
Percolation in ∞ + 1 Dimensions

G.R. Grimmett and C.M. Newman

Abstract

We investigate percolation on the graph of the direct product T × Z of
a regular tree T and the line Z, in which each ‘tree’ edge is open with
probability τ and each ‘line’ edge with probability λ. There are three non-
trivial phases, corresponding to the existence of 0, ∞, and 1 infinite open
clusters. Such results may be obtained also for the graph T × Z

d where
d ≥ 2.

1. Introduction

The mathematical theory of percolation was conceived by Simon Broadbent
and John Hammersley three decades or so ago as a stochastic model for the
flow of material through a porous medium (see Broadbent and Hammersley
1957). In more recent years it has been the subject of much attention from
mathematicians and physicists, and progress has been great. Substantial
advances have been made in the last ten years, during which time perco-
lation theory has become established as a fundamental tool in modelling
random media.

The two phases of percolation are now understood reasonably well.
For bond percolation (say) on Z

d, there is a critical density pc of open
edges with the property that if the actual density p satisfies p < pc then
all open clusters are (a.s.) finite, whereas if p > pc then there exists
(a.s.) a unique infinite open cluster. The majority of the main unanswered
questions about percolation relate to the behaviour of the process when
p is close or equal to pc. The picture is somewhat different for the easier
case of bond percolation on a regular tree. For such a graph (which is
regarded as ‘infinite-dimensional’ by physicists), we learn from the theory
of branching processes that there exists a critical density pc (= k−1, where
k + 1 is the common degree of the vertices) such that for p ≤ pc all open
clusters are (a.s.) finite whereas if pc < p < 1 then there exists (a.s.)
infinitely many infinite open clusters. Thus for both lattice and tree there
exist two phases; however, the corresponding supercritical phases differ
qualitatively in the number of infinite clusters (one for the lattice, and
infinitely many for the tree). One reason for this dichotomy lies in the
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fact that the growth function (i.e. the volume of the n-ball, or the number
of vertices within distance n of the origin) grows polynomially (like nd)
for Z

d but exponentially for the tree (this is one of the reasons trees are
sometimes thought of as infinite-dimensional). It is not difficult to see that,
for a large class of graphs with periodic structures including all lattices and
regular trees, the number N of infinite open clusters satisfies exactly one of
Pp(N = 0) = 1, Pp(N = 1) = 1, Pp(N = ∞) = 1, for any given value of p
(see Newman and Schulman 1981). The existing proofs of the uniqueness of
the infinite open cluster (Aizenman, Kesten, and Newman 1987; Gandolfi,
Grimmett, and Russo 1988; Burton and Keane 1989) may be adapted to
all ‘periodic’ graphs having the property that the surface-to-volume ratio
of the n-ball tends to 0 as n → ∞, and this covers all periodic graphs
with sub-exponential growth functions; an interesting class of such graphs
is discussed implicitly by Grigorchuk (1983).

Lattices and trees have two distinct phases. It is our purpose in this
paper to explore the phase diagram of a graph which possesses (at least)
three distinct phases, in which the number of infinite clusters is (a.s.) 0,
∞, and 1, respectively. The graph in question is the direct product of
the line Z and a regular tree T, and the actual construction is as follows.
Let T be an infinite regular labelled tree with degree k + 1, where k ≥ 2.
The distance δT(t1, t2) between two vertices t1 and t2 is defined to be the
number of edges in the unique path of T from t1 to t2. A nominated
vertex of T is called the origin and labelled ∅ (the empty word). Vertices
adjacent to ∅ are labelled 0, 1, 2, . . . , k respectively. More generally, vertices
having distance n (≥ 1) from the origin are labelled by words α1α2 · · ·αn

where α1 ∈ {0, 1, 2, . . . , k} and αi ∈ {1, 2, . . . , k} for i ≥ 2; these labels
are attached to the vertices in such a way that the vertex α1α2 · · ·αn has
as neighbours the vertex α1α2 · · ·αn−1 and α1α2 · · ·αnα as α ranges over
{1, 2, . . . , k}. We write V (T) for the vertex set of T. The second component
of the graph under study is the line Z = {z : z = . . . ,−1, 0, 1, . . .} with
distance function δZ(z1, z2) = |z1 − z2|. We denote by L the graph with
vertex set V (L) = {(t, z) : t ∈ V (T), z ∈ Z} and edge set given by the
adjacency relation (t1, z1) ∼ (t2, z2) if and only if δT(t1, t2)+δZ(z1, z2) = 1.
We write L = T × Z and note that two vertices of L are adjacent if and
only if either their T-components are equal and their Z-components are
adjacent in Z, or vice versa. The origin of L is the vertex (∅, 0). We call
an edge of L a T-edge (respectively a Z-edge) if it joins two vertices which
differ only in their T-component (respectively Z-component).

We shall consider bond percolation on L, but rather than restricting
ourselves to isotropic percolation with constant density, we allow a natural
anisotropy as follows. Let τ and λ satisfy 0 ≤ τ , λ ≤ 1, and declare each
T-edge (respectively Z-edge) to be open with probability τ (respectively λ)
independently of the states of all other edges. We shall generally assume
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Fig. 1. The set of possible values of (τ, λ) may be parti-
tioned into three regions corresponding to the cases N = 0,
N = ∞, and N = 1, respectively. The figure on the left is
probably correct, although we have not ruled out the possi-
bility that the figure on the right is correct for small values
of k.

that 0 < τ , λ < 1 unless we state otherwise. We write Pτ,λ for the ensuing
probability measure. Similarly we write Pτ and Pλ for the induced measures
on the edge states of subgraphs of the form T×{z} and {t}×Z respectively
for any given z ∈ Z and t ∈ V (T). More generally, the individual subscripts
τ and λ are used to denote quantities associated with projections of L onto
copies of T or of Z respectively.

We shall explore the existence and number N of infinite open clusters
in L for various ranges of values of the parameters (τ, λ). It is easy to show
in the usual way that Pτ,λ(N = 0) = 1 for all sufficiently small τ and λ.
Also, it is not difficult to adapt the arguments of Newman and Schulman
(1981) to see that, for any given (τ, λ), one of the following holds: (i) N = 0
a.s., (ii) N = 1 a.s., (iii) N = ∞ a.s. It turns out that the set of values
of (τ, λ) (i.e. the unit square) may be partitioned into three regions each
with non-empty interior corresponding to the three cases N = 0, N = 1,
and N = ∞. See Figure 1.

