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Preface

Within the menagerie of objects studied in contemporary probability theory,
there are a number of related animals that have attracted great interest
amongst probabilists and physicists in recent years. The inspiration for
many of these objects comes from physics, but the mathematical subject has
taken on a life of its own, and many beautiful constructions have emerged.
The overall target of these notes is to identify some of these topics, and to
develop their basic theory at a level suitable for mathematics graduates.

If the two principal characters in these notes are random walk and per-
colation, they are only part of the rich theory of uniform spanning trees,
self-avoiding walks, random networks, models for ferromagnetism and the
spread of disease, and motion in random environments. This is an area that
has attracted many fine scientists, by virtue, perhaps, of its special mixture
of modelling and problem-solving. There remain many open problems. It
is the experience of the author that these may be explained successfully to
a graduate audience open to inspiration and provocation.

The material described here may be used for personal study, and as the
bases of lecture courses of between 24 and 48 hours duration. Little is
assumed about the mathematical background of the audience beyond some
basic probability theory, but students should be willing to get their hands
dirty if they are to profit. Care should be taken in the setting of examinations,
since problems can be unexpectedly difficult. Successful examinations may
be designed, and some help is offered through the inclusion of exercises
at the ends of chapters. As an alternative to a conventional examination,
students may be asked to deliver presentations on aspects and extensions of
the topics studied.

Chapter 1 is devoted to the relationship between random walks (on graphs)
and electrical networks. This leads to the Thomson and Rayleigh principles,
and thence to a proof of Pólya’s theorem. In Chapter 2, we describe Wilson’s
algorithm for constructing a uniform spanning tree (UST), and we discuss
boundary conditions and weak limits for UST on a lattice. This chapter
includes a brief introduction to Schramm–Löwner evolutions (SLE).
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x Preface

Percolation theory appears first in Chapter 3, together with a short intro-
duction to self-avoiding walks. Correlation inequalities and other general
techniques are described in Chapter 4. A special feature of this part of the
book is a fairly full treatment of influence and sharp-threshold theorems for
product measures, and more generally for monotone measures.

We return to the basic theory of percolation in Chapter 5, including a full
account of Smirnov’s proof of Cardy’s formula. This is followed in Chapter
6 by a study of the contact model on lattices and trees.

Chapter 7 begins with a proof of the equivalence of Gibbs states and
Markov fields, and continues with an introduction to the Ising and Potts
models. Chapter 8 is an account of the random-cluster model. The quantum
Ising model features in the next chapter, particularly through its relationship
to a continuum random-cluster model, and the consequent analysis using
stochastic geometry.

Interacting particle systems form the basis of Chapter 10. This is a large
field in its own right, and little is done here beyond introductions to the
contact, voter, exclusion models, and the stochastic Ising model. Chapter
11 is devoted to random graphs of Erdős–Rényi type. There are accounts
of the giant cluster, and of the chromatic number via an application of
Hoeffding’s inequality for the tail of a martingale.

The final Chapter 12 contains one of the most notorious open problems
in stochastic geometry, namely the Lorentz model (or Ehrenfest wind–tree
model) on the square lattice.

These notes are based in part on courses given by the author within Part
3 of the Mathematical Tripos at Cambridge University over a period of sev-
eral years. They have been prepared in this form as background material for
lecture courses presented to outstanding audiences of students and profes-
sors at the 2008 PIMS–UBC Summer School in Probability, and during the
programme on Statistical Mechanics at the Institut Henri Poincaré, Paris,
during the last quarter of 2008. They were written in part during a visit
to the Mathematics Department at UCLA (with partial support from NSF
grant DMS-0301795), to which the author expresses his gratitude for the
warm welcome received there, and in part during programmes at the Isaac
Newton Institute and the Institut Henri Poincaré–Centre Emile Borel.

Throughout this work, pointers are included to more extensive accounts
of the topics covered. The selection of references is intended to be useful
rather than comprehensive.

The author thanks four artists for permission to include their work: Tom
Kennedy (Fig. 2.1), Oded Schramm (Figs 2.2–2.4), Raphaël Cerf (Fig. 5.3),
and Julien Dubédat (Fig. 5.18). The section on influence has benefited
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Preface xi

from conversations with Rob van den Berg and Tom Liggett. Stanislav
Smirnov and Wendelin Werner have consented to the inclusion of some of
their neat arguments, hitherto unpublished. Several readers have proposed
suggestions and corrections. Thank you, everyone!

G. R. G.
Cambridge
April 2010
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1

Random walks on graphs

The theory of electrical networks is a fundamental tool for studying
the recurrence of reversible Markov chains. The Kirchhoff laws and
Thomson principle permit a neat proof of Pólya’s theorem for random
walk on a d-dimensional grid.

1.1 Random walks and reversible Markov chains

A basic knowledge of probability theory is assumed in this volume. Readers
keen to acquire this are referred to [122] for an elementary introduction, and
to [121] for a somewhat more advanced account. We shall generally use the
letter P to denote a generic probability measure, with more specific notation
when helpful. The expectation of a random variable f will be written as
either P( f ) or E( f ).

Only a little knowledge is assumed about graphs, and many readers will
have sufficient acquaintance already. Others are advised to consult Section
1.6. Of the many books on graph theory, we mention [43].

Let G = (V , E) be a finite or countably infinite graph, which we assume
for simplicity to have neither loops nor multiple edges. If G is infinite, we
shall usually assume in addition that every vertex-degree is finite. A particle
moves around the vertex-set V . Having arrived at the vertex Sn at time n, its
next position Sn+1 is chosen uniformly at random from the set of neighbours
of Sn. The trajectory of the particle is called a simple random walk (SRW)
on G.

Two of the basic questions concerning simple random walk are:
1. Under what conditions is the walk recurrent, in that it returns (almost

surely) to its starting point?
2. How does the distance between Sn and S0 behave as n→∞?
The above SRW is symmetric in that the jumps are chosen uniformly

from the set of available neighbours. In a more general process, we take a
function w : E → (0,∞), and we jump along the edge e with probability
proportional to we.
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2 Random walks on graphs

Any reversible Markov chain1 on the set V gives rise to such a walk as
follows. Let Z = (Zn : n ≥ 0) be a Markov chain on V with transition
matrix P , and assume that Z is reversible with respect to some positive
function π : V → (0,∞), which is to say that

(1.1) πu pu,v = πv pv,u, u, v ∈ V .

With each distinct pair u, v ∈ V , we associate the weight

(1.2) wu,v = πu pu,v,

noting by (1.1) that wu,v = wv,u . Then

(1.3) pu,v =
wu,v

Wu
, u, v ∈ V ,

where
Wu =

∑

v∈V

wu,v, u ∈ V .

That is, given that Zn = u, the chain jumps to a new vertex vwith probability
proportional to wu,v . This may be set in the context of a random walk on
the graph with the vertex-set V , and with edge-set containing all e = 〈u, v〉
such that pu,v > 0. With the edge e we associate the weight we = wu,v .

In this chapter, we develop the relationship between random walks on G
and electrical networks on G. There are some excellent accounts of this
area, and the reader is referred to the books of Doyle and Snell [72], Lyons
and Peres [181], and Aldous and Fill [18], amongst others. The connection
between these two topics is made via the so-called ‘harmonic functions’ of
the random walk.

1.4 Definition. Let U ⊆ V , and let Z be a Markov chain on V with tran-
sition matrix P , that is reversible with respect to the positive function π .
The function f : V → R is harmonic on U (with respect to the transition
matrix P) if

f (u) =
∑

v∈V

pu,v f (v), u ∈ U,

or equivalently, if f (u) = E( f (Z1) | Z0 = u) for u ∈ U .

From the pair (P, π), we can construct the graph G as above, and the
weight function w as in (1.2). We refer to the pair (G, w) as the weighted
graph associated with (P, π). We shall speak of f as being harmonic (for
(G, w)) if it is harmonic with respect to P .

1An account of the basic theory of Markov chains may be found in [121].
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1.2 Electrical networks 3

The so-called hitting probabilities are the basic examples of harmonic
functions for the chain Z . Let U ⊆ V , W = V \U , and s ∈ U . For u ∈ U ,
let g(u) be the probability that the chain, started at u, hits s before W . That
is,

g(u) = Pu(Zn = s for some n < TW ),

where
TW = inf{n ≥ 0 : Zn ∈ W }

is the first-passage time to W , and Pu(·) = P(· | Z0 = u) denotes the
probability measure conditional on the chain starting at u.

1.5 Theorem. The function g is harmonic on U \ {s}.
Evidently, g(s) = 1, and g(v) = 0 for v ∈ W . We speak of these values

of g as being the ‘boundary conditions’ of the harmonic function g.

Proof. This is an elementary exercise using the Markov property. For
u /∈ W ∪ {s},

g(u) =
∑

v∈V

pu,vPu
(
Zn = s for some n < TW

∣∣ Z1 = v
)

=
∑

v∈V

pu,vg(v),

as required. �

1.2 Electrical networks

Throughout this section, G = (V , E) is a finite graph with neither loops
nor multiple edges, and w : E → (0,∞) is a weight function on the edges.
We shall assume further that G is connected.

We may build an electrical network with diagram G, in which the edge
e has conductance we (or, equivalently, resistance 1/we). Let s, t ∈ V
be distinct vertices termed sources, and write S = {s, t} for the source-set.
Suppose we connect a battery across the pair s, t . It is a physical observation
that electrons flow along the wires in the network. The flow is described by
the so-called Kirchhoff laws, as follows.

To each edge e = 〈u, v〉, there are associated (directed) quantities φu,v
and iu,v , called the potential difference from u to v, and the current from u
to v, respectively. These are antisymmetric,

φu,v = −φv,u, iu,v = −iv,u .
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4 Random walks on graphs

1.6 Kirchhoff’s potential law. The cumulative potential difference around
any cycle v1, v2, . . . , vn, vn+1 = v1 of G is zero, that is,

(1.7)
n∑

j=1

φvj ,vj+1 = 0.

1.8 Kirchhoff’s current law. The total current flowing out of any vertex
u ∈ V other than the source-set is zero, that is,

(1.9)
∑

v∈V

iu,v = 0, u 6= s, t.

The relationship between resistance/conductance, potential difference,
and current is given by Ohm’s law.

1.10 Ohm’s law. For any edge e = 〈u, v〉,
iu,v = weφu,v .

Kirchhoff’s potential law is equivalent to the statement that there exists
a function φ : V → R, called a potential function, such that

φu,v = φ(v) − φ(u), 〈u, v〉 ∈ E .

Since φ is determined up to an additive constant, we are free to pick the
potential of any single vertex. Note the convention that current flows uphill:
iu,v has the same sign as φu,v = φ(v)− φ(u).

1.11 Theorem. A potential function is harmonic on the set of vertices other
than the source-set.

Proof. Let U = V \ {s, t}. By Kirchhoff’s current law and Ohm’s law,
∑

v∈V

wu,v[φ(v)− φ(u)] = 0, u ∈ U,

which is to say that

φ(u) =
∑

v∈V

wu,v

Wu
φ(v), u ∈ U,

where
Wu =

∑

v∈V

wu,v.

That is, φ is harmonic on U . �
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1.2 Electrical networks 5

We can use Ohm’s law to express the potential differences in terms of the
currents, and thus the two Kirchhoff laws may be viewed as concerning the
currents only. Equation (1.7) becomes

(1.12)
n∑

j=1

ivj ,vj+1

w〈vj ,vj+1〉
= 0,

valid for any cycle v1, v2, . . . , vn, vn+1 = v1. With (1.7) written thus, each
law is linear in the currents, and the superposition principle follows.

1.13 Theorem (Superposition principle). If i1 and i2 are solutions of the
two Kirchhoff laws with the same source-set, then so is the sum i1 + i2.

Next we introduce the concept of a ‘flow’ on the graph.

1.14 Definition. Let s, t ∈ V , s 6= t . An s/t-flow j is a vector j =
( ju,v : u, v ∈ V , u 6= v), such that:
(a) ju,v = − jv,u ,
(b) ju,v = 0 whenever u ≁ v,
(c) for any u 6= s, t , we have that

∑
v∈V ju,v = 0.

The vertices s and t are called the ‘source’ and ‘sink’ of an s/t flow, and
we usually abbreviate ‘s/t flow’ to ‘flow’. For any flow j , we write

Ju =
∑

v∈V

ju,v, u ∈ U,

noting by (c) above that Ju = 0 for u 6= s, t . Thus,

Js + Jt =
∑

u∈V

Ju =
∑

u,v∈V

ju,v = 1
2

∑

u,v∈V

( ju,v + jv,u) = 0.

Therefore, Js = −Jt , and we call |Js | the size of the flow j , denoted | j |. If
|Js | = 1, we call j a unit flow. We shall normally take Js > 0, in which
case s is the source, and t the sink of the flow, and we say that j is a flow
from s to t .

Note that any solution i to the Kirchhoff laws with source-set {s, t} is an
s/t flow.

1.15 Theorem. Let i1 and i2 be two solutions of the Kirchhoff laws with
the same source and sink and equal size. Then i1 = i2.

Proof. By the superposition principle, j = i1 − i2 satisfies the two Kirch-
hoff laws. Furthermore, under the flow j , no current enters or leaves the
system. Therefore, Jv = 0 for all v ∈ V . Suppose ju1,u2 > 0 for some
edge 〈u1, u2〉. By the Kirchhoff current law, there exists u3 such that
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6 Random walks on graphs

ju2,u3 > 0. By iteration, there exists a cycle u1, u2, . . . , un, un+1 = u1
such that ju j ,u j+1 > 0 for j = 1, 2, . . . , n. By Ohm’s law, the correspond-
ing potential function satisfies

φ(u1) < φ(u2) < · · · < φ(un+1) = φ(u1),

a contradiction. Therefore, ju,v = 0 for all u, v. �

For a given size of input current, and given source s and sink t , there can
be no more than one solution to the two Kirchhoff laws,but is there a solution
at all? The answer is of course affirmative, and the unique solution can be
expressed explicitly in terms of counts of spanning trees.2 Consider first the
special case when we = 1 for all e ∈ E . Let N be the number of spanning
trees of G. For any edge 〈a, b〉, let5(s, a, b, t) be the property of spanning
trees that: the unique s/t path in the tree passes along the edge 〈a, b〉 in the
direction from a to b. Let N (s, a, b, t) be the set of spanning trees of G
with the property 5(s, a, b, t), and N(s, a, b, t) = |N (s, a, b, t)|.
1.16 Theorem. The function

(1.17) ia,b =
1

N

[
N(s, a, b, t)− N(s, b, a, t)

]
, 〈a, b〉 ∈ E,

defines a unit flow from s to t satisfying the Kirchhoff laws.

Let T be a spanning tree of G chosen uniformly at random from the set
T of all such spanning trees. By Theorem 1.16 and the previous discussion,
the unique solution to the Kirchhoff laws with source s, sink t , and size 1 is
given by

ia,b = P
(
T has 5(s, a, b, t)

)
− P

(
T has 5(s, b, a, t)

)
.

We shall return to uniform spanning trees in Chapter 2.
We prove Theorem 1.16 next. Exactly the same proof is valid in the case

of general conductanceswe. In that case, we define the weight of a spanning
tree T as

w(T ) =
∏

e∈T

we,

and we set

(1.18) N∗ =
∑

T∈T
w(T ), N∗(s, a, b, t) =

∑

T with 5(s,a,b,t)

w(T ).

The conclusion of Theorem 1.16 holds in this setting with

ia,b =
1

N∗
[
N∗(s, a, b, t)− N∗(s, b, a, t)

]
, 〈a, b〉 ∈ E .

2This was discovered in an equivalent form by Kirchhoff in 1847, [153].
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1.2 Electrical networks 7

Proof of Theorem 1.16. We first check the Kirchhoff current law. In every
spanning tree T , there exists a unique vertex b such that the s/t path of
T contains the edge 〈s, b〉, and the path traverses this edge from s to b.
Therefore,

∑

b∈V

N(s, s, b, t) = N, N(s, b, s, t) = 0 for b ∈ V .

By (1.17),
∑

b∈V

is,b = 1,

and, by a similar argument,
∑

b∈V ib,t = 1.

Let T be a spanning tree of G. The contribution towards the quantity
ia,b, made by T , depends on the s/t path π of T , and equals

N−1 if π passes along 〈a, b〉 from a to b,

−N−1 if π passes along 〈a, b〉 from b to a,(1.19)

0 if π does not contain the edge 〈a, b〉.

Let v ∈ V , v 6= s, t , and write Iv =
∑
w∈V iv,w. If v ∈ π , the contribution

of T towards Iv is N−1− N−1 = 0, since π arrives at v along some edge of
the form 〈a, v〉, and departs v along some edge of the form 〈v, b〉. If v /∈ π ,
then T contributes 0 to Iv . Summing over T , we obtain that Iv = 0 for all
v 6= s, t , as required for the Kirchhoff current law.

We next check the Kirchhoff potential law. Let v1, v2, . . . , vn, vn+1 = v1
be a cycle C of G. We shall show that

(1.20)
n∑

j=1

ivj ,vj+1 = 0,

and this will confirm (1.12), on recalling that we = 1 for all e ∈ E . It is
more convenient in this context to work with ‘bushes’ than spanning trees.
A bush (or, more precisely, an s/t-bush) is defined to be a forest on V
containing exactly two trees, one denoted Ts and containing s, and the other
denoted Tt and containing t . We write (Ts, Tt ) for this bush. Let e = 〈a, b〉,
and let B(s, a, b, t) be the set of bushes with a ∈ Ts and b ∈ Tt . The
sets B(s, a, b, t) and N (s, a, b, t) are in one–one correspondence, since
the addition of e to B ∈ B(s, a, b, t) creates a unique member T = T (B)
of N (s, a, b, t), and vice versa.
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8 Random walks on graphs

By (1.19) and the above, a bush B = (Ts, Tt) makes a contribution to
ia,b of

N−1 if B ∈ B(s, a, b, t),

−N−1 if B ∈ B(s, b, a, t),

0 otherwise.

Therefore, B makes a contribution towards the sum in (1.20) that is equal to
N−1(F+−F−), where F+ (respectively, F−) is the number of pairs vj , vj+1
of C , 1 ≤ j ≤ n, with vj ∈ Ts , vj+1 ∈ Tt (respectively, vj+1 ∈ Ts , vj ∈ Tt ).
Since C is a cycle, F+ = F−, whence each bush contributes 0 to the sum,
and (1.20) is proved. �

1.3 Flows and energy

Let G = (V , E) be a connected graph as before. Let s, t ∈ V be distinct
vertices, and let j be an s/t flow. With we the conductance of the edge e,
the (dissipated) energy of j is defined as

E( j ) =
∑

e=〈u,v〉∈E

j 2
u,v/we = 1

2

∑

u,v∈V
u∼v

j 2
u,v/w〈u,v〉.

The following piece of linear algebra will be useful.

1.21 Proposition. Let ψ : V → R, and let j be an s/t flow. Then

[ψ(t)− ψ(s)]Js = 1
2

∑

u,v∈V

[ψ(v) − ψ(u)] ju,v.

Proof. By the properties of a flow,
∑

u,v∈V

[ψ(v)− ψ(u)] ju,v =
∑

v∈V

ψ(v)(−Jv)−
∑

u∈V

ψ(u)Ju

= −2[ψ(s)Js + ψ(t)Jt ]

= 2[ψ(t)− ψ(s)]Js,

as required. �

Let φ and i satisfy the Kirchhoff laws. We apply Proposition 1.21 with
ψ = φ and j = i to find by Ohm’s law that

(1.22) E(i) = [φ(t)− φ(s)]Is .

That is, the energy of the true current-flow i between s to t equals the energy
dissipated in a single 〈s, t〉 edge carrying the same potential difference and
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1.3 Flows and energy 9

total current. The conductance Weff of such an edge would satisfy Ohm’s
law, that is,

(1.23) Is = Weff[φ(t)− φ(s)],
and we define the effective conductance Weff by this equation. The effective
resistance is

(1.24) Reff =
1

Weff
,

which, by (1.22)–(1.23), equals E(i)/I 2
s . We state this as a lemma.

1.25 Lemma. The effective resistance Reff of the network between vertices
s and t equals the dissipated energy when a unit flow passes from s to t.

It is useful to be able to do calculations. Electrical engineers have devised
a variety of formulaic methods for calculating the effective resistance of a
network, of which the simplest are the series and parallel laws, illustrated
in Figure 1.1.

e

e f
f

Figure 1.1. Two edges e and f in parallel and in series.

1.26 Series law. Two resistors of size r1 and r2 in series may be replaced
by a single resistor of size r1 + r2.

1.27 Parallel law. Two resistors of size r1 and r2 in parallel may be re-
placed by a single resistor of size R where R−1 = r−1

1 + r−1
2 .

A third such rule, the so-called ‘star–triangle transformation’, may be
found at Exercise 1.5. The following ‘variational principle’ has many uses.

1.28 Theorem (Thomson principle). Let G = (V , E) be a connected
graph, andwe, e ∈ E, (strictly positive) conductances. Let s, t ∈ V , s 6= t .
Amongst all unit flows through G from s to t, the flow that satisfies the
Kirchhoff laws is the unique s/t flow i that minimizes the dissipated energy.
That is,

E(i) = inf
{

E( j ) : j a unit flow from s to t
}
.

Proof. Let j be a unit flow from source s to sink t , and set k = j − i where
i is the (unique) unit-flow solution to the Kirchhoff laws. Thus, k is a flow
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10 Random walks on graphs

with zero size. Now, with e = 〈u, v〉 and re = 1/we,

2E( j ) =
∑

u,v∈V

j 2
u,vre =

∑

u,v∈V

(ku,v + iu,v)
2re

=
∑

u,v∈V

k2
u,vre +

∑

u,v∈V

i2
u,vre + 2

∑

u,v∈V

iu,vku,vre.

Let φ be the potential function corresponding to i . By Ohm’s law and
Proposition 1.21,

∑

u,v∈V

iu,vku,vre =
∑

u,v∈V

[φ(v)− φ(u)]ku,v

= 2[φ(t)− φ(s)]Ks,

which equals zero. Therefore, E( j ) ≥ E(i), with equality if and only if
j = i . �

The Thomson ‘variational principle’ leads to a proof of the ‘obvious’ fact
that the effective resistance of a network is a non-decreasing function of the
resistances of individual edges.

1.29 Theorem (Rayleigh principle). The effective resistance Reff of the
network is a non-decreasing function of the edge-resistances (re : e ∈ E).

It is left as an exercise to show that Reff is a concave function of the (re).
See Exercise 1.6.

Proof. Consider two vectors (re : e ∈ E) and (r ′e : e ∈ E) of edge-
resistances with re ≤ r ′e for all e. Let i and i ′ denote the corresponding unit
flows satisfying the Kirchhoff laws. By Lemma 1.25, with re = r〈u,v〉,

Reff = 1
2

∑

u,v∈V
u∼v

i2
u,vre

≤ 1
2

∑

u,v∈V
u∼v

(i ′u,v)
2re by the Thomson principle

≤ 1
2

∑

u,v∈V
u∼v

(i ′u,v)
2r ′e since re ≤ r ′e

= R′eff,

as required. �
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1.4 Recurrence and resistance 11

1.4 Recurrence and resistance

Let G = (V , E) be an infinite connected graph with finite vertex-degrees,
and let (we : e ∈ E) be (strictly positive) conductances. We shall consider
a reversible Markov chain Z = (Zn : n ≥ 0) on the state space V with
transition probabilities given by (1.3). Our purpose is to establish a condition
on the pair (G, w) that is equivalent to the recurrence of Z .

Let 0 be a distinguished vertex of G, called the ‘origin’, and suppose
Z0 = 0. The graph-theoretic distance between two vertices u, v is the
number of edges in a shortest path between u and v, denoted δ(u, v). Let

3n = {u ∈ V : δ(0, v) ≤ n},
∂3n = 3n \3n−1 = {u ∈ V : δ(0, v) = n}.

We think of ∂3n as the ‘boundary’ of 3n . Let Gn be the subgraph of G
comprising the vertex-set3n , together with all edges between them. We let
Gn be the graph obtained from Gn by identifying all vertices in ∂3n , and
we denote the identified vertex as In . The resulting finite graph Gn may be
considered an electrical network with sources 0 and In . Let Reff(n) be the
effective resistance of this network. The graph Gn may be obtained from
Gn+1 by identifying all vertices lying in ∂3n ∪ {In+1}, and thus, by the
Rayleigh principle, Reff(n) is non-decreasing in n. Therefore, the limit

Reff = lim
n→∞ Reff(n)

exists.

1.30 Theorem. The probability of ultimate return by Z to the origin 0 is
given by

P0(Zn = 0 for some n ≥ 1) = 1− 1

W0 Reff
,

where W0 =
∑
v: v∼0w〈0,v〉.

The return probability is non-decreasing if W0 Reff is increased. By the
Rayleigh principle, this can be achieved, for example, by removing an edge
of E that is not incident to 0. The removal of an edge incident to 0 can have
the opposite effect, since W0 decreases while Reff increases (see Figure 1.2).

A 0/∞ flow is a vector j = ( ju,v : u, v ∈ V , u 6= v) satisfying (1.14)(a)–
(b) and also (c) for all u 6= 0. That is, it has source 0 but no sink.

1.31 Corollary.
(a) The chain Z is recurrent if and only if Reff = ∞.
(b) The chain Z is transient if and only if there exists a non-zero 0/∞ flow

j on G whose energy E( j ) =∑e j 2
e /we satisfies E( j ) <∞.
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12 Random walks on graphs

e

0

Figure 1.2. This is an infinite binary tree with two parallel edges joining
the origin to the root. When each edge has unit resistance, it is an easy
calculation that Reff = 3

2 , so the probability of return to 0 is 2
3 . If the

edge e is removed, this probability becomes 1
2 .

It is left as an exercise to extend this to countable graphs G without the
assumption of finite vertex-degrees.

Proof of Theorem 1.30. Let

gn(v) = Pv(Z hits ∂3n before 0), v ∈ 3n .

By Theorem 1.5, gn is the unique harmonic function on Gn with boundary
conditions

gn(0) = 0, gn(v) = 1 for v ∈ ∂3n .

Therefore, gn is a potential function on Gn viewed as an electrical network
with source 0 and sink In .

By conditioning on the first step of the walk, and using Ohm’s law,

P0(Z returns to 0 before reaching ∂3n)

= 1−
∑

v: v∼0

p0,vgn(v)

= 1−
∑

v: v∼0

w0,v

W0
[gn(v)− gn(0)]

= 1− |i(n)|
W0

,

where i(n) is the flow of currents in Gn , and |i(n)| is its size. By (1.23)–
(1.24), |i(n)| = 1/Reff(n). The theorem is proved on noting that

P0(Z returns to 0 before reaching ∂3n)→ P0(Zn = 0 for some n ≥ 1)
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1.5 Recurrence and resistance 13

as n→∞, by the continuity of probability measures. �

Proof of Corollary 1.31. Part (a) is an immediate consequence of Theorem
1.30, and we turn to part (b). By Lemma 1.25, there exists a unit flow i(n)
in Gn with source 0 and sink In , and with energy E(i(n)) = Reff(n). Let i
be a non-zero 0/∞ flow; by dividing by its size, we may take i to be a unit
flow. When restricted to the edge-set En of Gn , i forms a unit flow from 0
to In . By the Thomson principle, Theorem 1.28,

E(i(n)) ≤
∑

e∈En

i2
e /we ≤ E(i),

whence

E(i) ≥ lim
n→∞

E(i(n)) = Reff.

Therefore, by part (a), E(i) = ∞ if the chain is recurrent.

Suppose, conversely, that the chain is transient. By diagonal selection3,
there exists a subsequence (nk) along which i(nk) converges to some limit
j (that is, i(nk)e → je for every e ∈ E). Since each i(nk) is a unit flow
from the origin, j is a unit 0/∞ flow. Now,

E(i(nk)) =
∑

e∈E

i(nk)
2
e/we

≥
∑

e∈Em

i(nk)
2
e/we

→
∑

e∈Em

j (e)2/we as k →∞

→ E( j ) as m →∞.

Therefore,

E( j ) ≤ lim
k→∞

Reff(nk) = Reff <∞,

and j is a flow with the required properties. �

3Diagonal selection: Let (xm(n) : m, n ≥ 1) be a bounded collection of reals. There
exists an increasing sequence n1, n2, . . . of positive integers such that, for every m, the
limit limk→∞ xm(nk ) exists.
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14 Random walks on graphs

1.5 Pólya’s theorem

The d-dimensional cubic lattice Ld has vertex-set Zd and edges between any
two vertices that are Euclidean distance one apart. The following celebrated
theorem can be proved by estimating effective resistances.4

1.32 Pólya’s Theorem [200]. Symmetric random walk on the lattice Ld in
d dimensions is recurrent if d = 1, 2 and transient if d ≥ 3.

The advantage of the following proof of Pólya’s theorem over more stan-
dard arguments is its robustness with respect to the underlying graph. Sim-
ilar arguments are valid for graphs that are, in broad terms, comparable to
Ld when viewed as electrical networks.

Proof. For simplicity, and with only little loss of generality (see Exercise
1.10), we shall concentrate on the cases d = 2, 3. Let d = 2, for which case
we aim to show that Reff = ∞. This is achieved by finding an infinite lower
bound for Reff , and lower bounds can be obtained by decreasing individual
edge-resistances. The identification of two vertices of a network amounts
to the addition of a resistor with 0 resistance, and, by the Rayleigh principle,
the effective resistance of the network can only decrease.

0 1 2 3

Figure 1.3. The vertex labelled i is a composite vertex obtained by
identifying all vertices with distance i from 0. There are 8i − 4 edges of
L2 joining vertices i − 1 and i .

From L2, we construct a new graph in which, for each k = 1, 2, . . . ,
the set ∂3k = {v ∈ Z2 : δ(0, v) = k} is identified as a singleton. This
transforms L2 into the graph shown in Figure 1.3. By the series/parallel
laws and the Rayleigh principle,

Reff(n) ≥
n−1∑

i=1

1

8i − 4
,

whence Reff(n) ≥ c log n→∞ as n→∞.
Suppose now that d = 3. There are at least two ways of proceeding.

We shall present one such route taken from [182], and we shall then sketch

4An amusing story is told in [201] about Pólya’s inspiration for this theorem.
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1.5 Pólya’s theorem 15

Cu

S

Fu,v

5(Fu,v)

0

Figure 1.4. The flow along the edge 〈u, v〉 is equal to the area of
the projection 5(Fu,v) on the unit sphere centred at the origin, with a
suitable convention for its sign.

the second which has its inspiration in [72]. By Corollary 1.31, it suffices
to construct a non-zero 0/∞ flow with finite energy. Let S be the surface
of the unit sphere of R3 with centre at the origin 0. Take u ∈ Z3, u 6= 0,
and position a unit cube Cu in R3 with centre at u and edges parallel to the
axes (see Figure 1.4). For each neighbour v of u, the directed edge [u, v〉
intersects a unique face, denoted Fu,v , of Cu .

For x ∈ R3, x 6= 0, let 5(x) be the point of intersection with S of the
straight line segment from 0 to x . Let ju,v be equal in absolute value to the
surface measure of 5(Fu,v). The sign of ju,v is taken to be positive if and
only if the scalar product of 1

2 (u+ v) and v− u, viewed as vectors in R3, is
positive. Let jv,u = − ju,v. We claim that j is a 0/∞ flow on L3. Parts (a)
and (b) of Definition 1.14 follow by construction, and it remains to check
(c).

The surface of Cu has a projection5(Cu) on S. The sum Ju =
∑
v∼u ju,v

is the integral over x ∈ 5(Cu), with respect to surface measure, of the
number of neighbours v of u (counted with sign) for which x ∈ 5(Fu,v).
Almost every x ∈ 5(Cu) is counted twice, with signs + and −. Thus the
integral equals 0, whence Ju = 0 for all u 6= 0.

It is easily seen that J0 6= 0, so j is a non-zero flow. Next, we estimate
its energy. By an elementary geometric consideration, there exist ci < ∞
such that:
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16 Random walks on graphs

(i) | ju,v| ≤ c1/|u|2 for u 6= 0, where |u| = δ(0, u) is the length of a
shortest path from 0 to u,

(ii) the number of u ∈ Z3 with |u| = n is smaller than c2n2.
It follows that

E( j ) ≤
∑

u 6=0

∑

v∼u

j 2
u,v ≤

∞∑

n=1

6c2n2
( c1

n2

)2
<∞,

as required. �

Another way of showing Reff < ∞ when d = 3 is to find a finite upper
bound for Reff . Upper bounds can be obtained by increasing individual
edge-resistances, or by removing edges. The idea is to embed a tree with
finite resistance in L3. Consider a binary tree Tρ in which each connection
between generation n−1 and generation n has resistanceρn, whereρ > 0. It
is an easy exercise using the series/parallel laws that the effective resistance
between the root and infinity is

Reff(Tρ) =
∞∑

n=1

(ρ/2)n,

which we make finite by choosing ρ < 2. We proceed to embed Tρ in Z3 in
such a way that a connection between generation n−1 and generation n is a
lattice-path of length order ρn . There are 2n vertices of Tρ in generation n,
and their lattice-distance from 0 has order

∑n
k=1 ρ

k , that is, order ρn . The
surface of the k-ball in R3 has order k2 , and thus it is necessary that

c(ρn)2 ≥ 2n,

which is to say that ρ >
√

2.
Let
√

2 < ρ < 2. It is now fairly simple to check that Reff < c′Reff(Tρ).
This method has been used in [114] to prove the transience of the infinite
open cluster of percolation on L3. It is related to, but different from, the
tree embeddings of [72].

1.6 Graph theory

A graph G = (V , E) comprises a finite or countably infinite vertex-set V
and an associated edge-set E . Each element of E is an unordered pair u, v
of vertices written 〈u, v〉. Two edges with the same vertex-pairs are said to
be in parallel, and edges of the form 〈u, u〉 are called loops. The graphs of
these notes will generally contain neither parallel edges nor loops, and this is
assumed henceforth. Two vertices u, v are said to be joined (or connected)
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1.6 Graph theory 17

by an edge if 〈u, v〉 ∈ E . In this case, u and v are the endvertices of e,
and we write u ∼ v and say that u is adjacent to v. An edge e is said to
be incident to its endvertices. The number of edges incident to vertex u is
called the degree of u, denoted deg(u). The negation of the relation ∼ is
written ≁.

Since the edges are unordered pairs, we call such a graph undirected (or
unoriented). If some or all of its edges are ordered pairs, written [u, v〉, the
graph is called directed (or oriented).

A path of G is defined as an alternating sequence v0, e0, v1, e1, . . . , en−1,

vn of distinct vertices vi and edges ei = 〈vi , vi+1〉. Such a path has length
n; it is said to connect v0 to vn , and is called a v0/vn path. A cycle or circuit
of G is an alternating sequence v0, e0, v1, . . . , en−1, vn, en, x0 of vertices
and edges such that v0, e0, . . . , en−1, vn is a path and en = 〈vn, v0〉. Such
a cycle has length n + 1. The (graph-theoretic) distance δ(u, v) from u to
v is defined to be the number of edges in a shortest path of G from u to v.

