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1. Introduction

The classical summability methods of Borel (B) and Euler (E(λ), λ > 0)
play an important role in many areas of mathematics. For instance, in
summability theory they are perhaps the most important methods other
than the Cesàro (Cα) and Abel (A) methods, and two chapters of the
classic book of Hardy (1949) are devoted to them. In probability, the
distinction between methods of Cesàro-Abel and Euler-Borel type may be
seen from the following two laws of large numbers, the first of which extends
Kolmogorov’s strong law.

Theorem I. (Lai 1974) For X, X1, X2, . . . independent and identically
distributed, the following are equivalent:
(i) E|X | < ∞ and EX = µ,
(ii) Xn → µ a.s. (n → ∞) (Cα) for some (all) α ≥ 1,
(iii) Xn → µ a.s. (n → ∞) (A).

Theorem II. (Chow 1973) For X, X1, X2, . . . independent and identically
distributed, the following are equivalent:
(i) E|X |2 < ∞ and EX = µ,
(ii) Xn → µ a.s. (n → ∞) (E(λ)) for some (all) λ > 0,
(iii) Xn → µ a.s. (n → ∞) (B).

Other applications in probability arise through the technique of ‘Pois-
sonization’, in accordance with Kac’s dictum: if you can’t solve the problem
exactly, then randomise (Kesten 1986, p. 1109; cf. Kac 1949, Hammersley
1950 (pp. 219–224), 1972 (§§7,8), Hammersley et al. 1975, Pollard 1984,
p. 117). There are also applications along these lines to combinatorial
optimisation (Steele et al. 1987, §3; Steele 1989, §3).

Often the properties of the methods are governed by the fact that their
weights — the Poisson and binomial distributions — being convolutions,
obey the central limit theorem. Consequently, many such properties extend
to matrix methods A = (ank), whose weights are also given by convolutions:

ank = P (Sn = k), (1.1)
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for (Sn) a random walk (see e.g. Bingham 1981, 1984). There, Sn =
∑n

1 Xk

is a sum of independent Xk, identically distributed (and Z-valued). An-
other important case is that of Xk Bernoulli (0, 1-valued) but not neces-
sarily identically distributed:

P (Xn = 1) = pn, P (Xn = 0) = qn := 1 − pn.

Writing pn = 1/(1 + dn), (dn ≥ 0), this leads to the method A = (ank)
defined by

n
∏

j=1

(

x + dj

1 + dj

)

≡
n
∑

k=0

ankxk,

the Jakimovski method [F, dn] (Jakimovski 1959; Zeller and Beekmann
1970 (Ergänzungen, §70)). The motivating examples are:
(i) dn = 1/λ, the Euler method E(λ) above,
(ii) dn = (n − 1)/λ, the Karamata-Stirling method KS(λ),

(Karamata 1935). Here

ank = λkSnk/(λ)n,

with (λ)n := λ(λ + 1) . . . (λ + n− 1) and (Snk) the Stirling numbers of the
first kind. The Bernoulli representation (1.1) enables both local and global
central limit theory to be applied; see Bender (1973) for a perspicuous
treatment. In particular, unimodality of Stirling numbers and other weights
follows from this; for background see e.g. Hammersley 1951, 1952, 1972
(§§18, 19), Erdős 1953, Harper 1967, Lieb 1968, Bingham 1988.

Our aim here is to extend to Jakimovski methods the law of large
numbers (Theorem II), and the corresponding analogue of the law of the
iterated logarithm (Lai 1974). This complements the work of Bingham
(1988), which gives a similar extension to the basic Tauberian theorem
(‘O-K-Satz’), due in the Euler case to Knopp in 1923 and in the Borel
case to Schmidt in 1925 (Hardy 1949, Theorems 156, 241, 128). For fur-
ther background on almost-sure convergence behaviour and summability
methods, see e.g. Stout 1974 (Chap. 4), Bingham and Goldie 1988.

2. Results

Theorem 1. For X, X0, X1, . . . independent and identically distributed
random variables, and (dn) as above, the following are equivalent:
(i) var X < ∞, EX = m,
(ii) Xn → m a.s. (E(λ) or B),
(iii) Xn → m a.s. (KS(λ)),
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(iv) Xn → m a.s. [F, dn].

In what follows, we restrict the generality slightly. We assume further
that [F, dn] satisfies

pn → 0 (or dn → ∞).

This ensures that σn ≍ √
µn can be strengthened to

σn ∼ √
µn.

The Euler case (pn = λ/(1 + λ), dn = 1/λ) is thereby excluded, but can
be handled separately. These two cases together (pn constant and pn → 0)
cover the cases of main interest (though the result below and its proof may
be extended to cover the case σn ∼ c

√
µn, for constant c). In (i) below,

‘log’ in the denominator means ‘max(1, log+)’.
In Theorem 2, which gives the rates of convergence in Theorem 1,

the Karamata-Stirling methods diverge from those of Euler and Borel, and
one obtains an iterated logarithm, as in the classical case but unlike the
Euler-Borel case (Lai 1974).

Theorem 2. The following are equivalent:

EX = 0, var X = σ2 (< ∞), E(|X |4/ log2 |X |) < ∞,(i)

lim sup
x→∞

(4πx)1/4

log1/2 x

∣

∣

∣

∣

∞
∑

0

e−x xk

k!
Xk

∣

∣

∣

∣

= σ a.s.,(ii)

lim sup
n→∞

(4πn)1/4

log1/2 n

∣

∣

∣

∣

n
∑

0

(

n

k

)

λkXk/(1 + λ)n

∣

∣

∣

∣

= σ(1 + λ)1/4 a.s.,(iii)

lim sup
n→∞

(4πλ log n)1/4

log log1/2 n

∣

∣

∣

∣

n
∑

0

ankXk

∣

∣

∣

∣

= σ a.s.,(iv)

where A = (ank) is the matrix of the Kamarata-Stirling method KS(λ),

lim sup
n→∞

(4πµn)1/4

log1/2 µn

∣

∣

∣

∣

n
∑

0

ankXk

∣

∣

∣

∣

= σ a.s.(v)

where A = (ank) is the matrix of [F, dn] with dn → ∞.

Here the equivalence of (i) with (ii) (‘LIL for the Borel method’) and
(iii) (‘LIL for the Euler method’) is Lai’s result, and is included here for
comparison. The constant (1 + λ)1/4 in (iii) is a1/4, where a is the mean-
variance ratio of the Euler method; see Bingham (1984) for a detailed
discussion of this parameter and its significance. When dn → ∞, σn ∼√

µn, and a = 1.
Our proof of Theorem 2 will involve a non-uniform local limit theorem

for the sums Sn in the Bernoulli representation ank = P (Sn = k). Write
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H3(x) := x3 − 3x for the third Hermite polynomial, κ3,n := µn
3,0 for the

third cumulant (third central moment) of Sn:

κ3,n :=

n
∑

1

E[(ξj − pj)
3] =

n
∑

1

(pj − 3p2
j + 2p3

j).

Thus κ3,n ∼∑n
1 pj = µn, (n → ∞), when pn → 0.

Theorem 3. For Sn the Bernoulli sum above, ank = P (Sn = k),

sup
k∈Z

(

1 +

∣

∣

∣

∣

k − µn

σn

∣

∣

∣

∣

3
)

×
∣

∣

∣

∣

∣

σnank − 1√
2π

exp

{

−1

2

(

k − µn

σn

)2
}

(

1 + H3

(

k − µn

σn

)

κ3,n

3!σ3
n

)

∣

∣

∣

∣

∣

= o(1/σn) as n → ∞.

This result is closely related to Petrov’s non-uniform local limit the-
orem. The ‘uniform’ part (taking the ‘1’ term) is the Bernoulli case with
k = 3 of Theorem 12 of Petrov (1975, VII.3), except that Petrov’s condition

(*) lim inf
n→∞

σ2
n/n > 0

is violated when dn → ∞, as in Theorem 2 (iv), (v), since σ2
n =

∑n
1 dj/(1+

dj)
2. However, to compensate for this, we know the characteristic function

of our Bernoulli sum explicitly, and this enables us to handle the error terms
in the Fourier analysis of Petrov’s method successfully. The ‘non-uniform’
part (taking the ‘|(k − µn)/σn|3’ term) is similarly related to Theorem 16
of Petrov (1975, VII.3), except that he has general identical distributions
and we have Bernoulli non-identical distributions.

Theorem 3 involves the first term of an expansion of Edgeworth type
(k = 3 in Petrov’s notation). Extensions to Edgeworth expansions of arbi-
trary length (general k) are also possible, and can be proved by Petrov’s
method, adapted to our Bernoulli case as in the proof of Theorem 3 below.
We shall return to this in Section 4.

3. Proofs

Proof of Theorem 1: We follow the argument of the proof of Theorem
1 of Bingham and Maejima (1985) — BM for short — indicating differences
when these arise.

That (i) implies (ii) is Chow’s result. Now if dn ≥ δ > 0 for all large
n, as assumed, E(1/δ) ⊂ [F, dn] by a result of Meir (1963), Zeller and
Beekmann (1970, Ergänzungen, §70); thus (ii) implies (iii) and (iv).
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Conversely, the implication from (ii) to (i) is in BM. If (iii) or (iv)
holds and A = (ank) denotes the relevant matrix method,

∑

ankXk → m a.s.

Write Xs
k for the symmetrisation of Xk (difference of two independent

copies of Xk):
∑

ankXs
k → 0 a.s.

Split the sum into the sums over k ≤ µn and k > µn : Yn and Zn say. As
in BM, Yn → 0 a.s. Split off the last term of Yn: arguing as there,

an,[µn]X
s
[µn] → 0 a.s.

But (cf. Bingham 1988)

an,[µn] ∼
1

σn

√
2π

≍ 1
√

µn.
√

2π

and hence
Xs

[µn]/
√

[µn] → 0 a.s. (n → ∞).

Write N for [µn]:

Xs
N/

√
N → 0 a.s. (N → ∞).

From this, we obtain (i) as in BM. �

Proof of Theorem 2: The argument follows that of Theorem 2 of BM
with Petrov’s non-uniform local limit theorem replaced by Theorem 3.

First, note that by a Borel-Cantelli argument, our moment condition
in (i) is equivalent to

Xn = o(n1/4 log1/2 n) a.s.

We have, writing φ(x) := e−x2/2/
√

2π,

∑

ankXk −
∑

φ

(

k − µn

σn

)

Xk

=
∑

φ

(

k − µn

σn

)

H3

(

k − µn

σn

)

κ3,n

3!σ3
n

Xk + σ−2
n

∑ o(1)Xk
(

1 +
∣

∣

k−µn

σn

∣

∣

3
) ,

the o(1) being uniform in k. Call the two terms on the right the Edgeworth

term and the error term. With probability one, we may replace Xk by
o(k1/4 log1/2 k) in each. We may then estimate each by the methods of
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BM, obtaining o(µ
1/4
n log1/2 µn) (a.s.) in each case. This enables us to

reduce (v) (which contains (iv)) to

(v′) lim sup
n

(4πµn)1/4

log1/2 µn

∣

∣

∣

∣

∑

φ

(

k − µn

σn

)

Xk

∣

∣

∣

∣

= σ a.s.

This is substantially contained in the paper of Lai (1974), where he uses
the result (‘LIL for the Valiron method’) to prove his results for the Borel
and Euler methods (see particularly (16) and between (26) and (27)). Two
new complications arise: (a) our mean µn → ∞ is not integer-valued, and
(b) our variance σ2

n → ∞ satisfies σ2
n ∼ µn rather than σ2

n = µn. However,

our a.s. bound Xk = o(k1/4 log1/2 k) is exactly what is required to reduce

our sums to Lai’s, to the required accuracy o(µ
−1/4
n log1/2 µn). It suffices

to show that

(a′) lim sup
λ→∞

{

λ1/4

log1/2 λ

∞
∑

0

o(k1/4 log1/2 k)×
∣

∣

∣

∣

∣

1√
2πλ

exp

{

− (k − λ)2

2λ

}

− 1
√

2π[λ]
exp

{

− (k − [λ])2

2[λ]

}

∣

∣

∣

∣

∣

}

= 0,

(b′) lim sup
λ→∞

{

λ1/4

log1/2 λ

∞
∑

0

o(k1/4 log1/2 k)×

∣

∣

∣

∣

1√
2πλ

exp

{

−(1 + o(1))
(k − λ)2

2λ

}

− 1√
2πλ

exp

{

− (k − λ)2

2λ

}
∣

∣

∣

∣

}

= 0.

For (a′), note that if

f(λ) :=
1√
2πλ

exp

{

− (k − λ)2

2λ

}

then

f ′(λ) =
f(λ)

λ

{

−1

2
+ (k − λ) +

(k − λ)2

λ

}

.

Replace the difference f(λ)−f([λ]) by (λ− [λ])f ′(λk), where [λ] ≤ λk ≤ λ,
which may be estimated by

λ−1f(λ)

{

1

2
+ |k − λ| + (k − λ)2

2λ

}

.
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The first term is negligible with respect to f(λ). For the second, we have
to show

λ1/4

log1/2 λ

∞
∑

0

o(k1/4 log1/2 k)
|k − λ|

λ

1√
2πλ

exp

{

− (k − λ)2

2λ

}

→ 0 as λ → ∞,

or

1

λ1/4 log1/2 λ

∫ ∞

0

o(y1/4 log1/2 y)
|y − λ|√

λ

1√
2πλ

exp

{

− (y − λ)2

2λ

}

dy

→ 0 as λ → ∞.

Write (y − λ)/
√

λ = t: thus

y1/4 = λ1/4(1 + t/
√

λ)1/4, log1/2 y = log1/2 λ

(

1 +
log(1 + t/

√
λ)

log λ

)1/2

.

It remains to consider

∫

o

(

(1 + t/
√

λ)1/4

{

1 +
log(1 + t/

√
λ)

log λ

}1/2)

|t|e−t2/2dt,

which tends to 0 as λ → ∞, as required. The remaining ((k − λ)2/λ)
term is handled in the same way. Finally, (b′) follows similarly. (A similar
analysis is given by Hardy and Littlewood 1916, Thm. 3.4 and Proof of
Lemma 2.13.)

In the converse direction, that (iv) or (v) imply (i), follows as in the
implication from (ii), (iii) to (i) (Lai 1974, p. 260; BM, p. 389). �

Proof of Theorem 3: We consider separately the ‘1’ and ‘|(k−µn)/σn|3’
terms; call the two parts A and B. Write xk,n for (k − µn)/σn, φn, φn,0 for
the characteristic functions of Sn, Sn −ESn, cn for κ3,n/(3!σ3

n) ∼ 1/(3!σn).

A: ank = P (Sn = k) =
1

2π

∫ π

−π

e−itkφn(t) dt,

while for constant c

φ(x){1 + cH3(x)} =
1

2π

∫ ∞

−∞
e−t2/2{1 + c(it)3}e−itx dx.

So

2πσnank =

∫ πσn

−πσn

exp{−itxk,n}φn,0(t/σn) dt,
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2πσnank −
√

2π exp{−x2
k,n}{1 + H3(xk,n)cn}

=

∫ πσ

−πσn

exp{−itxk,n}
(

φn,0(t/σn) − e−t2/2{1 + (it)3cn}
)

dt

+

∫

|t|≥πσn

exp{−itxk,n}e−t2/2{. . . } dt,

| . . . | ≤
∫ πσn

−πσn

| . . . | dt +

∫

|t|≥πσn

| . . . | dt = I + II, say.

Expanding φn,0 as far as the third cumulant, we find that for |t| = o(σn)

(actually |t| = o(σ
1/6
n ) is all we need)

φn,0(t/σn) = exp

{

−1

2
t2 + (it)3cn + O(t4µn/σ4

n)

}

.

Now we choose ǫn → 0, and decompose I as the sum of integrals over

|t| ≤ ǫnσ
1/6
n , ǫnσ

1/6
n ≤ |t| ≤ σn/4 and σn/4 ≤ |t| ≤ πσn :

I = Ia + Ib + Ic, say.

In Ia, |t| = o(σ
1/6
n ), and the integrand may be checked to be e−t2/2o(1/σn).

Hence Ia = o(1/σn). For Ib, use Lemma 12 of Petrov (1975, p. 179) on
the first term. The integrand is exponentially small in σn, hence (‘normal
tails’) so is the integral when ǫn → 0 sufficiently slowly; similarly for the
second term. For Ic, the {· · · } term is handled as with Ib. The other term
is

Id ≤ σn

∫

1/4≤t≤π

|φn(t)|dt + σn

∫

1/4≤t≤π

exp{−σ2
nt2}(1 + |t|3σ2

n)dt.

By direct estimation,

log |φn(t)| ≤ −
n
∑

1

pj(1 − pj)(1 − cos t) = −σ2
n(1 − cos t) ≤ −cσ2

n

in the range of integration, for some c > 0, so the first term is exponentially
small; clearly, so is the second. Thus I = o(1/σn).

For II, the ‘1’ term in . . . is exponentially small as above, while the
‘t3’ term is o(1/σn) as cn ∼ 1/(3!σn).

B: x3
k,n2πσnank = x3

k,n

∫ πσn

−πσn

exp{−itxk,n}φn,0(t/σn) dt.
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Integrating by parts three times, the right is

i

∫ πσn

−πσn

exp{−itxk,n}D3φn,0(t/σn) dt.

Also

√
2πx3

k,n exp{−x2
k,n}(1 + H3(xk,n)cn)

= x3
k,n

∫ ∞

−∞
e−t2/2(1 + (it)3cn) exp{−itxk,n} dt

= i

∫ ∞

−∞
exp{−itxk,n}D3[e−t2/2(1 + (it)3cn)] dt,

integrating by parts three times again.
Subtract, and estimate the difference as a sum of integrals over the

interval [−πσn, πσn] and its complement, I and II say, as before. Write (cf.
Petrov 1975, p. 209)

gn(t) := log φn(t/σn) − itµn

σn
+

1

2
t2 − (it)3cn.

Then

φn,0(t/σn) = e−
1

2
t2 exp{(it)3cn} exp{gn(t)}

= e−
1

2
t2
(

1 + (it)3cn + Rn(t)
)

exp{gn(t)}, say.

Because we know φn,0 explicitly, we can calculate the first three derivatives
of gn, exp{gn} (and Rn) explicitly. We can then estimate I (splitting it up
as before) and II, along the lines above. All remainders are power series,
so may be differentiated term-wise. The exponential estimates obtained
above are at worst multiplied by polynomials. The extra detail, which is
tedious, is omitted. �

4. Remarks

1. In BM, an alternative proof of the LIL is given, using a ‘weighted l1

version’ of the local limit theorem, due to Bikyalis and Jasjunas (1967). We
raise here the question of obtaining a non-identically distributed version of
this result, which would provide an alternative proof of Theorem 2.
2. In the special case

∞
∑

1

1

(1 + dn)2
< ∞
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(which covers the Karamata-Stirling methods), a quite different proof of
Theorem 2 may be given, using Poisson instead of normal approximation
to reduce to Lai’s result for the Borel case. We use Theorem 2 of Barbour
(1987) with l = p = 1. In (3.15), W is the Bernoulli sum Sn, so (with

h(n) := Xn = o(n1/4 log1/2 n) a.s.) Eh(W ) is the sum
∑

ankXk to be
approximated. In (2.7) with l = 1,

∫

h dQ1 is the corresponding ‘discrete
Borel mean’ ∞

∑

0

e−µn

µk
n

k!
Xk.

The error term (in view of Remark 3, p. 765) is ν1/
√

λ, where

λ = µn =

n
∑

1

1

(1 + dj)
,

ν1 =
n
∑

1

1

(1 + dj)2
(= µn − σ2

n).

By assumption, ν1 = O(1), so this is O(1/
√

λ). Barbour’s theorem tells
us that the Jakimovski and discrete-Borel means differ by an amount of
order o

(

(λ1/4 log1/2 λ)/
√

λ
)

= o(λ−1/4 log1/2 λ) (cf. BM, p. 389), which
reduces Theorem 2 to the discrete-Borel case. We then use Lai’s result
for the Borel case, or rather its proof (Lai 1974, p. 258), with M := [λ]
replaced by M := [µn].
3. Central limit theorems have been given in this context by Embrechts
and Maejima (1984), complementing our results on LLN and LIL. Note
that their condition (6.1) holds —

∑

k

a2
nk ∼ 1√

2
sup

k
ank (n → ∞),

which simplifies their Theorems 2 and 3. To see the above, write φn,k for
φ(xk,n). Then

∑

a2
nk −

∑

φ2
n,k ≤ (sup

k
ank + sup

k
φn,k)

∑

|ank − φn,k|.

The sum is o(1) (Bingham 1988, Proposition, (iii)), while (loc. cit., (ii))
each of the suprema has order (σn

√
2π)−1, so the right hand side is o(1/σn).

But
∑

φ2
n,k ∼ 1

2
√

πσn

(Hardy 1949, Thm. 140).
4. Closely linked with the E(λ), B and KS(λ) methods considered here is
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the Riesz mean R(e
√

n, 1) (or ‘moving average M(
√

n)’; see Bingham and
Goldie (1988). Here a functional (Strassen) version of the LIL is available;
see de Acosta and Kuelbs (1983), Chan, Csörgő and Révész (1978).

For other LIL results for weighted means, see e.g. Bingham (1986,
§15).
5. The Petrov condition (*), whose failure here necessitated our Theorem
3, guarantees that normal rather than Poisson approximation is appropri-
ate. When it fails, as for KS(λ), we may use Poisson approximation as
in Remark 2, and Lai’s result. This hinges (Lai 1974, p. 258) on large-
deviation results approximating Poisson to normal (Hardy 1949, p. 200).
This suggests a direct use of large-deviation approximations to normality.
Such results are known (Petrov 1975, p. 219, (2.5)), but again only un-
der (*). Accordingly, we raise the question of obtaining large-deviation
theorems (and non-uniform local limit theorems for general rather than
Bernoulli distributions) when (*) is violated.
6. In Bingham (1984) results are obtained reducing convergence under a
‘random-walk method’ (ank) to Valiron convergence for sequences (sn) of
polynomial growth. Here one uses Petrov’s non-uniform local limit theo-
rem, with the number of Edgeworth terms retained depending on the degree
of polynomial growth. The same method applies here, using the extension
of Theorem 3 to general Edgeworth expansions mentioned in Section 2.
Thus when

sn = O(nr) for some r,

Theorem 1 there extends to give the equivalence of

∑

anksk → s

and
∑

φn,ksk → s.
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