We make a number of remarks about Figure 1:
1. The λ = 0 boundary of the unit square has of course N = ∞ for

1/k < τ < 1; among the results of this paper is that here N = ∞ is
stable (respectively unstable) relative to N = 1 under perturbations
of λ when 1/k < τ < 1/

√
k (respectively τ ≥ 1/

√
k). Less interesting

is the stability of N = 0 for λ = 0, τ < 1/k or for τ = 0, λ < 1 and
the stability of N = 1 for τ = 1 or for λ = 1, τ > 0.

2. The upper left point (τ, λ) = (0, 1), which has N = ∞ while being
the endpoint of both N = 0 and N = 1 boundary segments, is clearly
special. For values of k sufficiently large (k ≥ 6 certainly suffices), the
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Fig. 2. As in the case of Figure 1, the figure on the
left is probably correct, although we have not ruled out the
possibility of the figure on the right.

correct picture is the one on the left, in that any neighbourhood of
the point (τ, λ) = (0, 1) contains points in each of the three regions.
For small values of k, we have not ruled out the possibility that the
second diagram in Figure 1 is correct (with only the N = 0 and N = 1
regions reaching to (0, 1)). The first diagram is of course correct for
some smallest value of k, and we have no evidence that it is not always
the correct picture.

3. A cautionary remark is that although Figure 1 shows the boundary
between N = ∞ and N = 1 as the graph of a function, we are un-
aware of any (say monotonicity) argument which guarantees this. If
the co-existence of a positive-density (defined using ergodicity in the
Z-direction) infinite cluster with infinitely many zero-density infinite
clusters (as considered in Newman and Schulman 1981) could be ruled
out, then monotonicity for the existence of a positive-density infinite
cluster would yield such a conclusion. Note however that such a result
would imply that along the common boundary of the N = ∞ and
N = 1 regimes there is a line of discontinuities of Pτ,λ((∅, 0) belongs
to a positive-density infinite cluster)!

A somewhat different picture emerges if the Z-component of L is re-
placed by the d-dimensional cubic lattice Z

d where d ≥ 2, since such a
lattice is capable of sustaining an infinite open cluster without support
from the T-edges. Our analysis may be adapted to this situation at little
extra cost, and we believe that the correct phase diagram, at least for suf-
ficiently large values of k, is as drawn on the left side of Figure 2, although
for no value of k have we ruled out the possibility that the right-hand
picture is correct. In this figure, λc(d) is the critical value of λ for bond
percolation on Z

d.
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This paper is laid out in the following way. In Section 2 we introduce
the necessary notation and we review some useful facts about percolation
theory. In Section 3 we explore conditions which are (respectively) neces-
sary and sufficient for the (a.s.) existence of an infinite open cluster in L.
This amounts to finding lower and upper bounds for the lower curve in Fig-
ure 1. We turn then to conditions which are (respectively) necessary and
sufficient for the (a.s.) existence of infinitely many infinite open clusters;
this amounts to establishing upper and lower bounds for the upper curve
in Figure 1. We present such results in Section 4. There follows a final
section devoted to the graph T × Z

d where d ≥ 2. We remark that results
similar to those of this paper may be derived for Ising (and Potts) models
on T × Z and T × Z

d (Wu 1989; Newman and Wu 1989).

2. Percolation Notation and Background

For any graph G, we write V (G) for its vertex set and 〈u, v〉 for the edge
between neighbours u and v. We shall explore percolation on L and on
the square lattice Z

2, and have already defined the appropriate percolation
model on L. For Z

2 we shall be interested in anisotropic percolation in
which each edge 〈(z1, z2), (z1 + 1, z2)〉 is open with probability τ , and each
edge 〈(z1, z2), (z1, z2 + 1)〉 is open with probability λ. We write P and E
for the corresponding probability measure and expectation.

In studying percolation on L, we shall use certain results about percola-
tion on Z

2. It is easy to see why such results are relevant. Let π be a doubly
infinite path in T (paths are defined to be self-avoiding). Then π induces
a subgraph of L, viz. that with vertex set Ππ = {(t, z) : t ∈ V (π), z ∈ Z},
and it is easily seen that this subgraph is isomorphic to Z

2; furthermore
each ‘horizontal’ edge of Ππ is open with probability τ , and each ‘vertical’
edge with probability λ.

We write θ(τ, λ) for the probability that the origin of Z
2 is in an infinite

open cluster of Z
2 and θL(τ, λ) for the probability that the origin of L is in

an infinite open cluster of L.
It is well known that θ(τ, λ) > 0 if and only if τ + λ > 1, and that the

infinite open cluster is (a.s.) unique under this assumption. See Kesten
(1982) and Grimmett (1989) for these and related results and techniques.
It is completely standard that there exists (a.s.) an infinite open cluster in
any connected graph G if and only if each vertex of G has a strictly positive
probability of being in such a cluster. For subsets A and B of the vertex
set of G, we write A ↔ B if there exists an open path in G joining some
vertex in A to some vertex in B.

We shall need the idea of the (horizontal) correlation length of bond
percolation on Z

2. Define the ‘strip’

Tm(n) = {(z1, z2) ∈ Z
2 : 0 ≤ z1 ≤ n, |z2| ≤ m} (2.1)
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of length n and height 2m, and turn Tm(n) into a graph by adding all
appropriate edges of Z

2 except those in the ‘left’ and ‘right’ sides of Tm(n)
(i.e. those of the form 〈(0, y), (0, y + 1)〉 and 〈(n, y), (n, y + 1)〉). Let

φm(τ, λ) = lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ (n, 0) in Tm(n)
)

}

. (2.2)

The limit exists by subadditivity, and furthermore

P
(

(0, 0) ↔ (n, 0) in Tm(n)
)

≤ e−nφm(τ,λ) for all n. (2.3)

As in the case of isotropic percolation on Z
2 (see Aizenman, Chayes, Chay-

es, and Newman 1988 and Grimmett 1989) it is the case that

φm(τ, λ) ↓ φ(τ, λ) as m → ∞ (2.4)

where

φ(τ, λ) = lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ (n, 0)
)

}

(2.5)

is the reciprocal of the (horizontal) correlation length. Note that, as usual,
φ(τ, λ) is strictly decreasing in τ and λ when τ + λ < 1, and

φ(τ, λ) ↓ 0 as λ ↑ 1 − τ or τ ↑ 1 − λ; (2.6)

see Grimmett (1989, Ch. 5) for the corresponding results for isotropic
percolation. We note that φ may be defined equivalently by

φ(τ, λ) = lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ Ln in H
)

}

(2.7)

where Ln is the vertical line {(n, z) : z ∈ Z} and H is the half-plane
{(x, y) : x ≥ 0, y ∈ Z}.

Inequality (2.3) provides an upper bound for

pm(n) = P
(

(0, 0) ↔ (n, 0) in Tm(n)
)

. (2.8)

A comparable lower bound is easily obtained as follows. Let r and s be
positive integers, and let A be the event that all edges of the form 〈(r −
1, y), (r−1, y+1)〉, 〈(r+1, y), (r+1, y +1)〉 for −m ≤ y < m together with
the edges 〈(r− 1, 0), (r, 0)〉 and 〈(r, 0), (r + 1, 0)〉 are open. We have by the
FKG inequality that

λ4mτ2pm(r + s) ≤ P
(

(0, 0) ↔ (r + s, 0) in Tm(r + s), and A
)

.
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The latter probability is no greater than pm(r)pm(s), so that

λ4mτ2pm(r + s) ≤ pm(r)pm(s),

implying by standard arguments that

pm(n) ≥ λ4mτ2e−nφm(τ,λ) for all n. (2.9)

Finally, here are two bounds involving the function φ(τ, λ). Clearly
pm(n) ≥ τn, so that

e−φ(τ,λ) ≥ τ. (2.10)

It is not hard to improve this in the following standard way. It is sometimes
possible to find open connections (in H) from the origin to the line Ln

by observing the (possibly empty) vertical line of open edges through the
origin, finding some open edge leading rightwards from this line, and so on.
The probability that this construction succeeds in reaching the line Ln is
{1 − E((1 − τ)L)}n where L is the number of vertices in the vertical line
of open edges through the origin. An easy calculation shows that

E
(

(1 − τ)L
)

= (1 − τ)

{

1 − λ

1 − λ(1 − τ)

}2

and hence

e−φ(τ,λ) ≥ 1 − (1 − τ)(1 − λ)2

(1 − λ(1 − τ))2
. (2.11)

3. Existence of Infinite Clusters in L

Our first results provide (respectively) necessary and sufficient conditions
for the existence in L of an infinite open cluster.

Proposition 1. If

τk(1 + λ +
√

2λ(1 + λ)) < 1 − λ (3.1)

then there is a.s. no infinite open cluster in L.

Proposition 2. If
ke−φ(τ,λ) > 1 (3.2)

where φ is given by (2.5) or (2.7), then there is a.s. an infinite open cluster
in L.

Before giving their proofs, we make a number of remarks concerning
these two propositions:
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1. Proposition 1 provides a lower bound τ = τ l(λ) for the lower curve of
Figure 1 with the endpoint properties

τ l(0) =
1

k
, τ ′

l(0) = −∞, τ l(1) = 0, and τ ′
l(1) = − 1

4k
. (3.3)

2. Proposition 2 provides an upper bound τ = τ l(λ) for the same curve
with a quality depending on how accurate a bound is used for φ(τ, λ).
The trivial bound (2.10) yields the obvious result that τ > 1/k implies
percolation. The improved bound (2.11) for φ(τ, λ) gives a τ l(λ) with

τ l(0) =
1

k
, τ ′

l(0) = −2(k − 1)/k2,

τ l(1) = 0, and τ ′
l(1) = −

(

√

k

k − 1
− 1

)

.

(3.4)

3. Various small improvements in Proposition 1, (2.11), and Proposition
2 may be obtained. We do not present these here because the increased
cost in their proofs seems to be out of proportion to the information
gained.

Proof of Proposition 1: We shall find an upper bound for X (τ, λ), the
mean number of vertices in the open cluster C of L at the origin. Our
target is to show that X (τ, λ) < ∞ if (3.1) holds, since this implies that C
is a.s. finite. We shall make use later of the same method of proof when
finding a condition which guarantees the a.s. existence of infinitely many
infinite clusters. Clearly

X (τ, λ) =
∑

(t,z)∈V (L)

Pτ,λ((∅, 0) ↔ (t, z)). (3.5)

Now (∅, 0) ↔ (t, z) if and only if there exists a (self-avoiding) path of L

from (∅, 0) to (t, z) which is open. Any such path contains T-edges and Z-
edges, but may be projected onto the section T × {0} to give a route from
(∅, 0) to the vertex (t, 0) (routes are paths with the self-avoiding condition
removed). This route is a sequence (t0, 0), (t1, 0), . . . , (tn, 0) where t0 = ∅,
tn = t, and ti is adjacent to ti+1 in T for 0 ≤ i < n. We denote this route
by πt = (t0, t1, . . . , tn), which we think of as a route in T from ∅ to t. The
aforesaid path in L from (∅, 0) to (t, z) proceeds along Z-edges from (∅, 0)
to some (∅, z0), thence along T-edges to (t1, z0), thence along Z-edges to
some (t1, z1), thence to (t2, z1), and so on until it arrives at (tn, zn) = (t, z).
We denote this path by π(t, z). It follows from (3.5) that

X (τ, λ) ≤
∑

(t,z)

∑

t:
tn=t

∑

z:
zn=z

Pτ,λ(π(t, z) is open)

=

∞
∑

n=0

∑

t

∑

z

Pτ,λ(π(t, z) is open) (3.6)
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where the final two summations are over all appropriate sequences t =
(t0, t1, . . . , tn), z = (z0, z1, . . . , zn), where (t0, z0) = (∅, 0). We sum first
over possible values for zn. The number of choices for zn is restricted by
the fact that π(t, z) may already have visited the line {tn} × Z thereby
removing certain possible vertices from consideration. In any case, the set
of possibilities for zn is no larger than the whole line {tn} × Z, so that

∑

zn

Pτ,λ(π(t, z) is open) ≤ XλPτ,λ(π(t, z)′ is open) (3.7)

where

Xλ = 1 + 2

∞
∑

i=1

λi =
1 + λ

1 − λ
(3.8)

is the mean number of vertices on {tn} × Z joined by open Z-paths to
(tn, zn−1), and π(t, z)′ is the path π(t, z) with the Z-edges from (tn, zn−1)
to (tn, zn) removed. Progressive summation over all the zi’s yields similarly

X (τ, λ) ≤
∞
∑

n=0

∑

t

τnXn+1
λ , (3.9)

the term τn coming from the fact that π(t, z) uses exactly n T-edges of L.
This bound for X (τ, λ) may be improved as follows. For a given route t0,
t1, . . . , tn with t0 = ∅, define for 2 ≤ i ≤ n

Ii =

{

1 if ti = ti−2,

0 otherwise,

and

S(t) =

n
∑

i=2

Ii.

If In = 1 then the projected walk πt moves from tn−2 to tn−1 and back to
tn−2 (= tn). In this circumstance, the sum over possible choices for zn−1 in
(3.6) contributes no more than Xλ−1, since the path π(t, z) is self-avoiding
and thus zn−1 6= zn−2. It follows similarly that

X (τ, λ) ≤
∞
∑

n=0

∑

t

τn(Xλ − 1)S(t)Xn+1−S(t)
λ

= Xλ

∞
∑

n=0

(τXλ)n
∑

t

(1 −X−1
λ )S(t) (3.10)

in place of (3.9).
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Let π be a route in T beginning at the origin, thought of as a sequence
of directed steps. We classify each step of π as either an ‘outstep’ or an
‘instep’ according to the following rule. A step from t1 to t2 where t1 6= ∅
is an outstep if and only if δT(∅, t2) > δT(∅, t1). A step from ∅ to t is an
outstep if t is not labelled 0 and an instep otherwise. From each t ∈ T there
are exactly k possible outsteps.

Returning to the route πt above, we define Ji = 1 if the step of πt

from ti to ti+1 is an instep and Ji = 2 otherwise. We set

T (J) = |{i : Ji−1 = 2, Ji = 1}|,

the number of times an outstep is followed by an instep. Note that T (J) ≤
S(t) so that

X (τ, λ) ≤ Xλ

∞
∑

n=0

(τXλ)n
∑

t

(1 −X−1
λ )T (J)

≤ Xλ

∞
∑

n=0

(kτXλ)n
∑

J

(1 −X−1
λ )T (J) (3.11)

where the final summation is over all sequences J = (J0, J1, · · · , Jn−1) of
1’s and 2’s; the second inequality holds since each sequence J corresponds
to at most kn sequences t. However,

∑

J

(1 −X−1
λ )T (J) = ( 1 1 )

(

1 1
1 −X−1

λ 1

)n−1 (

1
1

)

,

which behaves for large n in the manner of ηn−1 where η = 1 +
√

1 −X−1
λ

is the larger eigenvalue of the matrix

(

1 1
1 −X−1

λ 1

)

.

Hence X (τ, λ) < ∞ if

kτXλ

(

1 +
√

1 −X−1
λ

)

< 1. (3.12)

Substituting from (3.8) for Xλ, we obtain the assertion of the proposition. �

Proof of Proposition 2: We shall show that θL(τ, λ) > 0 if ke−φ(τ,λ) >
1. Consider the subtree T

+ of T being the component containing ∅ of the
graph obtained from T by deleting the edge 〈∅, 0〉, and fix a positive integer
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L; later we shall take the limit as L → ∞. We construct a branching process
on T

+ as follows. If t ∈ V (T+) is such that δT(∅, t) = L, we declare t to
be green if there exists an open path of T

+ × Z joining (∅, 0) to (t, 0) and
(apart from its endvertices) using only vertices of L in {(u, z) ∈ V (L) : 0 <
δT(∅, u) < L, z ∈ Z}. Proceeding inductively, suppose that t ∈ V (T+)
is such that δT(∅, t) = aL for some positive integer a. There is a unique
v ∈ V (T+) such that δT(∅, v) = (a − 1)L, δT(v, t) = L. We declare t
to be green if and only if (i) v is green, and (ii) there is an open path
from (v, 0) to (t, 0) using (apart from its endvertices) only vertices of L

in {(u, z) : (a − 1)L < δT(∅, u) < aL, z ∈ Z}. It should be clear that
the set of green vertices constitutes a branching process on T

+ with mean
family-size at least

µL = kLP
(

(0, 0) ↔ (L, 0) in T∞(L)
)

where P is the probability measure of anisotropic percolation on Z
2 and

T∞(L) = lim
m→∞

Tm(L),

Tm(L) being the strip given in (2.1). If µL > 1 for some L ≥ 1 then
this branching process is supercritical and has therefore strictly positive
probability of being infinite. This implies that θL(τ, λ) > 0. Now

− 1

L
log µL = − log k − 1

L
log P

(

(0, 0) ↔ (L, 0) in T∞(L)
)

≤ − log k − 1

L
log P

(

(0, 0) ↔ (L, 0) in Tm(L)
)

→ − log k + φm(τ, λ) as L → ∞
→ − log(ke−φ(τ,λ)) as m → ∞

by (2.2) and (2.4). Therefore, if ke−φ(τ,λ) > 1 then µL > 1 for all large L,
and the result is proved. �

4. Existence of Infinitely Many Infinite Clusters

We establish in Propositions 4 and 5 below conditions which are (respec-
tively) sufficient and necessary for the existence of infinitely many infinite
open clusters in L. First we state a lemma relating this phenomenon to the
decay of the connectivity function; its proof is given after the statement of
Proposition 5.

Lemma 3. Let C be the open cluster of L at the origin, and for t ∈ V (T)
let

Dt = {(t, z) ∈ L : (∅, 0) ↔ (t, z)}
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denote the intersection of C with {t} × Z. If, for some τ , λ, it is the case
that |D∅| < ∞ a.s., then
(i) |Dt| < ∞ a.s., for all t ∈ V (T),

(ii) Pτ,λ((∅, 0) ↔ (t, z)) → 0 as δT(∅, t) + |z| → ∞.
If further θL(τ, λ) > 0, then there are a.s. infinitely many infinite open
clusters in L, each of which intersects each {t} × Z in only finitely many
vertices.

Proposition 4. If

τ
√

k
(

1 + λ +
√

2λ(1 + λ)
)

< 1 − λ, (4.1)

then |D∅| < ∞ a.s. Thus if in addition θL(τ, λ) > 0, then there exist a.s.
infinitely many infinite open clusters in L.

Note that (4.1) differs from (3.1) only in the replacement of k by
√

k.
As was the case with (3.1), we may improve condition (4.1) to obtain a
weaker condition sufficient for the conclusion. Such improvements incur
extra costs without the benefit of substantial improvement towards opti-
mality. Proposition 4 provides a lower bound τ = τu(λ) for the upper curve
of Figure 1 satisfying

τu(0) =
1√
k

, τ ′
u(0) = −∞,

τu(1) = 0, and τ ′
u(1) = − 1

4
√

k
.

(4.2)

Proposition 4 combined with Proposition 2 implies the existence for all
k ≥ 2 of a region of values of (τ, λ) for which there exist infinitely many
infinite open clusters; to see this, simply note from (3.4) and (4.2) that
τ l(0) < τu(0). For sufficiently large k (i.e. k ≥ 6) our estimates imply that
this region extends all the way to the point (τ, λ) = (0, 1) since |τ ′

l(1)| <
|τ ′

u(1)| for k ≥ 6. It can also be checked that, for large k, τ l(λ) < τu(λ)
for all 0 < λ < 1.

We turn next to conditions which are sufficient for the a.s. uniqueness
of the infinite cluster. It is not too difficult to show that there is a.s. a
unique infinite open cluster when τ+λ > 1, making use of the fact that each
infinite path π in T gives rise to a subgraph Ππ = {(t, z) : t ∈ V (π), z ∈ Z}
of L which is isomorphic to Z

2 and therefore contains a.s. a unique infinite
open cluster. We weaken the condition τ + λ > 1 in the next proposition.

Proposition 5. If
ke−2φ(τ,λ) > 1 (4.3)
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then there exists a.s. a unique infinite open cluster in L.

As with Proposition 4, the condition (4.3) of Proposition 5 differs from
(3.2), the corresponding condition for actual percolation, in the replacement
by

√
k of k. Proposition 5 combined with (2.11) provides an upper bound

τu(λ) for the upper curve of Figure 1 satisfying

τu(0) =
1√
k
, τ ′

u(0) = −2(
√

k − 1)/k,

τu(1) = 0, and τ ′
u(1) = −

((

√
k√

k − 1

)1/2

− 1

)

.

(4.4)

We remark that it is natural to conjecture that when θL(τ, λ) > 0, either
the infinite cluster is unique or else the situation of Lemma 3 is valid;
however this has not been proved.

Proof of Lemma 3: We first prove (i). Let us suppose that

Pτ,λ(|D∅| < ∞) = 1

but that there exist t ∈ T such that

Pτ,λ(|Dt| = ∞) > 0.

We may choose such a t such that δT(∅, t) = m is a minimum, and we
write s for the unique vertex of T satisfying δT(∅, s) = m − 1, δT(s, t) = 1.
Then Ds is a.s. finite but Pτ,λ(|Dt| = ∞) = η > 0; we shall show the
event {|Ds| < ∞} ∩ {|Dt| = ∞} has probability zero, thus contradicting
the minimality of δT(∅, t). Pick ǫ satisfying 0 < ǫ < η and find a positive
integer M such that

Pτ,λ

(

(∅, 0) ↔ (s, z) for some |z| > M
)

< ǫ. (4.5)

On the other hand

Pτ,λ

(

(∅, 0) ↔ (t, z) for infinitely many |z| > M
)

= η.

There is probability at least η − ǫ that there exists an infinite set Z of
integers z with |z| > M such that (∅, 0) ↔ (t, z) for all z ∈ Z in the graph
obtained from L by deleting (i.e. without examining the states of) the
edges in the set E = {〈(s, z), (t, z)〉 : |z| > M}. Almost surely infinitely
many edges in E having an endvertex of the form (t, z) for z ∈ Z are open.
Hence, |Ds| = ∞ occurs with probability η − ǫ > 0, a contradiction.
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Before discussing (ii) we prove the final statement of the lemma. If
there were a.s. a unique infinite open cluster, then by ergodicity in the
Z-direction the set of (∅, z) belonging to this cluster would have positive
density θL and hence would be infinite, so that D∅ would be infinite with
probability θL > 0, a contradiction. However, by the arguments of Newman
and Schulman (1981), the only alternative is that there exist a.s. infinitely
many infinite clusters; each such cluster must have a.s. finite intersection
with {t} × Z by (i).

It remains to prove (ii). We first note that by (i) the probability in
(ii) tends to zero as |z| → ∞ for fixed t. Thus we assume that for some
sequence (ti, zi) with δT(∅, ti) → ∞, it is the case that

Pτ,λ

(

(∅, 0) ↔ (ti, zi)
)

≥ η > 0 for all i,

and we search for a contradiction. For each i, we may choose Ri so that
for any z, the event Az

i , that (∅, z) ↔ (ti, zi + z) in the region Ri =
{(t, z′) : δT(∅, t) ≤ Ri, z

′ ∈ Z}, is such that Pτ,λ(Az
i ) ≥ η/2. By choosing

a subsequence if necessary, we can and will assume that Ri < δT(∅, ti+1)
for each i. For z ≥ 0, let Bz

i be the event that both (∅, 0) and (∅, z) are
connected in the region Ri to vertices in {(ti, z′) : zi ≤ z′ ≤ zi + z}. Then
by the Harris-FKG inequality,

Pτ,λ(Bz
i ) ≥ Pτ,λ(A0

i ∩ Az
i ) ≥ (η/2)2 for all z ≥ 0

so that Bz
i occurs for infinitely many i’s with probability at least (η/2)2.

We show next that

Pτ,λ

(

(∅, 0) ↔ (∅, z)
)

≥ Pτ,λ(Bz
i occurs for infinitely many i’s)

≥ (η/2)2; (4.6)

the contradiction follows since we have already concluded from (i) that
Pτ,λ((∅, 0) ↔ (∅, z)) → 0 as |z| → ∞.

To obtain (4.6) let us for a given z define b1, b2, . . . to be the sequence
of i’s for which Bz

i occurs (bk = ∞ if Bz
i occurs fewer then k times). Then

(4.6) is an easy consequence of the limit as j → ∞ of the inequalities

Pτ,λ

(

bj < ∞ and (∅, 0) /↔ (∅, z) in Rbj

)

≤ (1 − λz)Pτ,λ

(

bj−1 < ∞ and (∅, 0) /↔ (∅, z) in Rbj−1

)

≤ (1 − λz)j .

To obtain this estimate, condition on bj and on the states of all edges in
Rbj

except the z Z-edges connecting the vertices in {(tbj
, z′) : zi ≤ z′ ≤

zi + z}. The states of these z edges are independent of the value of bj , and
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(∅, 0) ↔ (∅, z) in Rbj
if all z edges are open, which occurs with probability

λz . The desired estimate follows. �

Proof of Proposition 4: The proof resembles very closely that of Pro-
position 1. Arguing as in that proof, we find that

Eτ,λ|D∅| ≤ Xλ

∞
∑

n=0

(τXλ)n
∑

t

(1 −X−1
λ )T (J)

where, unlike (3.11), the second summation is over all routes t = (t0, t1, . . . ,
tn) in T satisfying t0 = ∅ and tn = ∅. In such a case, n is even. We claim
that any such path contains no more than 1

2n outsteps. To see this, note
that in excursions of t from ∅ beginning with an outstep, the number of
outsteps equals the number of insteps, whereas in excursions beginning with
an instep, the insteps outnumber the outsteps by 2. Hence each sequence
J corresponds to at most kn/2 sequences t, giving that

Eτ,λ|D∅| ≤ Xλ

∞
∑

n=0
n even

(τXλ

√
k)n

∑

J

(1 −X−1
λ )T (J)

which, by the previous argument, converges if

τXλ

√
k
(

1 +
√

1 −X−1
λ

)

< 1.

Substituting Xλ = (1+λ)/(1−λ), we conclude that, under (4.1), Eτ,λ|D∅| <
∞ and therefore Pτ,λ(|D∅| = ∞) = 0 as required. �

Proof of Proposition 5: We suppose that

ke−2φ > 1. (4.7)

By (2.4), we may pick a positive integer m such that

ke−2φm > 1

where

φm(τ, λ) = lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ (n, 0) in Tm(n)
)

}
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as in (2.2). We have from (2.9) that

pm(n) = P
(

(0, 0) ↔ (n, 0) in Tm(n)
)

satisfies
pm(n) ≥ λ4mτ2e−nφm for all n ≥ 0,

and therefore we may pick a positive integer n such that

knpm(n)2 ≥ λ8mτ4(ke−2φm)n > 1. (4.8)

Next we recall and introduce some notation. For any vertex (t, z) of L

with t 6= ∅, there is a unique vertex s of T such that δT(s, ∅) = δT(t, ∅) − 1
and δT(s, t) = 1. Let T

+(t) denote the subtree of T being the component
containing t of the graph obtained by deleting from T the edge 〈s, t〉. We
write T

+(t, z) for the subgraph of L induced by the vertex set {(u, z) :
u ∈ V (T+(t))}, and we denote by T

+
m(t, z) the subgraph of L induced by

the vertex set {(u, y) : u ∈ V (T+(t)), |z − y| ≤ m}. We introduce similar
notation for a vertex of the form (∅, z) in terms of the tree T

+(∅) obtained
as the component containing ∅ of the graph obtained from T by deleting
the edge 〈∅, 0〉.

Let (t, z) ∈ V (L). We construct a (random) set of vertices of T
+
m(t, z)

in the following way. We begin by colouring (t, z) red. Next we examine
vertices of T

+
m(t, z) of the form (u, z) where δT(t, u) = n. There is a unique

path πz(t, u) of T × {z} joining (t, z) to (u, z); with this path we associate
a ‘strip’

Sz(t, u) = {(s, y) ∈ V (L) : (s, z) ∈ πz(t, u), |y − z| ≤ m}

together with all associated edges of L with at least one endvertex of the
form (s, y) with s 6= t, u and |y − z| ≤ m. We colour the vertex (u, z)
red if and only if (t, z) ↔ (u, z) in Sz(t, u). Having coloured the vertices
(u, z) with δT(t, u) = n, we turn to those vertices (w, z) of T

+
m(t, z) with

δT(t, w) = 2n. Let (w, z) be such a vertex. There exists a unique vertex
u of T with δT(t, u) = δT(u, w) = n. We colour (w, z) red if and only if
(a) (u, z) is red, and (b) (u, z) ↔ (w, z) in the strip Sz(u, w). We proceed
inductively to obtain a set of red vertices. Clearly the set of red vertices is
the set of members of a branching process with mean family-size knpm(n),
and we denote this set by T (t, z).

We say that T (t, z) and T (t, y) overlap infinitely often (i.o.) if there
exist infinitely many vertices w ∈ T

+(t) such that (w, z) is red and (w, y) is
red. Let 0 ≤ ǫ < 1. We call the (random) set T (t, z) ǫ-robust if (conditional
on T (t, z)) the probability that T1 = T (t, z) and T2 = T (t, z + 2m + 1)
overlap i.o. is strictly larger than ǫ. We note that the (unconditional)
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probability that T1 and T2 overlap i.o. is exactly the probability that
the set of vertices w of T

+(t) such that both (w, z) and (w, z + 2m + 1)
are red is infinite. Thus this probability equals the probability that a
branching process with mean family-size knpm(n)2 is infinite; such a process
is supercritical by (4.8), and therefore the probability in question is strictly
positive. Thus

0 < Pτ,λ(T1 and T2 overlap i.o.)

= Eτ,λ

(

Pτ,λ(T2 overlaps T1 i.o.|T1)
)

≤ Pτ,λ(T1 is ǫ-robust) + ǫPτ,λ(T1 is 0-robust but not ǫ-robust)

implying that

Pτ,λ(T1 is ǫ-robust) ≥ Pτ,λ(T1 and T2 overlap i.o.) − ǫ

1 − ǫ
,

where the final quantity is strictly positive for all sufficiently small non-
negative ǫ. Clearly Pτ,λ(T1 is ǫ-robust) is a decreasing function of ǫ, and
we claim that

Pτ,λ(T1 is 0-robust) = Pτ,λ(|T1| = ∞). (4.9)

Certainly the left-hand side is no larger than the right-hand side; to prove
equality it suffices to show that

Pτ,λ(T1 is 0-robust) ≥ Pτ,λ(|T1| = ∞). (4.10)

To see this we argue as follows. Let ǫ be small and positive. We grow T1

generation by generation. Each time we reach a new red vertex, there is a
strictly positive probability that this vertex is the root of an ǫ-robust tree
in future generations. If T1 is infinite than a.s. we encounter such a red
vertex at some stage. If N is the generation number of the first such vertex
reached, then there is probability at least τnN ǫ (> 0), that T2 overlaps T1

i.o. For any given T1, we write ρ(T1) for the supremum of the values of ǫ
for which T1 is ǫ-robust, with the convention that ρ(T1) = −1 if T1 is either
finite or not 0-robust. We have proved that

Pτ,λ(ρ(T1) > 0) = Pτ,λ(T1 is infinite). (4.11)

Calculations related to these may be found in Lyons (1988).
Having set the scene, we move on to the proof proper. Let (t, z) be

a vertex of L which is in an infinite open cluster, say C(t, z), of L. We
claim that C(t, z) contains a.s. some vertex of T × {y} for infinitely many
values of y (∈ Z). Suppose to the contrary that C(t, z) is confined to some
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layer T × {M, . . . , N}. Then there exists some positive integer I which is
maximal with the property that C(t, z) contains infinitely many vertices of
T×{I}. By an argument similar to that in the proof of part (i) of Lemma
3, this event has probability 0 for any given value I, so that a.s. no such I
exists. Thus C(t, z) contains a.s. vertices of T × {y} for every value of y.
Growing C(t, z) in the usual algorithmic way (see for example Aizenman,
Kesten, and Newman 1987 or Grimmett 1989), we find that C(t, z) contains
a.s. some vertex (u, y) which is the root of a robust (i.e. 0-robust) T (u, y)
in T

+
m(u, y) (in fact this will hold for infinitely many values of y); this holds

since, each time the growth process reaches a new plane T × {y}, arriving
from T×{y−1} say, there is a strictly positive probability that the hitting
point (v, y) is joined to (v, y + m) by a direct path of open edges and in
addition (v, y + m) is the root of a robust T (v, y + m) in T

+
m(v, y + m). By

a similar argument we may (and will) assume that δT(u, ∅) is a multiple of
n.

Suppose now that (s, y) and (t, z) are distinct vertices of L which are
in infinite open clusters. We wish to show that (s, y) ↔ (t, z) a.s. on
this event. Almost surely, C(s, y) and C(t, z) contain vertices (a, i) and
(b, j) (respectively) which are the roots of robust sets T (a, i) and T (b, j) in
T

+
m(a, i) and T

+
m(b, j) respectively (and with δT(a, ∅) and δT(b, ∅) multiples

of n, and, if desired, with |i − j| > 2m). It suffices therefore to show that
there is probability 0 that there exist two such distinct vertices (a, i) and
(b, j) which are the roots of such robust sets but which are not connected by
an open path of L. Let (a, i) and (b, j) be distinct vertices of L. We say that
(a, i) is related to (b, j) if V (T+(a))∩V (T+(b)) 6= ∅, and unrelated otherwise.
Suppose first that (a, i) and (b, j) are unrelated, and let T1 = T (a, i) and
T2 = T (b, j). There exists a shortest path π of L from (a, i) to (b, j)
using no edges of T

+(a, i) or T
+(b, j) and which is open with probability

λ|i−j|τδT(a,b) = σ, say. If T1 is infinite then it is a.s. ǫ-robust for some
(random) ǫ > 0 (any ǫ in (0, ρ(T1)) will do) by (4.11). Consider the graphs
T

+
m(a, i + k(2m + 1)) as k ranges over the positive integers. Conditional

on T1, we have that if |T1| = ∞ then each vertex (a, i + k(2m + 1)) has
a strictly positive probability (depending on T1) of being the root of a
‘red’ branching process in T

+
m(a, i + k(2m + 1)) which overlaps T1 i.o., and

furthermore the corresponding events are independent for different values
of k. On the event that (a, i+k(2m+1)) is such a vertex, it is the case that
(a, i+k(2m+1)) ↔ (a, i) a.s., since there is (conditional) probability 1 that,
given two ‘red’ processes which overlap i.o., we may find two points, one
from each process, which lie in the same copy of Z and with the property
that the path of Z-edges joining them is open. (We are using here the fact
that the strips Sz(t, u) did not include Z-edges along {t} × Z or {u} × Z.)
Let Ak be the event that (i) (a, i+k(2m+1)) is the root of a red tree which
overlaps T1 i.o., (ii) (b, j+k(2m+1)) is the root of a red tree which overlaps
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T2 i.o., and (iii) the path πk with vertex set {(t, z+k(2m+1) : (t, z) ∈ π} is
open. Conditional on T1 and T2, the events {Ak : k ≥ 1} are independent
and each has probability at least 1

2ρ(T1)ρ(T2)σ (> 0); hence, a.s. some Ak

occurs, so that (a, i) ↔ (b, j) a.s. by the remarks above. Therefore

Pτ,λ

(

(a,i) ↔ (b, j); |T1| = |T2| = ∞)

=

∫∫

T1,T2:|T1|=|T2|=∞

dPτ,λ(T1)dPτ,λ(T2)Pτ,λ

(

(a, i) ↔ (b, j)|T1, T2

)

=

∫∫

T1,T2:|T1|=|T2|=∞

dPτ,λ(T1)dPτ,λ(T2)

= Pτ,λ(|T1| = ∞, |T2| = ∞)

as required.
Suppose finally that (a, i) and (b, j) are related and are the roots of

infinite red processes T (a, i) and T (b, j), respectively. Suppose also that
δT(a, ∅) and δT(b, ∅) are multiples of n, and that |i− j| > 2m. If T (a, i) and
T (b, j) overlap i.o., then (a, i) ↔ (b, j) a.s. by an earlier argument, and
so it suffices to assume that T (a, i) and T (b, j) do not overlap i.o. In this
case there exists a (random) positive integer R such that T (a, i) and T (b, j)
contain no overlaps in the set S ×Z where S = V (T+(a))∩V (T+(b))∩{t :
δT(a, t) ≥ R}. We may pick c, d ∈ S such that (c, i) and (d, j) are the roots
of infinite red processes in T

+
m(c, i) and T

+
m(d, j) and such that (c, i) and

(d, j) are unrelated. The chance that such (c, i) and (d, j) are in different
infinite open clusters of L is 0, by the preceding argument, and the proof
is complete. �

5. Percolation in ∞ + d Dimensions

In this section we consider the lattice Ld = T × Z
d for d > 1 and

discuss briefly how the arguments and results differ from the case d = 1.
We continue to denote vertices in Z

d by z, z1, and so on.
To modify the analysis which led to Propositions 1 and 4, we note

that (∅, 0) ↔ (t, z) in Ld if and only if for some n there is a route t =
(t0, t1, . . . , tn) in T from ∅ to t and a sequence z = (z−1 = 0, z0, z1, . . . , zn =
z) such that:

(a) 〈(ti−1, zi−1), (ti, zi−1)〉 is open, for i = 1, . . . , n,
(b) (ti, zi−1) ↔ (ti, zi) in {ti} × Z

d, for i = 0, . . . , n,
(c) if ti = tj , then (ti, zi) /↔ (tj , zj) in {ti} × Z

d, for 0 ≤ i < j ≤ n.
Condition (c) is a ‘cluster self-avoiding’ property; it implies among other
things that (as in the d = 1 case) zi−1 6= zi−2 when ti = ti−2. By suc-
cessively conditioning on the {ti} × Z

d clusters of (ti, zi−1), one sees that



186 Grimmett and Newman

inequality (3.10) remains valid, but with Xλ replaced by Xλ,d, the expected
cluster size for standard bond percolation on Z

d with isotropic bond density
λ. The remainder of the analysis remains valid and leads to the following
extension of Propositions 1 and 4.

Proposition 6. If

τkXλ,d

(

1 +
√

1 −X−1
λ,d

)

< 1 (5.1)

then there is a.s. no infinite open cluster in Ld. If θLd
(τ, λ) > 0 but

τ
√

kXλ,d

(

1 +
√

1 −X−1
λ,d

)

< 1, (5.2)

then there exists a.s. infinitely many infinite open clusters in Ld.

Proposition 6 provides lower bounds τ = τ l,d(λ) and τ = τu,d(λ) for
the lower and upper curves of Figure 2. These curves are only implicitly
defined since they are expressed in terms of Xλ,d. As λ → 0, Xλ,d =
1 + 2dλ + o(λ) so that, just as when d = 1,

τ l,d(0) =
1

k
, τ ′

l,d(0) = −∞; τu,d(0) =
1√
k

, τ ′
u,d(0) = −∞. (5.3)

On the other hand, for d > 1, the critical probability λc(d) for percolation
satisfies λc(d) < 1 and Xλ,d diverges as λ ↑ λc (Menshikov 1986; Menshikov,
Molchanov, and Sidorenko 1986; Aizenman and Barsky 1987). It follows
that

τ l,d(λ) ∼ 1

2k
X−1

λ,d , τu,d(λ) ∼ 1

2
√

k
X−1

λ,d as λ ↑ λc(d), (5.4)

so that τ l,d(λc(d)) = 0 = τu,d(λc(d)). Since X−1
λ,d = O(λc(d) − λ) as

λ ↑ λc(d) (Aizenman and Newman 1984), we see that the derivatives (with
respect to λ) of the two lower curves are finite for any d; however since for
d < 6 it is expected that X−1

λ,d behaves as (λc(d)−λ)γ with critical exponent
γ > 1, these derivatives should be zero at λc(d). These derivatives have
recently been proved to be non-zero in sufficiently high dimensions (see
Hara and Slade 1989a,b).

The analysis which led to Propositions 2 and 5 extends almost un-
changed to the cases of two and more dimensions. We consider anisotropic
bond percolation on Z × Z

d with edge density τ for edges in the first (Z)
component and λ for Z

d-edges, and we define φd
m(τ, λ) exactly as in (2.2)

with
Tm(n) = {(z1, z2) ∈ Z × Z

d : 0 ≤ z1 ≤ n, z2 ∈ [−m, m]d}



Percolation in ∞ + 1 Dimensions 187

(once again without the edges in its ‘left’ and ‘right’ boundary faces). Then
the (horizontal) correlation length φd is given by

φd(τ, λ) = lim
m→∞

φd
m(τ, λ)

= lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ (n, 0) in Z × Z
d
)

}

= lim
n→∞

{

− 1

n
log P

(

(0, 0) ↔ {n} × Z
d in [0,∞) × Z

d
)

}

.

Proposition 7. If
ke−φd(τ,λ) > 1, (5.5)

then there is a.s. an infinite open cluster in Ld. If

ke−2φd(τ,λ) > 1, (5.6)

then there is a.s. a unique infinite open cluster in Ld.

Proposition 7 provides implicitly defined upper bounds τ = τ l,d(λ) and

τ = τu,d(λ) for the lower and upper curves of Figure 2. Since e−φd ≥ τ
(recall (2.10)), one knows that

τ l,d(0) = 1/k, τu,d(0) = 1/
√

k. (5.7)

The generalization of (2.11) is

e−φd(τ,λ) ≥ 1 − E
(

(1 − τ)|Cλ|
)

(5.8)

where |Cλ| is the cluster size at the origin of isotropic bond percolation on
Z

d with edge-density λ. Inequality (5.8) can be used to estimate the slopes
of τ l,d and τu,d at λ = 0, but it does not provide the correct values of τ l,d(λ)
and τu,d(λ) at λ = λc(d), since if |Cλc(d)| < ∞ a.s. (as is known for d = 2
and presumed for all d > 2; see Barsky, Grimmett, and Newman 1989 for
the corresponding result for half-spaces, and Hara and Slade 1989a,b for
the full-space result in high dimensions) the right hand side of (5.8) cannot
be made larger than 1/k (or 1/

√
k) as λ ↑ λc(d) unless τ is bounded away

from zero. To see that

τ l,d(λc(d)) = 0, τu,d(λc(d)) = 0, (5.9)

simply note that φd(τ, λ) = 0 if (τ, λ) is such that there is percolation in
Z × Z

d, and this is easily seen to occur for any small τ if λ is sufficiently
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close to λc(d). Careful versions of such arguments show that λ need be no
closer than some multiple of τ as τ ↓ 0 which implies finite bounds for the
derivatives (with respect to λ) of τ l,d and τu,d at λ = λc(d).

Unfortunately, because of the behaviour of Xλ,d discussed previously,
we cannot combine our present knowledge about τ l,d and τu,d near λ =
λc(d) to conclude that the region of infinitely many infinite open clusters
extends all the way to (τ, λ) = (0, λc(d)). The best we can say for d ≥ 2 is
that for any k ≥ 2 there is such a region (since τ l,d < τu,d near λ = 0) and
that this region certainly approaches (τ, λ) = (0, λc(d)) as k → ∞. This
last fact follows by taking a fixed value of λ near to λc(d), and combining
the inequalities

τu,d(λ) ≥ 1

2Xλ,d

√
k

and

τ l,d(λ) ≤ τ0 =
1

kXλ,d
+ O(k−2) as k → ∞

where τ0 is the root of the equation

1 − E
(

(1 − τ)|Cλ|
)

=
1

k
.
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