We write u ! v if there exists a path connecting u andv. The relation !

is an equivalence relation, and its equivalence classes are called components
(or clusters) of G. The components of G may be considered as either sets of
vertices, or graphs. The graph G is connected if it has a unique component.
It is a forest if it contains no cycle, and a tree if in addition it is connected.

A subgraph of the graph G = (V , E) is a graph H = (W, F) with
W ⊆ V and F ⊆ E . The subgraph H is a spanning tree of G if V = W
and H is a tree. A subset U ⊆ V of the vertex-set of G has boundary
∂U = {u ∈ U : u ∼ v for some v ∈ V \U }.

The lattice-graphs are the most important for applications in areas such
as statistical mechanics. Lattices are sometimes termed ‘crystalline’ since
they are periodic structures of crystal-like units. A general definition of a
lattice may confuse readers more than help them, and instead we describe
some principal examples.

Let d be a positive integer. We write Z = {. . . ,−1, 0, 1, . . .} for the
set of all integers, and Zd for the set of all d-vectors v = (v1, v2, . . . , vd )

with integral coordinates. For v ∈ Zd , we generally write vi for the i th
coordinate of v, and we define

δ(u, v) =
d∑

i=1

|ui − vi |.

The origin of Zd is denoted by 0. We turn Zd into a graph, called the d-
dimensional (hyper)cubic lattice, by adding edges between all pairs u, v of
points of Zd with δ(u, v) = 1. This graph is denoted as Ld , and its edge-set
as Ed : thus, Ld = (Zd ,Ed). We often think of Ld as a graph embedded
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18 Random walks on graphs

Figure 1.5. The square, triangular, and hexagonal (or ‘honeycomb’)
lattices. The solid and dashed lines illustrate the concept of ‘planar
duality’ discussed on page 41.

in Rd , the edges being straight line-segments between their endvertices.
The edge-set EV of V ⊆ Zd is the set of all edges of Ld both of whose
endvertices lie in V .

The two-dimensional cubic lattice L2 is called the square lattice and is
illustrated in Figure 1.5. Two other lattices in two dimensions that feature
in these notes are drawn there also.

1.7 Exercises

1.1 Let G = (V , E) be a finite connected graph with unit edge-weights. Show
that the effective resistance between two distinct vertices s, t of the associated
electrical network may be expressed as B/N , where B is the number of s/t-
bushes of G, and N is the number of its spanning trees. (See the proof of Theorem
1.16 for an explanation of the term ‘bush’.)

Extend this result to general positive edge-weights we.
1.2 Let G = (V , E) be a finite connected graph with positive edge-weights

(we : e ∈ E), and let N∗ be given by (1.18). Show that

ia,b =
1

N∗
[
N∗(s, a, b, t)− N∗(s, b, a, t)

]

constitutes a unit flow through G from s to t satisfying Kirchhoff’s laws.
1.3 (continuation) Let G = (V , E) be finite and connected with given conduc-

tances (we : e ∈ E), and let (xv : v ∈ V ) be reals satisfying
∑
v xv = 0. To G

we append a notional vertex labelled∞, and we join∞ to each v ∈ V . Show that
there exists a solution i to Kirchhoff’s laws on the expanded graph, viewed as two
laws concerning current flow, such that the current along the edge 〈v,∞〉 is xv .
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A B B

C C

r1

r ′1
r2

r ′2 r ′3

r3

A

Figure 1.6. Edge-resistances in the star–triangle transformation. The
triangle T on the left is replaced by the star S on the right, and the
corresponding resistances are as marked.

1.4 Prove the series and parallel laws for electrical networks.
1.5 Star–triangle transformation. The triangle T is replaced by the star S in

an electrical network, as illustrated in Figure 1.6. Explain the sense in which the
two networks are the same, when the resistances are chosen such that r jr

′
j = c for

j = 1, 2, 3 and some c = c(r1, r2, r3) to be determined.
1.6 Let R(r) be the effective resistance between two given vertices of a finite

network with edge-resistances r = (r(e) : e ∈ E). Show that R is concave in that

1
2

[
R(r1)+ R(r2)

]
≤ R

( 1
2 (r1 + r2)

)
.

1.7 Maximum principle. Let G = (V , E) be a finite or infinite network with
finite vertex-degrees and associated conductances (we : e ∈ E). Let H = (W, F)
be a connected subgraph of G, and write

1W = {v ∈ V \ W : v ∼ w for some w ∈ W }

for the ‘external boundary’ of W . Let φ : V → [0,∞) be harmonic on the set W ,
and suppose the supremum of φ on W is achieved and satisfies

sup
w∈W

φ(w) = ‖φ‖∞ := sup
v∈V

φ(v).

Show that φ is constant on W ∪1W , where it takes the value ‖φ‖∞.
1.8 Let G be an infinite connected graph, and let ∂3n be the set of vertices

distance n from the vertex labelled 0. With En the number of edges joining ∂3n
to ∂3n+1, show that random walk on G is recurrent if

∑
n E−1

n = ∞.
1.9 (continuation) Assume that G is ‘spherically symmetric’ in that: for all n,

for all x, y ∈ ∂3n , there exists a graph automorphism that fixes 0 and maps x to
y. Show that random walk on G is transient if

∑
n E−1

n <∞.
1.10 Let G be a countably infinite connected graph with finite vertex-degrees,

and with a nominated vertex 0. Let H be a connected subgraph of G containing
0. Show that simple random walk, starting at 0, is recurrent on H whenever it is
recurrent on G, but that the converse need not hold.
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20 Random walks on graphs

1.11 Let G be a finite connected network with positive conductances
(we : e ∈ E), and let a, b be distinct vertices. Let ixy denote the current along an
edge from x to y when a unit current flows from the source vertex a to the sink
vertex b. Run the associated Markov chain, starting at a, until it reaches b for the
first time, and let ux,y be the mean of the total number of transitions of the chain
between x and y. Transitions from x to y count positive, and from y to x negative,
so that ux,y is the mean number of transitions from x to y, minus the mean number
from y to x . Show that ix,y = ux,y .

1.12 [72] Let G be an infinite connected graph with bounded vertex-degrees.
Let k ≥ 1, and let Gk be obtained from G by adding an edge between any pair
of vertices that are non-adjacent (in G) but separated by graph-theoretic distance
k or less. (The graph Gk is sometimes called the k-fuzz of G.) Show that simple
random walk is recurrent on Gk if and only if it is recurrent on G.
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Uniform spanning tree

The Uniform Spanning Tree (UST) measure has a property of negative
association. A similar property is conjectured for Uniform Forest
and Uniform Connected Subgraph. Wilson’s algorithm uses loop-
erased random walk (LERW) to construct a UST. The UST on the
d-dimensional cubic lattice may be defined as the weak limit of the
finite-volume measures. When d = 2, the corresponding LERW
(respectively, UST) converges in a certain manner to the Schramm–
Löwner evolution process SLE2 (respectively, SLE8) as the grid size
approaches zero.

2.1 Definition

Let G = (V , E) be a finite connected graph, and write T for the set of all
spanning trees of G. Let T be picked uniformly at random from T . We
call T a uniform spanning tree, abbreviated to UST. It is governed by the
uniform measure

P(T = t) = 1

|T | , t ∈ T .

We may think of T either as a random graph, or as a random subset of
E . In the latter case, T may be thought of as a random element of the set
� = {0, 1}E of 0/1 vectors indexed by E .

It is fundamental that UST has a property of negative association. In its
simplest form, this property may be expressed as follows.

2.1 Theorem. For f, g ∈ E, f 6= g,

(2.2) P( f ∈ T | g ∈ T ) ≤ P( f ∈ T ).

The proof makes striking use of the Thomson principle via the mono-
tonicity of effective resistance. We obtain the following by a mild extension
of the proof. For B ⊆ E and g ∈ E \ B,

(2.3) P(B ⊆ T | g ∈ T ) ≤ P(B ⊆ T ).
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22 Uniform spanning tree

Proof. Consider G as an electrical network in which each edge has resis-
tance 1. Denote by i = (iv,w : v, w ∈ V ) the current flow in G when a unit
current enters at x and leaves at y, and let φ be the corresponding potential
function. Let e = 〈x, y〉. By Theorem 1.16,

ix,y =
N(x, x, y, y)

N
,

where N(x, x, y, y) is the number of spanning trees of G with the property
that the unique x/y path passes along the edge e in the direction from x to y,
and N = |T |. Therefore, ix,y = P(e ∈ T ). Since 〈x, y〉 has unit resistance,
ix,y equals the potential difference φ(y)− φ(x). By (1.22),

(2.4) P(e ∈ T ) = RG
eff(x, y),

the effective resistance of G between x and y.
Let f , g be distinct edges, and write G.g for the graph obtained from

G by contracting g to a single vertex. Contraction provides a one–one
correspondence between spanning trees of G containing g, and spanning
trees of G.g. Therefore, P( f ∈ T | g ∈ T ) is simply the proportion of
spanning trees of G.g containing f . By (2.4),

P( f ∈ T | g ∈ T ) = RG.g
eff (x, y).

By the Rayleigh principle, Theorem 1.29,

RG.g
eff (x, y) ≤ RG

eff(x, y),

and the theorem is proved. �

Theorem 2.1 has been extended by Feder and Mihail [85] to more general
‘increasing’ events. Let � = {0, 1}E , the set of 0/1 vectors indexed by E ,
and denote byω = (ω(e) : e ∈ E) a typical member of�. The partial order
≤ on � is the usual pointwise ordering: ω ≤ ω′ if ω(e) ≤ ω′(e) for all
e ∈ E . A subset A ⊆ � is called increasing if: for all ω, ω′ ∈ � satisfying
ω ≤ ω′, we have that ω′ ∈ A whenever ω ∈ A.

For A ⊆ � and F ⊆ E , we say that A is defined on F if A = C×{0, 1}E\F
for some C ⊆ {0, 1}F . We refer to F as the ‘base’ of the event A. If A is
defined on F , we need only know the ω(e), e ∈ F , to determine whether or
not A occurs.

2.5 Theorem [85]. Let F ⊆ E, and let A and B be increasing subsets of
� such that A is defined on F, and B is defined on E \ F. Then

P(T ∈ A | T ∈ B) ≤ P(T ∈ A).
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2.2 Wilson’s algorithm 23

Theorem 2.1 is retrieved by setting A = {ω ∈ � : ω( f ) = 1} and
B = {ω ∈ � : ω(g) = 1}. The original proof of Theorem 2.5 is set in the
context of matroid theory, and a further proof may be found in [32].

Whereas ‘positive association’ is well developed and understood as a
technique for studying interacting systems, ‘negative association’ possesses
some inherent difficulties. See [198] for further discussion.

2.2 Wilson’s algorithm

There are various ways to generate a uniform spanning tree (UST) of the
graph G. The following method, called Wilson’s algorithm [240], highlights
the close relationship between UST and random walk.

Take G = (V , E) to be a finite connected graph. We shall perform
random walks on G subject to a process of so-called loop-erasure that we
describe next.1 Let W = (w0, w1, . . . , wk) be a walk on G, which is to
say that wi ∼ wi+1 for 0 ≤ i < k (note that the walk may have self-
intersections). From W , we construct a non-self-intersecting sub-walk,
denoted LE(W), by the removal of loops as they occur. More precisely, let

J = min{ j ≥ 1 : wj = wi for some i < j },
and let I be the unique value of i satisfying I < J and wI = wJ . Let
W
′ = (w0, w1, . . . , wI , wJ+1, . . . , wk) be the sub-walk of W obtained

through the removal of the cycle (wI , wI+1, . . . , wJ ). This operation of
single-loop-removal is iterated until no loops remain, and we denote by
LE(W) the surviving path from w0 to wk .

Wilson’s algorithm is presented next. First, let V = (v1, v2, . . . , vn) be
an arbitrary but fixed ordering of the vertex-set.

1. Perform a random walk on G beginning at vi1 with i1 = 1, and
stopped at the first time it visits vn . The outcome is a walk W1 =
(u1 = v1, u2, . . . , ur = vn).

2. From W1, we obtain the loop-erased path LE(W1), joining v1 to vn and
containing no loops.2 Set T1 = LE(W1).

3. Find the earliest vertex, vi2 say, of V not belonging to T1, and perform
a random walk beginning at vi2 , and stopped at the first moment it hits
some vertex of T1. Call the resulting walk W2, and loop-erase W2 to
obtain some non-self-intersecting path LE(W2) from vi2 to T1. Set
T2 = T1 ∪ LE(W2), the union of two edge-disjoint paths.

1Graph theorists might prefer to call this cycle-erasure.
2If we run a random walk and then erase its loops, the outcome is called loop-erased

random walk, often abbreviated to LERW.
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4. Iterate the above process, by running and loop-erasing a random walk
from a new vertex vi j+1 /∈ Tj until it strikes the set Tj previously
constructed.

5. Stop when all vertices have been visited, and set T = TN , the final
value of the Tj .

Each stage of the above algorithm results in a sub-tree of G. The final
such sub-tree T is spanning since, by assumption, it contains every vertex
of V .

2.6 Theorem [240]. The graph T is a uniform spanning tree of G.

Note that the initial ordering of V plays no role in the law of T .
There are of course other ways of generating a UST on G, and we mention

the well known Aldous–Broder algorithm, [17, 53], that proceeds as follows.
Choose a vertex r of G and perform a random walk on G, starting at r ,
until every vertex has been visited. For w ∈ V , w 6= r , let [v, w〉 be the
directed edge that was traversed by the walk on its first visit to w. The
edges thus obtained, when undirected, constitute a uniform spanning tree.
The Aldous–Broder algorithm is closely related to Wilson’s algorithm via
a certain reversal of time, see [203] and Exercise 2.1.

We present the proof of Theorem 2.6 in a more general setting than
UST. Heavy use will be made of [181] and the concept of ‘cycle popping’
introduced in the original paper [240] of David Wilson. Of considerable
interest is an analysis of the run-time of Wilson’s algorithm, see [203].

Consider an irreducible Markov chain with transition matrix P on the
finite state space S. With this chain we may associate a directed graph
H = (S, F) much as in Section 1.1. The graph H has vertex-set S, and
edge-set F = {[x, y〉 : px,y > 0}. We refer to x (respectively, y) as the
head (respectively, tail) of the (directed) edge e = [x, y〉, written x = e−,
y = e+. Since the chain is irreducible, H is connected in the sense that, for
all x, y ∈ S, there exists a directed path from x to y.

Let r ∈ S be a distinguished vertex called the root. A spanning arbores-
cence of H with root r is a subgraph A with the following properties:
(a) each vertex of S apart from r is the head of a unique edge of A,
(b) the root r is the head of no edge of A,

(c) A possesses no (directed) cycles.
Let 6r be the set of all spanning arborescences with root r , and 6 =⋃

r∈S 6r . A spanning arborescence is specified by its edge-set.
It is easily seen that there exists a unique (directed) path in the spanning

arborescence A joining any given vertex x to the root. To the spanning
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arborescence A we assign the weight

(2.7) α(A) =
∏

e∈A

pe−,e+ ,

and we shall describe a randomized algorithm that selects a given spanning
arborescence A with probability proportional to α(A). Since α(A) contains
no diagonal element pz,z of P , and each x (6= r ) is the head of a unique
edge of A, we may assume that pz,z = 0 for all z ∈ S.

Let r ∈ S. Wilson’s algorithm is easily adapted in order to sample from
6r . Let v1, v2, . . . , vn−1 be an ordering of S \ {r}.

1. Let σ0 = {r}.
2. Sample a Markov chain with transition matrix P beginning at vi1 with

i1 = 1, and stopped at the first time it hits σ0. The outcome is a
(directed) walk W1 = (u1 = v1, u2, . . . , uk, r). From W1, we obtain
the loop-erased path σ1 = LE(W1), joining v1 to r and containing no
loops.

3. Find the earliest vertex, vi2 say, of S not belonging to σ1, and sample
a Markov chain beginning at vi2 , and stopped at the first moment it
hits some vertex of σ1. Call the resulting walk W2, and loop-erase it
to obtain some non-self-intersecting path LE(W2) from vi2 to σ1. Set
σ2 = σ1 ∪ LE(W2), the union of σ1 and the directed path LE(W2).

4. Iterate the above process, by loop-erasing the trajectory of a Markov
chain starting at a new vertex vi j+1 /∈ σj until it strikes the graph σj

previously constructed.
5. Stop when all vertices have been visited, and set σ = σN , the final

value of the σj .

2.8 Theorem [240]. The graph σ is a spanning arborescence with root r ,
and

P(σ = A) ∝ α(A), A ∈ 6r .

Since S is finite and the chain is assumed irreducible, there exists a unique
stationary distributionπ = (πs : s ∈ S). Suppose that the chain is reversible
with respect to π in that

πx px,y = πy py,x , x, y ∈ S.

As in Section 1.1, to each edge e = [x, y〉 we may allocate the weight
w(e) = πx px,y , noting that the edges [x, y〉 and [y, x〉 have equal weight.
Let A be a spanning arborescence with root r . Since each vertex of H other
than the root is the head of a unique edge of the spanning arborescence A,
we have by (2.7) that

α(A) =
∏

e∈A πe− pe−,e+∏
x∈S, x 6=r πx

= CW (A), A ∈ 6r ,
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where C = Cr and

(2.9) W (A) =
∏

e∈A

w(e).

Therefore, for a given root r , the weight functions α and W generate the
same probability measure on 6r .

We shall see that the UST measure on G = (V , E) arises through a
consideration of the random walk on G. This has transition matrix given by

px,y =





1

deg(x)
if x ∼ y,

0 otherwise,

and stationary distribution

πx =
deg(x)

2|E | , x ∈ V .

Let H = (V , F) be the graph obtained from G by replacing each edge
by a pair of edges with opposite orientations. Now, w(e) = πe− pe−,e+ is
independent of e ∈ F , so that W (A) is a constant function. By Theorem 2.8
and the observation following (2.9), Wilson’s algorithm generates a uniform
random spanning arborescence σ of H , with given root. When we neglect
the orientations of the edges of σ , and also the identity of the root, σ is
transformed into a uniform spanning tree of G.

The remainder of this section is devoted to a proof of Theorem 2.8, and it
uses the beautiful construction presented in [240]. We prepare for the proof
as follows.

For each x ∈ S \ {r}, we provide ourselves in advance with an infinite set
of ‘moves’ from x . Let Mx(i), i ≥ 1, x ∈ S \ {r}, be independent random
variables with laws

P(Mx(i) = y) = px,y, y ∈ S.

For each x , we organize the Mx(i) into an ordered ‘stack’. We think of
an element Mx(i) as having ‘colour’ i , where the colours indexed by i are
distinct. The root r is given an empty stack. At stages of the following
construction, we shall discard elements of stacks in order of increasing
colour, and we shall call the set of uppermost elements of the stacks the
‘visible moves’.

The visible moves generate a directed subgraph of H termed the ‘visible
graph’. There will generally be directed cycles in the visible graph, and
we shall remove such cycles one by one. Whenever we decide to remove
a cycle, the corresponding visible moves are removed from the stacks, and
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a new set of moves beneath is revealed. The visible graph thus changes,
and a second cycle may be removed. This process may be iterated until the
earliest time, N say, at which the visible graph contains no cycle, which
is to say that the visible graph is a spanning arborescence σ with root r .
If N < ∞, we terminate the procedure and ‘output’ σ . The removal of a
cycle is called ‘cycle popping’. It would seem that the value of N and the
output σ will depend on the order in which we decide to pop cycles, but the
converse turns out to be the case.

The following lemma holds ‘pointwise’: it contains no statement involv-
ing probabilities.

2.10 Lemma. The order of cycle popping is irrelevant to the outcome, in
that:

either N = ∞ for all orderings of cycle popping,
or the total number N of popped cycles, and the output σ , are inde-

pendent of the order of popping.

Proof. A coloured cycle is a set Mx j (i j ), j = 1, 2, . . . , J , of moves, indexed
by vertices x j and colours i j , with the property that they form a cycle of the
graph H . A coloured cycle C is called poppable if there exists a sequence
C1,C2, . . . ,Cn = C of coloured cycles that may be popped in sequence.
We claim the following for any cycle-popping algorithm. If the algorithm
terminates in finite time, then all poppable cycles are popped, and no others.
The lemma follows from this claim.

Let C be a poppable coloured cycle, and let C1,C2, . . . ,Cn = C be as
above. It suffices to show the following. Let C ′ 6= C1 be a poppable cycle
every move of which has colour 1, and suppose we pop C ′ at the first stage,
rather than C1. Then C is still poppable after the removal of C ′.

Let V (D) denote the vertex-set of a coloured cycle D. The italicized
claim is evident if V (C ′)∩V (Ck) = ∅ for k = 1, 2, . . . , n. Suppose on the
contrary that V (C ′)∩V (Ck) 6= ∅ for some k, and let K be the earliest such
k. Let x ∈ V (C ′) ∩ V (CK ). Since x /∈ V (Ck) for k < K , the visible move
at x has colour 1 even after the popping of C1,C2, . . . ,CK−1. Therefore,
the edge of CK with head x has the same tail, y say, as that of C ′ with head
x . This argument may be applied to y also, and then to all vertices of CK
in order. In conclusion, CK has colour 1, and C ′ = CK .

Were we to decide to pop C ′ first, then we may choose to pop in the
sequence CK [= C ′],C1,C2,C3, . . . ,CK−1,CK+1, . . . ,Cn = C , and the
claim has been shown. �

Proof of Theorem 2.8. It is clear by construction that Wilson’s algorithm
terminates after finite time, with probability 1. It proceeds by popping
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cycles, and so, by Lemma 2.10, N <∞ almost surely, and the output σ is
independent of the choices available in its implementation.

We show next that σ has the required law. We may think of the stacks
as generating a pair (C, σ ), where C = (C1,C2, . . . ,CJ ) is the ordered
set of coloured cycles that are popped by Wilson’s algorithm, and σ is the
spanning arborescence thus revealed. Note that the colours of the moves
of σ are determined by knowledge of C. Let C be the set of all sequences
C that may occur, and 5 the set of all possible pairs (C, σ ). Certainly
5 = C ×6r , since knowledge of C imparts no information about σ .

The spanning arborescence σ contains exactly one coloured move in each
stack (other than the empty stack at the root). Stacked above this move are
a number of coloured moves, each of which belongs to exactly one of the
popped cycles C j . Therefore, the law of (C, σ ) is given by the probability
that the coloured moves in and above σ are given appropriately. That is,

P
(
(C, σ ) = (c, A)

)
=
(∏

c∈c

∏

e∈c

pe−,e+

)
α(A), c ∈ C, A ∈ 6r .

Since this factorizes in the form f (c)g(A), the random variables C and σ
are independent, and P(σ = A) is proportional to α(A) as required. �

2.3 Weak limits on lattices

This section is devoted to the uniform-spanning-tree measure on the d-
dimensional cubic lattice Ld = (Zd ,Ed) with d ≥ 2. The UST is not
usually defined directly on this graph, since it is infinite. It is defined
instead on a finite subgraph 3, and the limit is taken as 3 ↑ Zd . Thus, we
are led to study limits of probability measures, and to appeal to the important
technique known as ‘weak convergence’. This technique plays a major role
in much of the work described in this volume. Readers in need of a good
book on the topic are referred to the classic texts [39, 73]. They may in
addition find the notes at the end of this section to be useful.

Let µn be the UST measure on the box 3(n) = [−n, n]d of the lattice
Ld . Here and later, we shall consider the µn as probability measures on the
measurable pair (�,F ) comprising: the sample space � = {0, 1}Ed

, and
the σ -algebra F of � generated by the cylinder sets. Elements of � are
written ω = (ω(e) : e ∈ Ed).

2.11 Theorem [195]. The weak limit µ = limn→∞ µn exists and is a
translation-invariant and ergodic probability measure. It is supported on
the set of forests of Ld with no bounded component.
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Here is some further explanation of the language of this theorem. So-
called ‘ergodic theory’ is concerned with certain actions on the sample
space. Let x ∈ Zd . The function πx acts on Zd by πx (y) = x + y; it is
the translation by x , and it is a graph automorphism in that 〈u, v〉 ∈ Ed

if and only if 〈πx(u), πx(v)〉 ∈ Ed . The translation πx acts on Ed by
πx(〈u, v〉) = (πx (u), πx(v)), and on� by πx (ω) = (ω(π−x(e)) : e ∈ Ed ).

An event A ∈ F is called shift-invariant if A = {πx (ω) : ω ∈ A} for
every x ∈ Zd . A probability measure φ on (�,F ) is ergodic if every shift-
invariant event A is such that φ(A) is either 0 or 1. The measure is said to
be supported on the event F if φ(F) = 1.

Since we are working with the σ -field of � generated by the cylinder
events, it suffices for weak convergence that µn(B ⊆ T )→ µ(B ⊆ T ) for
any finite set B of edges (see the notes at the end of this section, and Exercise
2.4). Note that the limit measure µ may place strictly positive probability
on the set of forests with two or more components. By a mild extension of
the proof of Theorem 2.11, we obtain that the limit measure µ is invariant
under the action of any automorphism of the lattice Ld .

Proof. Let F be a finite set of edges of Ed . By the Rayleigh principle,
Theorem 1.29 (as in the proof of Theorem 2.1, see Exercise 2.5),

(2.12) µn(F ⊆ T ) ≥ µn+1(F ⊆ T ),

for all large n. Therefore, the limit

µ(F ⊆ T ) = lim
n→∞µn(F ⊆ T )

exists. The domain of µ may be extended to all cylinder events, by the
inclusion–exclusion principle or otherwise (see Exercises 2.3–2.4), and this
in turn specifies a unique probability measure µ on (�,F ). Since no tree
contains a cycle, and since each cycle is finite and there are countably many
cycles in Ld , µ has support in the set of forests. By a similar argument,
these forests may be taken with no bounded component.

Let π be a translation of Z2, and let F be finite as above. Then

µ(πF ⊆ T ) = lim
n→∞µn(πF ⊆ T ) = lim

n→∞µπ,n(F ⊆ T ),

where µπ,n is the law of a UST on π−13(n). There exists r = r(π) such
that 3(n − r) ⊆ π−13(n) ⊆ 3(n + r) for all large n. By the Rayleigh
principle again,

µn+r (F ⊆ T ) ≤ µπ,n(F ⊆ T ) ≤ µn−r (F ⊆ T )

for all large n. Therefore,

lim
n→∞µπ,n(F ⊆ T ) = µ(F ⊆ T ),
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whence the translation-invariance of µ. The proof of ergodicity is omitted,
and may be found in [195]. �

This leads immediately to the question of whether or not the support of
µ is the set of spanning trees of Ld . The proof of the following is omitted.

2.13 Theorem [195]. The limit measure µ is supported on the set of
spanning trees of Ld if and only if d ≤ 4.

The measureµmay be termed ‘free UST measure’, where the word ‘free’
refers to the fact that no further assumption is made about the boundary
∂3(n). There is another boundary condition giving rise to the so-called
‘wired UST measure’: we identify as a single vertex all vertices not in
3(n−1), and choose a spanning tree uniformly at random from the resulting
(finite) graph. We can pass to the limit as n → ∞ in very much the same
way as before, with inequality (2.12) reversed. It turns out that the free and
wired measures are identical on Ld for all d . The key reason is that Ld is a
so-called amenable graph, which amounts in this context to saying that the
boundary/volume approaches zero in the limit of large boxes,

|∂3(n)|
|3(n)| ∼ c

nd−1

nd
→ 0 as n→∞.

See Exercise 2.9 and [32, 181, 195, 196] for further details and discussion.
This section closes with a brief note about weak convergence, for more

details of which the reader is referred to the books [39, 73]. Let E =
{ei : 1 ≤ i <∞} be a countably infinite set. The product space�= {0, 1}E
may be viewed as the product of copies of the discrete topological space
{0, 1} and, as such,� is compact, and is metrisable by

δ(ω, ω′) =
∞∑

i=1

2−i |ω(ei)− ω′(ei)|, ω, ω′ ∈ �.

A subset C of� is called a (finite-dimensional) cylinder event (or, simply,
a cylinder) if there exists a finite subset F ⊆ E such that: ω ∈ C if and
only if ω′ ∈ C for all ω′ equal to ω on F . The product σ -algebra F of �
is the σ -algebra generated by the cylinders. The Borel σ -algebra B of �
is defined as the minimal σ -algebra containing the open sets. It is standard
that B is generated by the cylinders, and therefore F = B in the current
setting. We note that every cylinder is both open and closed in the product
topology.

Let (µn : n ≥ 1) and µ be probability measures on (�,F ). We say that
µn converges weakly to µ, written µn ⇒ µ, if

µn( f )→ µ( f ) as n→∞,
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for all bounded continuous functions f : � → R. (Here and later, P( f )
denotes the expectation of the function f under the measure P .) Several
other definitions of weak convergence are possible, and the so-called ‘port-
manteau theorem’ asserts that certain of these are equivalent. In particular,
the weak convergence of µn to µ is equivalent to each of the two following
statements:
(a) lim supn→∞ µn(C) ≤ µ(C) for all closed events C ,
(b) lim infn→∞ µn(C) ≥ µ(C) for all open events C .

The matter is simpler in the current setting: since the cylinder events are
both open and closed, and they generate F , it is necessary and sufficient for
weak convergence that
(c) limn→∞ µn(C) = µ(C) for all cylinders C .

The following is useful for the construction of infinite-volume measures
in the theory of interacting systems. Since � is compact, every family
of probability measures on (�,F ) is relatively compact. That is to say,
for any such family 5 = (µi : i ∈ I ), every sequence (µnk : k ≥ 1)
in 5 possesses a weakly convergent subsequence. Suppose now that
(µn : n ≥ 1) is a sequence of probability measures on (�,F ). If the
limits limn→∞ µn(C) exists for every cylinder C , then it is necessarily the
case that µ := limn→∞ µn exists and is a probability measure. We shall
see in Exercises 2.3–2.4 that this holds if and only if limn→∞ µn(C) exists
for all increasing cylinders C . This justifies the argument of the proof of
Theorem 2.11.

2.4 Uniform forest

We saw in Theorems 2.1 and 2.5 that the UST has a property of negative
association. There is evidence that certain related measures have such a
property also, but such claims have resisted proof.

Let G = (V , E) be a finite graph, which we may as well assume to be
connected. Write F for the set of forests of G (that is, subsets H ⊆ E
containing no cycle), and C for the set of connected subgraphs of G (that
is, subsets H ⊆ E such that (V , H) is connected). Let F be a uniformly
chosen member of F , and C a uniformly chosen member of C. We refer to
F and C as a uniform forest (UF) and a uniform connected subgraph (USC),
respectively.

2.14 Conjecture. For f, g ∈ E, f 6= g, the UF and USC satisfy:

P( f ∈ F | g ∈ F) ≤ P( f ∈ F),(2.15)

P( f ∈ C | g ∈ C) ≤ P( f ∈ C).(2.16)
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This is a special case of a more general conjecture for random-cluster
measures indexed by the parameters p ∈ (0, 1) and q ∈ (0, 1). See Section
8.4.

We may further ask whether UF and USC might satisfy the stronger
conclusion of Theorem 2.5. As positive evidence of Conjecture 2.14, we
cite the computer-aided proof of [124] that the UF on any graph with eight
or fewer vertices (or nine vertices and eighteen or fewer edges) satisfies
(2.15).

Negative association presents difficulties that are absent from the better
established theory of positive association (see Sections 4.1–4.2). There is
an analogy with the concept of social (dis)agreement. Within a family or
population, there may be a limited number of outcomes of consensus; there
are generally many more outcomes of failure of consensus. Nevertheless,
probabilists have made progress in developing systematic approaches to
negative association, see for example [146, 198].

2.5 Schramm–Löwner evolutions

There is a beautiful result of Lawler, Schramm, and Werner [164] concerning
the limiting LERW (loop-erased random walk) and UST measures on L2.
This cannot be described without a detour into the theory of Schramm–
Löwner evolutions (SLE).3

The theory of SLE is a major piece of contemporary mathematics which
promises to explain phase transitions in an important class of two-dimen-
sional disordered systems, and to help bridge the gap between probability
theory and conformal field theory. It plays a key role in the study of critical
percolation (see Chapter 5), and also of the critical random-cluster and Ising
models, [224, 225]. In addition, it has provided complete explanations of
conjectures made by mathematicians and physicists concerning the intersec-
tion exponents and fractionality of frontier of two-dimensional Brownian
motion, [160, 161, 162]. The purposes of the current section are to give a
brief non-technical introduction to SLE, and to indicate its relevance to the
scaling limits of LERW and UST.

Let H = (−∞,∞)× (0,∞) be the upper half-plane of R2, with closure
H, viewed as subsets of the complex plane. Consider the (Löwner) ordinary
differential equation

d

dt
gt(z) =

2

gt(z)− b(t)
, z ∈ H \ {0},

3SLE was originally an abbreviation for stochastic Löwner evolution, but is now re-
garded as named after Oded Schramm in recognition of his work reported in [215].
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SLE2 0 SLE4 0

SLE6 0 SLE8 0

Figure 2.1. Simulations of the traces of chordal SLEκ for κ = 2, 4, 6, 8.
The four pictures are generated from the same Brownian driving path.

subject to the boundary condition g0(z) = z, where t ∈ [0,∞), and
b : R → R is termed the ‘driving function’. Randomness is injected
into this formula through setting b(t) = Bκt where κ > 0 and (Bt : t ≥ 0)
is a standard Brownian motion.4 The solution exists when gt(z) is bounded
away from Bκt . More specifically, for z ∈ H, let τz be the infimum of all
times τ such that 0 is a limit point of gs(z)− Bκs in the limit as s ↑ τ . We
let

Ht = {z ∈ H : τz > t}, Kt = {z ∈ H : τz ≤ t},

so that Ht is open, and Kt is compact. It may now be seen that gt is a
conformal homeomorphism from Ht to H. There exists a random curve
γ : [0,∞) → H, called the trace of the process, such that H \ Kt is the
unbounded component of H \ γ [0, t]. The trace γ satisfies γ (0) = 0 and
γ (t)→∞ as t →∞. (See the illustrations of Figure 2.1.)

4An interesting and topical account of the history and practice of Brownian motion
may be found at [75].
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We call (gt : t ≥ 0) a Schramm–Löwner evolution (SLE) with parameter
κ , written SLEκ , and the Kt are called the hulls of the process. There is
good reason to believe that the family K = (Kt : t ≥ 0) provides the
correct scaling limits for a variety of random spatial processes, with the
value of κ depending on the process in question. General properties of
SLEκ , viewed as a function of κ , have been studied in [207, 235, 236], and
a beautiful theory has emerged. For example, the hulls K form (almost
surely) a simple path if and only if κ ≤ 4. If κ > 8, the trace of SLEκ is
(almost surely) a space-filling curve.

The above SLE process is termed ‘chordal’. In another version, called
‘radial’ SLE, the upper half-plane H is replaced by the unit disc U, and a
different differential equation is satisfied. Let ∂U denote the boundary of U.
The corresponding curve γ satisfies γ (t)→ 0 as t →∞, and γ (0) ∈ ∂U,
say γ (0) is uniformly distributed on ∂U. Both chordal and radial SLE
may be defined on an arbitrary simply connected domain D with a smooth
boundary, by applying a suitable conformal map φ from either H or U to D.

It is believed that many discrete models in two dimensions, when at their
critical points, converge in the limit of small mesh-size to an SLEκ with
κ chosen appropriately. Oded Schramm [215, 216] identified the correct
values of κ for several different processes, and indicated that percolation has
scaling limit SLE6. Full rigorous proofs are not yet known even for general
percolation models. For the special but presumably representative case of
site percolation on the triangular lattice T, Smirnov [222, 223] proved the
very remarkable result that the crossing probabilities of re-scaled regions of
R2 satisfy Cardy’s formula (see Section 5.6),and he indicated the route to the
full SLE6 limit. See [56, 57, 58, 236] for more recent work on percolation,
and [224, 225] for progress on the SLE limits of the critical random-cluster
and Ising models in two dimensions.

This chapter closes with a brief summary of the results of [164] concern-
ing SLE limits for loop-erased random walk (LERW) and uniform spanning
tree (UST) on the square lattice L2. We saw earlier in this chapter that there
is a very close relationship between LERW and UST on a finite connected
graph G. For example, the unique path joining vertices u and v in a UST
of G has the law of a LERW from u to v (see [195] and the description of
Wilson’s algorithm). See Figure 2.2.

Let D be a bounded simply connected subset of C with a smooth boundary
∂D and such that 0 lies in its interior. As remarked above, we may define
radial SLE2 on D, and we write ν for its law. Let δ > 0, and let µδ be the
law of LERW on the re-scaled lattice δZ2, starting at 0 and stopped when it
first hits ∂D.
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b

a

Figure 2.2. A uniform spanning tree (UST) on a large square of the
square lattice. It contains a unique path between any two vertices a, b,
and this has the law of a loop-erased random walk (LERW) between a
and b.

For two parametrizable curves β, γ in C, we define the distance between
them by

ρ(β, γ ) = inf

[
sup

t∈[0,1]
|β̂(t)− γ̂ (t)|

]
,

where the infimum is over all parametrizations β̂ and γ̂ of the curves
(see [8]). The distance function ρ generates a topology on the space of
parametrizable curves, and hence a notion of weak convergence, denoted
‘⇒’.

2.17 Theorem [164]. We have that µδ ⇒ ν as δ→ 0.

We turn to the convergence of UST to SLE8, and begin with a discussion of
mixed boundary conditions. Let D be a bounded simply connected domain
of C with a smooth (C1) boundary curve ∂D. For distinct points a, b ∈ ∂D,
we write α (respectively, β) for the arc of ∂D going clockwise from a to
b (respectively, b to a). Let δ > 0 and let Gδ be a connected graph that
approximates to that part of δZ2 lying inside D. We shall construct a UST
of Gδ with mixed boundary conditions, namely a free boundary near α and
a wired boundary near β. To each tree T of Gδ there corresponds a dual
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b

dual UST

UST

Peano UST curve

a

Figure 2.3. An illustration of the Peano UST path lying between a tree
and its dual. The thinner continuous line depicts the UST, and the dashed
line its dual tree. The thicker line is the Peano UST path.

tree T d on the dual5 graph Gd
δ , namely the tree comprising edges of Gd

δ that
do not intersect those of T . Since Gδ has mixed boundary conditions, so
does its dual Gd

δ . With Gδ and Gd
δ drawn together, there is a simple path

π(T, T d) that winds between T and T d. Let5 be the path thus constructed
between the UST on Gδ and its dual tree. The construction of this ‘Peano
UST path’ is illustrated in Figures 2.3 and 2.4.

Figure 2.4. An initial segment of the Peano path constructed from a
UST on a large rectangle with mixed boundary conditions.

5This is the planar duality of graph theory, see page 41.
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2.18 Theorem [164]. The law of 5 converges as δ → 0 to that of the
image of chordal SLE8 under any conformal map from H to D mapping 0
to a and∞ to b.

2.6 Exercises

2.1 [17, 53] Aldous–Broder algorithm. Let G = (V , E) be a finite connected
graph, and pick a root r ∈ V . Perform a random walk on G starting from r . For
each v ∈ V , v 6= r , let ev be the edge traversed by the random walk just before it
hits v for the first time, and let T be the tree

⋃
v ev rooted at r . Show that T , when

viewed as an unrooted tree, is a uniform spanning tree. It may be helpful to argue
as follows.
(a) Consider a stationary simple random walk (Xn : −∞ < n <∞) on G, with

distribution πv ∝ deg(v), the degree of v. Let Ti be the rooted tree obtained
by the above procedure applied to the sub-walk X i , X i+1, . . . . Show that
T = (Ti : −∞ < i < ∞) is a stationary Markov chain with state space the
set R of rooted spanning trees.

(b) Let Q(t, t ′) = P(T0 = t ′ | T1 = t), and let d(t) be the degree of the root of
t ∈ R . Show that:
(i) for given t ∈ R , there are exactly d(t) trees t ′ ∈ R with Q(t, t ′) =

1/d(t), and Q(t, t ′) = 0 for all other t ′,
(ii) for given t ′ ∈ R , there are exactly d(t ′) trees t ∈ R with Q(t, t ′) =

1/d(t), and Q(t, t ′) = 0 for all other t .
(c) Show that ∑

t∈R
d(t)Q(t, t ′) = d(t ′), t ′ ∈ R,

and deduce that the stationary measure of T is proportional to d(t).
(d) Let r ∈ V , and let t be a tree with root r . Show that P(T0 = t | X0 = r) is

independent of the choice of t .
2.2 Inclusion–exclusion principle. Let F be a finite set, and let f , g be real-

valued functions on the power-set of F . Show that

f (A) =
∑

B⊆A

g(B), A ⊆ F,

if and only if
g(A) =

∑

B⊆A

(−1)|A\B| f (B), A ⊆ F.

Show the corresponding fact with the two summations replaced by
∑

B⊇A
and the exponent |A \ B| by |B \ A|.

2.3 Let � = {0, 1}F , where F is finite, and let P be a probability measure on
�, and A ⊆ �. Show that P(A) may be expressed as a linear combination of
certain P(Ai ), where the Ai are increasing events.
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2.4 (continuation) Let G = (V , E) be an infinite graph with finite vertex-
degrees, and � = {0, 1}E , endowed with the product σ -field. An event A in the

product σ -field of � is called a cylinder event if it has the form AF × {0, 1}F
for some AF ⊆ {0, 1}F and some finite F ⊆ E . Show that a sequence (µn) of
probability measures converges weakly if and only if µn(A) converges for every
increasing cylinder event A.

2.5 Let G = (V , E) be a connected subgraph of the finite connected graph G′.
Let T and T ′ be uniform spanning trees on G and G′ respectively. Show that, for
any edge e of G, P(e ∈ T ) ≥ P(e ∈ T ′).

More generally, let B be a subset of E , and show that P(B ⊆ T ) ≥ P(B ⊆ T ′).
2.6 Let Tn be a UST of the lattice box [−n, n]d of Zd . Show that the limit

λ(e) = limn→∞ P(e ∈ Tn) exists.
More generally, show that the weak limit of Tn exists as n→∞.

2.7 Adapt the conclusions of the last two examples to the ‘wired’ UST measure
µw on Ld .

2.8 Let F be the set of forests of Ld with no bounded component, and let µ
be an automorphism-invariant probability measure with support F . Show that the
mean degree of every vertex is 2.

2.9 [195] Let A be an increasing cylinder event in {0, 1}Ed
, where Ed de-

notes the edge-set of the hypercubic lattice Ld . Using the Feder–Mihail Theorem
2.5 or otherwise, show that the free and wired UST measures on Ld satisfy
µf(A) ≥ µw(A). Deduce by the last exercise and Strassen’s theorem, or oth-
erwise, that µf = µw.

2.10 Consider the square lattice L2 as an infinite electrical network with unit
edge-resistances. Show that the effective resistance between two neighbouring
vertices is 2.

2.11 Let G = (V , E) be finite and connected, and let W ⊆ V . Let FW be the
set of forests of G comprising exactly |W | trees with respective roots the members
of W . Explain how Wilson’s algorithm may be adapted to sample uniformly from
FW .
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Percolation and self-avoiding walk

The central feature of the percolation model is the phase transition.
The existence of the point of transition is proved by path-counting
and planar duality. Basic facts about self-avoiding walks, oriented
percolation, and the coupling of models are reviewed.

3.1 Percolation and phase transition

Percolation is the fundamental stochastic model for spatial disorder. In
its simplest form introduced in [52]1, it inhabits a (crystalline) lattice and
possesses the maximum of (statistical) independence. We shall consider
mostly percolation on the (hyper)cubic lattice Ld = (Zd ,Ed) in d ≥ 2
dimensions, but much of the following may be adapted to an arbitrary lattice.

Percolation comes in two forms, ‘bond’ and ‘site’, and we concentrate
here on the bond model. Let p ∈ [0, 1]. Each edge e ∈ Ed is desig-
nated either open with probability p, or closed otherwise, different edges
receiving independent states. We think of an open edge as being open to
the passage of some material such as disease, liquid, or infection. Suppose
we remove all closed edges, and consider the remaining open subgraph of
the lattice. Percolation theory is concerned with the geometry of this open
graph. Of particular interest are such quantites as the size of the open cluster
Cx containing a given vertex x , and particularly the probability that Cx is
infinite.

The sample space is the set � = {0, 1}Ed
of 0/1-vectors ω indexed

by the edge-set; here, 1 represents ‘open’, and 0 ‘closed’. As σ -field we
take that generated by the finite-dimensional cylinder sets, and the relevant
probability measure is product measure Pp with density p.

For x, y ∈ Zd , we write x ↔ y if there exists an open path joining x and
y. The open cluster Cx at x is the set of all vertices reachable along open

1See also [241].
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paths from the vertex x ,

Cx = {y ∈ Zd : x ↔ y}.
The origin of Zd is denoted 0, and we write C = C0. The principal object
of study is the percolation probability θ(p) given by

θ(p) = Pp(|C| = ∞).
The critical probability is defined as

(3.1) pc = pc(L
d) = sup{p : θ(p) = 0}.

It is fairly clear (and will be spelled out in Section 3.3) that θ is non-
decreasing in p, and thus

θ(p)

{ = 0 if p < pc,

> 0 if p > pc.

It is fundamental that 0 < pc < 1, and we state this as a theorem. It is easy
to see that pc = 1 for the corresponding one-dimensional process.

3.2 Theorem. For d ≥ 2, we have that 0 < pc < 1.

The inequalities may be strengthened using counts of self-avoiding walks,
as in Theorem 3.12. It is an important open problem to prove the following
conjecture. The conclusion is known only for d = 2 and d ≥ 19.

3.3 Conjecture. For d ≥ 2, we have that θ(pc) = 0.

It is the edges (or ‘bonds’) of the lattice that are declared open/closed
above. If, instead, we designate the vertices (or ‘sites’) to be open/closed,
the ensuing model is termed site percolation. Subject to minor changes, the
theory of site percolation may be developed just as that of bond percolation.

Proof of Theorem 3.2. This proof introduces two basic methods, namely the
counting of paths and the use of planar duality. We show first by counting
paths that pc > 0.

A self-avoiding walk (SAW) is a lattice path that visits no vertex more
than once. Let σn be the number of SAWs with length n beginning at the
origin, and let Nn be the number of such SAWs all of whose edges are open.
Then

θ(p) = Pp(Nn ≥ 1 for all n ≥ 1)

= lim
n→∞Pp(Nn ≥ 1).

Now,

(3.4) Pp(Nn ≥ 1) ≤ Ep(Nn) = pnσn.

c© G. R. Grimmett 1 April 2010
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A a crude upper bound for σn , we have that

(3.5) σn ≤ 2d(2d − 1)n−1, n ≥ 1,

since the first step of a SAW from the origin can be to any of its 2d neigh-
bours, and there are no more than 2d − 1 choices for each subsequent step.
Thus

θ(p) ≤ lim
n→∞ 2d(2d − 1)n−1 pn,

which equals 0 whenever p(2d − 1) < 1. Therefore,

pc ≥
1

2d − 1
.

We turn now to the proof that pc < 1. The first step is to observe that

(3.6) pc(L
d) ≥ pc(L

d+1), d ≥ 2.

This follows by the observation that Ld may be embedded in Ld+1 in such
a way that the origin lies in an infinite open cluster of Ld+1 whenever it lies
in an infinite open cluster of the smaller lattice Ld . By (3.6), it suffices to
show that

(3.7) pc(L
2) < 1,

and to this end we shall use a technique known as planar duality, which
arises as follows.

Let G be a planar graph, drawn in the plane. The planar dual of G is the
graph constructed in the following way. We place a vertex in every face of
G (including the infinite face if it exists) and we join two such vertices by
an edge if and only if the corresponding faces of G share a boundary edge.
It is easy to see that the dual of the square lattice L2 is a copy of L2, and we
refer therefore to the square lattice as being self-dual. See Figure 1.5.

There is a natural one–one correspondence between the edge-set of the
dual lattice L2

d and that of the primal L2, and this gives rise to a percolation
model on L2

d by: for an edge e ∈ E2 and it dual edge ed, we declare ed to be
open if and only if e is open. As illustrated in Figure 3.1, each finite open
cluster of L2 lies in the interior of a closed cycle of L2

d lying ‘just outside’
the cluster.

We use a so-called Peierls argument2 to obtain (3.7). Let Mn be the
number of closed cycles of the dual lattice, having length n and containing

2This method was used by Peierls [194] to prove phase transition in the two-dimensional
Ising model.
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Figure 3.1. A finite open cluster of the primal lattice lies ‘just inside’
a closed cycle of the dual lattice.

0 in their interior. Note that |C| < ∞ if and only if Mn ≥ 1 for some n.
Therefore,

1− θ(p) = Pp(|C| <∞) = Pp

(∑

n

Mn ≥ 1

)
(3.8)

≤ Ep

(∑

n

Mn

)

=
∞∑

n=4

Ep(Mn) ≤
∞∑

n=4

(n4n)(1− p)n,

where we have used the facts that the shortest dual cycle containing 0 has
length 4, and that the total number of dual cycles, having length n and
surrounding the origin, is no greater than n4n . The final sum may be made
strictly smaller than 1 by choosing p sufficiently close to 1, say p > 1− ǫ
where ǫ > 0. This implies that pc(L

2) < 1− ǫ as required for (3.7). �

3.2 Self-avoiding walks

How many self-avoiding walks of length n exist, starting from the origin?
What is the ‘shape’ of a SAW chosen at random from this set? In particular,
what can be said about the distance between its endpoints? These and related
questions have attracted a great deal of attention since the publication in 1954
of the pioneering paper [130] of Hammersley and Morton,and never more so
than in recent years. It is believed but not proved that a typical SAW on L2,
starting at the origin, converges in a suitable manner as n→∞ to a SLE8/3
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curve, and the proof of this statement is an open problem of outstanding
interest. See Section 2.5, in particular Figure 2.1, for an illustration of the
geometry, and [183, 216, 224] for discussion and results.

The use of subadditivity was one of the several stimulating ideas of [130],
and it has proved extremely fruitful in many contexts since. Consider the
lattice Ld , and let Sn be the set of SAWs with length n starting at the origin,
and σn = |Sn| as before.

3.9 Lemma. We have that σm+n ≤ σmσn , for m, n ≥ 0.

Proof. Let π and π ′ be finite SAWs starting at the origin, and denote by
π ∗π ′ the walk obtained by following π from 0 to its other endpoint x , and
then following the translated walk π ′ + x . Every ν ∈ Sm+n may be written
in a unique way as ν = π ∗π ′ for some π ∈ Sm and π ′ ∈ Sn . The claim of
the lemma follows. �

3.10 Theorem [130]. The limit κ = limn→∞(σn)
1/n exists and satisfies

d ≤ κ ≤ 2d − 1.

This is in essence a consequence of the ‘sub-multiplicative’ inequality of
Lemma 3.9. The constant κ is called the connective constant of the lattice.
The exact value of κ = κ(Ld) is unknown for every d ≥ 2, see [141, Sect.
7.2, pp. 481–483]. On the other hand, the ‘hexagonal’ (or ‘honeycomb’)
lattice (see Figure 1.5) has a special structure which has permitted a proof
by Duminil-Copin and Smirnov [74] that its connective constant equals√

2+
√

2.

Proof. By Lemma 3.9, xm = log σm satisfies the ‘subadditive inequality’

(3.11) xm+n ≤ xm + xn.

The existence of the limit

λ = lim
n→∞{xn/n}

follows immediately (see Exercise 3.1), and

λ = inf
m
{xm/m} ∈ [−∞,∞).

By (3.5), κ = eλ ≤ 2d − 1. Finally, σn is at least the number of ‘stiff’
walks every step of which is in the direction of an increasing coordinate.
The number of such walks is dn , and therefore κ ≥ d . �

The bounds of Theorem 3.2 may be improved as follows.
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3.12 Theorem. The critical probability of bond percolation on Ld , with
d ≥ 2, satisfies

1

κ(d)
≤ pc ≤ 1− 1

κ(2)
,

where κ(d) denotes the connective constant of Ld .

Proof. As in (3.4),
θ(p) ≤ lim

n→∞
pnσn.

Now, σn = κ(d)(1+o(1))n , so that θ(p) = 0 if pκ(d) < 1.
For the upper bound, we elaborate on the proof of the corresponding part

of Theorem 3.2. Let Fm be the event that there exists a closed cycle of the
dual lattice L2

d containing the primal box 3(m) = [−m,m]2 in its interior,
and let Gm be the event that all edges of 3(m) are open. These two events
are independent, since they are defined in terms of disjoint sets of edges.
As in (3.8),

Pp(Fm) ≤ Pp

( ∞∑

n=4m

Mn ≥ 1

)
(3.13)

≤
∞∑

n=4m

n(1− p)nσn .

Recall that σn = κ(2)(1+o(1))n , and choose p such that (1 − p)κ(2) < 1.
By (3.13), we may find m such that Pp(Fm) <

1
2 . Then,

θ(p) ≥ Pp(Fm ∩ Gm) = Pp(Fm)Pp(Gm) ≥ 1
2 Pp(Gm) > 0.

The upper bound on pc follows. �

There are some extraordinary conjectures concerning SAWs in two di-
mensions. We mention the conjecture that

σn ∼ An11/32κn when d = 2.

This is expected to hold for any lattice in two dimensions, with an appropriate
choice of constant A depending on the choice of lattice. It is known in
contrast that no polynomial correction is necessary when d ≥ 5,

σn ∼ Aκn when d ≥ 5,

for the cubic lattice at least. Related to the above conjecture is the belief
that a random SAW of Z2, starting at the origin and of length n, converges
weakly as n → ∞ to SLE8/3. See [183, 216, 224] for further details of
these and other conjectures and results.
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3.3 Coupled percolation

The use of coupling in probability theory goes back at least as far as the
beautiful proof by Doeblin of the ergodic theorem for Markov chains, [71].
In percolation, we couple together the bond models with different values of
p as follows. Let Ue, e ∈ Ed , be independent random variables with the
uniform distribution on [0, 1]. For p ∈ [0, 1], let

ηp(e) =
{

1 if Ue < p,

0 otherwise.

Thus, the configuration ηp (∈ �) has law Pp, and in addition

ηp ≤ ηr if p ≤ r.

3.14 Theorem. For any increasing non-negative random variable
f : �→ �, the function g(p) = Pp( f ) is non-decreasing.

Proof. For p ≤ r , we have that ηp ≤ ηr , whence f (ηp) ≤ f (ηr ). There-
fore,

g(p) = P( f (ηp)) ≤ P( f (ηr )) = g(r),

as required. �

3.4 Oriented percolation

The ‘north–east’ lattice ELd is obtained by orienting each edge of Ld in the di-
rection of increasing coordinate-value (see Figure 3.2 for a two-dimensional
illustration). There are many parallels between results for oriented percola-
tion and those for ordinary percolation; on the other hand, the corresponding
proofs often differ, largely because the existence of one-way streets restricts
the degree of spatial freedom of the traffic.

Let p ∈ [0, 1]. We declare an edge of ELd to be open with probability p and
otherwise closed. The states of different edges are taken to be independent.
We supply fluid at the origin, and allow it to travel along open edges in
the directions of their orientations only. Let EC be the set of vertices that
may be reached from the origin along open directed paths. The percolation
probability is

(3.15) Eθ(p) = Pp(| EC| = ∞),
and the critical probability Epc(d) by

(3.16) Epc(d) = sup{p : Eθ(p) = 0}.

c© G. R. Grimmett 1 April 2010



46 Percolation and self-avoiding walk

Figure 3.2. Part of the two-dimensional ‘north–east’ lattice in which
each edge has been deleted with probability 1− p, independently of all
other edges.

3.17 Theorem. For d ≥ 2, we have that 0 < Epc(d) < 1.

Proof. Since an oriented path is also a path, it is immediate that Eθ(p) ≤
θ(p), whence Epc(d) ≥ pc. As in the proof of Theorem 3.2, it suffices for
the converse to show that Epc = Epc(2) < 1.

Let d = 2. The cluster EC comprises the endvertices of open edges that
are oriented northwards/eastwards. Assume | EC| < ∞. We may draw a
dual cycle 1 surrounding EC in the manner illustrated in Figure 3.3. As we
traverse1 in the clockwise direction, we traverse dual edges each of which
is oriented in one of the four compass directions. Any edge of 1 that is
oriented either eastwards or southwards crosses a primal edge that is closed.
Exactly one half of the edges of 1 are oriented thus, so that, as in (3.8),

Pp(| EC| <∞) ≤
∑

n≥4

4 · 3n−2(1− p)
1
2 n−1.

In particular, Eθ(p) > 0 if 1− p is sufficiently small and positive. �

The process is understood quite well when d = 2, see [77]. By looking at
the set An of wet vertices on the diagonal {x ∈ Z2 : x1+ x2 = n} of EL2, we
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1

Figure 3.3. As we trace the dual cycle 1, we traverse edges exactly
one half of which cross closed boundary edges of the cluster EC at the
origin.

may reformulate two-dimensional oriented percolation as a one-dimensional
contact process in discrete time (see [167, Chap. 6]). It turns out that Epc(2)
may be characterized in terms of the velocity of the rightwards edge of a
contact process on Z whose initial distribution places infectives to the left of
the origin and susceptibles to the right. With the support of arguments from
branching processes and ordinary percolation, we may prove such results
as the exponential decay of the cluster-size distribution when p < Epc(2),
and its sub-exponential decay when p > Epc(2): there exist α(p), β(p) > 0
such that
(3.18)

e−α(p)
√

n ≤ Pp(n ≤ | EC| <∞) ≤ e−β(p)
√

n if Epc(2) < p < 1.

There is a close relationship between oriented percolation and the contact
model (see Chapter 6), and methods developed for the latter model may often
be applied to the former. It has been shown in particular that Eθ( Epc) = 0 for
general d ≥ 2, see [112].

We close this section with an open problem of a different sort. Suppose
that each edge of L2 is oriented in a random direction, horizontal edges
being oriented eastwards with probability p and westwards otherwise, and
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vertical edges being oriented northwards with probability p and southwards
otherwise. Let η(p) be the probability that there exists an infinite oriented
path starting at the origin. It is not hard to show that η( 1

2 ) = 0 (see Exercise
3.9). We ask whether or not η(p) > 0 if p 6= 1

2 . Partial results in this
direction may be found in [108], see also [174, 175].

3.5 Exercises

3.1 Subadditive inequality. Let (xn : n ≥ 1) be a real sequence satisfying
xm+n ≤ xm + xn for m, n ≥ 1. Show that the limit λ = limn→∞{xn/n} exists
and satisfies λ = infk{xk/k} ∈ [−∞,∞).

3.2 (continuation) Find reasonable conditions on the sequence (αn) such that:
the generalized inequality

xm+n ≤ xm + xn + αm , m, n ≥ 1,

implies the existence of the limit λ = limn→∞{xn/n}.
3.3 [120] Bond/site critical probabilities. Let G be an infinite connected graph

with maximal vertex degree 1. Show that the critical probabilities for bond and
site percolation on G satisfy

pbond
c ≤ psite

c ≤ 1− (1− pbond
c )1.

The second inequality is in fact valid with 1 replaced by 1− 1.
3.4 Show that bond percolation on a graph G may be reformulated in terms of

site percolation on a graph derived suitably from G.
3.5 Show that the connective constant of L2 lies strictly between 2 and 3.
3.6 Show the strict inequality pc(d) < Epc(d) for the critical probabilities of

unoriented and oriented percolation on Ld with d ≥ 2.
3.7 One-dimensional percolation. Each edge of the one-dimensional lattice L

is declared open with probability p. For k ∈ Z, let r(k) = max{u : k ↔ k + u},
and Ln = max{r(k) : 1 ≤ k ≤ n}. Show that Pp(Ln > u) ≤ npu , and deduce
that, for ǫ > 0,

Pp

(
Ln >

(1+ ǫ) log n

log(1/p)

)
→ 0 as n→∞.

This is the famous problem of the longest run of heads in n tosses of a coin.
3.8 (continuation) Show that, for ǫ > 0,

Pp

(
Ln <

(1− ǫ) log n

log(1/p)

)
→ 0 as n→∞.

By suitable refinements of the error estimates above, show that, for ǫ > 0,

Pp

(
(1− ǫ) log n

log(1/p)
< Ln <

(1+ ǫ) log n

log(1/p)
, for all but finitely many n

)
= 1.
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3.9 [108] Each edge of the square lattice L2 is oriented in a random direc-
tion, horizontal edges being oriented eastwards with probability p and westwards
otherwise, and vertical edges being oriented northwards with probability p and
southwards otherwise. Let η(p) be the probability that there exists an infinite
oriented path starting at the origin. By coupling with undirected bond percolation,
or otherwise, show that η( 1

2 ) = 0.

It is an open problem to decide whether or not η(p) > 0 for p 6= 1
2 .

3.10 The vertex (i, j) of L2 is called even if i + j is even, and odd otherwise.
Vertical edges are oriented from the even endpoint to the odd, and horizontal edges
vice versa. Each edge is declared open with probability p, and closed otherwise
(independently between edges). Show that, for p sufficiently close to 1, there
is strictly positive probability that the origin is the endpoint of an infinite open
oriented path.

3.11 [111, 171, 172] A word is an element of the set {0, 1}N of singly infinite 0/1
sequences. Let p ∈ (0, 1) and M ≥ 1. Consider oriented site percolation on Z2,
in which the state ω(x) of a vertex x equals 1 with probability p, and 0 otherwise.
A word w = (w1, w2, . . . ) is said to be M-seen if there exists an infinite oriented
path x0 = 0, x1, x2, . . . of vertices such that ω(xi ) = wi and d(xi−1, xi ) ≤ M
for i ≥ 1. [Here, as usual, d denotes graph-theoretic distance.]

Calculate the probability that the square {1, 2, . . . , k}2 contains both a 0 and
a 1. Deduce by a block argument that

ψp(M) = Pp(all words are M-seen)

satisfies ψp(M) > 0 for M ≥ M(p), and determine an upper bound on the
required M(p).
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Association and influence

Correlation inequalities have played a significant role in the theory
of disordered spatial systems. The Holley inequality provides a suf-
ficient condition for the stochastic ordering of two measures, and
also a route to a proof of the famous FKG inequality. For product
measures, the complementary BK inequality involves the concept of
‘disjoint occurrence’. Two concepts of concentration are considered
here. The Hoeffding inequality provides a bound on the tail of a mar-
tingale with bounded differences. Another concept of ‘influence’
proved by Kahn, Kalai, and Linial leads to sharp-threshold theorems
for increasing events under either product or FKG measures.

4.1 Holley inequality

We review the stochastic ordering of probability measures on a discrete
space. Let E be a non-empty finite set, and� = {0, 1}E . The sample space
� is partially ordered by

ω1 ≤ ω2 if ω1(e) ≤ ω2(e) for all e ∈ E .

A non-empty subset A ⊆ � is called increasing if

ω ∈ A, ω ≤ ω′ ⇒ ω′ ∈ A,

and decreasing if

ω ∈ A, ω′ ≤ ω ⇒ ω′ ∈ A.

If A (6= �) is increasing, then its complement A = � \ A is decreasing.

4.1 Definition. Given two probability measures µi , i = 1, 2, on �, we
write µ1 ≤st µ2 if

µ1(A) ≤ µ2(A) for all increasing events A.

Equivalently, µ1 ≤st µ2 if and only if µ1( f ) ≤ µ2( f ) for all increasing
functions f : �→ R. There is an important and useful result, often termed

c© G. R. Grimmett 1 April 2010



4.1 Holley inequality 51

Strassen’s theorem, that asserts that measures satisfying µ1 ≤st µ2 may be
coupled in a ‘pointwise monotone’ manner. Such a statement is valid for
very general spaces (see [173]), but we restrict ourselves here to the current
context. The proof is omitted, and may be found in many places including
[181, 237].

4.2 Theorem [227]. Let µ1 and µ2 be probability measures on �. The
following two statements are equivalent.
(a) µ1 ≤st µ2.
(b) There exists a probability measure ν on �2 such that

ν
(
{(π, ω) : π ≤ ω}

)
= 1,

and whose marginal measures are µ1 and µ2.

For ω1, ω2 ∈ �, we define the (pointwise) maximum and minimum
configurations by

(4.3)
ω1 ∨ ω2(e) = max{ω1(e), ω2(e)},
ω1 ∧ ω2(e) = min{ω1(e), ω2(e)},

for e ∈ E . A probability measure µ on � is called positive if µ(ω) > 0 for
all ω ∈ �.

4.4 Theorem (Holley inequality) [140]. Let µ1 and µ2 be positive prob-
ability measures on � satisfying

(4.5) µ2(ω1 ∨ ω2)µ1(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2), ω1, ω2 ∈ �.
Then µ1 ≤st µ2.

Condition (4.5) is not necessary for the stochastic inequality, but is equiv-
alent to a stronger property of ‘monotonicity’, see [109, Thm 2.3].

Proof. The main step is the proof that µ1 and µ2 can be ‘coupled’ in such a
way that the component with marginal measure µ2 lies above (in the sense
of sample realizations) that with marginal measure µ1. This is achieved by
constructing a certain Markov chain with the coupled measure as unique
invariant measure.

Here is a preliminary calculation. Let µ be a positive probability measure
on �. We can construct a time-reversible Markov chain with state space�
and unique invariant measure µ by choosing a suitable generator G satis-
fying the detailed balance equations. The dynamics of the chain involve the
‘switching on or off’ of single components of the current state.

For ω ∈ � and e ∈ E , we define the configurations ωe, ωe by

(4.6) ωe( f ) =
{
ω( f ) if f 6= e,

1 if f = e,
ωe( f ) =

{
ω( f ) if f 6= e,

0 if f = e.
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Let G : �2 → R be given by

(4.7) G(ωe, ω
e) = 1, G(ωe, ωe) =

µ(ωe)

µ(ωe)
,

for all ω ∈ �, e ∈ E . Set G(ω, ω′) = 0 for all other pairs ω, ω′ with
ω 6= ω′. The diagonal elements are chosen in such a way that

∑

ω′∈�
G(ω, ω′) = 0, ω ∈ �.

It is elementary that

µ(ω)G(ω, ω′) = µ(ω′)G(ω′, ω), ω, ω′ ∈ �,
and therefore G generates a time-reversible Markov chain on the state space
�. This chain is irreducible (using (4.7)), and therefore possesses a unique
invariant measure µ (see [121, Thm 6.5.4]).

We next follow a similar route for pairs of configurations. Let µ1 andµ2
satisfy the hypotheses of the theorem, and let S be the set of all pairs (π, ω)
of configurations in � satisfying π ≤ ω. We define H : S × S → R by

H(πe, ω;πe, ωe) = 1,(4.8)

H(π, ωe;πe, ωe) =
µ2(ωe)

µ2(ω
e)
,(4.9)

H(πe, ωe;πe, ω
e) = µ1(πe)

µ1(πe)
− µ2(ωe)

µ2(ωe)
,(4.10)

for all (π, ω) ∈ S and e ∈ E ; all other off-diagonal values of H are set to
0. The diagonal terms are chosen in such a way that

∑

π ′,ω′
H(π, ω;π ′, ω′) = 0, (π, ω) ∈ S.

Equation (4.8) specifies that, for π ∈ � and e ∈ E , the edge e is acquired by
π (if it does not already contain it) at rate 1; any edge so acquired is added
also to ω if it does not already contain it. (Here, we speak of a configuration
ψ containing an edge e if ψ(e) = 1.) Equation (4.9) specifies that, for
ω ∈ � and e ∈ E with ω(e) = 1, the edge e is removed from ω (and also
from π if π(e) = 1) at the rate given in (4.9). For e with π(e) = 1, there
is an additional rate given in (4.10) at which e is removed from π but not
from ω. We need to check that this additional rate is indeed non-negative,
and the required inequality,

µ2(ω
e)µ1(πe) ≥ µ1(π

e)µ2(ωe), π ≤ ω,
follows from (and is indeed equivalent to) assumption (4.5).
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Let (X t , Yt)t≥0 be a Markov chain on S with generator H , and set
(X0, Y0) = (0, 1), where 0 (respectively, 1) is the state of all 0s (respectively,
1s). By examination of (4.8)–(4.10), we see that X = (X t )t≥0 is a Markov
chain with generator given by (4.7) with µ = µ1, and that Y = (Yt)t≥0
arises similarly with µ = µ2.

Let κ be an invariant measure for the paired chain (X t , Yt)t≥0. Since X
and Y have (respective) unique invariant measures µ1 andµ2, the marginals
of κ are µ1 and µ2. We have by construction that κ(S) = 1, and κ is the
required ‘coupling’ of µ1 and µ2.

Let (π, ω) ∈ S be chosen according to the measure κ . Then

µ1( f ) = κ( f (ω)) ≤ κ( f (π)) = µ2( f ),

for any increasing function f . Therefore, µ1 ≤st µ2. �

4.2 FKG inequality

The FKG inequality for product measures was discovered by Harris [135],
and is often named now after the authors Fortuin, Kasteleyn, and Ginibre of
[91] who proved the more general version that is the subject of this section.
See the appendix of [109] for a historical account. Let E be a finite set, and
� = {0, 1}E as usual.

4.11 Theorem (FKG inequality) [91]. Let µ be a positive probability
measure on � such that

(4.12) µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ �.
Then µ is ‘positively associated’ in that

(4.13) µ( f g) ≥ µ( f )µ(g)

for all increasing random variables f, g : �→ R.

It is explained in [91] how the condition of (strict) positivity can be
removed. Condition (4.12) is sometimes called the ‘FKG lattice condition’.

Proof. Assume that µ satisfies (4.12), and let f and g be increasing func-
tions. By adding a constant to the function g, we see that it suffices to prove
(4.13) under the additional hypothesis that g is strictly positive. Assume the
last holds. Define positive probability measuresµ1 andµ2 on� byµ1 = µ
and

µ2(ω) =
g(ω)µ(ω)∑
ω′ g(ω

′)µ(ω′)
, ω ∈ �.
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Since g is increasing, the Holley condition (4.5) follows from (4.12). By
the Holley inequality, Theorem 4.4,

µ1( f ) ≤ µ2( f ),

which is to say that∑
ω f (ω)g(ω)µ(ω)∑
ω′ g(ω

′)µ(ω′)
≥
∑

ω

f (ω)µ(ω)

as required. �

4.3 BK inequality

In the special case of product measure on �, there is a type of converse
inequality to the FKG inequality, named the BK inequality after van den
Berg and Kesten [35]. This is based on a concept of ‘disjoint occurrence’
that we make more precise as follows.

For ω ∈ � and F ⊆ E , we define the cylinder event C(ω, F) generated
by ω on F by

C(ω, F) = {ω′ ∈ � : ω′(e) = ω(e) for all e ∈ F}
= (ω(e) : e ∈ F)× {0, 1}E\F .

We define the event A � B as the set of all ω ∈ � for which there exists a
set F ⊆ E such that C(ω, F) ⊆ A and C(ω, E \ F) ⊆ B. Thus, A � B is
the set of configurationsω for which there exist disjoint sets F , G of indices
with the property that: knowledge of ω restricted to F (respectively, G)
implies that ω ∈ A (respectively, ω ∈ B). In the special case when A and
B are increasing, C(ω, F) ⊆ A if and only if ωF ∈ A, where

ωF(e) =
{
ω(e) for e ∈ F,

0 for e /∈ F.
Thus, in this case, A � B = A ◦ B, where

A ◦ B =
{
ω : there exists F ⊆ E such that ωF ∈ A, ωE\F ∈ B

}
.

The set F is permitted to depend on the choice of configuration ω.
Three notes about disjoint occurrence:

A � B ⊆ A ∩ B,(4.14)

if A and B are increasing, then so is A � B (= A ◦ B),(4.15)

if A increasing and B decreasing, then A � B = A ∩ B.(4.16)

Let P be the product measure on � with local densities pe, e ∈ E , that is

P =
∏

e∈E

µe,

where µe(0) = 1− pe and µe(1) = pe.
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4.17 Theorem (BK inequality) [35]. For increasing subsets A, B of �,

(4.18) P(A ◦ B) ≤ P(A)P(B).

It is not known for which non-product measures (4.18) holds. It seems
reasonable, for example, to conjecture that (4.18) holds for the measure Pk
that selects a k-subset of E uniformly at random. It would be very useful to
show that the random-cluster measure φp,q on � satisfies (4.18) whenever
0 < q < 1, although we may have to survive with rather less. See Chapter
8, and [109, Sect. 3.9].

The conclusion of the BK inequality is in fact valid for all pairs A, B
of events, regardless of whether or not they are increasing. This is much
harder to prove, and has not yet been as valuable as originally expected in
the analysis of disordered systems.

4.19 Theorem (Reimer inequality) [206]. For A, B ⊆ �,

P(A � B) ≤ P(A)P(B).

Let A and B be increasing. By applying Reimer’s inequality to the events
A and B, we obtain by (4.16) that P(A ∩ B) ≥ P(A)P(B). Therefore,
Reimer’s inequality includes both the FKG and BK inequalities for the
product measure P. The proof of Reimer’s inequality is omitted, see [50,
206].

Proof of Theorem 4.17. We present the ‘simple’ proof of [33, 106, 237].
Those who prefer proofs by induction are directed to [48]. Let 1, 2, . . . , N
be an ordering of E . We shall consider the duplicated sample space�×�′,
where � = �′ = {0, 1}E , with which we associate the product measure
P̂ = P× P. Elements of� (respectively,�′) are written as ω (respectively,
ω′). Let A and B be increasing subsets of {0, 1}E . For 1 ≤ j ≤ N + 1 and
(ω, ω′) ∈ �×�′, define the N -vector ωj by

ωj =
(
ω′(1), ω′(2), . . . , ω′( j − 1), ω( j ), . . . , ω(N)

)
,

so that the ωj interpolate between ω1 = ω and ωN+1 = ω′. Let the events
Â j , B̂ of �×�′ be given by

Â j = {(ω, ω′) : ωj ∈ A}, B̂ = {(ω, ω′) : ω ∈ B}.
Note that:
(a) Â1 = A ×�′ and B̂ = B ×�′, so that P̂( Â1 ◦ B̂) = P(A ◦ B),
(b) ÂN+1 and B̂ are defined in terms of disjoint subsets of E , so that

P̂( ÂN+1 ◦ B̂) = P̂( ÂN+1)̂P(B̂) = P(A)P(B).
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It thus suffices to show that

(4.20) P̂( Â j ◦ B̂) ≤ P̂( Â j+1 ◦ B̂), 1 ≤ j ≤ N,

and this we do, for given j , by conditioning on the values of the ω(i), ω′(i)
for all i 6= j . Suppose these values are given, and classify them as follows.
There are three cases.

1. Â j ◦ B̂ does not occur when ω( j ) = ω′( j ) = 1.
2. Â j ◦ B̂ occurs when ω( j ) = ω′( j ) = 0, in which case Â j+1◦ B̂ occurs

also.
3. Neither of the two cases above hold.

Consider the third case. Since Â j ◦ B̂ does not depend on the valueω′( j ), we
have in this case that Â j ◦ B occurs if and only if ω( j ) = 1, and therefore
the conditional probability of Â j ◦ B̂ is pj . When ω( j ) = 1, edge j is
‘contributing’ to either Â j or B̂ but not both. Replacing ω( j ) by ω′( j ), we
find similarly that the conditional probability of Â j+1 ◦ B̂ is at least pj .

In each of the three cases above, the conditional probability of Â j ◦ B̂ is
no greater than that of Â j+1 ◦ B̂, and (4.20) follows. �

4.4 Hoeffding inequality

Let (Yn,Fn), n ≥ 0, be a martingale. We can obtain bounds for the tail
of Yn in terms of the sizes of the martingale differences Dk = Yk − Yk−1.
These bounds are surprisingly tight, and they have had substantial impact in
various areas of application, especially those with a combinatorial structure.
We describe such a bound in this section for the case when the Dk are
bounded random variables.

4.21 Theorem (Hoeffding inequality). Let (Yn,Fn), n ≥ 0, be a martin-
gale such that |Yk − Yk−1| ≤ Kk (a.s.) for all k and some real sequence
(Kk). Then

P(Yn − Y0 ≥ x) ≤ exp
(
− 1

2 x2/Ln
)
, x > 0,

where Ln =
∑n

k=1 K 2
k .

Since Yn is a martingale, so is −Yn , and thus the same bound is valid for
P(Yn −Y0 ≤ −x). Such inequalities are often named after Azuma [22] and
Hoeffding [139].

Theorem 4.21 is one of a family of inequalities frequently used in prob-
abilistic combinatorics, in what is termed the ‘method of bounded dif-
ferences’. See the discussion in [186]. Its applications are of the fol-
lowing general form. Suppose that we are given N random variables
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X1, X2, . . . , X N , and we wish to study the behaviour of some function
Z = Z(X1, X2, . . . , X N ). For example, the X i might be the sizes of ob-
jects to be packed into bins, and Z the minimum number of bins required
to pack them. Let Fn = σ(X1, X2, . . . , Xn), and define the martingale
Yn = E(Z | Fn). Thus, Y0 = E(Z) and YN = Z . If the martingale differ-
ences are bounded, Theorem 4.21 provides a bound for the tail probability
P(|Z − E(Z)| ≥ x). We shall see an application of this type at Theorem
11.13, which deals with the chromatic number of random graphs. Further
applications may be found in [121, Sect. 12.2], for example.

Proof. The function g(d) = eψd is convex for ψ > 0, and therefore

(4.22) eψd ≤ 1
2 (1− d)e−ψ + 1

2 (1+ d)eψ, |d| ≤ 1.

Applying this to a random variable D having mean 0 and satisfying
P(|D| ≤ 1) = 1, we obtain

(4.23) E(eψD) ≤ 1
2 (e
−ψ + eψ ) < e

1
2ψ

2
, ψ > 0,

where the final inequality is shown by a comparison of the coefficients of
the powers ψ2n .

By Markov’s inequality,

(4.24) P(Yn − Y0 ≥ x) ≤ e−θ xE(eθ(Yn−Y0)), θ > 0.

With Dn = Yn − Yn−1,

E(eθ(Yn−Y0)) = E(eθ(Yn−1−Y0)eθDn ).

Since Yn−1 − Y0 is Fn−1-measurable,

E(eθ(Yn−Y0) | Fn−1) = eθ(Yn−1−Y0))E(eθDn | Fn−1)(4.25)

≤ eθ(Yn−1−Y0) exp
(1

2θ
2 K 2

n

)
,

by (4.23) applied to the random variable Dn/Kn . Take expectations of
(4.25) and iterate to obtain

E(eθ(Yn−Y0)) ≤ E(eθ(Yn−1−Y0)) exp
( 1

2θ
2 K 2

n

)
≤ exp

(1
2θ

2 Ln
)
.

Therefore, by (4.24),

P(Yn − Y0 ≥ x) ≤ exp
(
−θx + 1

2θ
2 Ln

)
, θ > 0.

Let x > 0, and set θ = x/Ln (this is the value that minimizes the exponent).
Then

P(Yn − Y0 ≥ x) ≤ exp
(
− 1

2 x2/Ln
)
, x > 0,

as required. �
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4.5 Influence for product measures

Let N ≥ 1 and E = {1, 2, . . . , N}, and write � = {0, 1}E . Let µ be a
probability measure on �, and A an event (that is, a subset of �). Two
ways of defining the ‘influence’ of an element e ∈ E on the event A come
to mind. The (conditional) influence is defined to be

(4.26) JA(e) = µ(A | ω(e) = 1)− µ(A | ω(e) = 0).

The absolute influence is

(4.27) IA(e) = µ(1A(ω
e) 6= 1A(ωe)),

where 1A is the indicator function of A, and ωe, ωe are the configurations
given by (4.6). In a voting analogy, each of N voters has 1 vote, and A
is the set of vote-vectors that result in a given outcome. Then IA(e) is the
probability that voter e can influence the outcome.

We make two remarks concerning the above definitions. First, if A is
increasing,

(4.28) IA(e) = µ(Ae)− µ(Ae),

where

Ae = {ω ∈ � : ωe ∈ A}, Ae = {ω ∈ � : ωe ∈ A}.
If, in addition, µ is a product measure, then IA(e) = JA(e). Note that
influences depend on the underlying measure.

Let φp be product measure with density p on �, and write φ = φ 1
2
, the

uniform measure. All logarithms are taken to base 2 until further notice.
There has been extensive study of the largest (absolute) influence, namely

maxe IA(e), when µ is a product measure, and this has been used to obtain
‘sharp threshold’ theorems for the probability φp(A) of an increasing event
A viewed as a function of p. The principal theorems are given in this section,
with proofs in the next. The account presented here differs in a number of
respects from the original references.

4.29 Theorem (Influence) [145]. There exists a constant c ∈ (0,∞) such
that the following holds. Let N ≥ 1, let E be a finite set with |E | = N, and
let A be a subset of � = {0, 1}E with φ(A) ∈ (0, 1). Then

(4.30)
∑

e∈E

IA(e) ≥ cφ(A)(1− φ(A)) log[1/max
e

IA(e)],

where the reference measure is φ = φ 1
2
. There exists e ∈ E such that

(4.31) IA(e) ≥ cφ(A)(1− φ(A)) log N

N
.
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Note that

φ(A)(1− φ(A)) ≥ 1
2 min{φ(A), 1− φ(A)}.

We indicate at this stage the reason why (4.30) implies (4.31). We may
assume that m = maxe IA(e) satisfies m > 0, since otherwise

φ(A)(1− φ(A)) = 0.

Since ∑

e∈E

IA(e) ≤ Nm,

we have by (4.30) that

m

log(1/m)
≥ cφ(A)(1− φ(A))

N
.

Inequality (4.31) follows with an amended value of c, by the monotonicity
of m/ log(1/m) or otherwise.1

Such results have applications to several topics including random graphs,
random walks, and percolation, see [147]. We summarize two such applica-
tions next, and we defer until Section 5.8 an application to site percolation
on the triangular lattice.

I. First-passage percolation. This is the theory of passage times on a graph
whose edges have random ‘travel-times’. Suppose we assign to each edge e
of the d-dimensional cubic lattice Ld a random travel-time Te , the Te being
non-negative and independent with common distribution function F . The
passage time of a path π is the sum of the travel-times of its edges. Given
two vertices u, v, the passage time Tu,v is defined as the infimum of the
passage times of the set of paths joining u to v. The main question is to
understand the asymptotic properties of T0,v as |v| → ∞. This model for
the time-dependent flow of material was introduced in [131], and has been
studied extensively since.

It is a consequence of the subadditive ergodic theorem that, subject to a
suitable moment condition, the (deterministic) limit

µv = lim
n→∞

1

n
T0,nv

exists almost surely. Indeed, the subadditive ergodic theorem was conceived
explicitly in order to prove such a statement for first-passage percolation.
The constant µv is called the time constant in direction v. One of the
open problems is to understand the asymptotic behaviour of var(T0,v) as

1When N = 1, there is nothing to prove. This is left as an exercise when N ≥ 2.
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|v| → ∞. Various relevant results are known, and one of the best uses
an influence theorem due to Talagrand [231] and related to Theorem 4.29.
Specifically, it is proved in [31] that var(T0,v) ≤ C|v|/ log |v| for some
constant C = C(a, b, d), in the situation when each Te is equally likely
to take either of the two positive values a, b. It has been predicted that
var(T0,v) ∼ |v|2/3 when d = 2. This work has been continued in [29].

II. Voronoi percolation model. This continuum model is constructed as fol-
lows in R2. Let 5 be a Poisson process of intensity 1 in R2. With any
u ∈ 5, we associate the ‘tile’

Tu =
{
x ∈ R2 : |x − u| ≤ |x − v| for all v ∈ 5

}
.

Two points u, v ∈ 5 are declared adjacent, written u ∼ v, if Tu and
Tv share a boundary segment. We now consider site percolation on the
graph 5 with this adjacency relation. It was long believed that the critical
percolation probability of this model is 1

2 (almost surely, with respect to the
Poisson measure), and this was proved by Bollobás and Riordan [46] using a
version of the threshold Theorem 4.82 that is consequent on Theorem 4.29.

Bollobás and Riordan showed also in [47] that a similar argument leads to
an approach to the proof that the critical probability of bond percolation on
Z2 equals 1

2 . They used Theorem 4.82 in place of Kesten’s explicit proof of
sharp threshold for this model, see [151, 152]. A “shorter” version of [47]
is presented in Section 5.8 for the case of site percolation on the triangular
lattice.

We return to the influence theorem and its ramifications. There are several
useful references concerning influence for product measures, see [92, 93,
145, 147, 150] and their bibliographies.2 The order of magnitude N−1 log N
is the best possible in (4.31), as shown by the following ‘tribes’ example
taken from [30]. A population of N individuals comprises t ‘tribes’ each
of cardinality s = log N − log log N + α. Each individual votes 1 with
probability 1

2 and otherwise 0, and different individuals vote independently
of one another. Let A be the event that there exists a tribe all of whose
members vote 1. It is easily seen that

1− P(A) =
(

1− 1

2s

)t

∼ e−t/2s ∼ e−1/2α ,

2The treatment presented here makes heavy use of the work of the ‘Israeli’ school.
The earlier paper of Russo [213] must not be overlooked, and there are several important
papers of Talagrand [230, 231, 232, 233]. Later approaches to Theorem 4.29 can be found
in [84, 208, 209].
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and, for all i ,

IA(i) =
(

1− 1

2s

)t−1 1

2s−1

∼ e−1/2α2−α−1 log N

N
,

The ‘basic’ Theorem 4.29 on the discrete cube � = {0, 1}E can be
extended to the ‘continuum’ cube K = [0, 1]E , and hence to other product
spaces. We state the result for K next. Let λ be uniform (Lebesgue) measure
on K . For a measurable subset A ⊆ K , it is usual (see, for example, [51])
to define the influence of e ∈ E on A as

L A(e) = λN−1
(
{ω ∈ K : 1A(ω) is a non-constant function of ω(e)}

)
.

That is, L A(e) is the (N − 1)-dimensional Lebesgue measure of the set of
all ψ ∈ [0, 1]E\{e} with the property that: both A and its complement A
intersect the ‘fibre’

Fψ = {ψ} × [0, 1] = {ω ∈ K : ω( f ) = ψ( f ), f 6= e}.
It is more natural to consider elements ψ for which A ∩ Fψ has Lebesgue
measure strictly between 0 and 1, and thus we define the influence in these
notes by

(4.32) IA(e) = λN−1
(
{ψ ∈ [0, 1]E\{e} : 0 < λ1(A ∩ Fψ ) < 1}

)
.

Here and later, when convenient, we write λk for k-dimensional Lebesgue
measure. Note that IA(e) ≤ L A(e).

4.33 Theorem [51]. There exists a constant c ∈ (0,∞) such that the fol-
lowing holds. Let N ≥ 1, let E be a finite set with |E | = N, and let A be
an increasing subset of the cube K = [0, 1]E with λ(A) ∈ (0, 1). Then

(4.34)
∑

e∈E

IA(e) ≥ cλ(A)(1− λ(A)) log[1/(2m)],

where m = maxe IA(e), and the reference measure on K is Lebesgue mea-
sure λ. There exists e ∈ E such that

(4.35) IA(e) ≥ cλ(A)(1− λ(A)) log N

N
.

We shall see in Theorem 4.38 that the condition of monotonicity of A
can be removed. The factor ‘2’ in (4.34) is innocent in the following regard.
The inequality is important only when m is small, and, for m ≤ 1

3 say, we
may remove the ‘2’ and replace c by a larger constant.
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Results similar to those of Theorems 4.29 and 4.33 have been proved in
[100] for certain non-product measures, and all increasing events. Let µ be
a positive probability measure on the discrete space � = {0, 1}E satisfying
the FKG lattice condition (4.12). For any increasing subset A of � with
µ(A) ∈ (0, 1), we have that

(4.36)
∑

e∈E

JA(e) ≥ cµ(A)(1− µ(A)) log[1/(2m)],

where m = maxe JA(e). Furthermore, as above, there exists e ∈ E such
that

(4.37) JA(e) ≥ cµ(A)(1− µ(A)) log N

N
.

Note the use of conditional influence JA(e), with non-product reference
measure µ. Indeed, (4.37) can fail for all e when JA is replaced by IA. The
proof of (4.36) makes use of Theorem 4.33, and is omitted here, see [100,
101].

The domain of Theorem 4.33 can be extended to powers of an arbitrary
probability space, that is with ([0, 1], λ1) replaced by a general probability
space. Let |E | = N and let X = (6,F , P) be a probability space. We
write X E for the product space of X . Let A ⊆ 6E be measurable. The
influence of e ∈ E is given as in (4.32) by

IA(e) = P
(
{ψ ∈ 6E\{e} : 0 < P(A ∩ Fψ ) < 1}

)
,

with P = P E and Fψ = {ψ} × 6, the ‘fibre’ of all ω ∈ X E such that
ω( f ) = ψ( f ) for f 6= e.

The following theorem contains two statements: that the influence in-
equalities are valid for general product spaces, and that they hold for non-
increasing events. We shall require a condition on X = (6,F , P) for the
first of these, and we state this next. The pair (F , P) generates a mea-
sure ring (see [126, §40] for the relevant definitions). We call this measure
ring separable if it is separable when viewed as a metric space with metric
ρ(B, B ′) = P(B △ B ′).3

4.38 Theorem [51]. Let X = (6,F , P) be a probability space whose
non-atomic part has a separable measure ring. Let N ≥ 1, let E be a finite
set with |E | = N, and let A ⊆ 6E be measurable in the product space X E ,
with P(A) ∈ (0, 1). There exists an absolute constant c ∈ (0,∞) such that

(4.39)
∑

e∈E

IA(e) ≥ cP(A)(1− P(A)) log[1/(2m)],

3A metric space is called separable if it possesses a countable dense subset. The
condition of separability of Theorem 4.38 is omitted from [51].
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where m = maxe IA(e), and the reference measure is P = P E . There exists
e ∈ E with

(4.40) IA(e) ≥ cP(A)(1− P(A))
log N

N
.

Of especial interest is the case when 6 = {0, 1} and P is Bernoulli
measure with density p. Note that the atomic part of X is always separable,
since there can be at most countably many atoms.

4.6 Proofs of influence theorems

This section contains the proofs of the theorems of the last.

Proof of Theorem 4.29. We use a (discrete) Fourier analysis of functions
f : �→ R. Define the inner product by

〈 f, g〉 = φ( f g), f, g : �→ R,

where φ = φ 1
2
, so that the L2-norm of f is given by

‖ f ‖2 =
√
φ( f 2) =

√
〈 f, f 〉.

We call f Boolean if it takes values in the set {0, 1}. Boolean functions
are in one–one correspondence with the power set of E via the relation
f = 1A ↔ A. If f is Boolean, say f = 1A, then

(4.41) ‖ f ‖22 = φ( f 2) = φ( f ) = φ(A).
For F ⊆ E , let

uF (ω) =
∏

e∈F

(−1)ω(e) = (−1)
∑

e∈F ω(e), ω ∈ �.

It can be checked that the functions uF , F ⊆ E , form an orthonormal basis
for the function space. Thus, a function f : � → R may be expressed in
the form

f =
∑

F⊆E

f̂ (F)uF ,

where the so-called Fourier–Walsh coefficients of f are given by

f̂ (F) = 〈 f, uF〉, F ⊆ E .

In particular,
f̂ (∅) = φ( f ),

and
〈 f, g〉 =

∑

F⊆E

f̂ (F)ĝ(F),
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and the latter yields the Parseval relation

(4.42) ‖ f ‖22 =
∑

F⊆E

f̂ (F)2.

Fourier analysis operates harmoniously with influences as follows. For
f = 1A and e ∈ E , let

fe(ω) = f (ω)− f (κeω),

where κeω is the configuration ω with the state of e flipped. Since fe takes
values in the set {−1, 0,+1}, we have that | fe| = f 2

e . The Fourier–Walsh
coefficients of fe are given by

f̂e(F) = 〈 fe, uF〉 =
∑

ω∈�

1

2N

[
f (ω)− f (κeω)

]
(−1)|B∩F|

=
∑

ω∈�

1

2N f (ω)
[
(−1)|B∩F| − (−1)|(B△{e})∩F|],

where B = η(ω) := {e ∈ E : ω(e) = 1} is the set of ω-open indices. Now,

[
(−1)|B∩F| − (−1)|(B△{e})∩F|] =

{
0 if e /∈ F,

2(−1)|B∩F| = 2uF(ω) if e ∈ F,

so that

(4.43) f̂e(F) =
{

0 if e /∈ F,

2 f̂ (F) if e ∈ F.

The influence I (e) = IA(e) is the mean of | fe| = f 2
e , so that, by (4.42),

(4.44) I (e) = ‖ fe‖22 = 4
∑

F: e∈F

f̂ (F)2,

and the total influence is

(4.45)
∑

e∈E

I (e) = 4
∑

F⊆E

|F | f̂ (F)2.

We propose to find an upper bound for the sum φ(A) = ∑
F f̂ (F)2.

From (4.45), we will extract an upper bound for the contributions to this sum
from the f̂ (F)2 for large |F |. This will be combined with a corresponding
estimate for small |F | that will be obtained as follows by considering a
re-weighted sum

∑
F f̂ (F)2ρ2|F| for 0 < ρ < 1.

For w ∈ [1,∞), we define the Lw-norm

‖g‖w = φ(|g|w)1/w, g : �→ R,
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recalling that ‖g‖w is non-decreasing in w. For ρ ∈ R, let Tρg be the
function

Tρg =
∑

F⊆E

ĝ(F)ρ|F|uF ,

so that
‖Tρg‖22 =

∑

F⊆E

ĝ(F)2ρ2|F|.

When ρ ∈ [−1, 1], Tρg has a probabilistic interpretation. For ω ∈ �, let
9ω = (9ω(e) : e ∈ E) be a vector of independent random variables with

9ω(e) =
{
ω(e) with probability 1

2 (1+ ρ),
1− ω(e) otherwise.

We claim that

(4.46) Tρg(ω) = E(g(9ω)),

thus explaining why Tρ is sometimes called the ‘noise operator’. Equation
(4.46) is proved as follows. First, for F ⊆ E ,

E(uF(9ω)) = E

(∏

e∈F

(−1)9ω(e)
)

=
∏

e∈F

(−1)ω(e)
[ 1

2 (1+ ρ)− 1
2 (1− ρ)

]

= ρ|F|uF (ω).

Now, g =∑F ĝ(F)uF , so that

E(g(9ω)) =
∑

F⊆E

ĝ(F)E(uF(9ω))

=
∑

F⊆E

ĝ(F)ρ|F|uF (ω) = Tρg(ω),

as claimed at (4.46).
The next proposition is pivotal for the proof of the theorem. It is some-

times referred to as the ‘hypercontractivity’ lemma, and it is related to the
log-Sobolev inequality. It is commonly attributed to subsets of Bonami [49],
Gross [125], Beckner [26], each of whom has worked on estimates of this
type. The proof is omitted.

4.47 Proposition. For g : �→ R and ρ > 0,

‖Tρg‖2 ≤ ‖g‖1+ρ2 .
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Let 0 < ρ < 1. Set g = fe where f = 1A, noting that g takes the values
0,±1 only. Then,

∑

F: e∈F

4 f̂ (F)2ρ2|F|

=
∑

F⊆E

f̂e(F)
2ρ2|F| by (4.43)

= ‖Tρ fe‖22
≤ ‖ fe‖21+ρ2 =

[
φ(| fe|1+ρ

2
)
]2/(1+ρ2)

by Proposition 4.47

= ‖ fe‖4/(1+ρ
2)

2 = I (e)2/(1+ρ
2) by (4.44).

Therefore,

(4.48)
∑

e∈E

I (e)2/(1+ρ
2) ≥ 4

∑

F⊆E

|F | f̂ (F)2ρ2|F|.

Let t = φ(A) = f̂ (∅). By (4.48),
∑

e∈E

I (e)2/(1+ρ
2) ≥ 4ρ2b

∑

0<|F|≤b

f̂ (F)2(4.49)

= 4ρ2b
(∑

|F|≤b

f̂ (F)2 − t2
)
,

where b ∈ (0,∞) will be chosen later. By (4.45),
∑

e∈E

I (e) ≥ 4b
∑

|F|>b

f̂ (F)2,

which we add to (4.49) to obtain

ρ−2b
∑

e∈E

I (e)2/(1+ρ
2) + 1

b

∑

e∈E

I (e)(4.50)

≥ 4
∑

F⊆E

f̂ (F)2 − 4t2

= 4t (1− t) by (4.42).

We are now ready to prove (4.30). Let m = maxe I (e), noting that m > 0
sinceφ(A) 6= 0, 1. The claim is trivial if m = 1, and we assume that m < 1.
Then ∑

e∈E

I (e)4/3 ≤ m1/3
∑

e∈E

I (e),
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whence, by (4.50) and the choice ρ2 = 1
2 ,

(4.51)

(
2bm1/3 + 1

b

)∑

e∈E

I (e) ≥ 4t (1− t).

We choose b such that 2bm1/3 = b−1, and it is an easy exercise that b ≥
A log(1/m) for some absolute constant A > 0. With this choice of b, (4.30)
follows from (4.51) with c = 2A. Inequality (4.35) follows, as explained
after the statement of the theorem. �

Proof of Theorem 4.33. We follow [92]. The idea of the proof is to ‘dis-
cretize’ the cube K and the increasing event A, and to apply Theorem 4.29.

Let k ∈ {1, 2, . . . } to be chosen later, and partition the N -cube K =
[0, 1]E into 2k N disjoint smaller cubes each of side-length 2−k . These
small cubes are of the form

(4.52) B(l) =
∏

e∈E

[le, le + 2−k),

where l = (le : e ∈ E) and each le is a ‘binary decimal’ of the form
le = 0.le,1le,2 · · · le,k with each le, j ∈ {0, 1}. There is a special case. When
le = 0.11 · · ·1, we put the closed interval [le, le + 2−k] into the product of
(4.52). Lebesgue measure λ on K induces product measure φ with density
1
2 on the space� = {0, 1}k N of 0/1-vectors (le, j : j = 1, 2, . . . , k, e ∈ E).
We call each B(l) a ‘small cube’.

We claim that it suffices to consider events A that are the unions of small
cubes. For a measurable subset A ⊆ K , let Â be the subset of K that
‘approximates’ to A, given by Â =⋃l∈A B(l), where

A = {l ∈ � : B(l) ∩ A 6= ∅}.
Note that A is an increasing subset of the discrete kN -cube �. We write
IA(e, j ) for the influence of the index (e, j ) on the subset A ⊆ � under
the measure φ. The next task is to show that, when replacing A by Â, the
measure and influences of A are not greatly changed.

4.53 Lemma [51]. In the above notation,

0 ≤ λ( Â)− λ(A) ≤ N

2k ,(4.54)

|I Â(e)− IA(e)| ≤
2N

2k , e ∈ E .(4.55)

Proof. Clearly A ⊆ Â, whence λ(A) ≤ λ( Â). Let µ : K → K be the
projection mapping that maps (x f : f ∈ E) to (x f − m : f ∈ E), where
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m = ming∈E xg . We have that

(4.56) λ( Â)− λ(A) ≤ |R|2−k N ,

where R is the set of small cubes that intersect both A and its complement
A. Since A is increasing, R cannot contain two distinct elements r , r ′ with
µ(r) = µ(r ′). Therefore, |R| is no larger than the number of faces of small
cubes lying in the ‘hyperfaces’ of K , that is,

(4.57) K ≤ N2k(N−1).

Inequality (4.54) follows by (4.56).
Let e ∈ E , and let µe : K → [0, 1]E\{e} be the projection that sends

(x f : f ∈ E) to (x f : f ∈ E \ {e}). The face µe(K ) is the union of
‘small faces’ of small cubes. Each small face F corresponds to a ‘tube’
T (F) of small cubes, based on that face with axis parallel to the eth direc-
tion (see Figure 4.1). Such a tube has ‘first’ face F and ‘last’ face L =
T (F) ∩ {ω ∈ K : ω(e) = 1}, and we write BF (respectively, BL) for the
(unique) small cube with face F (respectively, L).

It is easily seen that F contributes 0 to I Â(e)− IA(e) if 1A is constant on
both BF and BL (it is not important that 1A should take the same value on
the initial small cube as on the final). Therefore,

(4.58) |I Â(e)− IA(e)| ≤ |NF ∪ NL |2−k(N−1),

where NF (respectively, NL ) is the set of initial (respectively, final) small
cubes on which 1A is non-constant. By restricting 1A to the ‘fattened hy-
perface’

⋃{BF : F ⊆ µe(K )} and applying the argument leading to (4.57)
within this region, we find as there that

|NF | ≤ (N − 1)2k(N−2).

The same inequality holds with NL in place of NF , and inequality (4.55)
follows by (4.58). �

Let A be an increasing subset of K , assume 0 < t = λ(A) < 1, and let
m = maxe IA(e). We may assume that 0 < m < 1

2 , since otherwise (4.34)

is a triviality. With Â given as above for some value of k to be chosen soon,
we write t̂ = λ( Â) and m̂ = maxe I Â(e). We shall prove below that

(4.59)
∑

e∈E

I Â(e) ≥ ct̂(1− t̂) log[1/(2m̂)],

for some absolute constant c > 0. Let k = k(N, A) be sufficiently large
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Br BF

s
ω(e)

BL L

Figure 4.1. The small boxes B = B(r, s) form the tube T (r). The
region A is shaded.

that the following inequalities hold:

N

2k <
1

2
min

{
t (1− t),

m log[1/(2m)]

2+ log[1/(2m)]
,

1

2
− m

}
,(4.60)

2N2

2k <
1

8
ct (1− t) log[1/(2m)].

(4.61)

By Lemma 4.53,

(4.62) |t − t̂ | ≤ N

2k
, |m − m̂| ≤ 2N

2k
,

whence, by (4.60),
(4.63)

|t − t̂ | ≤ 1
2 t (1− t), m̂ < 1

2 ,
|m − m̂|
m ∧ m̂

≤ 1
2 log[1/(2m)].

By Lemma 4.53 again,

∑

e∈A

IA(e) ≥
∑

e∈A

I Â(e)−
2N2

2k
.
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By (4.59), (4.61), (4.63), and a little elementary calculus,
∑

e∈A

IA(e)

≥ c
[
t (1− t)− |t − t̂ |

] [
log[1/(2m)]− |m − m̂|

m ∧ m̂

]
− 2N2

2k

≥ 1
8 ct (1− t) log[1/(2m)]

as required.
It thus suffices to prove (4.59), and we shall henceforth assume that

(4.64) A is a union of small cubes.

4.65 Lemma [51, 92]. For e ∈ E,

k∑

j=1

IA(e, j ) ≤ 2IA(e).

Proof. Let e ∈ E . For a fixed vector r = (r1, r2, . . . , rN−1) ∈ ({0, 1}k)E\{e},
consider the ‘tube’ T (r) comprising the union of the small cubes B(r, s)
of (4.52) over the 2k possible values in s ∈ {0, 1}k . We see after a little
thought (see Figure 4.1) that

IA(e, j ) =
∑

r

( 1
2 )

k N−1K (r, j ),

where K (r, j ) is the number of unordered pairs S = B(r, s), S ′ = B(r, s′)
of small cubes of T (r) such that: S ⊆ A, S ′ 6⊆ A, and |s− s′| = 2− j . Since
A is an increasing subset of K , we can see that

K (r, j ) ≤ 2k− j , j = 1, 2, . . . , k,

whence ∑

j

IA(e, j ) ≤ 2k

2k N−1
JN =

2

2k(N−1)
JN ,

where JN is the number of tubes T (r) that intersect both A and its comple-
ment A. By (4.64),

IA(e) =
1

2k(N−1)
JN ,

and the lemma is proved. �

We return to the proof of (4.59). Assume that m = maxe IA(e) <
1
2 . By

Lemma 4.65,
IA(e, j ) ≤ 2m for all e, j.
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By (4.30) applied to the event A of the kN -cube �,
∑

e, j

IA(e, j ) ≥ c1t (1− t) log[1/(2m)],

where c1 is an absolute positive constant and t = λ(A). By Lemma 4.65
again, ∑

e∈E

IA(e) ≥ 1
2 c1t (1− t) log[1/(2m)],

as required at (4.59). �

Proof of Theorem 4.38. We prove this in two steps.
I. In the notation of the theorem, there exists a Lebesgue-measurable

subset B of K = [0, 1]E such that: P(A) = λ(B), and IA(e) ≥
IB(e) for all e, where the influences are calculated according to the
appropriate probability measures.

II. There exists an increasing subset C of K such that λ(B) = λ(C), and
IB(e) ≥ IC (e) for all e.

The claims of the theorem follow via Theorem 4.33 from these two facts.
A version of Claim I was stated in [51] without proof. We use the measure-

space isomorphism theorem, Theorem B of [126, p. 173] (see also [1, p. 3]
or [199, p. 16]). Let x1, x2, . . . be an ordering of the atoms of X , and let
Qi be the sub-interval [qi , qi+1) of [0, 1], where q1 = 0 and

qi =
i−1∑

j=1

P({x j }) for i ≥ 2, q∞ =
∑

j≥1

P({x j}).

The non-atomic part of X has sample space 6′ = 6 \ {x1, x2, . . . }, and
total measure 1−q∞. By the isomorphism theorem, there exists a measure-
preserving map µ from the σ -algebra F

′ of 6′ to the Borel σ -algebra of
the interval [q∞, 1] endowed with Lebesgue measure λ1, satisfying

(4.66)

µ(A1 \ A2)
λ= µA1 \ µA2,

µ

( ∞⋃

n=1

An

)
λ=
∞⋃

n=1

µAn,

for An ∈ F
′, where A

λ= B means that λ1(A △ B) = 0. We extend
the domain of µ to F by setting µ({xi}) = Qi . In summary, there exists
µ : F → B[0, 1] such that P(A) = λ1(µA) for A ∈ F , and (4.66) holds
for An ∈ F .
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The product σ -algebra F
E of X E is generated by the class R

E of ‘rect-
angles’ of the form R =∏e∈E Ae for Ae ∈ F . For such R ∈ R

E , let

µE R =
∏

e∈E

µAe.

We extend the domain of µE to the class U of finite unions of rectangles by

µE
( m⋃

i=1

Ri

)
=

m⋃

i=1

µE Ri .

It can be checked that

(4.67) P(R) = λ(µE R),

for any such union R.
Let A ∈ F

E , and assume without loss of generality that 0 < λ(A) < 1.
We can find an increasing sequence (Un : n ≥ 1) of elements of U, each
being a finite union of rectangles with strictly positive measure, such that
P(A △ Un)→ 0 as n→∞, and in particular

(4.68) P(Un \ A) = 0, n ≥ 1.

Let Vn = µEUn and B = limn→∞ Vn . Since Vn is non-decreasing in n, by
(4.67),

λ(B) = lim
n→∞ λ(µ

EUn) = lim
n→∞P(Un) = P(A).

We turn now to the influences. Let e ∈ E . For ψ ∈ 6E\{e}, let Fψ =
{ψ} ×6 be the ‘fibre’ at ψ , and

J a
A = P E\{e}({ψ ∈ 6E\{e} : P(A ∩ Fψ ) = a}

)
, a = 0, 1.

We define J a
B similarly, with P replaced by λ and 6 replaced by [0, 1].

Thus,

(4.69) IA(e) = 1− J 0
A − J 1

A,

and we claim that

(4.70) J 0
A ≤ J 0

B .

By replacing A by its complement A, we obtain that J 1
A ≤ J 1

B , and it follows
by (4.69)–(4.70) that IA(e) ≥ IB (e), as required. We write Un as the finite
union Un =

⋃
i Fi × Gi , where each Fi (respectively, Gi ) is a rectangle of

6E\{e} (respectively, 6). By Fubini’s theorem and (4.68),

J 0
A ≤ J 0

Un
= 1− P E\{e}

(⋃

i

Fi

)

= 1− λE\{e}
(⋃

i

µE\{e}Fi

)
= J 0

Vn
,
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by (4.67) with E replaced by E \ {e}.
Finally, we show that J 0

Vn
→ J 0

B as n → ∞, and (4.70) will follow.

For ψ ∈ 6E , we write proj(ψ) for the projection of ψ onto the sub-space
6E\{e}. Since the Vn are unions of rectangles of [0, 1]E with strictly positive
measure,

J 0
Vn
= λE\{e}(proj Vn

)
.

Now, Vn ↑ B, so thatω ∈ B if and only ifω ∈ Vn for some n. It follows that
proj Vn ↓ proj B, whence J 0

Vn
→ λE\{e}(proj B). Also, λE\{e}(proj B) =

J 0
B , and (4.70) follows. Claim I is proved.
Claim II is proved by an elaboration of the method laid out in [30, 51].

Let B ⊆ K be a non-increasing event. For e ∈ E and ψ = (ω(g) : g 6=
e) ∈ [0, 1]E\{e}, we define the fibre Fψ as usual by Fψ = {ψ} × [0, 1]. We
replace B ∩ Fψ by the set

(4.71) Bψ =
{ {ψ} × (1− y, 1] if y > 0,

∅ if y = 0,

where

(4.72) y = y(ψ) = λ1(B ∩ Fψ ).

Thus Bψ is obtained from B by ‘pushing B ∩ Fψ up the fibre’ in a measure-
preserving manner (see Figure 4.2). Clearly, Me B =⋃ψ Bψ is increasing4

in the direction e and, by Fubini’s theorem,

(4.73) λ(Me B) = λ(B).

f

ψ
B ∩ Fψ Bψ

e ω ω

Figure 4.2. In the e/ f -plane, we push every B ∩ Fψ as far rightwards
along the fibre Fψ as possible.

4Exercise: Show that Me B is Lebesgue-measurable.
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We order E in an arbitrary manner, and let

C =
(∏

e∈E

Me

)
B,

where the product is constructed in the given order. By (4.73),λ(C) = λ(B).
We show that C is increasing by proving that: if B is increasing in direction
f ∈ E , where f 6= e, then so is Me B. It is enough to work with the reduced
sample space K ′ = [0, 1]{e, f }, as illustrated in Figure 4.2. Suppose that
ω, ω′ ∈ K ′ are such that ω(e) = ω′(e) and ω( f ) < ω′( f ). Then

(4.74) 1Me B(ω) =
{

1 if ω(e) > 1− y,

0 if ω(e) ≤ 1− y,

where y = y(ω( f )) is given according to (4.72), with a similar expression
with ω and y replaced by ω′ and y′. Since B is assumed increasing in ω( f ),
we have that y ≤ y′. By (4.74), if ω ∈ Me B, then ω′ ∈ Me B, which is to
say that Me B is increasing in direction f .

Finally, we show that

(4.75) IMe B( f ) ≤ IB( f ), f ∈ E,

whence IC ( f ) ≤ IB( f ) and the theorem is proved. First, by construction,
IMe B(e) = IB (e). Let f 6= e. By conditioning on ω(g) for g 6= e, f ,

IMe B( f ) = λE\{e, f }
(
λ1
(
{ω(e) : 0 < λ1(Me B ∩ Fν) < 1}

))
,

where ν = (ω(g) : g 6= f ) and Fν = {ν} × [0, 1]. We shall show that

λ1
(
{ω(e) : 0 < λ1(Me B ∩ Fν) < 1}

)
(4.76)

≤ λ1
(
{ω(e) : 0 < λ1(B ∩ Fν) < 1}

)
,

and the claim will follow. Inequality (4.76) depends only on ω(e), ω( f ),
and thus we shall make no further reference to the remaining coordinates
ω(g), g 6= e, f . Henceforth, we write ω for ω(e) and ψ for ω( f ).

With the aid of Figure 4.2, we see that the left side of (4.76) equalsω−ω,
where

(4.77)
ω = sup{ω : λ1(Me B ∩ Fω) < 1},
ω = inf{ω : λ1(Me B ∩ Fω) > 0}.

We may assume thatω < 1 andω > 0, since otherwise ω = ω and (4.76)
is trivial. Let ǫ be positive and small, and let

(4.78) Aǫ = {ψ : λ1(B ∩ Fψ ) > 1− ω − ǫ}.
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Since λ1(B ∩ Fψ ) = λ1(Me B ∩ Fψ ), λ1(Aǫ) > 0 by (4.77). Let A′ǫ =
[0, 1] × Aǫ . We now estimate the two-dimensional Lebesgue measure
λ2(B ∩ A′ǫ) in two ways:

λ2(B ∩ A′ǫ) > λ1(Aǫ)(1− ω − ǫ) by (4.78),

λ2(B ∩ A′ǫ) ≤ λ1(Aǫ)λ1({ω : λ1(B ∩ Fω) > 0}),
whence D0 = {ω : λ1(B ∩ Fω) > 0} satisfies

λ1(D0) ≥ lim
ǫ↓0

[1− ω − ǫ] = 1− ω.

By a similar argument, D1 = {ω : λ1(B ∩ Fω) = 1} satisfies

λ1(D1) ≤ 1− ω.
For ω ∈ D0 \ D1, 0 < λ1(B ∩ Fω) < 1, so that

IB(e) ≥ λ1(D0 \ D1) ≥ ω − ω,
and (4.75) follows. �

4.7 Russo’s formula and sharp thresholds

Let φp denote product measure with density p on the finite product space
� = {0, 1}E . The influence IA(e), of e ∈ E on an event A, is given in
(4.28).

4.79 Theorem (Russo’s formula). For any event A ⊆ �,

d

dp
φp(A) =

∑

e∈E

[φp(A
e)− φ(Ae)] =

∑

e∈E

IA(e).

This formula, or its equivalent, has been discovered by a number of
authors. See, for example, [24, 184, 212]. The element e ∈ E is called
pivotal for the event A if the occurrence or not of A depends on the state of
e, that is, if 1A(ωe) 6= 1A(ω

e). If A is increasing, Russo’s formula states
that φ′p(A) equals the mean number of pivotal elements of E .

Proof. This is standard, see for example [106]. Since

φp(A) =
∑

ω

1A(ω)φp(ω),

it is elementary that

(4.80)
d

dp
φp(A) =

∑

ω∈�

( |η(ω)|
p
− N − |η(ω)|

1− p

)
1A(ω)φp(ω),
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where η(ω) = {e ∈ E : ω(e) = 1} and N = |E |. Let 1e be the indicator
function that e is open. Since φp(1e) = p for all e ∈ E , and |η| =∑e 1e,

p(1− p)
d

dp
φp(A) = φp

(
[|η| − pN ]1A

)

=
∑

e∈E

[
φp(1e1A)− φp(1e)φp(1A)

]
.

The summand equals

pφp(A
e)− p

[
pφp(A

e)+ (1− p)φp(Ae)
]
,

and the formula is proved. �

Let A be an increasing subset of � = {0, 1}E that is non-trivial in that
A 6= ∅, �. The function f (p) = φp(A) is non-decreasing with f (0) = 0
and f (1) = 1. The next theorem is an immediate consequence of Theorems
4.38 and 4.79.

4.81 Theorem [231]. There exists a constant c > 0 such that the following
holds. Let A be an increasing subset of � with A 6= ∅, �. For p ∈ (0, 1),

d

dp
φp(A) ≥ cφp(A)(1− φp(A)) log[1/(2 max

e
IA(e))],

where IA(e) is the influence of e on A with respect to the measure φp.

Theorem 4.81 takes an especially simple form when A has a certain
property of symmetry. In such a case, the following sharp-threshold theorem
implies that f (p) = φp(A) increases from (near) 0 to (near) 1 over an
interval of p-values with length of order not exceeding 1/ log N .

Let 5 be the group of permutations of E . Any π ∈ 5 acts on � by
πω = (ω(πe) : e ∈ E). We say that a subgroup A of 5 acts transitively
on E if, for all pairs j, k ∈ E , there exists α ∈ A with αj = k.

Let A be a subgroup of 5. A probability measure φ on (�,F ) is called
A-invariant if φ(ω) = φ(αω) for all α ∈ A. An event A ∈ F is called
A-invariant if A = αA for all α ∈ A. It is easily seen that, for any subgroup
A, φp is A-invariant.

4.82 Theorem (Sharp threshold) [93]. There exists a constant c satisfying
c ∈ (0,∞) such that the following holds. Let N = |E | ≥ 1. Let A ∈ F

be an increasing event, and suppose there exists a subgroup A of5 acting
transitively on E such that A is A-invariant. Then

(4.83)
d

dp
φp(A) ≥ cφp(A)(1− φp(A)) log N, p ∈ (0, 1).
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Proof. We show first that the influences IA(e) are constant for e ∈ E . Let
e, f ∈ E , and find α ∈ A such that αe = f . Under the given conditions,

φp(A, 1 f = 1) =
∑

ω∈A

φp(ω)1 f (ω) =
∑

ω∈A

φp(αω)1e(αω)

=
∑

ω′∈A

φp(ω
′)1e(ω

′) = φp(A, 1e = 1),

where 1g is the indicator function that ω(g) = 1. On setting A = �,
we deduce that φp(1 f = 1) = φp(1e = 1). On dividing, we obtain that
φp(A | 1 f = 1) = φp(A | 1e = 1). A similar equality holds with 1
replaced by 0, and therefore IA(e) = IA( f ).

It follows that ∑

f ∈E

IA( f ) = N IA(e).

By Theorem 4.38 applied to the product space (�,F , φp), the right side is
at least cφp(A)(1− φp(A)) log N , and (4.83) is a consequence of Theorem
4.79. �

Let ǫ ∈ (0, 1
2 ) and let A be increasing and non-trivial. Under the condi-

tions of Theorem 4.82, φp(A) increases from ǫ to 1− ǫ over an interval of
values of p having length of order not exceeding 1/ log N . This amounts to
a quantification of the so-called S-shape results described and cited in [106,
Sect. 2.5]. An early step in the direction of sharp thresholds was taken by
Russo [213] (see also [231]), but without the quantification of log N .

Essentially the same conclusions hold for a family {µp : p ∈ (0, 1)}
of probability measures given as follows in terms of a positive measure µ
satisfying the FKG lattice condition. For p ∈ (0, 1), let µp be given by

(4.84) µp(ω) =
1

Zp

(∏

e∈E

pω(e)(1− p)1−ω(e)
)
µ(ω), ω ∈ �,

where Zp is chosen in such a way that µp is a probability measure. It is
easy to check that each µp satisfies the FKG lattice condition. It turns out
that, for an increasing event A 6= ∅, �,

(4.85)
d

dp
µp(A) ≥

cξp

p(1− p)
µp(A)(1− µp(A)) log[1/(2 max

e
JA(e))],

where
ξp = min

e∈E

[
µp(ω(e) = 1)µp(ω(e) = 0)

]
.

The proof uses inequality (4.36), see [100, 101]. This extension of Theorem
4.81 does not appear to have been noted before. It may be used in the studies
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of the random-cluster model, and of the Ising model with external field (see
[101]).

A slight variant of Theorem 4.82 is valid for measures φp given by (4.84),
with the positive probability measure µ satisfying: µ satisfies the FKG
lattice condition, and µ is A-invariant. See (4.85) and [100, 109].

From amongst the issues arising from the sharp-threshold Theorem 4.82,
we identify two. First, to what degree is information about the group A

relevant to the sharpness of the threshold? Secondly, what can be said when
p = pN tends to 0 as N → ∞. The reader is referred to [147] for some
answers to these questions.

4.8 Exercises

4.1 Let Xn, Yn ∈ L2(�,F ,P) be such that Xn → X , Yn → Y in L2. Show
that XnYn → XY in L1. [Reminder: L p is the set of random variables Z with
E(|Z |p) < ∞, and Zn → Z in L p if E(|Zn − Z |p) → 0. You may use any
standard fact such as the Cauchy–Schwarz inequality.]

4.2 [135] Let Pp be the product measure on the space {0, 1}n with density p.
Show by induction on n that Pp satisfies the Harris–FKG inequality, which is to
say that Pp(A ∩ B) ≥ Pp(A)Pp(B) for any pair A, B of increasing events.

4.3 (continuation) Consider bond percolation on the square lattice Z2. Let X
and Y be increasing functions on the sample space, such that Ep(X2),Ep(Y 2) <

∞. Show that X and Y are positively associated.
4.4 Coupling.

(a) Take � = [0, 1], with the Borel σ -field and Lebesgue measure P. For
any distribution function F , define a random variable Z F on � by

Z F (ω) = inf {z : ω ≤ F(z)}, ω ∈ �.

Prove that
P(Z F ≤ z) = P

(
[0, F(z)]

)
= F(z),

whence Z F has distribution function F .
(b) For real-valued random variables X , Y , we write X ≤st Y if P(X ≤ u) ≥

P(Y ≤ u) for all u. Show that X ≤st Y if and only if there exist random
variables X ′, Y ′ on �, with the same respective distributions as X and
Y , such that P(X ′ ≤ Y ′) = 1.

4.5 [109] Let µ be a positive probability measure on the finite product space
� = {0, 1}E .

(a) Show that µ satisfies the FKG lattice condition

µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ �,

if and only if this inequality holds for all pairsω1 ,ω2 that differ on exactly
two elements of E .
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(b) Show that the FKG lattice condition is equivalent to the statement that µ
is monotone, in that, for e ∈ E ,

f (e, ξ) := µ
(
ω(e) = 1

∣∣ω( f ) = ξ( f ) for f 6= e
)

is non-decreasing in ξ ∈ {0, 1}E\{e}.
4.6 [109] Let µ1, µ2 be positive probability measures on the finite product

� = {0, 1}E . Assume that they satisfy

µ2(ω1 ∨ ω2)µ1(ω1 ∧ ω2) ≥ µ1(ω1)µ2(ω2),

for all pairs ω1, ω2 ∈ � that differ on exactly one element of E , and in addition
that either µ1 or µ2 satisfies the FKG lattice condition. Show that µ2 ≥st µ1.

4.7 Let X1, X2, . . . be independent Bernoulli random variables with parameter
p, and Sn = X1 + X2 + · · · + Xn . Show by Hoeffding’s inequality or otherwise
that

P
(
|Sn − np| ≥ x

√
n
)
≤ 2 exp(− 1

2 x2/m2), x > 0,

where m = max{p, 1− p}.
4.8 Let Gn,p be the random graph with vertex set V = {1, 2, . . . , n} obtained

by joining each pair of distinct vertices by an edge with probability p (different
pairs are joined independently). Show that the chromatic number χn,p satisfies

P
(
|χn,p − Eχn,p| ≥ x

)
≤ 2 exp(− 1

2 x2/n), x > 0.

4.9 Russo’s formula. Let X be a random variable on the finite sample space
� = {0, 1}E . Show that

d

dp
Ep(X) =

∑

e∈E

Ep(δe X),

where δe X (ω) = X (ωe) − X (ωe), and ωe (respectively, ωe) is the configuration
obtained from ω by replacing ω(e) by 1 (respectively, 0).

Let A be an increasing event, with indicator function 1A. An edge e is called
pivotal for the event A in the configuration ω if δe IA(ω) = 1. Show that the
derivative of Pp(A) equals the mean number of pivotal edges for A. Find a related
formula for the second derivative of Pp(A).

What can you show for the third derivative, and so on?
4.10 [100] Show that every increasing subset of the cube [0, 1]N is Lebesgue-

measurable.
4.11 Heads turn up with probability p on each of N coin flips. Let A be

an increasing event, and suppose there exists a subgroup A of permutations of
{1, 2, . . . , N } acting transitively, such that A is A-invariant. Let pc be the value
of p such that Pp(A) = 1

2 . Show that there exists an absolute constant c > 0 such
that

Pp(A) ≥ 1− N−c(p−pc), p ≥ pc,
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with a similar inequality for p ≤ pc.
4.12 Let µ be a positive measure on � = {0, 1}E satisfying the FKG lattice

condition. For p ∈ (0, 1), let µp be the probability measure given by

µp(ω) =
1

Z p

(∏

e∈E

pω(e)(1− p)1−ω(e)
)
µ(ω), ω ∈ �.

Let A be an increasing event. Show that there exists an absolute constant c > 0
such that

µp1(A)[1− µp2 (A)] ≤ λB(p2−p1), 0 < p1 < p2 < 1,

where

B = inf
p∈(p1,p2)

{
cξp

p(1 − p)

}
, ξp = min

e∈E

[
µp(ω(e) = 1)µp(ω(e) = 0)

]
,

and λ satisfies

2 max
e∈E

JA(e) ≤ λ, e ∈ E, p ∈ (p1, p2),

with JA(e) the conditional influence of e on A.
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Further percolation

The subcritical and supercritical phases of percolation are charac-
terized respectively by the absence and presence of an infinite open
cluster. Connection probabilities decay exponentially when p < pc,
and there is a unique infinite cluster when p > pc. There is a
power-law singularity at the point of phase transition. It is shown
that pc = 1

2 for bond percolation on the square lattice. The Russo–
Seymour–Welsh (RSW) method is described for site percolation on
the triangular lattice, and this leads to a statement and proof of Cardy’s
formula.

5.1 Subcritical phase

In language borrowed from the theory of branching processes, a percolation
process is termed subcritical if p < pc, and supercritical if p > pc.

In the subcritical phase, all open clusters are (almost surely) finite. The
chance of a long-range connection is small, and it approaches zero as the
distance between the endpoints diverges. The process is considered to be
‘disordered’, and the probabilities of long-range connectivities tend to zero
exponentially in the distance. Exponential decay may be proved by ele-
mentary means for sufficiently small p, as in the proof of Theorem 3.2,
for example. It is quite another matter to prove exponential decay for all
p < pc, and this was achieved for percolation by Aizenman and Barsky [6]
and Menshikov [189, 190] around 1986.

The methods of Sections 5.1–5.4 are fairly robust with respect to choice
of process and lattice. For concreteness, we consider bond percolation on
Ld with d ≥ 2. The first principal result is the following theorem, in which
3(n) = [−n, n]d and ∂3(n) = 3(n) \3(n − 1).

5.1 Theorem [6, 189, 190]. There exists ψ(p), satisfying ψ(p) > 0 when
0 < p < pc, such that

(5.2) Pp(0↔ ∂3(n)) ≤ e−nψ(p), n ≥ 1.
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The reader is referred to [106] for a full account of this important the-
orem. The two proofs of Aizenman–Barsky and Menshikov have some
interesting similarities, while differing in fundamental ways. An outline
of Menshikov’s proof is presented later in this section. The Aizenman–
Barsky proof proceeds via an intermediate result, namely the following of
Hammersley [128]. Recall the open cluster C at the origin.

5.3 Theorem [128]. Suppose that χ(p) = Ep|C| < ∞. There exists
σ(p) > 0 such that

(5.4) Pp(0↔ ∂3(n)) ≤ e−nσ(p), n ≥ 1.

Seen in the light of Theorem 5.1, we may take the condition χ(p) <∞
as a characterization of the subcritical phase. It is not difficult to see, using
subadditivity, that the limit of n−1 log Pp(0 ↔ ∂3(n)) exists as n → ∞.
See [106, Thm 6.10].

Proof. Let x ∈ ∂3(n), and let τp(0, x) = Pp(0 ↔ x) be the probability
that there exists an open path of Ld joining the origin to x . Let Rn be the
number of vertices x ∈ ∂3(n) with this property, so that the mean value of
Rn is

(5.5) Ep(Rn) =
∑

x∈∂3(n)
τp(0, x).

Note that
∞∑

n=0

Ep(Rn) =
∞∑

n=0

∑

x∈∂3(n)
τp(0, x)(5.6)

=
∑

x∈Zd

τp(0, x)

= Ep
∣∣{x ∈ Zd : 0↔ x}

∣∣ = χ(p).

If there exists an open path from the origin to some vertex of ∂3(m+ k),
then there exists a vertex x in ∂3(m) that is connected by disjoint open paths
both to the origin and to a vertex on the surface of the translate ∂3(k, x) =
x +3(k) (see Figure 5.1). By the BK inequality,

Pp(0↔ ∂3(m + k)) ≤
∑

x∈∂3(m)
Pp(0↔ x)Pp(x ↔ x + ∂3(k))

(5.7)

=
∑

x∈∂3(m)
τp(0, x)Pp(0↔ ∂3(k))
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∂3(m + k)

∂3(m)

x

0

Figure 5.1. The vertex x is joined by disjoint open paths to the origin
and to the surface of the translate 3(k, x) = x +3(k), indicated by the
dashed lines.

by translation-invariance. Therefore,

(5.8) Pp(0↔ ∂3(m + k)) ≤ Ep(Rm)Pp(0↔ ∂3(k)), m, k ≥ 1.

Whereas the BK inequality makes this calculation simple, Hammersley
[128] employed a more elaborate argument by conditioning.

Let p be such that χ(p) < ∞, so that
∑∞

m=0 Ep(Rm) < ∞ from (5.6).
Then Ep(Rm) → 0 as m → ∞, and we may choose m such that η =
Ep(Rm) satisfies η < 1. Let n be a positive integer and write n = mr + s,
where r and s are non-negative integers and 0 ≤ s < m. Then

Pp(0↔ ∂3(n)) ≤ Pp(0↔ ∂3(mr)) since n ≥ mr

≤ ηr by iteration of (5.8)

≤ η−1+n/m since n < m(r + 1),

which provides an exponentially decaying bound of the form of (5.4), valid
for n ≥ m. It is left as an exercise to extend the inequality to n < m. �
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Outline proof of Theorem 5.1. The full proof can be found in [105, 106, 190,
237]. Let S(n) be the ‘diamond’ S(n) = {x ∈ Zd : δ(0, x) ≤ n} containing
all points within graph-theoretic distance n of the origin, and write An =
{0↔ ∂S(n)}. We are concerned with the probabilities gp(n) = Pp(An).

By Russo’s formula, Theorem 4.79,

(5.9) g′p(n) = Ep(Nn),

where Nn is the number of pivotal edges for An , that is, the number of edges
e for which 1A(ω

e) 6= 1A(ωe). By a simple calculation,

(5.10) g′p(n) =
1

p
Ep(Nn1An ) =

1

p
Ep(Nn | An)gp(n),

which may be integrated to obtain

gα(n) = gβ(n) exp

(
−
∫ β

α

1

p
Ep(Nn | An) dp

)
(5.11)

≤ gβ(n) exp

(
−
∫ β

α

Ep(Nn | An) dp

)
,

where 0 < α < β < 1. The vast majority of the work in the proof is devoted
to showing that Ep(Nn | An) grows at least linearly in n when p < pc, and
the conclusion of the theorem then follows immediately.

The rough argument is as follows. Let p < pc, so that Pp(An)→ 0 as
n → ∞. In calculating Ep(Nn | An), we are conditioning on an event of
diminishing probability, and thus it is feasible that there are many pivotal
edges of An . This will be proved by bounding (above) the mean distance
between consecutive pivotal edges, and then applying a version of Wald’s
equation. The BK inequality, Theorem 4.17, plays an important role.

Suppose that An occurs, and denote by e1, e2, . . . , eN the pivotal edges
for An in the order in which they are encountered when building the cluster
from the origin. It is easily seen that all open paths from the origin to ∂S(n)
traverse every ej . Furthermore, as illustrated in Figure 5.2, there must exist
at least two edge-disjoint paths from the second endpoint of each ej (in the
above ordering) to the first of ej+1.

Let M = max{k : Ak occurs}, so that

Pp(M ≥ k) = gp(k)→ 0 as k →∞.
The key inequality states that

(5.12) Pp(Nn ≥ k | An) ≥ P(M1 + M2 + · · · + Mk ≤ n − k),

where the Mi are independent copies of M . This is proved using the BK
inequality, using the above observation concerning disjoint paths between
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∂S(n)

e2 e1

e3

0

e4

Figure 5.2. Assume that 0↔ ∂S(n). For any consecutive pair ej , ej+1
of pivotal edges, taken in the order of traversal from 0 to ∂S(n), there
must exist at least two edge-disjoint open paths joining the second vertex
of ej and the first of ej+1.

consecutive pivotal edges. The proof is omitted here. By (5.12),

(5.13) Pp(Nn ≥ k | An) ≥ P(M ′1 + M ′2 + · · · + M ′k ≤ n),

where M ′i = 1+min{Mi , n}. Summing (5.13) over k, we obtain

Ep(Nn | An) ≥
∞∑

k=1

P(M ′1 + M ′2 + · · · + M ′k ≤ n)(5.14)

=
∞∑

k=1

Pp(K ≥ k + 1) = E(K )− 1,

where K = min{k : Sk > n} and Sk = M ′1 + M ′2 + · · · + M ′k . By Wald’s
equation,

n < E(SK ) = E(K )E(M ′1),
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whence

E(K ) >
n

E(M ′1)
= n

1+ E(min{M1, n}) =
n∑n

i=0 gp(i)
.

In summary, this shows that

(5.15) Ep(Nn | An) ≥
n∑n

i=0 gp(i)
− 1, 0 < p < 1.

Inequality (5.15) may be fed into (5.10) to obtain a differential inequality
for the gp(k). By a careful analysis of the latter inequality, we obtain that
Ep(Nn | An) grows at least linearly with n whenever p satisfies 0 < p < pc.
This step is neither short nor easy, but it is conceptually straightforward, and
it completes the proof. �

5.2 Supercritical phase

The critical value pc is the value of p at which the percolation probability
θ(p) becomes strictly positive. It is widely believed that θ(pc) = 0, and
this is perhaps the major conjecture of the subject.

5.16 Conjecture. For percolation on Ld with d ≥ 2, it is the case that
θ(pc) = 0.

It is known that θ(pc) = 0 when either d = 2 (by results of [135], see
Theorem 5.33) or d ≥ 19 (by the lace expansion of [132, 133]). The claim
is believed to be canonical of percolation models on all lattices and in all
dimensions.

Suppose now that p > pc, so that θ(p) > 0. What can be said about the
number N of infinite open clusters? Since the event {N ≥ 1} is translation-
invariant, it is trivial under the product measure Pp. However,

Pp(N ≥ 1) ≥ θ(p) > 0,

whence
Pp(N ≥ 1) = 1, p > pc.

We shall see in the forthcoming Theorem 5.22 that Pp(N = 1) = 1 when-
ever θ(p) > 0, which is to say that there exists a unique infinite open cluster
throughout the supercritical phase.

A supercritical percolation process in two dimensions may be studied
in either of two ways. The first of these is by duality. Consider bond
percolation on L2 with density p. The dual process (as in the proof of
the upper bound of Theorem 3.2) is bond percolation with density 1 − p.
We shall see in Theorem 5.33 that the self-dual point p = 1

2 is also the
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critical point. Thus, the dual of a supercritical process is subcritical, and
this enables a study of supercritical percolation on L2. A similar argument is
valid for certain other lattices, although the self-duality of the square lattice
is special.

While duality is the technique for studying supercritical percolation in
two dimensions, the process may also be studied by the block argument
that follows. The block method was devised expressly for three and more
dimensions in the hope that, amongst other things, it would imply the claim
of Conjecture 5.16. Block arguments are a work-horse of the theory of
general interacting systems.

We assume henceforth that d ≥ 3 and that p is such that θ(p) > 0; under
this hypothesis, we wish to gain some control of the geometry of the infinite
open paths. The main result is the following, of which an outline proof is
included later in the section. Let A ⊆ Zd , and write pc(A) for the critical
probability of bond percolation on the subgraph of Ld induced by A. Thus,
for example, pc = pc(Z

d). Recall that3(k) = [−k, k]d .

5.17 Theorem [115]. Let d ≥ 3. If F is an infinite connected subset of Zd

with pc(F) < 1, then for each η > 0 there exists an integer k such that

pc(2kF +3(k)) ≤ pc + η.
That is, for any set F sufficiently large that pc(F) < 1, we may ‘fatten’ F

to a set having critical probability as close to pc as required. One particular
application of this theorem is to the limit of slab critical probabilities, and
we elaborate on this next.

Many results have been proved for subcritical percolation under the ‘finite
susceptibility’ hypothesis that χ(p) < ∞. The validity of this hypothesis
for p < pc is implied by Theorem 5.1. Similarly, several important results
for supercritical percolation have been proved under the hypothesis that
‘percolation occurs in slabs’. The two-dimensional slab Fk of thickness 2k
is the set

Fk = Z2 × [−k, k]d−2 =
(
Z2 × {0}d−2)+3(k),

with critical probability pc(Fk). Since Fk ⊆ Fk+1 ⊆ Zd , the decreas-
ing limit pc(F) = limk→∞ pc(Fk) exists and satisfies pc(F) ≥ pc. The
hypothesis of ‘percolation in slabs’ is that p > pc(F). By Theorem 5.17,

(5.18) lim
k→∞

pc(Fk) = pc.

One of the best examples of the use of ‘slab percolation’ is the following
estimate of the extent of a finite open cluster. It asserts the exponential
decay of a ‘truncated’ connectivity function when d ≥ 3. A similar result
may be proved by duality for d = 2.
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Figure 5.3. Images of the Wulff crystal in two dimensions. These are
in fact images created by numerical simulation of the Ising model, but
the general features are similar to those of percolation. The simulations
were for finite time, and the images are therefore only approximations
to the true crystals. The pictures are 1024 pixels square, and the Ising
inverse-temperatures are β = 4

3 ,
10
11 . The corresponding random-cluster

models have q = 2 and p = 1 − e−4/3, 1 − e−10/11, so that the right-
hand picture is closer to criticality than the left.

5.19 Theorem [65]. Let d ≥ 3. The limit

σ(p) = lim
n→∞

{
−1

n
log Pp(0↔ ∂3(n), |C| <∞)

}

exists. Furthermore σ(p) > 0 if p > pc.

We turn briefly to a discussion of the so-called ‘Wulff crystal’, illustrated
in Figure 5.3. Much attention has been paid to the sizes and shapes of
clusters formed in models of statistical mechanics. When a cluster C is
infinite with a strictly positive probability, but is constrained to have some
large finite size n, then C is said to form a large ‘droplet’. The asymptotic
shape of such a droplet as n → ∞ is prescribed in general terms by the
theory of the so-called Wulff crystal, see the original paper [243] of Wulff.
Specializing to percolation, we ask for properties of the open cluster C at
the origin, conditioned on the event {|C| = n}.

The study of the Wulff crystal is bound up with the law of the volume of
a finite cluster. This has a tail that is ‘quenched exponential’,

(5.20) Pp(|C| = n) ≈ exp(−ρn(d−1)/d),

where ρ = ρ(p) ∈ (0,∞) for p > pc, and ≈ is to be interpreted in terms
of exponential asymptotics. The explanation for the curious exponent is
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as follows. The ‘most economic’ way to create a large finite cluster is to
find a region R containing a connected component D of size n, satisfying
D ↔ ∞, and then to cut all connections leaving R. Since p > pc, such
regions R exist with |R| (respectively, |∂R|) having order n (respectively,
n(d−1)/d), and the ‘cost’ of the construction is exponential in |∂R|.

The above argument yields a lower bound for Pp(|C| = n) of quenched-
exponential type, but considerably more work is required to show the exact
asymptotic of (5.20), and indeed one obtains more. The (conditional) shape
of Cn−1/d converges as n → ∞ to the solution of a certain variational
problem, and the asymptotic region is termed the ‘Wulff crystal’ for the
model. This is not too hard to make rigorous when d = 2, since the external
boundary of C is then a closed curve. Serious technical difficulties arise
when pursuing this programme when d ≥ 3. See [60] for an account and a
bibliography.

Outline proof of Theorem 5.19. The existence of the limit is an exercise
in subadditivity of a standard type, although with some complications in
this case (see [64, 106]). We sketch here a proof of the important estimate
σ(p) > 0.

Let Sk be the (d − 1)-dimensional slab

Sk = [0, k]× Zd−1.

Since p > pc, we have by Theorem 5.17 that p > pc(Sk) for some k, and
we choose k accordingly. Let Hn be the hyperplane of vertices x of Ld with
x1 = n. It suffices to prove that

(5.21) Pp(0↔ Hn, |C| <∞) ≤ e−γ n

for some γ = γ (p) > 0. Define the slabs

Ti = {x ∈ Zd : (i − 1)k ≤ x1 < ik}, 1 ≤ i < ⌊n/k⌋.
Any path from 0 to Hn traverses each Ti . Since p > pc(Sk), each slab
contains (almost surely) an infinite open cluster (see Figure 5.4). If 0↔ Hn

and |C| <∞, then all paths from 0 to Hn must evade all such clusters. There
are ⌊n/k⌋ slabs to traverse, and a price is paid for each. Modulo a touch of
rigour, this implies that

Pp(0↔ Hn, |C| <∞) ≤ [1− θk(p)]⌊n/k⌋,

where
θk(p) = Pp(0↔∞ in Sk) > 0.

The inequality σ(p) > 0 is proved. �
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H3k

0

T1 T2 T3

Figure 5.4. All paths from the origin to H3k traverse the regions Ti ,
i = 1, 2, 3.

Outline proof of Theorem 5.17. The full proof can be found in [106, 115].
For simplicity, we take F = Z2 × {0}d−2, so that

2kF +3(k) = Z2 × [−k, k]d−2 .

There are two main steps in the proof. In the first, we show the existence of
long finite paths. In the second, we show how to take such finite paths and
build an infinite cluster in a slab.

The principal parts of the first step are as follows. Let p be such that
θ(p) > 0.

1. Let ǫ > 0. Since θ(p) > 0, there exists m such that

Pp(3(m)↔∞) > 1− ǫ.
[This holds since there exists, almost surely, an infinite open cluster.]

2. Let n ≥ 2m, say, and let k ≥ 1. We may choose n sufficiently large
that, with probability at least 1−2ǫ,3(m) is joined to at least k points
in ∂3(n). [If, for some k, this fails for unbounded n, then there exists
N > m such that3(m) /↔ ∂3(N).]

3. By choosing k sufficiently large, we may ensure that, with probability
at least 1 − 3ǫ, 3(m) is joined to some point of ∂3(n), which is
itself connected to a copy of 3(m), lying ‘on’ the surface ∂3(n) and
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Figure 5.5. An illustration of the event that the block centred at the
origin is open. Each black square is a seed.

every edge of which is open. [We may choose k sufficiently large
that there are many non-overlapping copies of 3(m) in the correct
positions, indeed sufficiently many that, with high probability, one is
totally open.]

4. The open copy of 3(m), constructed above, may be used as a ‘seed’
for iterating the above construction. When doing this, we shall need
some control over where the seed is placed. It may be shown that
every face of ∂3(n) contains (with large probability) a point adjacent
to some seed, and indeed many such points. See Figure 5.5. [There is
sufficient symmetry to deduce this by the FKG inequality.]

Above is the scheme for constructing long finite paths, and we turn to the
second step.

5. This construction is now iterated. At each stage there is a certain
(small) probability of failure. In order that there be a strictly positive
probability of an infinite sequence of successes, we iterate in two ‘in-
dependent’ directions. With care, we may show that the construction
dominates a certain supercritical site percolation process on L2.

6. We wish to deduce that an infinite sequence of successes entails an
infinite open path of Ld within the corresponding slab. There are two
difficulties with this. First, since we do not have total control of the
positions of the seeds, the actual path in Ld may leave every slab. This
may be overcome by a process of ‘steering’, in which, at each stage, we

c© G. R. Grimmett 1 April 2010



92 Further percolation

choose a seed in such a position as to compensate for earlier deviations
in space.

7. A greater problem is that, in iterating the construction, we carry with
us a mixture of ‘positive’ and ‘negative’ information (of the form that
‘certain paths exist’ and ‘others do not’). In combining events, we
cannot use the FKG inequality. The practical difficulty is that, although
we may have an infinite sequence of successes, there will generally be
breaks in any corresponding open route to ∞. This is overcome by
sprinkling down a few more open edges, that is, by working at edge-
density p + δ where δ > 0, rather than at density p.

In conclusion, we find that, if θ(p) > 0 and δ > 0, then there exists,
with large probability, an infinite (p + δ)-open path in a slab of the form
Tk = Z2 × [−k, k]d−2 for sufficiently large k. The claim of the theorem
follows.

There are many details to be considered in carrying out the above pro-
gramme, and these are omitted here. �

5.3 Uniqueness of the infinite cluster

The principal result of this section is the following: for any value of p for
which θ(p) > 0, there exists (almost surely) a unique infinite open cluster.
Let N = N(ω) be the number of infinite open clusters.

5.22 Theorem [12]. If θ(p) > 0, then Pp(N = 1) = 1.

A similar conclusion holds for more general probability measures. The
two principal ingredients of the generalization are the translation-invariance
of the measure, and the so-called ‘finite-energy property’ that states that,
conditional on the states of all edges except e, say, the state of e is 0 (re-
spectively, 1) with a strictly positive (conditional) probability.

Proof. We follow [55]. The claim is trivial if p = 0, 1, and we assume
henceforth that 0 < p < 1. Let S = S(n) be the ‘diamond’ S(n) =
{x ∈ Zd : δ(0, x) ≤ n}, and let ES be the set of edges of Ld joining
pairs of vertices in S. We write NS (0) (respectively, NS(1)) for the total
number of infinite open clusters when all edges in ES are declared to be
closed (respectively, open). Finally, MS denotes the number of infinite
open clusters that intersect S.

The sample space � = {0, 1}Ed
is a product space with a natural family

of translations, and Pp is a product measure on �. Since N is a translation-
invariant function on �, it is almost surely constant, which is to say that

(5.23) ∃ k = k(p) ∈ {0, 1, 2, . . . } ∪ {∞} such that Pp(N = k) = 1.
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Next we show that the k in (5.23) necessarily satisfies k ∈ {0, 1,∞}.
Suppose that (5.23) holds with k < ∞. Since every configuration on ES
has a strictly positive probability, it follows by the almost-sure constantness
of N that

Pp
(
NS(0) = NS(1) = k

)
= 1.

Now NS(0) = NS(1) if and only if S intersects at most one infinite open
cluster (this is where we use the assumption that k <∞), and therefore

Pp(MS ≥ 2) = 0.

Clearly, MS is non-decreasing in S = S(n), and MS(n)→ N as n→∞.
Therefore,

(5.24) 0 = Pp(MS(n) ≥ 2)→ Pp(N ≥ 2),

which is to say that k ≤ 1.
It remains to rule out the case k = ∞. Suppose that k = ∞. We will

derive a contradiction by using a geometrical argument. We call a vertex x
a trifurcation if:
(a) x lies in an infinite open cluster,
(b) there exist exactly three open edges incident to x , and
(c) the deletion of x and its three incident open edges splits this infinite

cluster into exactly three disjoint infinite clusters and no finite clusters;
Let Tx be the event that x is a trifurcation. By translation-invariance, Pp(Tx)

is constant for all x , and therefore

(5.25)
1

|S(n)|Ep

( ∑

x∈S(n)

1Tx

)
= Pp(T0).

It will be useful to know that the quantity Pp(T0) is strictly positive, and it
is here that we use the assumed infinity of infinite clusters. Let MS(0) be
the number of infinite open clusters that intersect S when all edges of ES

are declared closed. Since MS(0) ≥ MS , by the remarks around (5.24),

Pp(MS(n)(0) ≥ 3) ≥ Pp(MS(n) ≥ 3)→ Pp(N ≥ 3) = 1 as n→∞.
Therefore, there exists m such that

Pp(MS(m)(0) ≥ 3) ≥ 1
2 .

We set S = S(m) and ∂S = S(m) \ S(m − 1). Note that:
(a) the event {MS(0) ≥ 3} is independent of the states of edges in ES ,
(b) if the event {MS(0) ≥ 3} occurs, there exist x, y, z ∈ ∂S lying in

distinct infinite open clusters of Ed \ ES .
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x

0

y

z

Figure 5.6. Take a diamond S that intersects at least three distinct
infinite open clusters, and then alter the configuration inside S in order
to create a configuration in which 0 is a trifurcation.

Let ω ∈ {MS(0) ≥ 3}, and pick x = x(ω), y = y(ω), z = z(ω)
according to (b). If there is more than one possible such triple, we pick such
a triple according to some predetermined rule. It is a minor geometrical
exercise (see Figure 5.6) to verify that there exist in ES three paths joining
the origin to (respectively) x , y, and z, and that these paths may be chosen
in such a way that:

(i) the origin is the unique vertex common to any two of them, and
(ii) each touches exactly one vertex lying in ∂S.

Let Jx,y,z be the event that all the edges in these paths are open, and that all
other edges in ES are closed.

Since S is finite,

Pp(Jx,y,z | MS(0) ≥ 3) ≥
[
min{p, 1− p}

]R
> 0,

where R = |ES |. Now,

Pp(0 is a trifurcation) ≥ Pp(Jx,y,z | MS(0) ≥ 3)Pp(MS(0) ≥ 3)

≥ 1
2

[
min{p, 1− p}

]R
> 0,

which is to say that Pp(T0) > 0 in (5.25).
It follows from (5.25) that the mean number of trifurcations inside S =

S(n) grows in the manner of |S| as n→∞. On the other hand, we shall see
next that the number of trifurcations inside S can be no larger than the size of
the boundary of S, and this provides the necessary contradiction. This final
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step must be performed properly (see [55, 106]), but the following rough
argument is appealing and may be made rigorous. Select a trifurcation
(t1, say) of S, and choose some vertex y1 ∈ ∂S such that t1 ↔ y1 in S. We
now select a new trifurcation t2 ∈ S. It may be seen, using the definition
of the term ‘trifurcation’, that there exists y2 ∈ ∂S such that y1 6= y2 and
t2 ↔ y2 in S. We continue similarly, at each stage picking a new trifurcation
tk ∈ S and a new vertex yk ∈ ∂S. If there are τ trifurcations in S, then we
obtain τ distinct vertices yk of ∂S. Therefore, |∂S| ≥ τ . However, by the
remarks above, Ep(τ ) is comparable to S. This is a contradiction for large
n, since |∂S| grows in the manner of nd−1 and |S| grows in the manner of
nd . �

5.4 Phase transition

Macroscopic functions, such as the percolation probability and mean cluster
size,

θ(p) = Pp(|C| = ∞), χ(p) = Ep|C|,
have singularities at p = pc, and there is overwhelming evidence that
these are of ‘power law’ type. A great deal of effort has been invested
by physicists and mathematicians towards understanding the nature of the
percolation phase-transition. The picture is now fairly clear when d = 2,
owing to the very significant progress in recent years in relating critical
percolation to the Schramm–Löwner curve SLE6. There remain however
substantial difficulties to be overcome before this chapter of percolation
theory can be declared written, even when d = 2. The case of large d
(currently, d ≥ 19) is also well understood, through work based on the
so-called ‘lace expansion’. Most problems remain open in the obvious case
d = 3, and ambitious and brave students are thus directed with caution.

The nature of the percolation singularity is supposed to be canonical, in
that it is expected to have certain general features in common with phase
transitions of other models of statistical mechanics. These features are
sometimes referred to as ‘scaling theory’ and they relate to ‘critical expo-
nents’. There are two sets of critical exponents, arising firstly in the limit as
p→ pc, and secondly in the limit over increasing distances when p = pc.
We summarize the notation in Table 5.7.

The asymptotic relation ≈ should be interpreted loosely (perhaps via
logarithmic asymptotics1). The radius of C is defined by

rad(C) = sup{‖x‖ : 0↔ x},
1We say that f (x) is logarithmically asymptotic to g(x) as x → 0 (respectively,

x →∞) if log f (x)/ log g(x)→ 1. This is often written as f (x) ≈ g(x).
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Function Behaviour Exp.

percolation
probability θ(p) = Pp(|C| = ∞) θ(p) ≈ (p − pc)

β β

truncated
mean cluster size χ f(p) = Ep(|C|1|C|<∞) χ f(p) ≈ |p − pc|−γ γ

number of
clusters per vertex κ(p) = Ep(|C|−1) κ ′′′(p) ≈ |p − pc|−1−α α

cluster moments χ f
k(p) = Ep(|C|k1|C|<∞)

χ f
k+1(p)

χ f
k(p)

≈ |p − pc|−1, k ≥ 1 1

correlation length ξ(p) ξ(p) ≈ |p − pc|−ν ν

cluster volume Ppc(|C| = n) ≈ n−1−1/δ δ

cluster radius Ppc

(
rad(C) = n

) ≈ n−1−1/ρ ρ

connectivity function Ppc(0↔ x) ≈ ‖x‖2−d−η η

Table 5.7. Eight functions and their critical exponents.

where

‖x‖ = sup
i
|xi |, x = (x1, x2, . . . , xd) ∈ Zd ,

is the supremum (L∞) norm on Zd . The limit as p → pc should be
interpreted in a manner appropriate for the function in question (for example,
as p ↓ pc for θ(p), but as p→ pc for κ(p)).

There are eight critical exponents listed in Table 5.7, denoted α, β, γ ,
δ, ν, η, ρ, 1, but there is no general proof of the existence of any of these
exponents for arbitrary d . In general, the eight critical exponents may be
defined for phase transitions in a quite large family of physical systems.
However, it is not believed that they are independent variables, but rather
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that they satisfy the scaling relations

2− α = γ + 2β = β(δ + 1),

1 = δβ,
γ = ν(2 − η),

and, when d is not too large, the hyperscaling relations

dρ = δ + 1,

2− α = dν.

The upper critical dimension is the largest value dc such that the hyperscaling
relations hold for d ≤ dc. It is believed that dc = 6 for percolation. There
is no general proof of the validity of the scaling and hyperscaling relations,
although quite a lot is known when d = 2 and for large d .

In the context of percolation, there is an analytical rationale behind the
scaling relations, namely the ‘scaling hypotheses’ that

Pp(|C| = n) ∼ n−σ f
(
n/ξ(p)τ

)

Pp(0↔ x, |C| <∞) ∼ ‖x‖2−d−ηg
(
‖x‖/ξ(p)

)

in the double limit as p → pc, n → ∞, and for some constants σ , τ , η
and functions f , g. Playing loose with rigorous mathematics, the scaling
relations may be derived from these hypotheses. Similarly, the hyperscaling
relations may be shown to be not too unreasonable, at least when d is not
too large. For further discussion, see [106].

We note some further points.
Universality. It is believed that the numerical values of critical exponents
depend only on the value of d , and are independent of the particular perco-
lation model.

Two dimensions. When d = 2, perhaps

α = − 2
3 , β = 5

36 , γ = 43
18 , δ = 91

5 , . . .

See (5.45).
Large dimension. When d is sufficiently large (actually, d ≥ dc) it is
believed that the critical exponents are the same as those for percolation on
a tree (the ‘mean-field model’), namely δ = 2, γ = 1, ν = 1

2 , ρ = 1
2 ,

and so on (the other exponents are found to satisfy the scaling relations).
Using the first hyperscaling relation, this is consistent with the contention
that dc = 6. Such statements are known to hold for d ≥ 19, see [132, 133]
and the remarks later in this section.
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Open challenges include to prove:
– the existence of critical exponents,
– universality,
– the scaling and hyperscaling relations,
– the conjectured values when d = 2,
– the conjectured values when d ≥ 6.

Progress towards these goals has been positive. For sufficiently large d ,
exact values are known for many exponents, namely the values from per-
colation on a regular tree. There has been remarkable progress in recent
years when d = 2, inspired largely by work of Schramm [215], enacted
by Smirnov [222], and confirmed by the programme pursued by Lawler,
Schramm, and Werner to understand SLE curves. See Section 5.6.

We close this section with some further remarks on the case of large d .
The expression ‘mean-field’ permits several interpretations depending on
context. A narrow interpretation of the term ‘mean-field theory’ for perco-
lation involves trees rather than lattices. For percolation on a regular tree,
it is quite easy to perform exact calculations of many quantities, including
the numerical values of critical exponents. That is, δ = 2, γ = 1, ν = 1

2 ,
ρ = 1

2 , and other exponents are given according to the scaling relations, see
[106, Chap. 10].

Turning to percolation on Ld , it is known as remarked above that the
critical exponents agree with those of a regular tree when d is sufficiently
large. In fact, this is believed to hold if and only if d ≥ 6, but progress so
far assumes that d ≥ 19. In the following theorem, we write f (x) ≃ g(x)
if there exist positive constants c1, c2 such that c1 f (x) ≤ g(x) ≤ c2 f (x)
for all x close to a limiting value.

5.26 Theorem [133]. For d ≥ 19,

θ(p) ≃ (p − pc)
1 as p ↓ pc,

χ(p) ≃ (pc − p)−1 as p ↑ pc,

ξ(p) ≃ (pc − p)−
1
2 as p ↑ pc,

χ f
k+1(p)

χ f
k(p)

≃ (pc − p)−2 as p ↑ pc, for k ≥ 1.

Note the strong form of the asymptotic relation ≃, and the identification
of the critical exponents β, γ , 1, ν. The proof of Theorem 5.26 centres on
a property known as the ‘triangle condition’. Define

(5.27) T (p) =
∑

x,y∈Zd

Pp(0↔ x)Pp(x ↔ y)Pp(y ↔ 0),
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and consider the triangle condition

T (pc) <∞.
The triangle condition was introduced by Aizenman and Newman [15], who
showed that it implied that χ(p) ≃ (pc − p)−1 as p ↑ pc. Subsequently
other authors showed that the triangle condition implied similar asymptotics
for other quantities. It was Takashi Hara and Gordon Slade [132] who
verified the triangle condition for large d , exploiting a technique known as
the ‘lace expansion’.

5.5 Open paths in annuli

The remainder of this chapter is devoted to percolation in two dimensions,
in the context of either the site model on the triangular lattice T or the bond
model on the square lattice L2.

There is a very useful technique for building open paths with certain
geometry in two dimensions. It leads to a proof that the chance of an open
cycle within an annulus [−3n, 3n]2\ [−n, n]2 is at least f (δ), where δ is the
chance of an open crossing of the square [−n, n]2, and f is a strictly positive
function. This result was useful in some of the original proofs concerning
the critical probability of bond percolation on L2 (see [106, Sect. 11.7]), and
it has re-emerged more recently as central to estimates that permit the proof
of Cardy’s formula and conformal invariance. It is commonly named after
Russo [211] and Seymour–Welsh [221]. The RSW lemma will be stated and
proved in this section, and utilized in the next three. Since our application
in Sections 5.6–5.7 is to site percolation on the triangular lattice, we shall
phrase the RSW lemma in that context. It is left to the reader to adapt and
develop the arguments of this section for bond percolation on the square
lattice (see Exercise 5.5). The triangular lattice T is drawn in Figure 5.8,
together with its dual hexagonal lattice H.

There is a special property in common to the bond model on L2 and
the site model on T, namely that the ‘external’ boundary of a finite open
cluster contains a closed cycle. This was illustrated in Figure 3.1 for bond
percolation on L2, and may be seen similarly for T. This property is central
to the proofs that these models have critical probability pc = 1

2 .

RSW theory is presented in [106, Sect. 11.7] for the square lattice L2

and general bond-density p. We could follow the same route here for the
triangular lattice, but for the sake of variation (and with an eye to later
applications) we shall restrict ourselves to the case p = 1

2 and shall give a
shortened proof due to Stanislav Smirnov. The more conventional approach
may be found in [238], see also [237], and [46] for a variant on the square

c© G. R. Grimmett 1 April 2010



100 Further percolation

Figure 5.8. The triangular lattice T and the (dual) hexagonal lattice H.

lattice. Thus, in this section we restrict ourselves to site percolation on T

with density 1
2 . Each site of T is coloured black with probability 1

2 , and
white otherwise, and the relevant probability measure is denoted as P.

The triangular lattice is embedded in R2 with vertex-set {mi + nj :
(m, n) ∈ Z2}, where i = (1, 0) and j = 1

2 (1,
√

3). Write Ra,b for the
subgraph induced by vertices in the rectangle [0, a]× [0, b], and we shall
restrict ourselves always to integers a and integer multiples b of 1

2

√
3. We

shall consider left–right crossings of rectangles R, and to this end we let
its left edge L(R) (respectively, right edge R(R)) be the set of vertices of
R within distance 1

2 of its left side (respectively, right side). This minor
geometrical complication arises because the vertical lines of L2 are not con-
nected subgraphs of T. Let Ha,b be the event that there exists a black path
that traverses Ra,b from L(Ra,b) to R(Ra,b). The ‘engine room’ of the RSW
method is the following lemma.

5.28 Lemma. P(H2a,b) ≥ 1
4 P(Ha,b)

2.

By iteration,

(5.29) P(H2k a,b) ≥ 4
[ 1

4P(Ha,b)
]2k

, k ≥ 0.

As ‘input’ to this inequality, we prove the following.

5.30 Lemma. We have that P(Ha,a
√

3) ≥ 1
2 .

Let 3m be the set of vertices in T at graph-theoretic distance m or less
from the origin 0, and define the annulus An = 33n \ 3n−1. Let On be
the event that An contains a black cycle C such that 0 lies in the bounded
component of R2 \ C .
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b

g ρg

Ug ρUg

0
Jg ρ Jg

0 a 2a

Figure 5.9. The crossing g and its reflection ρg in the box R2a,b . The
events Bg and Wρg are illustrated by the two lower paths, and exactly
one of these events occurs.

5.31 Theorem (RSW). There exists σ > 0 such that P(On) > σ for all
n ≥ 1.

Proof of Lemma 5.28. We follow an unpublished argument of Stanislav
Smirnov.2 Let g be a path that traverses Ra,b from left to right. Let ρ
denote reflection in the line x = a, so that ρg connects the left and right
edges of [a, 2a]×[0, b]. See Figure 5.9. Assume for the moment that g does
not intersect the x-axis. Let Ug be the connected subgraph of Ra,b lying
‘strictly beneath’ g, and Ug the corresponding graph lying ‘on or beneath’ g.
Let Jg (respectively, Jb) be the part of the boundary ∂Ug (respectively, Ra,b)
lying on either the x-axis or y-axis but not in g, and let ρ Jg (respectively,
ρ Jb) be its reflection.

Next we use the self-duality of site percolation on T. Let Bg be the event
that there exists a path of Ug ∪ρUg joining some vertex of g to some vertex
of ρ Jg , with the property that every vertex not belonging to g is black. Let
Wρg be defined similarly in terms of a white path of Ug∪ρUg from ρg to Jg .
The key fact is the following: Wρg occurs whenever Bg does not. This holds
as follows. Assume Bg does not occur. The set of vertices reached along
black paths from g does not intersect ρ Jg . Its external boundary (away from
g∪ρg) is white and connected, and thus contains a path of the sort required
for Wρg . There is a complication that does not arise for the bond model on
L2, namely that both Bg and Wρg can occur if the right endvertex of g lies

2See also [236].
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on the line x = a.
By symmetry, P(Bg) = P(Wρg), and by the above,

(5.32) P(Bg) = P(Wρg) ≥ 1
2 .

The same holds if g touches the x-axis, with Jg suitably adapted.
Let L be the left edge of R2a,b and R its right edge. By the FKG inequality,

P(H2a,b) ≥ P(L↔ ρ Jb, R↔ Jb)

≥ P(L↔ ρ Jb)P(R↔ Jb) = P(L↔ ρ Jb)
2,

where↔ denotes connection by a black path.
Let γ be the ‘highest’ black path from the left to the right sides of Ra,b ,

if such a path exists. Conditional on the event {γ = g}, the states of sites
beneath g are independent Bernoulli variables, whence, in particular, the
events Bg and {γ = g} are independent. Therefore,

P(L↔ ρ Jb) =
∑

g

P(γ = g, Bg) =
∑

g

P(Bg)P(γ = g)

≥ 1
2

∑

g

P(γ = g) = 1
2 P(Ha,b)

by (5.32), and the lemma is proved. �

Proof of Lemma 5.30. This is similar to the argument leading to (5.32).
Consider the rhombus R of T comprising all vertices of the form mi+nj for
0 ≤ m, n ≤ 2a. Let B be the event that R is traversed from left to right by a
black path, and W the event that it is traversed from top to bottom by a white
path. These two events are mutually exclusive with the same probability,
and one or the other necessarily occurs. Therefore, P(B) = 1

2 . On B, there
exists a left–right crossing of the (sub-)rectangle [a, 2a] × [0, a

√
3], and

the claim follows. �

Proof of Theorem 5.31. By (5.29) and Lemma 5.30, there exists α > 0 such
that

P(H8n,n
√

3) ≥ α, n ≥ 1.

We may represent the annulus An as the pairwise-intersection of six copies
of R8n,n

√
3 obtained by translation and rotation, illustrated in Figure 5.10.

If each of these is traversed by a black path in its long direction, then the
event On occurs. By the FKG inequality,

P(On) ≥ α6,

and the theorem is proved. �
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Figure 5.10. If each of six long rectangles are traversed in the long
direction by black paths, then the intersection of these paths contains a
black cycle within the annulus An .

5.6 The critical probability in two dimensions

We revert to bond percolation on the square lattice in this section. The square
lattice has a property of self-duality, illustrated in Figure 1.5. ‘Percolation
of open edges on the primal lattice’ is dual to ‘percolation of closed edges
on the dual lattice’. The self-dual value of p is thus p = 1

2 , and it was
long believed that the self-dual point is also the critical point pc. Theodore
Harris [135] proved by a geometric construction that θ( 1

2 ) = 0, whence
pc(Z

2) ≥ 1
2 . Harry Kesten [151] proved the complementary inequality.

5.33 Theorem [135, 151]. The critical probability of bond percolation on
the square lattice equals 1

2 . Furthermore, θ( 1
2 ) = 0.

Before giving a proof, we make some comments on the original proof.
Harris [135] showed that, if θ( 1

2 ) > 0, then we can construct closed dual
cycles around the origin. Such cycles prevent the cluster C from being in-
finite, and therefore θ( 1

2 ) = 0, a contradiction. Similar ‘path-construction’
arguments were developed by Russo [211] and Seymour–Welsh [221] in
a proof that p > pc if and only if χ(1 − p) < ∞. This so-called ‘RSW
method’ has acquired prominence through recent work on SLE (see Sections
5.5 and 5.7).

The complementary inequality pc(Z
2) ≤ 1

2 was proved by Kesten in
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[151]. More specifically, he showed that, for p < 1
2 , the probability of an

open left–right crossing of the rectangle [0, 2k] × [0, 2k+1] tends to zero
as k → ∞. With the benefit of hindsight, we may view his argument as
establishing a type of sharp-threshold theorem for the event in question.

The arguments that prove Theorem 5.33 may be adapted to certain other
situations. For example, Wierman [238] has proved that the critical proba-
bilities of bond percolation on the hexagonal/triangular pair of lattices (see
Figure 5.8) are the dual pair of values satisfying the star–triangle transfor-
mation. Russo [212] adapted the arguments to site percolation on the square
lattice. It is easily seen by the same arguments that site percolation on the
triangular lattice has critical probability 1

2 .3

The proof of Theorem 5.33 is broken into two parts.

Proof of Theorem 5.33: θ( 1
2 ) = 0, and hence pc ≥ 1

2 . Zhang discovered a
beautiful proof of this, using only the uniqueness of the infinite cluster, see
[106, Sect. 11.3]. Set p = 1

2 , and assume that θ( 1
2) > 0. Let T (n) = [0, n]2,

and find N sufficiently large that

P 1
2
(∂T (n)↔∞) > 1− ( 1

8 )
4, n ≥ N .

We set n = N + 1. Let Al, Ar, At, Ab be the (respective) events that the
left, right, top, bottom sides of T (n) are joined to∞ off T (n). By the FKG
inequality,

P 1
2
(T (n) /↔∞) = P 1

2
(Al ∩ Ar ∩ At ∩ Ab)

≥ P 1
2
(Al)P(Ar)P(At)P(Ab)

= P 1
2
(Ag)4

by symmetry, for g = l, r, t, b. Therefore,

P 1
2
(Ag) ≥ 1− P 1

2
(T (n) /↔∞)1/4 > 7

8 .

We consider next the dual box, with vertex set T (n)d = [0, n − 1]2 +
( 1

2 ,
1
2 ). Let Al

d, Ar
d, At

d, Ab
d denote the (respective) events that the left, right,

top, bottom sides of T (n)d are joined to∞ by a closed dual path off T (n)d.
Since each edge of the dual is closed with probability 1

2 ,

P 1
2
(Ag

d) >
7
8 , g = l, r, t, b.

Consider the event A = Al ∩ Ar ∩ At
d ∩ Ab

d, illustrated in Figure 5.11.
Clearly, P 1

2
(A) ≤ 1

2 , so that P 1
2
(A) ≥ 1

2 . However, on A, either L2 has

3See also Section 5.8.
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T (n)

Figure 5.11. The left and right sides of the box T (n) are joined to
infinity by open paths of the primal lattice, and the top and bottom sides
of the dual box T (n)d are joined to infinity by closed dual paths. Using
the uniqueness of the infinite open cluster, the two open paths must be
joined by an open path. This forces the existence of two disjoint infinite
closed clusters in the dual.

two infinite open clusters, or its dual has two infinite closed clusters. By
Theorem 5.22, each event has probability 0, a contradiction. We deduce
that θ( 1

2 ) = 0, implying in particular that pc ≥ 1
2 . �

Proof of Theorem 5.33: pc ≤ 1
2 . We give two proofs. The first uses the gen-

eral exponential-decay Theorem 5.1. The second was proposed by Stanislav
Smirnov, and avoids the appeal to Theorem 5.1. It is close in spirit to
Kesten’s original proof, and resonates with Menshikov’s proof of Theorem
5.1. A third approach to the proof uses the sharp-threshold Theorem 4.81,
and this is deferred to Section 5.8.

Proof A. Suppose instead that pc >
1
2 . By Theorem 5.1, there exists γ > 0

such that

(5.34) P 1
2
(0↔ ∂[−n, n]2) ≤ e−γ n, n ≥ 1.

Let S(n) be the graph with vertex set [0, n + 1]× [0, n] and edge set con-
taining all edges inherited from L2 except those in either the left side or the
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Figure 5.12. If there is no open left–right crossing of S(n), there must
exist a closed top–bottom crossing in the dual.

right side of S(n). Let A be the event that there exists an open path joining
the left side and right side of S(n). If A does not occur, then the top side of
the dual of S(n) is joined to the bottom side by a closed dual path. Since
the dual of S(n) is isomorphic to S(n), and since p = 1

2 , it follows that
P 1

2
(A) = 1

2 (see Figure 5.12). However, by (5.34),

P 1
2
(A) ≤ (n + 1)e−γ n,

a contradiction for large n. We deduce that pc ≤ 1
2 .

Proof B. Let3(k) = [−k, k]2 , and let Ak = 3(3k)\3(k) be an ‘annulus’.
The principal ingredient is an estimate that follows from the square-lattice
version of the RSW Theorem 5.31.4 Let p = 1

2 . There exist c, σ > 0 such
that:
(a) there are at least c log r disjoint annuli Ak within [−r, r ]2,
(b) each such annulus contains, with probability at least α, a dual closed

cycle having 0 in its inside.
Therefore, g(r) = P 1

2
(0↔ ∂3(r)) satisfies

(5.35) g(r) ≤ (1− σ)c log r = r−α,

4See Exercise 5.5.
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where α = α(c, σ ) > 0. For future use, let D be a random variable with

(5.36) P(D ≥ r) = g(r), r ≥ 0.

There are a variety of ways of implementing the basic argument of this
proof, of which we choose the following. Let Rn = [0, 2n]× [0, n], where
n ≥ 1, and let Hn be the event that Rn is traversed by an open path from
left to right. The event A given in Proof A satisfies P 1

2
(A) = 1

2 . Hence, by

Lemma 5.28 rewritten for the square lattice, there exists γ > 0 such that

(5.37) P 1
2
(Hn) ≥ γ, n ≥ 1.

This inequality will be used later in the proof.
We take p ≥ 1

2 and work with the dual model. Let Sn be the dual box
( 1

2 ,
1
2 )+ [0, 2n−1]× [0, n+1], and let Vn be the event that Sn is traversed

from top to bottom by a closed dual path. Let N = Nn be the number of
pivotal edges for the event Vn , and let 5 be the event that N ≥ 1 and all
pivotal edges are closed (in the dual). We shall prove that

(5.38) Ep(N | 5) ≥ c′nα,

for some absolute positive constant c′.
For any top–bottom path λ of Sn, we write L(λ) (respectively, R(λ)) for

the set of edges of Sn lying strictly to the ‘left’ (respectively, ‘right’) of λ.
On 5, there exists a closed top–bottom path of Sn, and from amongst such
paths we may pick the leftmost, denoted3. As in the proof of Lemma 5.28,
3 is measurable on the states of edges in and to the left of 3; that is to say,
for any admissible path λ, the event {3 = λ} depends only on the states of
edges in λ ∪ L(λ). (See Figure 5.13.)

Assume as above that 5 occurs, and that 3 = λ. Every pivotal edge for
Vn lies in λ. Each edge e = 〈x, y〉 ∈ λ has a dual edge ed = 〈ul, ur 〉, for
some ul, ur ∈ Z2. Since λ is leftmost, exactly one of these endvertices, ul

say, is necessarily connected to the left side of Rn by an open primal path
of edges dual to edges of L(λ). In addition, e is pivotal for Vn if and only
if ur is connected to the right side of Rn by an open primal path.

We now take a walk along λ from bottom to top, encountering its edges
in order. Let f1, f2, . . . , f N be the pivotal edges thus encountered, with
fi = 〈xi , yi〉, and let y0 be the initial vertex of λ and xN+1 the final vertex.
Given5, we have that N ≥ 1, and there is a ‘lowest’ open path9 connecting
the right side of Rn to an endvertex of the dual edge of f1. By symmetry,

(5.39) Pp(y1 lies in the lower half of Sn | 5) ≥ 1
2 .

Consider now a configuration ω ∈ 5, with 3 = λ and 9 = ψ , say. The
states of edges in the region T (λ, ψ) of Sn, lying both to the right of λ and
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x4

T (λ, ψ)

f3

f2

f1

λ

L(λ)

R(λ)

ψ

y0

Figure 5.13. The leftmost closed top–bottom crossing λ. Primal ver-
tices just to the ‘left’ of λ are connected by open (dotted) paths to the
left side of the rectangle. An edge f1 of λ is pivotal if the vertex just
to its ‘right’ is joined by an open path to the right side. Between any
two successive pivotal edges, there exists a closed path lying entirely in
R(λ). There are three pivotal edges fi in this illustration, and the dashed
lines are the closed connections of R(λ) joining successive fi .

above ψ , are unaffected by the conditioning. That is, for given λ, ψ , the
states of the edges in T (λ, ψ) are governed by product measure. What is
the distance from f1 = 〈x1, y1〉 to the next pivotal edge f2 = 〈x2, y2〉? No
pivotal edge in encountered on the way, and therefore there exists a closed
path of T (λ, ψ) from y1 to x2. Since 1 − p ≤ 1

2 , the L∞ displacement of
such a path is no larger in distribution than a random variable D satisfying
(5.36). Having reached f2, we iterate the argument until we attain the top
of Sn . The vertical displacement between two consecutive pivotal edges
is (conditional on the construction prior to the earlier such edge) bounded
above in distribution by D+ 1, where the extra 1 takes care of the length of
an edge.

By (5.39) and the stochastic inequality,

(5.40) Pp(N ≥ k + 1 | 5) ≥ 1
2 P(6k ≤ n/2), k ≥ 0,

where D′ = 1+min{D, n/2} and 6r = D′1 + D′2 + · · · + D′r . Cf. (5.13).
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There are at least two ways to continue. The first is to deduce that

2Pp(N ≥ k + 1 | 5) ≥ 1− P
(
D′i > n/(2k) for some 1 ≤ i ≤ k

)

≥ 1− kg
(
n/(2k)− 1

)
.

We choose here to use instead the renewal theorem as in the proof of Theorem
5.1. Sum (5.40) over k to obtain as in (5.14) that

(5.41) Ep(N | 5) ≥ 1
2 E(K ),

where K = min{k : 6k > n/2}. By Wald’s equation,

1
2 n < E(6K ) = E(K )E(D′),

so that

(5.42) E(K ) >
n/2

E(D′)
= n/2
∑n/2

r=0 g(r)
.

Inequality (5.38) follows from (5.41)–(5.42) and (5.35)–(5.36).5

We prove next that

(5.43) Pp(5) ≥ Pp(Hn)Pp(Vn).

Suppose Vn occurs, with 3 = λ, and let Wλ be the event that there exists
e ∈ λ such that: its dual edge ed = 〈u, v〉 has an endpoint connected to
the right side of Rn by an open primal path of edges of R(λ). The states of
edges of R(λ) are governed by product measure, so that

Pp(Wl | 3 = λ) ≥ Pp(Hn).

Therefore,

Pp(Hn)Pp(Vn) ≤
∑

l

Pp(Wl | 3 = λ)Pp(3 = λ) = Pp(5).

Since Pp(Hn) = 1 − Pp(Vn), by (5.38) and Russo’s formula (Theorem
4.79),

d

dp
Pp(Hn) ≥ Ep(N) ≥ c′nαPp(Hn)[1− Pp(Hn)], p ≥ 1

2 .

The resulting differential inequality
[

1

Pp(Hn)
+ 1

1− Pp(Hn)

]
d

dp
Pp(Hn) ≥ c′nα

5Readers are invited to complete the details of the above argument.
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Figure 5.14. The boxes with aspect ratio 2 are arranged in such a way
that, if all but finitely many are traversed in the long direction, then there
must exist an infinite cluster.

may be integrated over the interval [ 1
2 , p] to obtain6 via (5.37) that

1− Pp(Hn) ≤
1

γ
exp

{
−c′(p − 1

2 )n
α
}
.

This may be used to prove exponential decay in two dimensions (as in
Theorems 5.1 and 5.3), but here we use only the (lesser) consequence that

(5.44)
∞∑

n=1

[1− Pp(Hn)] <∞, p > 1
2 .

We now use a block argument that was published in [63].7 Let p > 1
2 .

Consider the nested rectangles

B2r−1 = [0, 22r ]× [0, 22r−1], B2r = [0, 22r ]× [0, 22r+1], r ≥ 1,

illustrated in Figure 5.14. Let K2r−1 (respectively, K2r ) be the event that
B2r−1 (respectively, B2r ) is traversed from left to right (respectively, top
to bottom) by an open path, so that Pp(Kk) = Pp(H2k−1 ). By (5.44) and
the Borel–Cantelli lemma, all but finitely many of the Kk occur, Pp-almost
surely. By Figure 5.14 again, this entails the existence of an infinite open
cluster, whence θ(p) > 0, and hence pc ≤ 1

2 . �

5.7 Cardy’s formula

There is a rich physical theory of phase transitions in theoretical physics,and
critical percolation is at the heart of this theory. The case of two dimensions

6The same point may be reached using the theory of influence, as in Exercise 5.4.
7An alternative block argument may be found in Section 5.8.
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is very special, in that methods of conformality and complex analysis, bol-
stered by predictions of conformal field theory, have given rise to a beautiful
and universal vision for the nature of such singularities. This vision is both
analytical and geometrical. Its proof has been one of the principal targets of
probability theory and theoretical physics over recent decades. The ‘road
map’ to the proof is now widely accepted, and many key ingredients have
become clear. There remain some significant problems.

The principal ingredient of the mathematical theory is the SLE process
introduced in Section 2.5. In a classical theorem of Löwner [177], we see
that a growing path γ in R2 may be encoded via conformal maps gt in terms
of a so-called ‘driving function’ b : [0,∞) → R. Oded Schramm [215]
predicted that a variety of scaling limits of stochastic processes in R2 may be
formulated thus, with b chosen as a Brownian motion with an appropriately
chosen variance parameter κ . He gave a partial proof that LERW on L2,
suitably re-scaled, has limit SLE2, and he indicated that UST has limit SLE8
and percolation SLE6.

These observations did not come out of the blue. There was considerable
earlier speculation around the idea of conformality, and we highlight the
statement by John Cardy of his formula [59], and the discussions of Michael
Aizenman and others concerning possible invariance under conformal maps
(see, for example, [4, 5, 158]).

Much has been achieved since Schramm’s paper [215]. Stanislav Smirnov
[222, 223] has proved that critical site percolation on the triangular lattice
satisfies Cardy’s formula, and his route to ‘complete conformality’ and SLE6
has been verified, see [56, 57] and [236]. Many of the critical exponents for
the model have now been calculated rigorously, namely

(5.45) β = 5
36 , γ = 43

18 , ν = 4
3 , ρ = 48

5 ,

together with the ‘two-arm’ exponent 5
4 , see [163, 226]. On the other hand,

it has not yet been possible to extend such results to other principal perco-
lation models such as bond or site percolation on the square lattice (some
extensions have proved possible, see [66] for example).

On a related front, Smirnov [224, 225] has proved convergence of the
re-scaled cluster boundaries of the critical Ising model (respectively, the
associated random-cluster model) on L2 to SLE3 (respectively, SLE16/3).
This will be extended in [67] to the Ising model on any so-called isoradial
graph, that is, a graph embeddable in R2 in such a way that the vertices of
any face lie on the circumference of some circle of given radius r .

The theory of SLE will soon constitute a book in its own right8, and

8See [160, 235].
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similarly for the theory of the several scaling limits that have now been
proved. These general topics are beyond the scope of the current work. We
restrict ourselves here to the statement and proof of Cardy’s formula for
critical site percolation on the triangular lattice, and we make use of the
accounts to be found in [236, 237]. See also [27, 48, 205].

We consider site percolation on the triangular lattice T, with density
p = 1

2 of open (or ‘black’) vertices. It may be proved very much as in
Theorem 5.33 that pc = 1

2 for this process (see also Section 5.8), but this
fact does not appear to be directly relevant to the material that follows. It
is, rather, the ‘self-duality’ or ‘self-matching’ property that counts.

Let D (6= C) be an open simply connected domain in R2; for simplicity
we shall assume that its boundary ∂D is a Jordan curve. Let a, b, c be
distinct points of ∂D, taken in anticlockwise order around ∂D. There exists
a conformal map φ from D to the interior of the equilateral triangle T of
C with vertices A = 0, B = 1, C = eπ i/3, and such φ can be extended
to the boundary ∂D in such a way that it becomes a homeomorphism from
D∪∂D (respectively, ∂D) to the closed triangle T (respectively, ∂T ). There
exists a unique such φ that maps a, b, c to A, B, C , respectively. With φ
chosen accordingly, the image X = φ(x) of a fourth point x ∈ ∂D, taken
for example on the arc from b to c, lies on the arc BC of T (see Figure 5.15).

D

C = eπ i/3 = ( 1
2 ,
√

3
2 )x

c

b

a

XTφ

A = 0 B = 1

Figure 5.15. The conformal map φ is a bijection from D to the interior
of T , and extends uniquely to the boundaries.

The triangular lattice T is re-scaled to have mesh-size δ, and we ask about
the probability Pδ(ac↔ bx in D) of an open path joining the arc ac to the
arc bx , in an approximation to the intersection (δT) ∩ D of the re-scaled
lattice with D. It is a standard application of the RSW method of the last
section to show that Pδ(ac ↔ bx in D) is uniformly bounded away from
0 and 1 as δ → 0. It thus seems reasonable that this probability should
converge as δ→ 0, and Cardy’s formula (together with conformality) tells
us the value of the limit.
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5.46 Theorem (Cardy’s formula) [59, 222, 223]. In the notation intro-
duced above,

(5.47) Pδ(ac↔ bx in D)→ |B X | as δ→ 0.

Some history: In [59], Cardy stated the limit of Pδ(ac ↔ bx in D) in
terms of a hypergeometric function of a certain cross-ratio. His derivation
was based on arguments from conformal field theory. Lennart Carleson
recognized the hypergeometric function in terms of the conformal map from
a rectangle to a triangle, and was led to conjecture the simple form of (5.47).
The limit was proved in 2001 by Stanislav Smirnov [222, 223]. The proof
utilizes the three-way symmetry of the triangular lattice in a somewhat
mysterious way.

Cardy’s formula is, in a sense, only the beginning of the story of the
scaling limit of critical two-dimensional percolation. It leads naturally to
a full picture of the scaling limits of open paths, within the context of the
Schramm–Löwner evolution SLE6. While explicit application is towards
the calculation of critical exponents [163, 226], SLE6 presents a much fuller
picture than this. Further details may be found in [57, 58, 223, 236]. The
principal open problem at the time of writing is to extend the scaling limit
beyond the site triangular model to either the bond or site model on another
major lattice.

We prove Theorem 5.46 in the remainder of this section. This will be
done first with D = T , the unit equilateral triangle, followed by the general
case. Assume then that D = T with T given as above. The vertices of T
are A = 0, B = 1, C = eπ i/3. We take δ = 1/n, and shall later let n→∞.
Consider site percolation on Tn = (n−1T) ∩ T . We may draw either Tn or
its dual graph Hn , which comprises hexagons with centres at the vertices of
Tn , illustrated in Figure 1.5. Each vertex of Tn (or equivalently, each face
of Hn) is declared black with probability 1

2 , and white otherwise. For ease
of notation later, we write A = A1, B = Aτ , C = Aτ 2 , where

τ = e2π i/3.

For vertices V , W of T we write V W for the arc of the boundary of T from
V to W .

Let z be the centre of a face of Tn (or equivalently, z ∈ V (Hn), the
vertex-set of the dual graph Hn). The events to be studied are as follows.
Let En

1 (z) be the event that there exists a self-avoiding black path from
A1 Aτ to A1 Aτ 2 that separates z from Aτ Aτ 2 . Let En

τ (z), En
τ 2(z) be given

similarly after rotating the triangle clockwise by τ and τ 2, respectively. The
event En

1 (z) is illustrated in Figure 5.16. We write

Hn
j (z) = P(En

j (z)), j = 1, τ, τ 2.
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C = Aτ 2

B = Aτ

z

A = A1

Figure 5.16. An illustration of the event En
1 (z), that z is separated from

Aτ A
τ2 by a black path joining A1 Aτ and A1 Aτ

2
.

5.48 Lemma. The functions Hn
j , j = 1, τ, τ 2, are uniformly Hölder on

V (Hn), in that there exist absolute constants c ∈ (0,∞), ǫ ∈ (0, 1) such
that

|Hn
j (z)− Hn

j (z
′)| ≤ c|z − z′|ǫ, z, z′ ∈ V (Hn),(5.49)

1− Hn
j (z) ≤ c|z − A j |ǫ, z ∈ V (Hn),(5.50)

where A j is interpreted as the complex number at the vertex A j .

The domain of the Hn
j may be extended as follows: the set V (Hn) may

be viewed as the vertex-set of a triangulation of a region slightly smaller
than T , on each triangle of which Hn

j may be defined by linear interpolation
between its values at the three vertices. Finally, the Hn

j may be extended
up to the boundary of T in such a way that the resulting functions satisfy
(5.49) for all z, z′ ∈ T , and

(5.51) Hn
j (A j) = 1, j = 1, τ, τ 2.

Proof. It suffices to prove (5.49) for small |z− z′|. Suppose that |z− z′| ≤
1

100 , say, and let F be the event that there exist both a black and a white cycle
of the entire re-scaled triangular lattice T/n, each of diameter smaller that 1

4 ,
and each having both z and z′ in the bounded component of its complement.
If F occurs, then either both or neither of the events En

j (z), En
j (z
′) occur,
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whence

|Hn
j (z)− Hn

j (z
′)| ≤ 1− P(F).

When z and z′ are a ‘reasonable’ distance from A j , the white cycle prevents
the occurrence of one of these events without the other. The black cycle is
needed when z, z′ are close to A j .

There exists C > 0 such that we may find log(C/|z− z′|) vertex-disjoint
annuli, each containing z, z′ in their central ‘hole’, and each within distance
1
8 of both z and z′ (the definition of annulus precedes Theorem 5.31). By
Theorem 5.31, the chance that no such annulus contains a black (respec-
tively, white) cycle is no greater than

(1− σ)log(C/|z−z ′|) =
( |z − z′|

C

)− log(1−σ)
,

whence 1−P(F) ≤ c|z− z′|ǫ for suitable c and ǫ. Inequality (5.50) follows
similarly with z′ = A j . �

It is convenient to work in the space of uniformly Hölder functions on
the closed triangle T satisfying (5.49)–(5.50). By the Arzelà–Ascoli the-
orem (see, for example, [73, Sect. 2.4]), this space is relatively compact.
Therefore, the sequence of triples (Hn

1 , Hn
τ , Hn

τ 2) possesses subsequential
limits in the sense of uniform convergence, and we shall see that any such
limit is of the form (H1, Hτ , Hτ 2), where the Hj are harmonic with certain
boundary conditions, and satisfy (5.49)–(5.50). The boundary conditions
guarantee the uniqueness of the Hj , and it will follow that Hn

j → Hj as
n→∞.

We shall see in particular that

Hτ 2(z) = 2√
3
|Im(z)|,

the re-scaled imaginary part of z. The values of H1 and Hτ are found by
rotation. The claim of the theorem will follow by letting z→ X ∈ BC .

Let (H1, Hτ , Hτ 2) be a subsequential limit as above. That the Hj are
harmonic will follow from the fact that the functions

(5.52) G1 = H1 + Hτ + Hτ 2, G2 = H1 + τHτ + τ 2 Hτ 2 ,

are analytic, and this analyticity will be implied by Morera’s theorem on
checking that the contour integrals of G1, G2 around triangles of a certain
form are zero. The integration step amounts to summing the Hj (z) over
certain z and using a cancellation property that follows from the next lemma.
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C = Aτ 2

B = Aτ

l1

s1

z3 z2

z
l2

s2 s3

z1 l3

A = A1

Figure 5.17. An illustration of the event En
1 (z1) \ En

1 (z). The path l1
is white, and l2, l3 are black.

Let z be the centre of a face of Tn with vertices labelled s1, s2, s3 in
anticlockwise order. Let z1, z2, z3 be the centres of the neighbouring faces,
labelled relative to the sj as in Figure 5.17.

5.53 Lemma. We have that

P[En
1 (z1) \ En

1 (z)] = P[En
τ (z2) \ En

τ (z)] = P[En
τ 2(z3) \ En

τ 2(z)].

Before proving this, we introduce the exploration process illustrated
in Figure 5.18. Suppose that all vertices ‘just outside’ the arc A1 Aτ 2

(respectively, Aτ Aτ 2) of Tn are black (respectively, white). The exploration
path is defined to be the unique path ηn on the edges of the dual (hexago-
nal) graph, beginning immediately above Aτ 2 and descending to A1 Aτ such
that: as we traverse ηn from top to bottom, the vertex immediately to our left
(respectively, right), looking along the path from Aτ 2 , is white (respectively,
black). When traversing ηn thus, there is a white path on the left and a black
path on the right.

Proof. The event En
1 (z1) \ En

1 (z) occurs if and only if there exist disjoint
paths l1, l2, l3 of Tn such that:

(i) l1 is white and joins s1 to Aτ Aτ 2 ,
(ii) l2 is black and joins s2 to A1 Aτ 2 ,

(iii) l3 is black and joins s3 to A1 Aτ .
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A = A1

C = Aτ 2

B = Aτ

Figure 5.18. The exploration path ηn started at the top vertex A
τ2 and

stopped when it hits the bottom side A1 Aτ of the triangle.

See Figure 5.17 for an explanation of the notation. On this event, the
exploration path ηn of Figure 5.18 passes through z and arrives at z along
the edge 〈z3, z〉 of Hn . Furthermore, up to the time at which it hits z, it lies
in the region of Hn between l2 and l1. Indeed, we may take l2 (respectively,
l1) to be the black path (respectively, white path) of Tn lying on the right
side (respectively, left side) of ηn up to this point.

Conditional on the event above, and with l1 and l2 given in terms of ηn
accordingly, the states of vertices of Tn lying below l1 ∪ l2 are independent
Bernoulli variables. Thus, the conditional probability of a black path l3
satisfying (iii) is the same as that of a white path. We make this measure-
preserving change, and then we interchange the colours white/black to con-
clude that: En

1 (z1) \ En
1 (z) has the same probability as the event that there

exist disjoint paths l1, l2, l3 of Tn such that:
(i) l1 is black and joins s1 to Aτ Aτ 2 ,

(ii) l2 is white and joins s2 to A1 Aτ 2 ,
(iii) l3 is black and joins s3 to A1 Aτ .
This is precisely the event En

τ (z2) \ En
τ (z), and the lemma is proved. �

We use Morera’s theorem in order to show the required analyticity. This
theorem states that: if f : R→ C is continuous on the open region R, and∮
γ

f dz = 0 for all closed curves γ in R, then f is analytic. It is standard
(see [210, p. 208]) that it suffices to consider triangles γ in R. We may in
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fact restrict ourselves to equilateral triangles with one side parallel to the
x-axis. This may be seen either by an approximation argument, or by an
argument based on the threefold Cauchy–Riemann equations

(5.54)
∂ f

∂1
= 1

τ

∂ f

∂τ
= 1

τ 2

∂ f

∂τ 2
,

where ∂/∂ j means the derivative in the direction of the complex number j .

5.55 Lemma. Let Ŵ be an equilateral triangle contained in the interior of
T with sides parallel to those of T . Then

∮

Ŵ

Hn
1 (z) dz =

∮

Ŵ

[Hn
τ (z)/τ ] dz+ O(n−ǫ)

=
∮

Ŵ

[Hn
τ 2(z)/τ

2] dz + O(n−ǫ),

where ǫ is given in Lemma 5.48.

Proof. Every triangular facet of Tn (that is, a triangular union of faces)
points either upwards (in that its horizontal side is at its bottom) or down-
wards. Let Ŵ be an equilateral triangle contained in the interior of T with
sides parallel to those of T , and assume that Ŵ points upwards (the same
argument works for downward-pointing triangles). Let Ŵn be the subgraph
of Tn lying within Ŵ, so that Ŵn is a triangular facet of Tn . Let D

n be the
set of downward-pointing faces of Ŵn . Let η be a vector of R2 such that: if
z is the centre of a face of Dn , then z + η is the centre of a neighbouring
face, that is η ∈ {i, iτ, iτ 2}/(n

√
3). Write

hn
j (z, η) = P[En

j (z + η) \ En
j (z)].

By Lemma 5.53,

Hn
1 (z + η)− Hn

1 (z) = hn
1(z, η)− hn

1(z + η,−η)
= hn

τ (z, ητ)− hn
τ (z + η,−ητ).

Now,

Hn
τ (z + ητ)− Hn

τ (z) = hn
τ (z, ητ)− hn

τ (z + ητ,−ητ),
and so there is a cancellation in

(5.56) I n
η =

∑

z∈Dn

[Hn
1 (z + η)− Hn

1 (z)]−
∑

z∈Dn

[Hn
τ (z + ητ)− Hn

τ (z)]

of all terms except those of the form hn
τ (z
′,−ητ) for certain z′ lying in faces

of Tn that abut ∂Ŵn . There are O(n) such z′, and therefore, by Lemma 5.48,

(5.57) |I n
η | ≤ O(n1−ǫ).
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Consider the sum

J n = 1

n
(I n

i + τ I n
iτ + τ 2 I n

iτ 2 ),

where I n
j is an abbreviation for the I n

j/n
√

3
of (5.56). The terms of the form

Hn
j (z) in (5.56) contribute 0 to J n , since each is multiplied by

(1+ τ + τ 2)n−1 = 0.

The remaining terms of the form Hn
j (z+ η), Hn

j (z+ ητ) mostly disappear
also, and we are left only with terms Hn

j (z
′) for certain z′ at the centre of

upwards-pointing faces of Tn abutting ∂Ŵn . For example, the contribution
from z′ if its face is at the bottom (but not the corner) of Ŵn is

1

n

[
(τ + τ 2)Hn

1 (z
′)− (1+ τ)Hn

τ (z
′)
]
= −1

n
[Hn

1 (z
′)− Hn

τ (z
′)/τ ].

When z′ is at the right (respectively, left) edge of Ŵn , we obtain the same
term multiplied by τ (respectively, τ 2). Therefore,

(5.58)
∮

Ŵn
[Hn

1 (z)− Hn
τ (z)/τ ] dz = −J n + O(n−ǫ) = O(n−ǫ),

by (5.57), where the first O(n−ǫ) term covers the fact that the z in (5.58) is a
continuous rather than discrete variable. Since Ŵ and Ŵn differ only around
their boundaries, and the Hn

j are uniformly Hölder,

(5.59)
∮

Ŵ

[Hn
1 (z)− Hn

τ (z)/τ ] dz = O(n−ǫ)

and, by a similar argument,

(5.60)
∮

Ŵ

[Hn
1 (z)− Hn

τ 2(z)/τ
2] dz = O(n−ǫ).

The lemma is proved. �

As remarked after the proof of Lemma 5.48, the sequence (Hn
1 , Hn

τ , Hn
τ 2)

possesses subsequential limits, and it suffices for convergence to show that
all such limits are equal. Let (H1, Hτ , Hτ 2) be such a subsequential limit.
By Lemma 5.55, the contour integrals of H1, Hτ/τ , Hτ 2/τ 2 around any Ŵ
are equal. Therefore, the contour integrals of the Gi in (5.52) around any Ŵ
equal zero. By Morera’s theorem [2, 210], G1 and G2 are analytic on the
interior of T , and furthermore they may be extended by continuity to the
boundary of T . In particular, G1 is analytic and real-valued, whence G1 is
a constant. By (5.50), G1(z)→ 1 as z→ 0, whence

G1 = H1 + Hτ + Hτ 2 ≡ 1 on T .
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Therefore, the real part of G2 satisfies

(5.61) Re(G2) = H1 − 1
2 (Hτ + Hτ 2) = 1

2 (3H1 − 1),

and similarly

(5.62) 2Re(G2/τ) = 3Hτ − 1, 2Re(G2/τ
2) = 3Hτ 2 − 1.

Since the Hj are the real parts of analytic functions, they are harmonic. It
remains to verify the relevant boundary conditions, and we will concentrate
on the function Hτ 2 . There are two ways of doing this, of which the first
specifies certain derivatives of the Hj along the boundary of T .

By continuity, Hτ 2(C) = 1 and Hτ 2 ≡ 0 on AB. We claim that the
horizontal derivative, ∂Hτ 2/∂1, is 0 on AC ∪ BC . Once this is proved, it
follows that Hτ 2(z) is the unique harmonic function on T satisfying these
boundary conditions, namely the function 2|Im(z)|/

√
3. The remaining

claim is proved as follows. Since G2 is analytic, it satisfies the threefold
Cauchy–Riemann equations (5.54). By (5.61)–(5.62),

(5.63)
∂Hτ 2

∂1
= 2

3
Re

(
1

τ 2

∂G2

∂1

)
= 2

3
Re

(
1

τ 3

∂G2

∂τ

)
= ∂H1

∂τ
.

Now, H1 ≡ 0 on BC , and BC has gradient τ , whence the right side of
(5.63)9 equals 0 on BC . The same argument holds on AC with H1 replaced
by Hτ .

The alternative is slightly simpler, see [27]. For z ∈ T , G2(z) is a convex
combination of 1, τ , τ 2, and thus maps T to the complex triangle T ′ with
these three vertices. Furthermore, G2 maps ∂T to ∂T ′, and G2(A j) = j
for j = 1, τ, τ 2. Since G2 is analytic on the interior of T , it is conformal,
and there is a unique such conformal map with this boundary behaviour,
namely that composed of a suitable dilation, rotation, and translation of T .
This identifies G2 uniquely, and the functions Hj also by (5.61)–(5.62).

This concludes the proof of Cardy’s formula when the domain D is an
equilateral triangle. The proof for general D is essentially the same, on
noting that a conformal image of a harmonic function is harmonic. First,
we approximate to the boundary of D by a cycle of the triangular lattice
with mesh δ. That G1 (≡ 1) and G2 are analytic is proved as before, and
hence the corresponding limit functions H1, Hτ , Hτ 2 are each harmonic
with appropriate boundary conditions. We now apply conformal invariance.
By the Riemann mapping theorem, there exists a conformal map φ from
the inside of D to the inside of T that may be extended uniquely to their

9We need also that G2 may be continued analytically beyond the boundary of T , see
[237].
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boundaries, and that maps a (respectively, b, c) to A (respectively, B, C).
The triple (H1◦φ−1, Hτ ◦φ−1, Hτ 2◦φ−1) solves the corresponding problem
on T . We have seen that there is a unique such triple on T , given as above,
and equation (5.47) is proved.

5.8 The critical probability via the sharp-threshold theorem

We use the sharp-threshold Theorem 4.81 to prove the following.

5.64 Theorem [238]. The critical probability of site percolation on the
triangular lattice satisfies pc = 1

2 . Furthermore, θ( 1
2 ) = 0.

This may be proved in very much the same manner as Theorem 5.33,
but we choose here to use the sharp-threshold theorem. This theorem pro-
vides a convenient ‘package’ for obtaining the steepness of a box-crossing
probability, viewed as a function of p. Other means, more elementary and
discovered earlier, may be used instead. These include: Kesten’s original
proof [151] for bond percolation on the square lattice, Russo’s ‘approximate
zero–one law’ [213], and, most recently, the proof of Smirnov presented in
Section 5.6. Sharp-thresholds were first used in [46] in the current context,
and later in [47, 100, 101]. The present proof may appear somewhat shorter
than that of [46].

Proof. Let θ(p) denote the percolation probability on the triangular lattice
T. We have that θ( 1

2 ) = 0, just as in the proof of the corresponding lower
bound for the critical probability pc(L

2) in Theorem 5.33, and we say no
more about this. Therefore, pc ≥ 1

2 .
Two steps remain. First, we shall use the sharp-threshold theorem to

deduce that, when p > 1
2 , long rectangles are traversed with high probability

in the long direction. Then we shall use that fact, within a block argument,
to show that θ(p) > 0.

Each vertex is declared black (or open) with probability p, and white
otherwise. In the notation introduced just prior to Lemma 5.28, let Hn =
H16n,n

√
3 be the event that the rectangle Rn = R16n,n

√
3 is traversed by a

black path in the long direction. By Lemmas 5.28–5.30, there exists τ > 0
such that

(5.65) P 1
2
(Hn) ≥ τ, n ≥ 1.

Let x be a vertex of Rn , and write In,p(x) for the influence of x on the
event Hn under the measure Pp , see (4.27). Now, x is pivotal for Hn if and
only if:

(i) the left and right sides of Rn are connected by a black path when x is
black,
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x

Figure 5.19. The vertex x is pivotal for Hn if and only if: there is
left–right black crossing of Rn when x is black, and a top–bottom white
crossing when x is white.

(ii) the top and bottom sides of Rn are connected by a white path when x
is white.

This event is illustrated in Figure 5.19.
Let 1

2 ≤ p ≤ 3
4 , say. By (ii),

(1− p)In,p(x) ≤ P1−p(rad(Cx) ≥ n),

where
rad(Cx) = max{|y − x | : x ↔ y}

is the radius of the cluster at x . (Here, |z| denotes the graph-theoretic
distance from z to the origin.) Since p ≥ 1

2 ,

P1−p(rad(Cx) ≥ n) ≤ ηn,

where

(5.66) ηn = P 1
2
(rad(C0) ≥ n)→ 0 as n→∞,

by the fact that θ( 1
2 ) = 0.

By (5.65) and Theorem 4.81, for large n,

P′p(Hn) ≥ cτ(1− Pp(Hn)) log[1/(8ηn)], p ∈ [ 1
2 ,

3
4 ],

which may be integrated to give

(5.67) 1− Pp(Hn) ≤ (1− τ)[8ηn]cτ (p− 1
2 ), p ∈ [ 1

2 ,
3
4 ].

Let p > 1
2 . By (5.66)–(5.67),

(5.68) Pp(Hn)→ 1 as n→∞.
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Figure 5.20. Each block is red with probability ρn . There is an
infinite cluster of red blocks with strictly positive probability, and any
such cluster contains an infinite open cluster of the original lattice.

We turn to the required block argument, which differs from that of Section
5.6 in that we shall use no explicit estimate of Pp(Hn). Roughly speaking,
copies of the rectangle Rn are distributed about T in such a way that each
copy corresponds to an edge of a re-scaled copy of T. The detailed con-
struction of this ‘renormalized block lattice’ is omitted from these notes,
and we shall rely on Figure 5.20 for explanation. The ‘blocks’ (that is, the
copies of Rn ) are in one–one correspondence with the edges of T, and thus
we may label the blocks as Be, e ∈ ET. Each block intersects just ten other
blocks.

Next we define a ‘block event’, that is, a certain event defined on the
configuration within a block. The first requirement for this event is that
the block be traversed by an open path in the long direction. We shall
require some further paths in order that the union of two intersecting blocks
contains a single component that traverses each block in its long direction.
In specific, we require open paths traversing the block in the short direction,
within each of the two extremal 3n× n

√
3 regions of the block. A block is

coloured red if the above paths exist within it. See Figure 5.21. If two red
blocks, Be and B f say, are such that e and f share a vertex, then their union
possesses a single open component containing paths traversing each of Be

and B f .
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Figure 5.21. A block is declared ‘red’ if it contains open paths that:
(i) traverse it in the long direction, and (ii) traverse it in the short direction
within the 3n×n

√
3 region at each end of the block. The shorter crossings

exist if the inclined blocks are traversed in the long direction.

If the block Rn fails to be red, then one or more of the blocks in Figure
5.21 is not traversed by an open path in the long direction. Therefore,
ρn := Pp(Rn is red) satisfies

(5.69) 1− ρn ≤ 3[1− Pp(Hn)]→ 0 as n→∞,

by (5.68).

The states of different blocks are dependent random variables, but any
collection of disjoint blocks have independent states. We shall count paths
in the dual, as in (3.8), to obtain that there exists, with strictly positive
probability, an infinite path in T comprising edges e such that every such Be

is red. This implies the existence of an infinite open cluster in the original
lattice.

If the red cluster at the origin of the block lattice is finite, there exists a
path in the dual lattice (a copy of the hexagonal lattice) that crosses only
non-red blocks (as in Figure 3.1). Within any dual path of length m, there
exists a set of ⌊m/12⌋ or more edges such that the corresponding blocks
are pairwise disjoint. Therefore, the probability that the origin of the block
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lattice lies in a finite cluster only of red blocks is no greater than

∞∑

m=6

3m(1− ρn)
⌊m/12⌋.

By (5.69), this may be made smaller than 1
2 by choosing n sufficiently large.

Therefore, θ(p) > 0 for p > 1
2 , and the theorem is proved. �

5.9 Exercises

5.1 [35] Consider bond percolation on L2 with p = 1
2 , and define the radius

of the open cluster C at the origin by rad(C) = max
{

n : 0 ↔ ∂[−n, n]2}. Use
the BK inequality to show that

P 1
2

(
rad(C) ≥ n

)
≥ 1

2
√

n
.

5.2 Let Dn be the largest diameter (in the sense of graph theory) of the open
clusters of bond percolation on Zd that intersect the box [−n, n]d . Show when
p < pc that Dn/ log n→ α(p) almost surely and in L p , for some α(p) ∈ (0,∞).

5.3 Consider bond percolation on L2 with density p. Let Tn be the box [0, n]2

with periodic boundary conditions, that is, we identify any pair (u, v), (x, y)
satisfying: either u = 0, x = n, v = y, or v = 0, y = n, u = x . For given m < n,
let A be the event that there exists some translate of [0,m]2 in Tn that is crossed
by an open path either from top to bottom, or from left to right. Using the theory
of influence or otherwise, show that

1− Pp(A) ≤
[
(2n2)

c(p− 1
2 )(2⌊n/m⌋2 − 1)

]−1
, p > 1

2 .

5.4 Consider site percolation on the triangular lattice T, and let 3(n) be the
ball of radius n centred at the origin. Use the RSW theorem to show that

P 1
2
(0↔ ∂3(n)) ≥ cn−α, n ≥ 1,

for constants c, α > 0.
Using the coupling of Section 3.3 or otherwise, deduce that θ(p) ≤ c′(p− 1

2 )
β

for p > 1
2 and constants c′, β > 0.

5.5 By adapting the arguments of Section 5.5 or otherwise, develop an RSW
theory for bond percolation on Z2.

5.6 Let D be an open simply connected domain in R2 whose boundary ∂D
is a Jordan curve. Let a, b, x , c be distinct points on ∂D taken in anticlockwise
order. Let Pδ(ac↔ bx) be the probability that, in site percolation on the re-scaled
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triangular lattice δT with density 1
2 , there exists an open path within D ∪ ∂D

from some point on the arc ac to some point on bx . Show that Pδ(ac ↔ bx) is
uniformly bounded away from 0 and 1 as δ→ 0.

5.7 Let f : D → C, where D is an open simply connected region of the
complex plane. If f is C1 and satisfies the threefold Cauchy–Riemann equations
(5.54), show that f is analytic.
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Contact process

The contact process is a model for the spread of disease about the
vertices of a graph. It has a property of duality that arises through
the reversal of time. For a vertex-transitive graph such as the d-
dimensional lattice, there is a multiplicity of invariant measures if
and only if there is a strictly positive probability of an unbounded
path of infection in space–time from a given vertex. This observation
permits the use of methodology developed for the study of oriented
percolation. When the underlying graph is a tree, the model has
three distinct phases, termed extinction, weak survival, and strong
survival. The continuous-time percolation model differs from the
contact process in that the time axis is undirected.

6.1 Stochastic epidemics

One of the simplest stochastic models for the spread of an epidemic is as
follows. Consider a population of constant size N + 1 that is suffering
from an infectious disease. We can model the spread of the disease as a
Markov process. Let X (t) be the number of healthy individuals at time t
and suppose that X (0) = N . We assume that, if X (t) = n, the probability
of a new infection during a short time-interval (t, t + h) is proportional to
the number of possible encounters between ill folk and healthy folk. That
is,

P
(
X (t + h) = n − 1

∣∣ X (t) = n
)
= λn(N + 1− n)h + o(h) as h ↓ 0.

In the simplest situation, we assume that nobody recovers. It is easy to show
that

G(s, t) = E(s X (t)) =
N∑

n=0

snP(X (t) = n)

satisfies
∂G

∂t
= λ(1− s)

(
N
∂G

∂s
− s

∂2G

∂s2

)
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with G(s, 0) = s N . There is no simple way of solving this equation,
although a lot of information is available about approximate solutions.

This epidemic model is over-simplistic through the assumptions that:
– the process is Markovian,
– there are only two states and no recovery,
– there is total mixing, in that the rate of spread is proportional to the product

of the numbers of infectives and susceptibles.
In ‘practice’ (computer viruses apart), an individual infects only others in
its immediate (bounded) vicinity. The introduction of spatial relationships
into such a model adds a major complication, and leads to the so-called
‘contact model’ of Harris [136]. In the contact model, the members of the
population inhabit the vertex-set of a given graph. Infection takes place
between neighbours, and recovery is permitted.

Let G = (V , E) be a (finite or infinite) graph with bounded vertex-
degrees. The contact model on G is a continuous-time Markov process
on the state space 6 = {0, 1}V . A state is therefore a 0/1 vector ξ =
(ξ(x) : x ∈ V ), where 0 represents the healthy state and 1 the ill state. There
are two parameters: an infection rate λ and a recovery rate δ. Transition-
rates are given informally as follows. Suppose that the state at time t is
ξ ∈ 6, and let x ∈ V . Then

P(ξt+h(x) = 0 | ξt = ξ) = δh + o(h), if ξ(x) = 1,

P(ξt+h(x) = 1 | ξt = ξ) = λNξ (x)h + o(h), if ξ(x) = 0,

where Nξ (x) is the number of neighbours of x that are infected in ξ ,

Nξ (x) =
∣∣{y ∈ V : y ∼ x, ξ(y) = 1}

∣∣.
Thus, each ill vertex recovers at rate δ, and in the meantime infects any
given neighbour at rate λ.

Care is needed when specifying a Markov process through its transition
rates, especially when G is infinite, since then6 is uncountable. We shall see
in the next section that the contact model can be constructed via a countably
infinite collection of Poisson processes. More general approaches to the
construction of interacting particle processes are described in [167] and
summarized in Section 10.1.

6.2 Coupling and duality

The contact model can be constructed in terms of families of Poisson pro-
cesses. This representation is both informative and useful for what follows.
For each x ∈ V , we draw a ‘time-line’ [0,∞). On the time-line {x}×[0,∞)
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time

space

0

Figure 6.1. The so-called ‘graphical representation’ of the contact
process on the line L. The horizontal line represents ‘space’, and the
vertical line above a point x is the time-line at x . The marks ◦ are the
points of cure, and the arrows are the arrows of infection. Suppose we
are told that, at time 0, the origin is the unique infected point. In this
picture, the initial infective is marked 0, and the bold lines indicate the
portions of space–time that are infected.

we place a Poisson point process Dx with intensity δ. For each ordered
pair x, y ∈ V of neighbours, we let Bx,y be a Poisson point process with
intensity λ. These processes are taken to be independent of each other, and
we can assume without loss of generality that the times occurring in the
processes are distinct. Points in each Dx are called ‘points of cure’, and
points in Bx,y are called ‘arrows of infection’ from x to y. The appropriate
probability measure is denoted by Pλ,δ .

The situation is illustrated in Figure 6.1 with G = L. Let (x, s), (y, t) ∈
V × [0,∞)where s ≤ t . We define a (directed) path from (x, s) to (y, t) to
be a sequence (x, s) = (x0, t0), (x0, t1), (x1, t1), (x1, t2), . . . , (xn, tn+1) =
(y, t) with t0 ≤ t1 ≤ · · · ≤ tn+1, such that:

(i) each interval {xi } × [ti , ti+1] contains no points of Dxi ,
(ii) ti ∈ Bxi−1,xi for i = 1, 2, . . . , n.

We write (x, s)→ (y, t) if there exists such a directed path.

We think of a point (x, u) of cure as meaning that an infection at x just
prior to time u is cured at time u. An arrow of infection from x to y at time
u means that an infection at x just prior to u is passed at time u to y. Thus,
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(x, s)→ (y, t)means that y is infected at time t if x is infected at time s.
Let ξ0 ∈ 6 = {0, 1}V , and define ξt ∈ 6, t ∈ [0,∞), by ξt (y) = 1 if

and only if there exists x ∈ V such that ξ0(x) = 1 and (x, 0)→ (y, t). It
is clear that (ξt : t ∈ [0,∞)) is a contact model with parameters λ and δ.

The above ‘graphical representation’ has several uses. First, it is a geo-
metrical picture of the spread of infection providing a coupling of contact
models with all possible initial configurations ξ0. Secondly, it provides cou-
plings of contact models with different λ and δ, as follows. Let λ1 ≤ λ2
and δ1 ≥ δ2, and consider the above representation with (λ, δ) = (λ2, δ1).
If we remove each point of cure with probability δ2/δ1 (respectively, each
arrow of infection with probability λ1/λ2), we obtain a representation of a
contact model with parameters (λ2, δ2) (respectively, parameters (λ1, δ1)).
We obtain thus that the passage of infection is non-increasing in δ and non-
decreasing in λ.

There is a natural one–one correspondence between 6 and the power set
2V of the vertex-set, given by ξ ↔ Iξ = {x ∈ V : ξ(x) = 1}. We shall
frequently regard vectors ξ as sets Iξ . For ξ ∈ 6 and A ⊆ V , we write ξ A

t
for the value of the contact model at time t starting at time 0 from the set A
of infectives. It is immediate by the rules of the above coupling that:
(a) the coupling is monotone in that ξ A

t ⊆ ξ B
t if A ⊆ B,

(b) moreover, the coupling is additive in that ξ A∪B
t = ξ A

t ∪ ξ B
t .

6.1 Theorem (Duality relation). For A, B ⊆ V ,

(6.2) Pλ,δ(ξ
A

t ∩ B 6= ∅) = Pλ,δ(ξ
B
t ∩ A 6= ∅).

Equation (6.2) can be written in the form

PA
λ,δ(ξt ≡ 0 on B) = PB

λ,δ(ξt ≡ 0 on A),

where the superscripts indicate the initial states. This may be termed ‘weak’
duality, in that it involves probabilities. There is also a ‘strong’ dual-
ity involving configurations of the graphical representation, that may be
expressed informally as follows. Suppose we reverse the direction of time
in the ‘primary’ graphical representation, and also the directions of the
arrows. The law of the resulting process is the same as that of the original.
Furthermore, any path of infection in the primary process, after reversal,
becomes a path of infection in the reversed process.

Proof. The event on the left side of (6.2) is the union over a ∈ A and b ∈ B
of the event that (a, 0) → (b, t). If we reverse the direction of time and
the directions of the arrows of infection, the probability of this event is
unchanged and it corresponds now to the event on the right side of (6.2). �
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6.3 Invariant measures and percolation

In this and the next section, we consider the contact process ξ = (ξt : t ≥ 0)
on the d-dimensional cubic lattice Ld with d ≥ 1. Thus, ξ is a Markov
process on the state space 6 = {0, 1}Zd

. Let I be the set of invariant
measures of ξ , that is, the set of probability measures µ on 6 such that
µSt = µ, where S = (St : t ≥ 0) is the transition semigroup of the
process.1 It is elementary that I is a convex set of measures: if φ1, φ2 ∈ I,
then αφ1 + (1 − α)φ2 ∈ I for α ∈ [0, 1]. Therefore, I is determined by
knowledge of the set Ie of extremal invariant measures.

The partial order on 6 induces a partial order on probability measures
on 6 in the usual way, and we denote this by ≤st. It turns out that I

possesses a ‘minimal’ and ‘maximal’ element, with respect to ≤st. The
minimal measure (or ‘lower invariant measure’) is the measure, denoted
δ∅, that places probability 1 on the empty set. It is called ‘lower’ because
δ∅ ≤st µ for all measures µ on 6.

The maximal measure (or ‘upper invariant measure’) is constructed as
the weak limit of the contact model beginning with the set ξ0 = Zd . Let µs

denote the law of ξZ
d

s . Since ξZ
d

s ⊆ Zd ,

µ0Ss = µs ≤st µ0.

By the monotonicity of the coupling,

µs+t = µ0Ss St = µs St ≤st µ0St = µt ,

whence the limit
lim

t→∞
µt( f )

exists for any bounded increasing function f : 6 → R. It is a general
result of measure theory that the space of probability measures on a compact
sample space is relatively compact (see [39, Sect. 1.6] and [73, Sect. 9.3]).
The space (6,F ) is indeed compact, whence the weak limit

ν = lim
t→∞

µt

exists. Since ν is a limiting measure for the Markov process, it is invariant,
and it is called the upper invariant measure. It is clear by the method of its
construction that ν is invariant under the action of any translation of Ld .

6.3 Proposition. We have that δ∅ ≤st ν ≤st ν for every ν ∈ I.

1A discussion of the transition semigroup and its relationship to invariant measures can
be found in Section 10.1. The semigroup S is Feller, see the footnote on page 191.
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Proof. Let ν ∈ I. The first inequality is trivial. Clearly, ν ≤st µ0, since µ0
is concentrated on the maximal set Zd . By the monotonicity of the coupling,

ν = νSt ≤st µ0St = µt , t ≥ 0.

Let t →∞ to obtain that ν ≤st ν. �

By Proposition 6.3, there exists a unique invariant measure if and only if
ν = δ∅. In order to understand when this is so,we deviate briefly to consider
a percolation-type question. Suppose we begin the process at a singleton,
the origin say, and ask whether the probability of survival for all time is
strictly positive. That is, we work with the percolation-type probability

(6.4) θ(λ, δ) = Pλ,δ(ξ
0
t 6= ∅ for all t ≥ 0),

where ξ0
t = ξ

{0}
t . By a re-scaling of time, θ(λ, δ) = θ(λ/δ, 1), and we

assume henceforth in his section that δ = 1, and we write Pλ = Pλ,1.

6.5 Proposition. The density of ill vertices under ν equals θ(λ). That is,

θ(λ) = ν
(
{σ ∈ 6 : σx = 1}

)
, x ∈ Zd .

Proof. The event {ξ0
T ∩ Zd 6= ∅} is non-increasing in T , whence

θ(λ) = lim
T→∞

Pλ(ξ
0
T ∩ Zd 6= ∅).

By Proposition 6.1,

Pλ(ξ
0
T ∩ Zd 6= ∅) = Pλ(ξ

Z
d

T (0) = 1),

and by weak convergence,

Pλ(ξ
Z

d

T (0) = 1)→ ν
(
{σ ∈ 6 : σ0 = 1}

)
.

The claim follows by the translation-invariance of ν. �

We define the critical value of the process by

λc = λc(d) = sup{λ : θ(λ) = 0}.
The function θ(λ) is non-decreasing, so that

θ(λ)

{ = 0 if λ < λc,

> 0 if λ > λc.

By Proposition 6.5,

ν

{ = δ∅ if λ < λc,

6= δ∅ if λ > λc.

The case λ = λc is delicate, especially when d ≥ 2, and it has been shown
in [36], using a slab argument related to that of the proof of Theorem 5.17,
that θ(λc) = 0 for d ≥ 1. We arrive at the following characterization of
uniqueness of extremal invariant measures.
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6.6 Theorem [36]. Consider the contact model on Ld with d ≥ 1. The set
I of invariant measures comprises a singleton if and only if λ ≤ λc. That
is, I = {δ∅} if and only if λ ≤ λc.

There are further consequences of the arguments of [36] of which we
mention one. The geometrical constructions of [36] enable a proof of the
equivalent for the contact model of the ‘slab’ percolation Theorem 5.17.
This in turn completes the proof, initiated in [76, 80], that the set of extremal
invariant measures of the contact model on Ld is exactly Ie = {δ∅, ν}. See
[78] also.

6.4 The critical value

This section is devoted to the following theorem.2 Recall that the rate of
cure is taken as δ = 1.

6.7 Theorem [136]. For d ≥ 1, we have that (2d)−1 < λc(d) <∞.

The lower bound is easily improved to λc(d) ≥ (2d − 1)−1. The upper
bound may be refined to λc(d) ≤ d−1λc(1) <∞, as indicated in Exercise
6.2. See the accounts of the contact model in the two volumes [167, 169]
by Tom Liggett.

Proof. The lower bound is obtained by a random walk argument that is
sketched here.3 The integer-valued process Nt = |ξ0

t | decreases by 1 at rate
Nt . It increases by 1 at rate λTt , where Tt is the number of edges of Ld

exactly one of whose endvertices x satisfies ξ0
t (x) = 1. Now, Tt ≤ 2d Nt ,

and so the jump-chain of Nt is bounded above by a simple random walk
R = (Rn : n ≥ 0) on {0, 1, 2, . . . }, with absorption at 0, and that moves to
the right with probability

p = 2dλ

1+ 2dλ

at each step. It is elementary that

P(Rn = 0 for some n ≥ 0) = 1 if p ≤ 1
2 ,

and it follows that

θ(λ) = 0 if λ <
1

2d
.

2There are physical reasons to suppose that λc(1) = 1.6494 . . . , see the discussion of
the so-called reggeon spin model in [102, 167].

3The details are left as an exercise.
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0

Figure 6.2. The points (m, n1) are marked for even values of m + n.
A point is ‘open’ if there are arrows of infection immediately following,
and no point of cure just prior. The open points form a site percolation
process on the rotated positive quadrant of the square lattice.

Just as in the case of percolation (Theorem 3.2) the upper bound on λc
requires more work. Since L may be viewed as a subgraph of Ld , it is
elementary that λc(d) ≤ λc(1). We show by a discretization argument that
λc(1) < ∞. Let 1 > 0, and let m, n ∈ Z be such that m + n is even. We
shall define independent random variables Xm,n taking the values 0 and 1.
We declare Xm,n = 1, and call (m, n) open, if and only if, in the graphical
representation of the contact model, the following two events occur:
(a) there is no point of cure in the interval {m} ×

(
(n − 1)1, (n + 1)1

]
,

(b) there exist left and right pointing arrows of infection from the interval
{m} ×

(
n1, (n + 1)1

]
.

(See Figure 6.2.) It is immediate that the Xm,n are independent, and

p = p(1) = Pλ(Xm,n = 1) = e−21(1− e−λ1)2.

We choose1 to maximize p(1), which is to say that

e−λ1 = 1

1+ λ,

and

(6.8) p = λ2

(1+ λ)2+2/λ
.
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0

Figure 6.3. Part of the binary tree T2.

Consider the Xm,n as giving rise to a directed site percolation model on
the first quadrant of a rotated copy of L2. It can be seen that ξ0

n1 ⊇ Bn,
where Bn is the set of vertices of the form (m, n) that are reached from (0, 0)
along open paths of the percolation process. Now,

Pλ
(
|Bn| = ∞ for all n ≥ 0

)
> 0 if p > Epsite

c ,

where Epsite
c is the critical probability of the percolation model. By (6.8),

θ(λ) > 0 if
λ2

(1+ λ)2+2/λ
> Epsite

c .

Since4 Epsite
c < 1, the final inequality is valid for sufficiently large λ, and we

deduce that λc(1) <∞. �

6.5 The contact model on a tree

Let d ≥ 2 and let Td be the homogeneous (infinite) labelled tree in which
every vertex has degree d + 1, illustrated in Figure 6.3. We identify a
distinguished vertex, called the origin and denoted 0. Let ξ = (ξt : t ≥ 0)
be a contact model on Td with infection rate λ and initial state ξ0 = {0}, and
take δ = 1.

With

θ(λ) = Pλ(ξt 6= ∅ for all t),

4Exercise.
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the process is said to die out if θ(λ) = 0, and to survive if θ(λ) > 0. It is
said to survive strongly if

Pλ
(
ξt (0) = 1 for unbounded times t

)
> 0,

and to survive weakly if it survives but it does not survive strongly. A process
that survives weakly has the property that (with strictly positive probability)
the illness exists for all time, but that (almost surely) there is a final time
at which any given vertex is infected. It can be shown that weak survival
never occurs on a lattice Ld , see [169]. The picture is quite different on a
tree.

The properties of survival and strong survival are evidently non-decreasing
in λ, whence there exist values λc, λss satisfying λc ≤ λss such that the
process

dies out if λ < λc,

survives weakly if λc < λ < λss,

survives strongly if λ > λss.

When is it the case that λc < λss? The next theorem indicates that this
occurs on Td if d ≥ 6. It was further proved in [196] that strict inequality
holds whenever d ≥ 3, and this was extended in [168] to d ≥ 2. See [169,
Chap. I.4] and the references therein.

6.9 Theorem [196]. For the contact model on the tree Td with d ≥ 2,

1

2
√

d
≤ λc <

1

d − 1
.

Proof. First we prove the upper bound. Let ρ ∈ (0, 1), and νρ(A) = ρ|A|
for any finite subset A of the vertex-set V of Td . We shall observe the
process νρ(ξt). Let g A(t) = EA

λ (νρ(ξt)). It is an easy calculation that

g A(t) = |A|t
[
νρ(A)

ρ

]
+ λNAt

[
ρνρ(A)

]
(6.10)

+ (1− |A|t − λNAt)νρ(A)+ o(t),

as t ↓ 0, where

NA =
∣∣{〈x, y〉 : x ∈ A, y /∈ A}

∣∣

is the number of edges of Td with exactly one endvertex in A. Now,

(6.11) NA ≥ (d + 1)|A| − 2(|A| − 1),
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since there are no more than |A| − 1 edges having both endvertices in A.
By (6.10),

d

dt
g A(t)

∣∣∣∣
t=0
= (1− ρ)

( |A|
ρ
− λNA

)
νρ(A)(6.12)

≤ (1− ρ)νρ(A)
[ |A|
ρ

(
1− λρ(d − 1)

)
− 2λ

]

≤ −2λ(1− ρ)νρ(A) ≤ 0,

whenever

(6.13) λρ(d − 1) ≥ 1.

Assume that (6.13) holds. By (6.12) and the Markov property,

(6.14)
d

du
g A(u) = EA

λ

(
d

dt
gξu (t)

∣∣∣∣
t=0

)
≤ 0,

implying that g A(u) is non-increasing in u.
With A = {0}, we have that g(0) = ρ < 1, and therefore

lim
t→∞

g(t) ≤ ρ.
On the other hand, if the process dies out, then (almost surely) ξt = ∅ for all
large t , so that, by the bounded convergence theorm, g(t)→ 1 as t →∞.
From this contradiction, we deduce that the process survives whenever there
exists ρ ∈ (0, 1) such that (6.13) holds. Therefore, (d − 1)λc < 1.

Turning to the lower bound, let ρ ∈ (0, 1) once again. We draw the tree
in the manner of Figure 6.4, and we let l(x) be the generation number of the
vertex x relative to 0 in this representation. For a finite subset A of V , let

wρ(A) =
∑

x∈A

ρl(x),

with the convention that an empty summation equals 0.
As in (6.12), h A(t) = EA

λ (wρ(ξt )) satisfies

d

dt
h A(t)

∣∣∣∣
t=0
=
∑

x∈A

(
−ρl(x) + λ

∑

y∈V : y∼x,
y /∈A

ρl(y)
)

(6.15)

≤ −wρ(A)+ λ
∑

x∈A

ρl(x)[dρ + ρ−1]

= (λdρ + λρ−1 − 1)wρ(A).

Set

(6.16) ρ = 1√
d
, λ = 1

2
√

d
,

c© G. R. Grimmett 1 April 2010



138 Contact process

l(x) = −1

0l(x) = 0

l(x) = 1

l(x) = 2

Figure 6.4. The binary tree T2 ‘suspended’ from a given doubly infinite
path, with the generation numbers as marked.

so that λdρ+λρ−1−1 = 0. By (6.15),wρ(ξt ) is a positive supermartingale.
By the martingale convergence theorem, the limit

(6.17) M = lim
t→∞

wρ(ξt ),

exists PA
λ -almost surely. See [121, Sect. 12.3] for an account of the conver-

gence of martingales.
On the event I = {ξt (0) = 1 for unbounded times t}, the process wρ(ξt )

changes its value (almost surely) by ρ0 = 1 on an unbounded set of times
t , in contradiction of (6.17). Therefore, PA

λ (I ) = 0, and the process does
not converge strongly under (6.16). The theorem is proved. �

6.6 Space–time percolation

The percolation models of Chapters 2 and 5 are discrete in that they inhabit
a discrete graph G = (V , E). There are a variety of continuum models of
interest (see [110] for a summary) of which we distinguish the continuum
model on V ×R. We can consider this as the contact model with undirected
time. We will encounter the related continuum random-cluster model in
Chapter 9, together with its application to the quantum Ising model.

Let G = (V , E) be a finite graph. The percolation model of this section
inhabits the space V ×R, which we refer to as space–time, and we consider
V×R as obtained by attaching a ‘time-line’ (−∞,∞) to each vertex x ∈ V .
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Let λ, δ ∈ (0,∞). The continuum percolation model on V × R is
constructed via processes of ‘cuts’ and ‘bridges’ as follows. For each x ∈ V ,
we select a Poisson process Dx of points in {x} × R with intensity δ; the
processes {Dx : x ∈ V } are independent, and the points in the Dx are termed
‘cuts’. For each e = 〈x, y〉 ∈ E , we select a Poisson process Be of points in
{e}×R with intensity λ; the processes {Be : e ∈ E} are independent of each
other and of the Dx . Let Pλ,δ denote the probability measure associated
with the family of such Poisson processes indexed by V ∪ E .

For each e = 〈x, y〉 ∈ E and (e, t) ∈ Be, we think of (e, t) as an edge
joining the endpoints (x, t) and (y, t), and we refer to this edge as a ‘bridge’.
For (x, s), (y, t) ∈ V ×R, we write (x, s)↔ (y, t) if there exists a path π
with endpoints (x, s), (y, t) such that: π is a union of cut-free sub-intervals
of V × R and bridges. For 3,1 ⊆ V × R, we write 3↔ 1 if there exist
a ∈ 3 and b ∈ 1 such that a ↔ b.

For (x, s) ∈ V × R, let Cx,s be the set of all points (y, t) such that
(x, s) ↔ (y, t). The clusters Cx,s have been studied in [37], where the
case G = Zd was considered in some detail. Let 0 denote the origin
(0, 0) ∈ Zd × R, and let C = C0 denote the cluster at the origin. Noting
that C is a union of line-segments, we write |C| for its Lebesgue measure.
The radius rad(C) of C is given by

rad(C) = sup
{
‖x‖ + |t | : (x, t) ∈ C

}
,

where
‖x‖ = sup

i
|xi |, x = (x1, x2, . . . , xd) ∈ Zd ,

is the supremum norm on Zd .
The critical point of the process is defined by

λc(δ) = sup{λ : θ(λ, δ) = 0},
where

θ(λ, δ) = Pλ,δ(|C| = ∞).
It is immediate by re-scaling time that θ(λ, δ) = θ(λ/δ, 1), and we shall
use the abbreviations λc = λc(1) and θ(λ) = θ(λ, 1).

6.18 Theorem [37]. Let G = Ld where d ≥ 1, and consider continuum
percolation on Ld × R.
(a) Let λ, δ ∈ (0,∞). There exist γ , ν satisfying γ, ν > 0 for λ/δ < λc

such that

Pλ,δ(|C| ≥ k) ≤ e−γ k, k > 0,

Pλ,δ(rad(C) ≥ k) ≤ e−νk, k > 0.
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(b) When d = 1, λc = 1 and θ(1) = 0.

There is a natural duality in 1+1 dimensions (that is, when the underlying
graph is the line L), and it is easily seen in this case that the process is self-
dual when λ = δ. Part (b) identifies this self-dual point as the critical
point. For general d ≥ 1, the continuum percolation model on Ld × R has
exponential decay of connectivity when λ/δ < λc. The proof, which is
omitted, uses an adaptation to the continuum of the methods used for Ld+1.
Theorem 6.18 will be useful for the study of the quantum Ising model in
Section 9.4.

There has been considerable interest in the behaviour of the continuum
percolation model on a graph G when the environment is itself chosen at
random, that is, we take the λ = λe, δ = δx to be random variables. More
precisely, suppose that the Poisson process of cuts at a vertex x ∈ V has
some intensity δx , and that of bridges parallel to the edge e = 〈x, y〉 ∈ E
has some intensity λe. Suppose further that the δx , x ∈ V , are independent,
identically distributed random variables, and the λe, e ∈ E also. Write 1
and3 for independent random variables having the respective distributions,
and P for the probability measure governing the environment. [As before,
Pλ,δ denotes the measure associated with the percolation model in the given
environment. The above use of the letters 1,3 to denote random variables
is temporary only.] The problem of understanding the behaviour of the
system is now much harder, because of the fluctuations in intensities about
G.

If there exist λ′, δ′ ∈ (0,∞) such that λ′/δ′ < λc and

P(3 ≤ λ′) = P(1 ≥ δ′) = 1,

then the process is almost surely dominated by the subcritical percolation
process with parameters λ′, δ′, whence there is (almost surely) exponential
decay in the sense of Theorem 6.18(i). This can fail in an interesting way if
there is no such almost-sure domination, in that (under certain conditions)
we can prove exponential decay in the space-direction but only a weaker
decay in the time-direction. The problem arises since there will generally
be regions of space that are favourable to the existence of large clusters,
and other regions that are unfavourable. In a favourable region, there may
be unnaturally long connections between two points with similar values for
their time-coordinates.

For (x, s), (y, t) ∈ Zd × R and q ≥ 1, we define

δq(x, s; y, t) = max
{
‖x − y‖, [log(1+ |s − t |)]q}.
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6.19 Theorem [154, 155]. Let G = Ld , where d ≥ 1. Suppose that

K = max
{

P
(
[log(1+3)]β

)
, P
(
[log(1+1−1)]β

)}
<∞,

for someβ > 2d2
(
1+
√

1+ d−1+(2d)−1
)
. There exists Q = Q(d, β) > 1

such that the following holds. For q ∈ [1, Q) and m > 0, there exists
ǫ = ǫ(d, β, K ,m, q) > 0 and η = η(d, β, q) > 0 such that: if

P
([

log(1+ (3/1))
]β)

< ǫ,

there exist identically distributed random variables Dx ∈ Lη(P), x ∈ Zd ,
such that

Pλ,δ
(
(x, s)↔ (y, t)

)
≤ exp

[
−mδq (x, s; y, t)

]
if δq (x, s; y, t) ≥ Dx ,

for (x, s), (y, t) ∈ Zd × R.

This version of the theorem of Klein can be found with explanation in
[118]. It is proved by a so-called multiscale analysis.

The contact process also may inhabit a random environment in which
the infection rates λx,y and cure rates δx are independent random variables.
Very much the same questions may be posed as for disordered percolation.
There is in addition a variety of models of physics and applied probability
for which the natural random environment is exactly of the above type. A
brief survey of directed models with long-range dependence may be found
with references in [111].

6.7 Exercises

6.1 Find α < 1 such that the critical probability of oriented site percolation on
L2 satisfies Epsite

c ≤ α.

6.2 Let d ≥ 2, and let 5 : Zd → Z be given by

5(x1, x2, . . . , xd) =
d∑

i=1

xi .

Let (At : t ≥ 0) denote a contact process on Zd with parameter λ and starting
at the origin. Show that A may be coupled with a contact process C on Z with
parameter λd and starting at the origin, in such a way that 5(At ) ⊇ Ct for all t .

Deduce that the critical point λc(d) of the contact model on Ld satisfies
λc(d) ≤ d−1λc(1).

6.3 [37] Consider unoriented space–time percolation on Z × R, with bridges
at rate λ and cuts at rate δ. By adapting the corresponding argument for bond
percolation on L2, or otherwise, show that the percolation probability θ(λ, δ)

satisfies θ(λ, λ) = 0 for λ > 0.
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Gibbs states

Brook’s theorem states that a positive probability measure on a finite
product may be decomposed into factors indexed by the cliques of its
dependency graph. Closely related to this is the well known fact that
a positive measure is a spatial Markov field on a graph G if and only
if it is a Gibbs state. The Ising and Potts models are introduced, and
the n-vector model is mentioned.

7.1 Dependency graphs

Let X = (X1, X2, . . . , Xn) be a family of random variables on a given
probability space. For i, j ∈ V = {1, 2, . . . , n} with i 6= j , we write i ⊥ j
if: X i and X j are independent conditional on (Xk : k 6= i, j ). The relation
⊥ is thus symmetric, and it gives rise to a graph G with vertex set V and
edge-set E = {〈i, j 〉 : i 6⊥ j }, called the dependency graph of X (or of its
law). We shall see that the law of X may be expressed as a product over
terms corresponding to complete subgraphs of G. A complete subgraph of
G is called a clique, and we write K for the set of all cliques of G. For
notational simplicity later, we designate the empty subset of V to be a clique,
and thus ∅ ∈ K . A clique is maximal if no strict superset is a clique, and
we write M for the set of maximal cliques of G.

We assume for simplicity that the X i take values in some countable subset
S of the reals R. The law of X gives rise to a probability mass function π
on Sn given by

π(x) = P(X i = xi for i ∈ V ), x = (x1, x2, . . . , xn) ∈ Sn.

It is easily seen by the definition of independence that i ⊥ j if and only if
π may be factorized in the form

π(x) = g(xi ,U )h(x j,U ), x ∈ Sn,

for some functions g and h, where U = (xk : k 6= i, j ). For K ∈ K and
x ∈ Sn, we write xK = (xi : i ∈ K ). We call π positive if π(x) > 0 for all
x ∈ Sn.

In the following, each function fK acts on the domain SK .
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7.1 Theorem [54]. Let π be a positive probability mass function on Sn.
There exist functions fK : SK → [0,∞), K ∈M, such that

(7.2) π(x) =
∏

K∈M
fK (xK ), x ∈ Sn.

In the simplest non-trivial example, let us assume that i ⊥ j whenever
|i − j | ≥ 2. The maximal cliques are the pairs {i, i + 1}, and the mass
function π may be expressed in the form

π(x) =
n−1∏

i=1

fi (xi , xi+1), x ∈ Sn,

so that X is a Markov chain, whatever the direction of time.

Proof. We shall show that π may be expressed in the form

(7.3) π(x) =
∏

K∈K
fK (xK ), x ∈ Sn,

for suitable fK . Representation (7.2) follows from (7.3) by associating each
fK with some maximal clique K ′ containing K as a subset.

A representation of π in the form

π(x) =
∏

r

fr (x)

is said to separate i and j if every fr is a constant function of either xi or
x j , that is, no fr depends non-trivially on both xi and x j . Let

(7.4) π(x) =
∏

A∈A
f A(xA)

be a factorization of π for some family A of subsets of V , and suppose that
i , j satisfies: i ⊥ j , but i and j are not separated in (7.4). We shall construct
from (7.4) a factorization that separates every pair r , s that is separated in
(7.4), and in addition separates i , j . Continuing by iteration, we obtain a
factorization that separates every pair i , j satisfying i ⊥ j , and this has the
required form (7.3).

Since i ⊥ j , π may be expressed in the form

(7.5) π(x) = g(xi ,U )h(x j,U )

for some g, h, where U = (xk : j 6= i, j ). Fix s, t ∈ S, and write h
∣∣
t

(respectively, h
∣∣
s,t ) for the function h(x) evaluated with x j = t (respectively,

xi = s, x j = t). By (7.4),

(7.6) π(x) = π(x)
∣∣
t

π(x)

π(x)
∣∣
t

=
(∏

A∈A
f A(xA)

∣∣
t

)
π(x)

π(x)
∣∣
t

.
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By (7.5), the ratio
π(x)

π(x)
∣∣
t

= h(x j ,U )

h(t,U )

is independent of xi , so that

π(x)

π(x)
∣∣
t

=
∏

A∈A

f A(xA)
∣∣
s

f A(xA)
∣∣
s,t

.

By (7.6),

π(x) =
(∏

A∈A
f A(xA)

∣∣
t

)(∏

A∈A

f A(xA)
∣∣
s

f A(xA)
∣∣
s,t

)

is the required representation, and the claim is proved. �

7.2 Markov and Gibbs random fields

Let G = (V , E) be a finite graph, taken for simplicity without loops or
multiple edges. Within statistics and statistical mechanics, there has been
a great deal of interest in probability measures having a type of ‘spatial
Markov property’ given in terms of the neighbour relation of G. We shall
restrict ourselves here to measures on the sample space 6 = {0, 1}V , while
noting that the following results may be extended without material difficulty
to a larger product SV , where S is finite or countably infinite.

The vector σ ∈ 6 may be placed in one–one correspondence with the
subset η(σ ) = {v ∈ V : σv = 1} of V , and we shall use this correspondence
freely. For any W ⊆ V , we define the external boundary

1W = {v ∈ V : v /∈ W, v ∼ w for some w ∈ W }.
For s = (sv : v ∈ V ) ∈ 6, we write sW for the sub-vector (sw : w ∈ W ).
We refer to the configuration of vertices in W as the ‘state’ of W .

7.7 Definition. A probability measure π on 6 is said to be positive if
π(σ) > 0 for all σ ∈ 6. It is called a Markov (random) field if it is positive
and: for all W ⊆ V , conditional on the state of V \W , the law of the state of
W depends only on the state of1W . That is, π satisfies the global Markov
property

(7.8) π
(
σW = sW

∣∣ σV\W = sV\W
)
= π

(
σW = sW

∣∣σ1W = s1W
)
,

for all s ∈ 6, and W ⊆ V .

The key result about such measures is their representation in terms of a
‘potential function’ φ, in a form known as a Gibbs random field (or some-
times ‘Gibbs state’). Recall the set K of cliques of the graph G, and write
2V for the set of all subsets (or ‘power set’) of V .

c© G. R. Grimmett 1 April 2010



7.2 Markov and Gibbs random fields 145

7.9 Definition. A probability measure π on 6 is called a Gibbs (random)
field if there exists a ‘potential’ function φ : 2V → R, satisfying φC = 0 if
C /∈K , such that

(7.10) π(B) = exp

(∑

K⊆B

φK

)
, B ⊆ V .

We allow the empty set in the above summation, so that logπ(∅) = φ∅.
Condition (7.10) has been chosen for combinatorial simplicity. It is

not the physicists’ preferred definition of a Gibbs state. Let us define a
Gibbs state as a probability measure π on 6 such that there exist functions
fK : {0, 1}K → R, K ∈K , with

(7.11) π(σ) = exp

(∑

K∈K
fK (σK )

)
, σ ∈ 6.

It is immediate thatπ satisfies (7.10) for some φ whenever it satisfies (7.11).
The converse holds also, and is left for Exercise 7.1.

Gibbs fields are thus named after Josiah Willard Gibbs, whose volume
[95] made available the foundations of statistical mechanics. A simplistic
motivation for the form of (7.10) is as follows. Suppose that each state σ
has an energy Eσ , and a probability π(σ). We constrain the average energy
E =∑σ Eσπ(σ) to be fixed, and we maximize the entropy

η(π) = −
∑

σ∈6
π(σ) log2 π(σ).

With the aid of a Lagrange multiplier β, we find that

π(σ) ∝ e−βEσ , σ ∈ 6.
The theory of thermodynamics leads to the expression β = 1/(kT ) where
k is Boltzmann’s constant and T is (absolute) temperature. Formula (7.10)
arises when the energy Eσ may be expressed as the sum of the energies of
the sub-systems indexed by cliques.

7.12 Theorem. A positive probability measureπ on6 is a Markov random
field if and only if it is a Gibbs random field. The potential function φ
corresponding to the Markov field π is given by

φK =
∑

L⊆K

(−1)|K\L| logπ(L), K ∈K.

A positive probability measure π is said to have the local Markov property
if it satisfies the global property (7.8) for all singleton sets W and all s ∈ 6.
The global property evidently implies the local property, and it turns out that
the two properties are equivalent. For notational convenience, we denote a
singleton set {w} as w.

c© G. R. Grimmett 1 April 2010



146 Gibbs states

7.13 Proposition. Let π be a positive probability measure on 6. The
following three statements are equivalent:
(a) π satisfies the global Markov property,
(b) π satisfies the local Markov property,
(c) for all A ⊆ V and any pair u, v ∈ V with u /∈ A, v ∈ A and u ