
D
R

A
FT

Chapter 1

Random-Cluster Measures

Summary. The random-cluster model is introduced, and its relationship to
Ising and Potts models is presented via a coupling of probability measures.
In the limit as the cluster-weighting factor tends to 0, one arrives at electrical
networks and uniform spanning trees and forests.

1.1 Introduction

In 1925 came the Ising model for a ferromagnet, and in 1957 the percolation model
for a disordered medium. Each has since been the subject of intense study,and their
theories have become elaborate. Each possesses a phase transition marking the
onset of long-range order, defined in terms of correlation functions for the Ising
model and in terms of the unboundedness of paths for percolation. These two
phase transitions have been the scenes of notable exact (and rigorous) calculations
which have since inspired many physicists and mathematicians.

It has been known since at least 1847 that electrical networks satisfy so-called
‘series/parallel laws’. Piet Kasteleyn noted during the 1960s that the percolation
and Ising models also have such properties. This simple observation led in joint
work with Cees Fortuin to the formulation of the random-cluster model. This
new model has two parameters, an ‘edge-weight’ p and a ‘cluster-weight’ q .
The (bond) percolation model is retrieved by setting q = 1; when q = 2, we
obtain a representation of the Ising model, and similarly of the Potts model when
q = 2, 3, . . . . The discovery of the model is described in Kasteleyn’s words in
the Appendix of the current work.

The mathematics begins with a finite graph G = (V , E), and the associated
Ising model1 thereon. A random variable σx taking values −1 and +1 is assigned
to each vertex x of G, and the probability of the configuration σ = (σx : x ∈ V )
is taken to be proportional to e−βH(σ ), where β > 0 and the ‘energy’ H (σ ) is the

1The so-called Ising model [187] was in fact proposed (to Ising) by Lenz. The Potts model
[103, 271] originated in a proposal (to Potts) by Domb.
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negative of the sum of σxσy over all edges e = 〈x, y〉 of G. As β increases, greater
probability is assigned to configurations having a large number of neighbouring
pairs of vertices with equal signs. The Ising model has proved extraordinarily
successful in generating beautiful mathematics of relevance to the physics, and it
has been useful and provocative in the mathematical theory of phase transitions
and cooperative phenomena (see, for example, [115]). The proof of the existence
of a phase transition in two dimensions was completed by Peierls, [259], by way
of his famous “argument”.

There are many possible generalizations of the Ising model in which the σx may
take a general number q of values, rather than q = 2 only. One such extension, the
so-called ‘Potts model’, [271], has attracted especial interest amongst physicists,
and has displayed a complex and varied structure. For example, when q is large, it
possesses a discontinuous phase transition, in contrast to the continuous transition
believed to take place for small q . Ising/Potts models are the first of three principal
ingredients in the story of random-cluster models. Note that they are ‘vertex-
models’ in the sense that they involve random variables σx indexed by the vertices
x of the underlying graph. (There is a related extension of the Ising model due to
Ashkin and Teller, [19], see Section 11.3.)

The (bond) percolation model was inspired by problems of physical type, and
emerged from the mathematics literature2 of the 1950s, [68]. In this model for
a porous medium, each edge of the graph G is declared ‘open’ (to the passage
of fluid) with probability p, and ‘closed’ otherwise, different edges having in-
dependent states. The problem is to determine the typical large-scale properties
of connected components of open edges as the parameter p varies. Percolation
theory is now a mature part of probability lying at the core of the study of ran-
dom media and interacting systems, and it is the second ingredient in the story of
random-cluster models. Note that bond percolation is an ‘edge-model’, in that the
random variables are indexed by the set of edges of the underlying graph. (There is
a variant termed ‘site percolation’ in which the vertices are open/closed at random
rather than the edges, see [151, Section 1.6].)

The theory of electrical networks on the graph G is of course more ancient than
that of Ising and percolation models, dating back at least to the 1847 paper, [212],
in which Kirchhoff set down a method for calculating macroscopic properties of
an electrical network in terms of its local structure. Kirchhoff’s work explains in
particular the relevance of counts of certain types of spanning trees of the graph.
To import current language, an electrical network on a graph G may be studied
via the properties of a ‘uniformly random spanning tree’ (UST) on G (see [29]).

The three ingredients above seemed fairly distinct until Fortuin and Kasteleyn
discovered around 1970, [117, 118, 119, 120, 200], that each features within a
certain parametric family of models which they termed ‘random-cluster models’.
They developed the basic theory of such models — correlation inequalities and
the like — in this series of papers. The true power of random-cluster models as

2See also the historical curiosity [312].
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a mechanism for studying Ising/Potts models has emerged progressively over the
intervening three decades.

The configuration space of the random-cluster model is the set of all subsets of
the edge-set E , which we represent as the set� = {0, 1}E of 0/1-vectors indexed
by E . An edge e is termed open in the configuration ω ∈ � if ω(e) = 1, and it
is termed closed if ω(e) = 0. The random-cluster model is thus an edge-model,
in contrast to the Ising and Potts models which assign spins to the vertices of G.
The subject of current study is the subgraph of G induced by the set of open edges
of a configuration chosen at random from � according to a certain probability
measure. Of particular importance is the existence (or not) of paths of open edges
joining given vertices x and y, and thus the random-cluster model is a model in
stochastic geometry.

