believed to take placefor small . Ising/Pottsmodelsarethefirst of threeprincipal
ingredients in the story of random-cluster models. Note that they are ‘vertex-
models’ in the sensethat they involve random variables oy indexed by the vertices
x of the underlying graph. (Thereisarelated extension of the Ising model dueto
Ashkin and Teller, [19], see Section 11.3.)

The (bond) percolation model was inspired by problems of physical type, and
emerged from the mathematics literature? of the 1950s, [68]. In this model for
a porous medium, each edge of the graph G is declared ‘open’ (to the passage
of fluid) with probability p, and ‘closed’ otherwise, different edges having in-
dependent states. The problem is to determine the typical large-scale properties
of connected components of open edges as the parameter p varies. Percolation
theory is now a mature part of probability lying at the core of the study of ran-
dom mediaand interacting systems, and it is the second ingredient in the story of
random-cluster models. Note that bond percolationisan‘edge-model’, in that the
random variablesareindexed by the set of edges of theunderlyinggraph. (Thereis
avariant termed ‘ site percolation’ in which the vertices are open/closed at random
rather than the edges, see [151, Section 1.6].)

Thetheory of electrical networkson the graph G is of course more ancient than
that of 1sing and percolation models, dating back at least to the 1847 paper, [212],
in which Kirchhoff set down a method for cal culating macroscopic properties of
an electrical network in terms of itslocal structure. Kirchhoff’swork explainsin
particular the relevance of counts of certain types of spanning trees of the graph.
To import current language, an electrical network on a graph G may be studied
viathe properties of a‘uniformly random spanning tree’ (UST) on G (see [29]).

Thethree ingredients above seemed fairly distinct until Fortuin and Kasteleyn
discovered around 1970, [117, 118, 119, 120, 200], that each features within a
certain parametric family of models which they termed ‘ random-cluster models'.
They developed the basic theory of such models — correlation inequalities and
the like — in this series of papers. The true power of random-cluster models as

2See dlso the historical curiosity [312].
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amechanism for studying |sing/Potts models has emerged progressively over the
intervening three decades.

The configuration space of the random-cluster model is the set of all subsets of
the edge-set E, which we represent asthe set = {0, 1}& of 0/1-vectorsindexed
by E. An edge e is termed open in the configuration w € Q if w(e) = 1, and it
istermed closed if w(e) = 0. The random-cluster model is thus an edge-model,
in contrast to the Ising and Potts models which assign spins to the vertices of G.
The subject of current study isthe subgraph of G induced by the set of open edges
of a configuration chosen at random from €2 according to a certain probability
measure. Of particular importanceisthe existence (or not) of paths of open edges
joining given vertices x and y, and thus the random-cluster model is a model in
stochastic geometry.

The model may be viewed as a parametric family of probability measures ¢p q
on 2, the two parameters being denoted by p € [0,1] and g € (0, ). The
parameter p amountsto ameasure of the density of open edges, and the parameter
g isa‘cluster-weighting’ factor. When g = 1, ¢p q isaproduct measure, and the
ensuing probability spaceisusually termed a percolation model or arandom graph
depending onthe context. Theinteger valuesq = 2, 3, ... correspondinacertain
way to the Potts model on G with g local states, and thusq = 2 correspondsto the
Isingmodel. Thenature of these‘ correspondences’, asdescribedin Section 1.4, is
that ‘ correlation functions' of the Potts model may be expressed as ‘ connectivity
functions' of therandom-cluster model. When extended to infinite graphs, it turns
out that long-range order in a Potts model correspondsto the existence of infinite
clusters in the corresponding random-cluster model. In this sense the Potts and
percolation phase transitions are counterparts of one another.

Therein liesamajor strength of the random-cluster model. Geometrical meth-
ods of some complexity have been derived in the study of percolation, and some
of these may be adapted and extended to more general random-cluster models,
thereby obtaining results of significancefor |sing and Pottsmodels. Such hasbeen
the value of the random-cluster model in studying Ising and Potts models that it
is sometimes called simply the ‘FK representation’ of the latter systems, named
after Fortuin and Kasteleyn. We shall see in Chapter 11 that several other spin
models of statistical mechanics possess FK-type representations.

The random-cluster and |sing/Potts models on the graph G = (V, E) are de-
fined formally in the next two sections. Their relationship is best studied via a
certain coupling on the product {0, 1} x {1,2, ..., q}V, and thiscoupling is de-
scribed in Section 1.4. The ‘uniform spanning-tree’ (UST) measureon G isa
limiting case of the random-cluster measure, and this and related limits are the
topic of Section 1.5. This chapter ends with a section devoted to basic notation.
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1.2 Random-cluster model

Let G = (V, E) beafinitegraph. Thegraphsconsidered herewill usually possess
neither loops nor multiple edges, but we make no such general assumption. An
edge e having endvertices x and y is written ase = (x, y). A random-cluster
measure on G is amember of acertain class of probability measures on the set of
subsets of the edge set E. We take as state space the set = {0, 1}, members
of which are 0/1-vectorsw = (w(e) : e € E). We speak of the edge e as being
open (in w) if w(e) = 1, and as being closed if w(e) = 0. For w € Q, let
n(w) = {e € E : w(e) = 1} denote the set of open edges. Thereis a one-one
correspondence between vectorsw € Q and subsets F € E, givenby F = n(w).
Let k(w) bethe number of connected components(or ‘ open clusters’) of the graph
(V, n(w)), and note that k(w) includes a count of isolated vertices, that is, of
vertices incident to no open edge. We associate with Q2 the o-field # of all its
subsets.

A random-cluster measure on G has two parameters satisfying p € [0, 1] and
g € (0, 00), and is defined as the measure ¢p q on the measurable pair (2, )
given by

1
(1_1) ¢p!q(a)) = Z—Rc{l—[ pw(E)(l _ p)lw(E)}qk(a))’ weQ,

ecE

where the ‘partition function’, or ‘ normalizing constant’, Zrc is given by

(12) Zrc = Zre(p, 0) = Z{l_[ p”©1 - p)lw(e)}qk(w)»

weS tecE

Thismeasurediffersfrom product measurethroughtheinclusion of theterm gk(@).
Note the difference between thecasesq < 1and q > 1: theformer favoursfewer
clusters, whereas the latter favours a larger number of clusters. Whenq = 1,
edges are open/closed independently of one another. This very special case has
been studied in detail under the titles ‘ percolation’ and ‘ random graphs’, see [59,
151, 191]. Perhaps the most important values of q are the integers, since the
random-cluster model withq € {2, 3, ...} corresponds, in away described in the
next two sections, to the Potts model with g local states. The bulk of the work
presented in this book is devoted to the theory of random-cluster measures when
g > 1. Thecaseq < 1 seems to be harder mathematically and less important
physically. Thereis someinterest inthelimitasq | O; see Section 1.5.

We shall sometimes write ¢, p.q for ¢p g when the choice of graph G isto be
stressed. Computer-generated samples from random-cluster measures on Z? are
presented in Figures 1.1-1.2. When g = 1, the measure ¢p, ¢ isaproduct measure
with density p, and we write ¢, p Or ¢, for this special case.
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Figure 1.1. Samples from the random-cluster measure with g = 1 on a40 x 40 box of the

squarelattice. Wehaveset q
obtained by the method of ‘ coupling from the past’, as described in Section 8.4.

inthis case. Thecritica valueis pc(1)



6 Random-Cluster Measures [1.3]

Figure1.2. A picture of the random-cluster model with free boundary conditions on 22048 x
2048 box of L2, with p = 0.585816 and q = 2. The critical value of the model with
q=2ispc = v2/(1+ +/2) = 0.585786. .., and therefore the simulation is of a mildly
supercritical system. It was obtained by simulating the Ising model using Glauber dynamics
(see Section 8.2), and then applying the coupling illustrated in Figure 1.3. Each individual
cluster is highlighted with a different tint of gray, and the smaller clusters are not visible in
the picture. This and later simulations in Section 5.7 are reproduced by kind permission of
Raphagl Cerf.

1.3 Ising and Potts models

In afamous experiment, apieceof iron isexposed to amagneticfield. Thefieldis
increased from zero to amaximum, and then diminished to zero. If thetemperature
is sufficiently low, theiron retains some residual magnetization, otherwise it does
not. Thereis acritical temperature for this phenomenon, often called the Curie
point after Pierre Curie, who reported thisdiscovery in his 1895 thesis, [96]°3. The

3In an example of Stigler’s Law, [298], the existence of such a temperature was discovered
before 1832 by Pouillet, see [195].
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famous (Lenz-)Ising model for such ferromagnetism, [187], may be summarized
as follows. One supposes that particles are positioned at the points of some
lattice embedded in Euclidean space. Each particle may bein either of two states,
representing the physical states of ‘spin-up’ and ‘spin-down’. Spin-values are
chosen at random according to a certain probability measure, known as a ‘ Gibbs
state’, which is governed by interactions between neighbouring particles. The
relevant probability measureis given as follows.

Let G = (V, E) beafinite graph representing part of the lattice. We think of
each vertex X € V as being occupied by a particle having a random spin. Since
spins are assumed to come in two basic types, we take as sample space the set
¥ = {-1, +1}V. Theappropriate probability massfunction g 5 » on T hasthree
parameters satisfying 8, J € [0, o0) and h € R, and is given by

1
(1.3) Ag.an(o) = ?e‘ﬂH("), oey,
|

where the partition function Z; and the ‘Hamiltonian’ H : ¥ — R aregiven by

14  z=) efH, He)=-3 )  oxoy—h) ox

ocex e=(x,y)eE xeV

The physical interpretation of 8 isasthe reciprocal 1/ T of temperature, of J as
the strength of interaction between neighbours, and of h as the external magnetic
field. For reasons of simplicity, we shall consider here only the case of zero
external-field, and we assume henceforth that h = 0.

Each edge has equal interaction strength J in the above formulation. Since
B and J occur only as a product 8J, the measure Ag, ;0 has effectively only a
single parameter 8J. In a more complicated measure not studied here, different
edges e are permitted to have different interaction strengths Je, see Chapter 9. In
the meantime we shall wrap 8 and J together by setting J = 1, and we write
A =XAB1,0

As pointed out by Baxter, [24], the Ising model permits an infinity of general-
izations. Of these, the extension to so-called ‘ Potts models’ has proved especially
fruitful. Whereas the Ising model permits only two possible spin-values at each
vertex, the Potts model [271] permits a general number q € {2,3, ...}, and is
governed by a probability measure given as follows.

Let g beaninteger satisfying g > 2, and take as sample spacethe set of vectors
¥ ={1,2,...,q}V. Thuseach vertex of G may beinany of q states. For an edge
e = (X, y) and aconfigurationo = (ox : X € V) € X, we write de(0) = doy.0y
where §; j isthe Kronecker delta. The relevant probability measure s given by

1 /
(1.5) mwg,q(o) = Z—PefﬁH @, o€ex,

whereZp = Zp(8, q) istheappropriate normalizing constant and the Hamiltonian
H’ isgiven by

(1.6) H@) == Y selo).

e=(x,y)eE
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In the special case g = 2, the multiplicative formula

(17) SJXaJy = %(1+ Gxay), Oy, Gy € {_1, +1},

isvalid. Itisnow easy to seein this case that the ensuing Potts model is simply
the 1sing model with an adjusted value of 8, in that g > is the measure obtained
from Ag,2 by re-labelling the local states.

Hereisabrief mention of onefurther generalization of thelsing model, namely
the so-called n-vector or O(n) model. Letn € {1,2,...} and let I be the set
of vectors of R" with unit length. The n-vector model on G = (V, E) has
configuration space IV and Hamiltonian

Ha®=- > s, s=(s:veV)el’,
e=(x,y)eE

where sy - sy denotes the dot product. When n = 1, thisis the Ising model. It is
called the X/Y model when n = 2, and the Heisenberg model whenn = 3.

1.4 Random-cluster and Ising/Potts models coupled

Fortuin and Kasteleyn discovered that Potts models may be re-cast as random-
cluster models, and furthermore that the relationship between the two systems
facilitates an extended study of phase transitionsin Potts models, see [118, 119,
120, 200]. Their methodswere elementary in nature. In amore modern approach,
we congtruct the two systems on a common probability space. There may in
principle be many ways to do this, but the standard coupling of Edwards and
Sokal, [106], is of specia value.

Letqg € {2,3,...}, p € [0,1], and let G = (V, E) be afinite graph. We
consider the product sample space © x Q where ¥ = {1,2,...,q}Y and Q =
{0, 1}F as above. We define a probability mass function iz on ¥ x €2 by

(18) u(o.0) o [ [{(1— Pue.0+ Pue.ide@)}.  (0.0) € T xQ,

ecE

where, as before, de(0) = 0,0, fOr €= (X, y) € E. The constant of proportion-
ality is exactly that which ensures the normalization

Z ulo, w) = 1.
(0,w)EL XN
By an expansion of (1.8),
p(o, ®) x Y (o)gp(w)lF (o, w), (0, w) € & x €,

where 1 is the uniform probability measure on X, ¢, is product measure on 2
with density p, and 1 istheindicator function of the event

(19) F ={(0,0) :3e(0) = 1forany esatisfyingw(e) = 1} € = x Q.
Therefore, u may be viewed as the product measure i x ¢p conditioned on F.
Elementary calculations revea the following facts.
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(1.10) Theorem (Marginal measuresof 1) [106]. Letq € {2,3,...},p €0, 1),
and supposethat p =1 — e 7.
(@ Marginal on . The marginal measure ui(o) = Y, cq 1(0, @) On X is
the Potts measure

11(0) = Zip eXp{ﬁ Zse(a)}, oe3.

ecE

(b) Marginal on Q. Themarginal measure uz(w) = ), .5 1(o, w) onQ isthe
random-cluster measure

1
— w(€) 1— 1-w(e) k(a))’ cQ.
p2(w) —ZRC{l | P (1 —p) }q w

ecE

(c) Partition functions. We have that

Z{H p”© (1 p)l‘“@}qk(‘“) =Y []ewiBGe0)-1]. (1.11)

weR “ecE oeX ecE

which isto say that
Zre(p, q) = e PIEIZp(B, ). (1.12)

The conditional measures of . are given in the following theorem?, and illus-
trated in Figure 1.3.

(1.13) Theorem (Conditional measuresof ) [106]. Letq € {2,3,...},
p € [0, 1), and supposethat p = 1 — e #.

(8 For w € 2, the conditional measure (- | @) on T is obtained by putting
random spins on entire clusters of w (of which there are k(w)). These spins
are constant on given clusters, are independent between clusters, and each
isuniformly distributed on the set {1, 2, ..., q}.

(b) For o € X, the conditional measure (- | o) on L is obtained as follows.
If e = (X, y) issuchthat ox # oy, weset w(e) = 0. If ox = oy, we set

1 with probability p,

w(e) = { .
0 otherwise,

the values of different w (e) being (conditionally) independent randomvari-
ables.

4The corresponding facts for the infinite lattice are given in Theorem 4.91.
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Figure 1.3. The upper diagram is an illustration of the conditional measure of i on X given
w, with @ = 4. To each open cluster of w is alocated a spin-value chosen uniformly from
{1, 2, 3, 4}. Different clustersareallocated independent values. Inthelower diagram, webegin
withaconfigurationo . Anedgeisplaced betweenverticesx, y with probability p (respectively,
0) if ox = oy (respectively, ox # oy), and the outcome has as law the conditional measure of
©nonQgveno.

In conclusion, the measure u. is a coupling of a Potts measure g q on V,
together with the random-cluster measure ¢p q on 2. The parameters of these
measures are related by the equation p = 1 — e #. Since0 < p < 1, we have
that 0 < B8 < oo.

This specia coupling may be used in a particularly simple way to show that
correlations in Potts models correspond to open connections in random-cluster
models. When extended to infinite graphs, thiswill imply that the phasetransition
of a Potts model corresponds to the creation of an infinite open cluster in the
random-cluster model. Thus, arguments of stochastic geometry, and particularly
those developed for the percolation model, may be harnessed directly in order
to understand the correlation structure of the Potts system. The basic step is as
follows.

Let {x <> y} denotethe set of all w € Q for which there exists an open path
joining vertex x to vertex y. The complement of the event {x <> y} is denoted by

X<yl
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The ‘two-point correlation function’” of the Potts measure g q on the finite
graph G = (V, E) isdefined to be the function 7 g given by

1
(114) Tﬁ,q(x, y) = ﬂﬁ,q(O'X = Gy) — a, X, y S V

The term q~1 is the probability that two independent and uniformly distributed
spins are equal. Thus®,

1
(1.15) 18,q(X, ¥) = anﬂ,q(qéw,gy —-1).

The *two-point connectivity function’ of the random-cluster measure ¢p q is de-
fined asthe function ¢p (X <> y) for x, y € V, that is, the probability that x and
y are joined by a path of open edges. It turns out that these ‘ two-point functions
are (except for a constant factor) the same.

(1.16) Theorem (Correlation/connection) [200]. Letq € {2,3,...},p €0, 1),
and supposethat p =1 — e~#. Then

5906 Y) =L —q HgpgXx < y), X, yeV.

Thetheorem may be generalized asfollows. Supposewe are studying the Potts
model, and are interested in some ‘observable’ f : ¥ — R. The mean value of
f (o) satisfies

mpq(H) =" fo)mpqlo) =) f(o)u(o. w)
= F(@)ppq(®) = ¢pq(F)

where F : © — R isgiven by

F) =u(flo)=) @)@ |w).

Theorem 1.16 is obtained by setting f (6) = 8.0, — 97
The Potts models considered above have zero external-field. Some complica-
tions arise when an external field is added; see the discussionsin [13, 42].

Proof of Theorem 1.10. (a) Let o € X begiven. Then

Y o w)oc Yy [THA = Poue.o+ Poue.18e(o)}

weR we ecE

=[]11- p+ pée(o)].

ecE

51f 1 isa probability measure and X arandom variable, the expectation of X with respect to
iswritten pw(X).
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Now p=1—e# and
1-p+ps =€l s5¢c{01},
whence
117) > [[{A = Pdue.0+ Poue.1de(@)} = [ | explB(e(o) — D].
we eeE ecE

Viewed asaset of weightson X, thelatter expression generatesthe Potts measure.
(b) Let w € Q2 be given. We have that

(1.18) l_[{(l— P)w(e),0 + Pdu(e),18e(0)} = pln@l(1 — p)EVI@I1E (5, w),

ecE

where 1k (o, w) istheindicator function that §e(c) = 1 whenever w(e) = 1, see
(2.9). Now, 1f (o, w) = 1if and only if o is constant on every open cluster of w.
Therearek(w) such clusters, and thereforeg® qualifying spin-vectorso. Thus,

(119) > [[{@ = pbuie.o+ Poue.1de(0)} = p" (1 — p)!EV@igh),
oceX ecE

This set of weights on  generates the random-cluster measure.

(c) We obtain the same answer if we sum (1.17) over al o, or we sum (1.19) over

Proof of Theorem 1.13. (a) Let w € 2 be given. From (1.18)—(1.19),

1r (o, w)

7qk(w) R o€ X,

uo | ) =

whence the conditional measure is uniform on those o with 1¢ (o, w) = 1.
(b) Let o € X begiven. By (1.8),

pwlo)=Ks, [] bdweo [] {1-Pdue.o+ Plue.al.
ecE: Se(0)=0 ecE: de(0)=1
where K, = K, (p, q). Therefore, u(w | o) isaproduct measure on Q with
0 ifde(o) =0,

=1 with probabilit O
w(e) with probabili y{ o ifSe(0) = 1.

Proof of Theorem 1.16. By Theorem 1.13(a),
7640 Y) = Y {Lioy=0y)(0) — 4™ (o, w)

=Y $pa@ Y 1@ | o){Lg=0y(0) — a7}

=Y tp.a@{(1 = 4 H 1oy (@) + 0 Lixgpy) (@)

=1 -q Hopqx <),
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where 1 isthe above coupling of the Potts and random-cluster measures. O

Hereis afinal note. The random-cluster measure ¢ o has two parameters p,
g. Inamore general version, we replace p by avector p = (pe : € € E) of reds
each of which satisfies pe € [0, 1]. The corresponding random-cluster measure
¢p.q ON (R, F) isgiven by

120 o) = Z{[]pOa- pot el wea

ecE

where Z is the appropriate normalizing factor. The measure ¢p q is retrieved by
setting pe = pforall e E.

15 Thelimitasq | O

Let G = (V, E) beafinite connected graph, and let ¢ o be the random-cluster
measureon G with parametersp € (0, 1), g € (0, oo). Weconsider inthissection
the set of weak limits which may ariseasq | 0. In preparation, we introduce
three graph-theoretic terms.

A subset F of the edge-set E is called:

e aforest of G if thegraph (V, F) contains no circuit,

e aspanningtreeof G if (V, F) is connected and contains no circuit,

e aconnected subgraph of G if (V, F) is connected.
In each case we consider the graph (V, F) containing every vertex of V; in this
regard, sets F of edges satisfying one of the above conditions are sometimes
termed spanning. Note that F is a spanning tree if and only if it is both a forest
and a connected subgraph. For © = {0,1}F and w € €, we cal » a forest
(respectively, spanning tree, connected subgraph) if n(w) isaforest (respectively,
spanning tree, connected subgraph). Write Qsor, Qst, Q2¢s for the subsets of
containing all forests, spanning trees, and connected subgraphs, respectively, and
write USF, UST, UCS for the uniform probability measures® on the respective
sets Qfor, Qs cs-

We consider first theweak limit of ¢p q asq | Oforfixed p € (0, 1). Thislimit
may be ascertained by observing that the dominant termsin the partition function

weR

are those for which k(w) is aminimum, that is, those with k(w) = 1. It follows
that limg o ¢p,q is precisely the product measure ¢p = ¢p,1 (that is, percolation

6This usage of the term ‘uniform spanning forest' differs from that of [29].
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with intensity p) conditioned on the resulting graph (V, n(w)) being connected.
Thatis, ¢pq = ¢f°asq | 0, wherer = p/(1— p),

1 .
_r\n(w)l ifw e Qcs,

(1.21) ¢rcs(w) = { Zes
0 otherwise,

and Z¢s = Zs(r) is the appropriate normalizing constant. In the special case
p = 3, wehavethat ¢p q = UCSasq | 0.

Further limits ariseif we allow both p and g to convergeto 0. Suppose p = pq
isrelatedtoqinsuchaway that p — Oandq/p — Oasq | 0; thus, p approaches
zero lower than does q. We may write Zgrc in the form

[n(0)|+k(w) 1— k(w)
Zre(p.g) = (1~ p)EZ(rpp) (Q( > p’) :

weR

Note that p/(1 — p) —» 0Oandq(1— p)/p — Oasq | 0. Now, k(w) > 1 and
[n(w)|+k(w) > |V|forw e Q; thesetwo inequalitiesare satisfied simultaneously
with equality if and only if w € Qg. Therefore, inthelimitasq | 0O, the'mass' is
concentrated on spanningtrees, anditiseasily seenthat thelimit massisuniformly
distributed. That is, ¢p,q = UST.

Another limit emerges if p approaches O at the same rate as does q. Take
p = aq wherea € (0, oo) isconstant, and consider thelimitasq | 0. Thistime
wewrite

[n(@)]
o
Zre(p. @) = (1—aq)'® > (1_aq> q@lk@
weR

We have that |n(w)| + k(w) > |V| with equality if and only if @ € Qjqr, and it
followsthat ¢p.q = ¢, where

L @l i
(122) ¢;or(w) _A : ?Ora If w € Qor,
0 otherwise,

and Zsor = Zsor(e) is the appropriate normalizing constant. In the special case
a=1, we find that ¢p’q = USF.

Finally, if p approaches O faster than does q, inthat p/q — Oas p,q — O,
it is easily seen that the limit measure is concentrated on the empty set of edges.
We summarize the three special cases abovein atheorem.

(1.23) Theorem. We haveinthelimitasq | O that:

ucs ifp:%,
¢p,q:>{UST if p— O0andq/p — O,
USF ifp=aq.
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The spanning-treelimit isespecially interesting for historical and mathematical
reasons. As explained in the Appendix, the random-cluster model originated in
a systematic study by Fortuin and Kasteleyn of systems of a certain type which
satisfy certain parallel and series laws (see Section 3.8). Electrical networks
are the best known such systems: two resistors of resistancesr1 and rp in par-
allel (respectively, in series) may be replaced by a single resistor with resistance
(rl_1 + rz_l)_1 (respectively, rq1 + rp). Fortuin and Kasteleyn [120] realized that
the electrical-network theory of agraph G isrelated to the limit asq | 0 of the
random-cluster model on G, where pisgiven’ by p = ,/G/(1+ ,/q). It hasbeen
known since Kirchhoff’s theorem, [212], that the electrical currents which flow
in anetwork may be expressed in terms of counts of spanning trees. We return to
this discussion of UST in Section 3.9.

The theory of the uniform-spanning-tree measure UST is beautiful in its own
right (see[29]), and islinked inanimportant way to the emerging field of stochastic
growth processes of ‘stochastic Lowner evolution’ (SLE) type (see [228, 277]),
to which we return in Section 6.7. Further discussions of USF and UCS may be
foundin [162, 261].

1.6 Basic notation

We present some of the basic notation necessary for a study of random-cluster
measures. Let G = (V, E) beagraph, with finite or countably infinite vertex-set
V and edge-set E. If two verticesx and y arejoined by an edge e, wewritex ~ y,
and e = (x, y), and we say that x isadjacent to y. The (graph-theoretic) distance
3(x,y) from x to y is defined to be the number of edges in a shortest path of G
fromxtoy.

The configuration space of the random-cluster model on G is the set Q =
{0, 1}E, points of which are represented asvectorsw = (w(€) : e € E) and called
configurations. For w € €, wecall an edge e open (or w-open, when therole of @
isto be emphasized) if w(e) = 1, and closed (or w-closed) if w(e) = 0. We speak
of aset F of edgesasbeing ‘open’ (respectively, ‘closed’) in the configuration o
if o(f) =1 (respectively, w(f) =0) foradl f € F.

Theindicator function of asubset A of Q isthefunction1x : Q — {0, 1} given
by
0 ifw¢gA,

1 ifweA

For e € E, wewrite Je = {w € Q : w(e) = 1}, the event that the edge e is open.
We use Je to denote al so theindicator function of thisevent, sothat Je(w) = w(€).
A function X : Q@ — R iscalled acylinder function if there exists a finite subset
F of E suchthat X(w) = X(«’) whenever w(e) = »'(e) for e € F. A subset A
of Q iscalled acylinder event if itsindicator function is a cylinder function. We

Ia(w) = {

"This choice of p is convenient, but actually one requires only that q/p — 0, see[163].
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take F to bethe o -field of subsets of ©2 generated by the cylinder events, and we
shall consider certain probability measures on the measurable pair (2, ). If G
isfinite, then ¥ isthe set of all subsets of Q2; all events are cylinder events, and
all functions are cylinder functions. The complement of an event A iswritten A®
or A.

For W C V, let Ew denote the set of edges of G having both endverticesin
W. We write F\ (respectively, Tw) for the smallest o-field of & with respect
to which each of the random variablesw(e), e € Ew (respectively, e ¢ Ew), is
measurable. The notation Fr, ¢ isto be interpreted similarly for F € E. The
intersection of the 7 over al finite sets F iscalled thetail o-field and is denoted
by 7. Setsin 7 are caled tail events.

Thereisanatural partial order ontheset 2 of configurationsgivenby: w1 < w2
if and only if w1(e) < wz(e) for al e € E. Rather than working always with the
vector w € 2, we shall sometimes work with its set of open edges, given by

(1.24) nw) ={ee E:w(e) =1}.

Clearly,
w1 < w if and only if n(w1) C n(wy).

The smallest (respectively, largest) configuration is that with w(e) = 0 (respec-
tively, w(e) = 1) for all e, and thisis denoted by O (respectively, 1). A function
X : Q — Riscdledincreasing if X(w1) < X(w2) whenever w1 < wp. Sim-
ilarly, X is decreasing if —X isincreasing. Note that every increasing function
X : Q — Risnecessarily bounded since X(0) < X(w) < X (1) foral w € Q.
A subset A of Q iscalled increasing (respectively, decreasing) if it hasincreasing
(respectively, decreasing) indicator function.

For w € Q ande € E, let w® and we be the configurations obtained from w by
‘switching on’ and ‘ switching off’ the edge e, respectively. That is,

w(f) if f £e,

we(f)={l € ¢ for f € E,
if f=¢e
(1.25) ) ’
f ff )

oty =] 2D ThEe e
0 if f=e,

More generaly, for J € E and K C E \ J, we denote by wi the configuration
that equals 1 on J, equals 0 on K, and agrees with w on E \ (J U K). When J
and/or K contain only one or two edges, we may omit the necessary parentheses.
The Hamming distance between two configurationsis given by

(1.26) H(o1,@2) =) o1(0) —w2(8), 1,02 € Q.

ecE

A path of G isdefined as an aternating sequence Xg, €, X1, €1, . . ., €n—1, Xn
of distinct vertices x; and edges e = (X, Xj+1). Such a path has length n and
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is said to connect xp to x,. A circuit or cycle of G is an aternating sequence
X0, €0, X1, - - -, €n—1, Xn, €n, Xo Of vertices and edges such that xo, €, .. ., en—1,
Xn isapath and e, = (Xn, Xo); such acircuit haslengthn + 1. For w € ©, wecall
apath or circuit openif all itsedgesare open, and closed if all itsedgesare closed.
Two subgraphs of G are called edge-digoint if they have no edges in common,
and digoint if they have neither edges nor verticesin common.

Let w € Q. Consider the random subgraph of G containing the vertex set V
and the open edges only, that is, the edges in n(w). The connected components
of this graph are called open clusters. We write Cx = Cx(w) for the open cluster
containing the vertex x, and we call Cy the open cluster at x. Thevertex-set of Cy
istheset of al verticesof G that are connected to x by open paths, and the edges of
Cy arethose edges of n(w) that join pairs of such vertices. We shall occasionally
use the term Cy to represent the set of vertices joined to x by open paths, rather
than the graph of this open cluster. We shall be interested in the size of Cy, and
we denote by |Cx| the number of verticesin Cyx. Notethat Cy = {x} whenever
X is an isolated vertex, which isto say that x is incident to no open edge. We
denote by k(w) the number of open clustersin the configuration w, that is, k(w) is
the number of components of the graph (V, n(w)). The random variable k plays
an important role in the definition of a random-cluster measure, and the reader
is warned of the importance of including in k a count of the number of isolated
vertices of the graph.

Let w € Q. If Aand B are sets of vertices of G, we write* A <> B’ if there
exists an open path joining some vertex in A to somevertexin B; if AN B #£ @
then A < B trivially. Thus, for example, Cx = {y € V : X < y}. We write
‘A < B’ if there exists no open path from any vertex of A to any vertex of B,
and‘ A <> B off D’ if there exists an open path joining some vertex in A to some
vertex in B that uses no vertex inthe set D.

If W isaset of vertices of the graph, wewrite W for the boundary of A, being
the set of verticesin A that are adjacent to some vertex not in A,

dW = {x € W : thereexistsy ¢ W such that x ~ y}.

We write AeW for the set of edges of G having exactly one endvertex in W, and
we call AW the edge-boundary of W.

We shal be mostly interested in the case when G is a subgraph of a
d-dimensional lattice with d > 2. Rather than embarking on a debate of just
what constitutes a ‘lattice-graph’, we shall, aimost without exception, consider
only the case of the (hyper)cubic lattice. This restriction enables a clear exposi-
tion of the theory and open problems without suffering the complications which
arise through allowing greater generality.

Let d be a positive integer. WewriteZ = {...,—1,0,1,...} for the set of
all integers, and 79 for the set of all d-vectorsx = (X1, Xo, . . ., Xq) With integral
coordinates. For x e Z9, we generally write x; for thei th coordinate of x, and we
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define ]
5O Y) =D Ixi = Vil
i=1

Theorigin of 74 isdenoted by 0. Theset {1, 2, ...} of natural numbersisdenoted
by N, and Z; = N U {0}. Thereal lineis denoted by R.

Weturn Z9 into agraph, called thed-dimensional cubic attice, by adding edges
between all pairs x, y of points of Z4 with §(x, y) = 1. We denote this lattice by
L9, and we write Z9 for the set of vertices of L9, and E? for the set of its edges.
Thus, L9 = (29, EY). We shall often think of 1.9 as a graph embedded in RY, the
edges being straight line-segments between their endvertices. The edge-set Ey, of
V c 79 isthe set of all edges of LY both of whose endverticesliein V.

Let x, y beverticesof I.9. The (graph-theoretic) distance from x to y issimply
8(x,y), and we write |x| for the distance § (0, x) from the origin to x. We shall
make occasional use of another distance function on Z4, namely

x|l = max{|xi| :i =1,2,...,d}, x e 79,
and we note that
Il < x| < dlix|l,  x ez
Forw e Q@ = {0, 1}Ed, we abbreviate to C the open cluster Cg at the origin.
A box of LY isasubset of Z9 of the form

Aa,bz{erd:a; <xi <bfori =1,2,...,d}, a,bezd,
and we sometimes write

d
Aab=[][a. bi]
i=1
as a convenient shorthand. The expression A, p is used also to denote the graph
with vertex-set A, p together with those edges of Ld joining two verticesin Ag b.
For x € 79, we write x + Aap for the trandate by x of the box Aap. The
expression Ay, denotes the box with side-length 2n and centre at the origin,

(2.27) An=[—n, n]d ={xe 79 IIX]| < n}.
Notethat 9An = An \ An_1.

Intakingwhat iscalled a‘thermodynamiclimit’, oneworksoften on afinite box
A of 74, andthentakesthelimitas A 4 Z9. Suchalimitisto beinterpreted along
asequence A = (Ap:n=1,2,...) of boxessuch that: A, isnon-decreasingin
nand, foral m, Ap 2 [-m, m]d for al largen.

For any random variable X and appropriate probability measure u, we write
w(X) for the expectation of X,

n(X) = f Xdpu.

Let |a] and [a] denotetheinteger part of thereal number a, and theleast integer
not less than a, respectively. Finally, a A b = min{a, b} and a v b = max{a, b}.