The model may be viewed as a parametric family of probability measures φp,q

on �, the two parameters being denoted by p ∈ [0, 1] and q ∈ (0,∞). The
parameter p amounts to a measure of the density of open edges, and the parameter
q is a ‘cluster-weighting’ factor. When q = 1, φp,q is a product measure, and the
ensuing probability space is usually termed a percolation model or a random graph
depending on the context. The integer values q = 2, 3, . . . correspond in a certain
way to the Potts model on G with q local states, and thus q = 2 corresponds to the
Ising model. The nature of these ‘correspondences’, as described in Section 1.4, is
that ‘correlation functions’ of the Potts model may be expressed as ‘connectivity
functions’ of the random-cluster model. When extended to infinite graphs, it turns
out that long-range order in a Potts model corresponds to the existence of infinite
clusters in the corresponding random-cluster model. In this sense the Potts and
percolation phase transitions are counterparts of one another.

Therein lies a major strength of the random-cluster model. Geometrical meth-
ods of some complexity have been derived in the study of percolation, and some
of these may be adapted and extended to more general random-cluster models,
thereby obtaining results of significance for Ising and Potts models. Such has been
the value of the random-cluster model in studying Ising and Potts models that it
is sometimes called simply the ‘FK representation’ of the latter systems, named
after Fortuin and Kasteleyn. We shall see in Chapter 11 that several other spin
models of statistical mechanics possess FK-type representations.

The random-cluster and Ising/Potts models on the graph G = (V , E) are de-
fined formally in the next two sections. Their relationship is best studied via a
certain coupling on the product {0, 1}E × {1, 2, . . . , q}V , and this coupling is de-
scribed in Section 1.4. The ‘uniform spanning-tree’ (UST) measure on G is a
limiting case of the random-cluster measure, and this and related limits are the
topic of Section 1.5. This chapter ends with a section devoted to basic notation.
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1.2 Random-cluster model

Let G = (V , E) be a finite graph. The graphs considered here will usually possess
neither loops nor multiple edges, but we make no such general assumption. An
edge e having endvertices x and y is written as e = 〈x, y〉. A random-cluster
measure on G is a member of a certain class of probability measures on the set of
subsets of the edge set E . We take as state space the set � = {0, 1}E , members
of which are 0/1-vectors ω = (ω(e) : e ∈ E). We speak of the edge e as being
open (in ω) if ω(e) = 1, and as being closed if ω(e) = 0. For ω ∈ �, let
η(ω) = {e ∈ E : ω(e) = 1} denote the set of open edges. There is a one–one
correspondence between vectors ω ∈ � and subsets F ⊆ E , given by F = η(ω).
Let k(ω) be the number of connected components (or ‘open clusters’) of the graph
(V , η(ω)), and note that k(ω) includes a count of isolated vertices, that is, of
vertices incident to no open edge. We associate with � the σ -field F of all its
subsets.

A random-cluster measure on G has two parameters satisfying p ∈ [0, 1] and
q ∈ (0,∞), and is defined as the measure φp,q on the measurable pair (�,F )
given by

(1.1) φp,q(ω) =
1

ZRC

{

∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω), ω ∈ �,

where the ‘partition function’, or ‘normalizing constant’, ZRC is given by

(1.2) ZRC = ZRC(p, q) =
∑

ω∈�

{

∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω).

This measure differs from product measure through the inclusion of the term qk(ω).
Note the difference between the cases q ≤ 1 and q ≥ 1: the former favours fewer
clusters, whereas the latter favours a larger number of clusters. When q = 1,
edges are open/closed independently of one another. This very special case has
been studied in detail under the titles ‘percolation’ and ‘random graphs’, see [59,
151, 191]. Perhaps the most important values of q are the integers, since the
random-cluster model with q ∈ {2, 3, . . . } corresponds, in a way described in the
next two sections, to the Potts model with q local states. The bulk of the work
presented in this book is devoted to the theory of random-cluster measures when
q ≥ 1. The case q < 1 seems to be harder mathematically and less important
physically. There is some interest in the limit as q ↓ 0; see Section 1.5.

We shall sometimes write φG,p,q for φp,q when the choice of graph G is to be
stressed. Computer-generated samples from random-cluster measures on Z

2 are
presented in Figures 1.1–1.2. When q = 1, the measure φp,q is a product measure
with density p, and we write φG,p or φp for this special case.
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p = 0.30 p = 0.45

p = 0.49 p = 0.51

p = 0.55 p = 0.70

Figure 1.1. Samples from the random-cluster measure with q = 1 on a 40 × 40 box of the
square lattice. We have set q = 1 for ease of programming, the measure being of product form
in this case. The critical value is pc(1) = 1

2 . Samples with more general values of q may be
obtained by the method of ‘coupling from the past’, as described in Section 8.4.
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Figure 1.2. A picture of the random-cluster model with free boundary conditions on a 2048×
2048 box of

�2 , with p = 0.585816 and q = 2. The critical value of the model with
q = 2 is pc =

√
2/(1 +

√
2) = 0.585786 . . . , and therefore the simulation is of a mildly

supercritical system. It was obtained by simulating the Ising model using Glauber dynamics
(see Section 8.2), and then applying the coupling illustrated in Figure 1.3. Each individual
cluster is highlighted with a different tint of gray, and the smaller clusters are not visible in
the picture. This and later simulations in Section 5.7 are reproduced by kind permission of
Raphaël Cerf.

1.3 Ising and Potts models

In a famous experiment, a piece of iron is exposed to a magnetic field. The field is
increased from zero to a maximum,and then diminished to zero. If the temperature
is sufficiently low, the iron retains some residual magnetization, otherwise it does
not. There is a critical temperature for this phenomenon, often called the Curie
point after Pierre Curie, who reported this discovery in his 1895 thesis, [96]3. The

3In an example of Stigler’s Law, [298], the existence of such a temperature was discovered
before 1832 by Pouillet, see [195].
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famous (Lenz–)Ising model for such ferromagnetism, [187], may be summarized
as follows. One supposes that particles are positioned at the points of some
lattice embedded in Euclidean space. Each particle may be in either of two states,
representing the physical states of ‘spin-up’ and ‘spin-down’. Spin-values are
chosen at random according to a certain probability measure, known as a ‘Gibbs
state’, which is governed by interactions between neighbouring particles. The
relevant probability measure is given as follows.

Let G = (V , E) be a finite graph representing part of the lattice. We think of
each vertex x ∈ V as being occupied by a particle having a random spin. Since
spins are assumed to come in two basic types, we take as sample space the set
6 = {−1,+1}V . The appropriate probability mass functionλβ,J,h on6 has three
parameters satisfying β, J ∈ [0,∞) and h ∈ R, and is given by

(1.3) λβ,J,h(σ ) =
1

ZI
e−βH(σ ), σ ∈ 6,

where the partition function ZI and the ‘Hamiltonian’ H : 6 → R are given by

(1.4) ZI =
∑

σ∈6
e−βH(σ ), H (σ ) = −J

∑

e=〈x,y〉∈E

σxσy − h
∑

x∈V

σx .

The physical interpretation of β is as the reciprocal 1/T of temperature, of J as
the strength of interaction between neighbours, and of h as the external magnetic
field. For reasons of simplicity, we shall consider here only the case of zero
external-field, and we assume henceforth that h = 0.

Each edge has equal interaction strength J in the above formulation. Since
β and J occur only as a product β J , the measure λβ,J,0 has effectively only a
single parameter β J . In a more complicated measure not studied here, different
edges e are permitted to have different interaction strengths Je, see Chapter 9. In
the meantime we shall wrap β and J together by setting J = 1, and we write
λβ = λβ,1,0

As pointed out by Baxter, [24], the Ising model permits an infinity of general-
izations. Of these, the extension to so-called ‘Potts models’ has proved especially
fruitful. Whereas the Ising model permits only two possible spin-values at each
vertex, the Potts model [271] permits a general number q ∈ {2, 3, . . . }, and is
governed by a probability measure given as follows.

Let q be an integer satisfying q ≥ 2, and take as sample space the set of vectors
6 = {1, 2, . . . , q}V . Thus each vertex of G may be in any of q states. For an edge
e = 〈x, y〉 and a configuration σ = (σx : x ∈ V ) ∈ 6, we write δe(σ ) = δσx ,σy

where δi, j is the Kronecker delta. The relevant probability measure is given by

(1.5) πβ,q(σ ) =
1

ZP
e−βH ′(σ ), σ ∈ 6,

where ZP = ZP(β, q) is the appropriate normalizing constant and the Hamiltonian
H ′ is given by

(1.6) H ′(σ ) = −
∑

e=〈x,y〉∈E

δe(σ ).
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In the special case q = 2, the multiplicative formula

(1.7) δσx ,σy = 1
2 (1 + σxσy), σx , σy ∈ {−1,+1},

is valid. It is now easy to see in this case that the ensuing Potts model is simply
the Ising model with an adjusted value of β, in that πβ,2 is the measure obtained
from λβ/2 by re-labelling the local states.

Here is a brief mention of one further generalization of the Ising model, namely
the so-called n-vector or O(n) model. Let n ∈ {1, 2, . . . } and let I be the set
of vectors of R

n with unit length. The n-vector model on G = (V , E) has
configuration space I

V and Hamiltonian

Hn(s) = −
∑

e=〈x,y〉∈E

sx · sy, s = (sv : v ∈ V ) ∈ I
V ,

where sx · sy denotes the dot product. When n = 1, this is the Ising model. It is
called the X/Y model when n = 2, and the Heisenberg model when n = 3.

1.4 Random-cluster and Ising/Potts models coupled

Fortuin and Kasteleyn discovered that Potts models may be re-cast as random-
cluster models, and furthermore that the relationship between the two systems
facilitates an extended study of phase transitions in Potts models, see [118, 119,
120, 200]. Their methods were elementary in nature. In a more modern approach,
we construct the two systems on a common probability space. There may in
principle be many ways to do this, but the standard coupling of Edwards and
Sokal, [106], is of special value.

Let q ∈ {2, 3, . . . }, p ∈ [0, 1], and let G = (V , E) be a finite graph. We
consider the product sample space 6 × � where 6 = {1, 2, . . . , q}V and � =
{0, 1}E as above. We define a probability mass function µ on 6 ×� by

(1.8) µ(σ,ω) ∝
∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δe(σ )
}

, (σ, ω) ∈ 6 ×�,

where, as before, δe(σ ) = δσx ,σy for e = 〈x, y〉 ∈ E . The constant of proportion-
ality is exactly that which ensures the normalization

∑

(σ,ω)∈6×�
µ(σ,ω) = 1.

By an expansion of (1.8),

µ(σ,ω) ∝ ψ(σ)φp(ω)1F (σ, ω), (σ, ω) ∈ 6 ×�,

where ψ is the uniform probability measure on 6, φp is product measure on �
with density p, and 1F is the indicator function of the event

(1.9) F =
{

(σ, ω) : δe(σ ) = 1 for any e satisfying ω(e) = 1
}

⊆ 6 ×�.

Therefore, µ may be viewed as the product measure ψ × φp conditioned on F .

Elementary calculations reveal the following facts.
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(1.10) Theorem (Marginal measures ofµ) [106]. Let q ∈ {2, 3, . . . }, p ∈ [0, 1),
and suppose that p = 1 − e−β .

(a) Marginal on 6. The marginal measure µ1(σ ) =
∑

ω∈� µ(σ,ω) on 6 is
the Potts measure

µ1(σ ) =
1

ZP
exp

{

β
∑

e∈E

δe(σ )

}

, σ ∈ 6.

(b) Marginal on�. The marginal measureµ2(ω) =
∑

σ∈6 µ(σ,ω) on� is the
random-cluster measure

µ2(ω) =
1

ZRC

{

∏

e∈E

pω(e)(1 − p)1−ω(e)
}

qk(ω), ω ∈ �.

(c) Partition functions. We have that

∑

ω∈�

{

∏

e∈E

pω(e)(1− p)1−ω(e)
}

qk(ω) =
∑

σ∈6

∏

e∈E

exp[β(δe(σ )−1)], (1.11)

which is to say that

ZRC(p, q) = e−β|E |ZP(β, q). (1.12)

The conditional measures of µ are given in the following theorem4, and illus-
trated in Figure 1.3.

(1.13) Theorem (Conditional measures of µ) [106]. Let q ∈ {2, 3, . . . },
p ∈ [0, 1), and suppose that p = 1 − e−β .

(a) For ω ∈ �, the conditional measure µ(· | ω) on 6 is obtained by putting
random spins on entire clusters of ω (of which there are k(ω)). These spins
are constant on given clusters, are independent between clusters, and each
is uniformly distributed on the set {1, 2, . . . , q}.

(b) For σ ∈ 6, the conditional measure µ(· | σ) on � is obtained as follows.
If e = 〈x, y〉 is such that σx 6= σy , we set ω(e) = 0. If σx = σy , we set

ω(e) =
{

1 with probability p,

0 otherwise,

the values of different ω(e) being (conditionally) independent random vari-
ables.

4The corresponding facts for the infinite lattice are given in Theorem 4.91.
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2 2 4 4

1 2 2 2

1 2 2 2

1 4 2 2

2 2 4 4

1 2 2 2

1 2 2 2

1 4 2 2

Figure 1.3. The upper diagram is an illustration of the conditional measure of µ on 6 given
ω, with q = 4. To each open cluster of ω is allocated a spin-value chosen uniformly from
{1, 2, 3, 4}. Different clusters are allocated independent values. In the lower diagram, we begin
with a configurationσ . An edge is placed between vertices x , y with probability p (respectively,
0) if σx = σy (respectively, σx 6= σy), and the outcome has as law the conditional measure of
µ on � given σ .

In conclusion, the measure µ is a coupling of a Potts measure πβ,q on V ,
together with the random-cluster measure φp,q on �. The parameters of these
measures are related by the equation p = 1 − e−β . Since 0 ≤ p < 1, we have
that 0 ≤ β < ∞.

This special coupling may be used in a particularly simple way to show that
correlations in Potts models correspond to open connections in random-cluster
models. When extended to infinite graphs, this will imply that the phase transition
of a Potts model corresponds to the creation of an infinite open cluster in the
random-cluster model. Thus, arguments of stochastic geometry, and particularly
those developed for the percolation model, may be harnessed directly in order
to understand the correlation structure of the Potts system. The basic step is as
follows.

Let {x ↔ y} denote the set of all ω ∈ � for which there exists an open path
joining vertex x to vertex y. The complement of the event {x ↔ y} is denoted by
{x /↔ y}.
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The ‘two-point correlation function’ of the Potts measure πβ,q on the finite
graph G = (V , E) is defined to be the function τβ,q given by

(1.14) τβ,q(x, y) = πβ,q(σx = σy)−
1

q
, x, y ∈ V .

The term q−1 is the probability that two independent and uniformly distributed
spins are equal. Thus5,

(1.15) τβ,q(x, y) =
1

q
πβ,q(qδσx ,σy − 1).

The ‘two-point connectivity function’ of the random-cluster measure φp,q is de-
fined as the function φp,q(x ↔ y) for x, y ∈ V , that is, the probability that x and
y are joined by a path of open edges. It turns out that these ‘two-point functions’
are (except for a constant factor) the same.

(1.16) Theorem (Correlation/connection) [200]. Let q ∈ {2, 3, . . . }, p ∈ [0, 1),
and suppose that p = 1 − e−β . Then

τβ,q(x, y) = (1 − q−1)φp,q(x ↔ y), x, y ∈ V .

The theorem may be generalized as follows. Suppose we are studying the Potts
model, and are interested in some ‘observable’ f : 6 → R. The mean value of
f (σ ) satisfies

πβ,q( f ) =
∑

σ

f (σ )πβ,q(σ ) =
∑

σ,ω

f (σ )µ(σ, ω)

=
∑

ω

F(ω)φp,q(ω) = φp,q(F)

where F : � → R is given by

F(ω) = µ( f | ω) =
∑

σ

f (σ )µ(σ | ω).

Theorem 1.16 is obtained by setting f (σ ) = δσx ,σy − q−1.

The Potts models considered above have zero external-field. Some complica-
tions arise when an external field is added; see the discussions in [13, 42].

Proof of Theorem 1.10. (a) Let σ ∈ 6 be given. Then
∑

ω∈�
µ(σ,ω) ∝

∑

ω∈�

∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δe(σ )
}

=
∏

e∈E

[1 − p + pδe(σ )].

5If µ is a probability measure and X a random variable, the expectation of X with respect to
µ is written µ(X).
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Now p = 1 − e−β and

1 − p + pδ = eβ(δ−1), δ ∈ {0, 1},

whence

(1.17)
∑

ω∈�

∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δe(σ )
}

=
∏

e∈E

exp[β(δe(σ )− 1)].

Viewed as a set of weights on6, the latter expression generates the Potts measure.

(b) Let ω ∈ � be given. We have that

(1.18)
∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δe(σ )
}

= p|η(ω)|(1 − p)|E\η(ω)|1F (σ, ω),

where 1F (σ, ω) is the indicator function that δe(σ ) = 1 whenever ω(e) = 1, see
(1.9). Now, 1F (σ, ω) = 1 if and only if σ is constant on every open cluster of ω.
There are k(ω) such clusters, and therefore qk(ω) qualifying spin-vectors σ . Thus,

(1.19)
∑

σ∈6

∏

e∈E

{

(1 − p)δω(e),0 + pδω(e),1δe(σ )
}

= p|η(ω)|(1 − p)|E\η(ω)|qk(ω).

This set of weights on � generates the random-cluster measure.

(c) We obtain the same answer if we sum (1.17) over all σ , or we sum (1.19) over
all ω. �

Proof of Theorem 1.13. (a) Let ω ∈ � be given. From (1.18)–(1.19),

µ(σ | ω) =
1F (σ, ω)

qk(ω)
, σ ∈ 6,

whence the conditional measure is uniform on those σ with 1F (σ, ω) = 1.

(b) Let σ ∈ 6 be given. By (1.8),

µ(ω | σ) = Kσ
∏

e∈E : δe(σ )=0

δω(e),0

∏

e∈E : δe(σ )=1

{

(1 − p)δω(e),0 + pδω(e),1
}

,

where Kσ = Kσ (p, q). Therefore, µ(ω | σ) is a product measure on � with

ω(e) = 1 with probability

{

0 if δe(σ ) = 0,

p if δe(σ ) = 1.
�

Proof of Theorem 1.16. By Theorem 1.13(a),

τβ,q(x, y) =
∑

σ,ω

{

1{σx=σy}(σ )− q−1}µ(σ,ω)

=
∑

ω

φp,q(ω)
∑

σ

µ(σ | ω)
{

1{σx =σy}(σ )− q−1}

=
∑

ω

φp,q(ω)
{

(1 − q−1)1{x↔y}(ω)+ 0 · 1{x /↔y}(ω)
}

= (1 − q−1)φp,q(x ↔ y),
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where µ is the above coupling of the Potts and random-cluster measures. �

Here is a final note. The random-cluster measure φp,q has two parameters p,
q . In a more general version, we replace p by a vector p = (pe : e ∈ E) of reals
each of which satisfies pe ∈ [0, 1]. The corresponding random-cluster measure
φp,q on (�,F ) is given by

(1.20) φp,q(ω) =
1

Z

{

∏

e∈E

pω(e)e (1 − pe)
1−ω(e)

}

qk(ω), ω ∈ �,

where Z is the appropriate normalizing factor. The measure φp,q is retrieved by
setting pe = p for all e ∈ E .

1.5 The limit as q ↓ 0

Let G = (V , E) be a finite connected graph, and let φp,q be the random-cluster
measure on G with parameters p ∈ (0, 1), q ∈ (0,∞). We consider in this section
the set of weak limits which may arise as q ↓ 0. In preparation, we introduce
three graph-theoretic terms.

A subset F of the edge-set E is called:

• a forest of G if the graph (V , F) contains no circuit,

• a spanning tree of G if (V , F) is connected and contains no circuit,

• a connected subgraph of G if (V , F) is connected.

In each case we consider the graph (V , F) containing every vertex of V ; in this
regard, sets F of edges satisfying one of the above conditions are sometimes
termed spanning. Note that F is a spanning tree if and only if it is both a forest
and a connected subgraph. For � = {0, 1}E and ω ∈ �, we call ω a forest
(respectively, spanning tree, connected subgraph) if η(ω) is a forest (respectively,
spanning tree, connected subgraph). Write �for, �st, �cs for the subsets of �
containing all forests, spanning trees, and connected subgraphs, respectively, and
write USF, UST, UCS for the uniform probability measures6 on the respective
sets �for, �st, �cs.

We consider first the weak limit of φp,q as q ↓ 0 for fixed p ∈ (0, 1). This limit
may be ascertained by observing that the dominant terms in the partition function

ZRC(p, q) =
∑

ω∈�
p|η(ω)|(1 − p)|E\η(ω)|qk(ω)

are those for which k(ω) is a minimum, that is, those with k(ω) = 1. It follows
that limq↓0 φp,q is precisely the product measure φp = φp,1 (that is, percolation

6This usage of the term ‘uniform spanning forest’ differs from that of [29].
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with intensity p) conditioned on the resulting graph (V , η(ω)) being connected.
That is, φp,q ⇒ φcs

r as q ↓ 0, where r = p/(1 − p),

(1.21) φcs
r (ω) =

{ 1

Zcs
r |η(ω)| if ω ∈ �cs,

0 otherwise,

and Zcs = Zcs(r) is the appropriate normalizing constant. In the special case
p = 1

2 , we have that φp,q ⇒ UCS as q ↓ 0.

Further limits arise if we allow both p and q to converge to 0. Suppose p = pq

is related to q in such a way that p → 0 and q/p → 0 as q ↓ 0; thus, p approaches
zero slower than does q . We may write ZRC in the form

ZRC(p, q) = (1 − p)|E |
∑

ω∈�

(

p

1 − p

)|η(ω)|+k(ω) (q(1 − p)

p

)k(ω)

.

Note that p/(1 − p) → 0 and q(1 − p)/p → 0 as q ↓ 0. Now, k(ω) ≥ 1 and
|η(ω)|+k(ω) ≥ |V | forω ∈ �; these two inequalities are satisfied simultaneously
with equality if and only if ω ∈ �st. Therefore, in the limit as q ↓ 0, the ‘mass’ is
concentrated on spanning trees, and it is easily seen that the limit mass is uniformly
distributed. That is, φp,q ⇒ UST.

Another limit emerges if p approaches 0 at the same rate as does q . Take
p = αq where α ∈ (0,∞) is constant, and consider the limit as q ↓ 0. This time
we write

ZRC(p, q) = (1 − αq)|E |
∑

ω∈�

(

α

1 − αq

)|η(ω)|
q |η(ω)|+k(ω).

We have that |η(ω)| + k(ω) ≥ |V | with equality if and only if ω ∈ �for, and it
follows that φp,q ⇒ φfor

α , where

(1.22) φfor
α (ω) =

{ 1

Zfor
α|η(ω)| if ω ∈ �for,

0 otherwise,

and Zfor = Zfor(α) is the appropriate normalizing constant. In the special case
α = 1, we find that φp,q ⇒ USF.

Finally, if p approaches 0 faster than does q , in that p/q → 0 as p, q → 0,
it is easily seen that the limit measure is concentrated on the empty set of edges.
We summarize the three special cases above in a theorem.

(1.23) Theorem. We have in the limit as q ↓ 0 that:

φp,q ⇒







UCS if p = 1
2 ,

UST if p → 0 and q/p → 0,

USF if p = q.



D
R

A
FT

[1.6] Basic notation 15

The spanning-tree limit is especially interesting for historical and mathematical
reasons. As explained in the Appendix, the random-cluster model originated in
a systematic study by Fortuin and Kasteleyn of systems of a certain type which
satisfy certain parallel and series laws (see Section 3.8). Electrical networks
are the best known such systems: two resistors of resistances r1 and r2 in par-
allel (respectively, in series) may be replaced by a single resistor with resistance
(r−1

1 + r−1
2 )−1 (respectively, r1 + r2). Fortuin and Kasteleyn [120] realized that

the electrical-network theory of a graph G is related to the limit as q ↓ 0 of the
random-cluster model on G, where p is given7 by p = √

q/(1+√
q). It has been

known since Kirchhoff’s theorem, [212], that the electrical currents which flow
in a network may be expressed in terms of counts of spanning trees. We return to
this discussion of UST in Section 3.9.

The theory of the uniform-spanning-tree measure UST is beautiful in its own
right (see [29]), and is linked in an important way to the emerging field of stochastic
growth processes of ‘stochastic Löwner evolution’ (SLE) type (see [228, 277]),
to which we return in Section 6.7. Further discussions of USF and UCS may be
found in [162, 261].

1.6 Basic notation

We present some of the basic notation necessary for a study of random-cluster
measures. Let G = (V , E) be a graph, with finite or countably infinite vertex-set
V and edge-set E . If two vertices x and y are joined by an edge e, we write x ∼ y,
and e = 〈x, y〉, and we say that x is adjacent to y. The (graph-theoretic) distance
δ(x, y) from x to y is defined to be the number of edges in a shortest path of G
from x to y.

The configuration space of the random-cluster model on G is the set � =
{0, 1}E , points of which are represented as vectorsω = (ω(e) : e ∈ E) and called
configurations. For ω ∈ �, we call an edge e open (or ω-open, when the role of ω
is to be emphasized) if ω(e) = 1, and closed (or ω-closed) if ω(e) = 0. We speak
of a set F of edges as being ‘open’ (respectively, ‘closed’) in the configuration ω
if ω( f ) = 1 (respectively, ω( f ) = 0) for all f ∈ F .

The indicator function of a subset A of� is the function 1A : � → {0, 1} given
by

1A(ω) =
{

0 if ω /∈ A,

1 if ω ∈ A.

For e ∈ E , we write Je = {ω ∈ � : ω(e) = 1}, the event that the edge e is open.
We use Je to denote also the indicator function of this event, so that Je(ω) = ω(e).
A function X : � → R is called a cylinder function if there exists a finite subset
F of E such that X (ω) = X (ω′) whenever ω(e) = ω′(e) for e ∈ F . A subset A
of � is called a cylinder event if its indicator function is a cylinder function. We

7This choice of p is convenient, but actually one requires only that q/p → 0, see [163].
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take F to be the σ -field of subsets of � generated by the cylinder events, and we
shall consider certain probability measures on the measurable pair (�,F ). If G
is finite, then F is the set of all subsets of �; all events are cylinder events, and
all functions are cylinder functions. The complement of an event A is written Ac

or A.

For W ⊆ V , let EW denote the set of edges of G having both endvertices in
W . We write FW (respectively, TW ) for the smallest σ -field of F with respect
to which each of the random variables ω(e), e ∈ EW (respectively, e /∈ EW ), is
measurable. The notation FF , TF is to be interpreted similarly for F ⊆ E . The
intersection of the TF over all finite sets F is called the tail σ -field and is denoted
by T . Sets in T are called tail events.

There is a natural partial order on the set� of configurations given by: ω1 ≤ ω2
if and only if ω1(e) ≤ ω2(e) for all e ∈ E . Rather than working always with the
vector ω ∈ �, we shall sometimes work with its set of open edges, given by

(1.24) η(ω) = {e ∈ E : ω(e) = 1}.

Clearly,
ω1 ≤ ω2 if and only if η(ω1) ⊆ η(ω2).

The smallest (respectively, largest) configuration is that with ω(e) = 0 (respec-
tively, ω(e) = 1) for all e, and this is denoted by 0 (respectively, 1). A function
X : � → R is called increasing if X (ω1) ≤ X (ω2) whenever ω1 ≤ ω2. Sim-
ilarly, X is decreasing if −X is increasing. Note that every increasing function
X : � → R is necessarily bounded since X (0) ≤ X (ω) ≤ X (1) for all ω ∈ �.
A subset A of� is called increasing (respectively, decreasing) if it has increasing
(respectively, decreasing) indicator function.

For ω ∈ � and e ∈ E , let ωe and ωe be the configurations obtained from ω by
‘switching on’ and ‘switching off’ the edge e, respectively. That is,

(1.25)

ωe( f ) =
{

ω( f ) if f 6= e,

1 if f = e,
for f ∈ E,

ωe( f ) =
{

ω( f ) if f 6= e,

0 if f = e,
for f ∈ E .

More generally, for J ⊆ E and K ⊆ E \ J , we denote by ωJ
K the configuration

that equals 1 on J , equals 0 on K , and agrees with ω on E \ (J ∪ K ). When J
and/or K contain only one or two edges, we may omit the necessary parentheses.
The Hamming distance between two configurations is given by

(1.26) H (ω1, ω2) =
∑

e∈E

|ω1(e)− ω2(e)|, ω1, ω2 ∈ �.

A path of G is defined as an alternating sequence x0, e0, x1, e1, . . . , en−1, xn

of distinct vertices xi and edges ei = 〈xi , xi+1〉. Such a path has length n and



D
R

A
FT

[1.6] Basic notation 17

is said to connect x0 to xn . A circuit or cycle of G is an alternating sequence
x0, e0, x1, . . . , en−1, xn, en, x0 of vertices and edges such that x0, e0, . . . , en−1,

xn is a path and en = 〈xn, x0〉; such a circuit has length n + 1. For ω ∈ �, we call
a path or circuit open if all its edges are open, and closed if all its edges are closed.
Two subgraphs of G are called edge-disjoint if they have no edges in common,
and disjoint if they have neither edges nor vertices in common.

Let ω ∈ �. Consider the random subgraph of G containing the vertex set V
and the open edges only, that is, the edges in η(ω). The connected components
of this graph are called open clusters. We write Cx = Cx (ω) for the open cluster
containing the vertex x , and we call Cx the open cluster at x . The vertex-set of Cx

is the set of all vertices of G that are connected to x by open paths, and the edges of
Cx are those edges of η(ω) that join pairs of such vertices. We shall occasionally
use the term Cx to represent the set of vertices joined to x by open paths, rather
than the graph of this open cluster. We shall be interested in the size of Cx , and
we denote by |Cx | the number of vertices in Cx . Note that Cx = {x} whenever
x is an isolated vertex, which is to say that x is incident to no open edge. We
denote by k(ω) the number of open clusters in the configuration ω, that is, k(ω) is
the number of components of the graph (V , η(ω)). The random variable k plays
an important role in the definition of a random-cluster measure, and the reader
is warned of the importance of including in k a count of the number of isolated
vertices of the graph.

Let ω ∈ �. If A and B are sets of vertices of G, we write ‘A ↔ B’ if there
exists an open path joining some vertex in A to some vertex in B; if A ∩ B 6= ∅

then A ↔ B trivially. Thus, for example, Cx = {y ∈ V : x ↔ y}. We write
‘A /↔ B’ if there exists no open path from any vertex of A to any vertex of B ,
and ‘A ↔ B off D’ if there exists an open path joining some vertex in A to some
vertex in B that uses no vertex in the set D.

If W is a set of vertices of the graph, we write ∂W for the boundary of A, being
the set of vertices in A that are adjacent to some vertex not in A,

∂W = {x ∈ W : there exists y /∈ W such that x ∼ y}.

We write 1eW for the set of edges of G having exactly one endvertex in W , and
we call 1eW the edge-boundary of W .

We shall be mostly interested in the case when G is a subgraph of a
d-dimensional lattice with d ≥ 2. Rather than embarking on a debate of just
what constitutes a ‘lattice-graph’, we shall, almost without exception, consider
only the case of the (hyper)cubic lattice. This restriction enables a clear exposi-
tion of the theory and open problems without suffering the complications which
arise through allowing greater generality.

Let d be a positive integer. We write Z = {. . . ,−1, 0, 1, . . . } for the set of
all integers, and Z

d for the set of all d-vectors x = (x1, x2, . . . , xd) with integral
coordinates. For x ∈ Z

d , we generally write xi for the i th coordinate of x , and we
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define

δ(x, y) =
d

∑

i=1

|xi − yi |.

The origin of Z
d is denoted by 0. The set {1, 2, . . . } of natural numbers is denoted

by N, and Z+ = N ∪ {0}. The real line is denoted by R.

We turn Z
d into a graph, called the d-dimensional cubic lattice, by adding edges

between all pairs x , y of points of Z
d with δ(x, y) = 1. We denote this lattice by

L
d , and we write Z

d for the set of vertices of L
d , and E

d for the set of its edges.
Thus, L

d = (Zd ,Ed ). We shall often think of L
d as a graph embedded in R

d , the
edges being straight line-segments between their endvertices. The edge-set EV of
V ⊆ Z

d is the set of all edges of L
d both of whose endvertices lie in V .

Let x , y be vertices of L
d . The (graph-theoretic) distance from x to y is simply

δ(x, y), and we write |x | for the distance δ(0, x) from the origin to x . We shall
make occasional use of another distance function on Z

d , namely

‖x‖ = max
{

|xi | : i = 1, 2, . . . , d
}

, x ∈ Z
d ,

and we note that
‖x‖ ≤ |x | ≤ d‖x‖, x ∈ Z

d .

For ω ∈ � = {0, 1}E
d
, we abbreviate to C the open cluster C0 at the origin.

A box of L
d is a subset of Z

d of the form

3a,b =
{

x ∈ Z
d : ai ≤ xi ≤ bi for i = 1, 2, . . . , d

}

, a, b ∈ Z
d ,

and we sometimes write

3a,b =
d

∏

i=1

[ai , bi ]

as a convenient shorthand. The expression 3a,b is used also to denote the graph
with vertex-set3a,b together with those edges of L

d joining two vertices in3a,b.
For x ∈ Z

d , we write x + 3a,b for the translate by x of the box 3a,b. The
expression3n denotes the box with side-length 2n and centre at the origin,

(1.27) 3n = [−n, n]d = {x ∈ Z
d : ‖x‖ ≤ n}.

Note that ∂3n = 3n \3n−1.

In taking what is called a ‘thermodynamic limit’,one works often on a finite box
3 of Z

d , and then takes the limit as3 ↑ Z
d . Such a limit is to be interpreted along

a sequence 3 = (3n : n = 1, 2, . . . ) of boxes such that: 3n is non-decreasing in
n and, for all m, 3n ⊇ [−m,m]d for all large n.

For any random variable X and appropriate probability measure µ, we write
µ(X) for the expectation of X ,

µ(X) =
∫

X dµ.

Let bac and dae denote the integer part of the real number a, and the least integer
not less than a, respectively. Finally, a ∧ b = min{a, b} and a ∨ b = max{a, b}.


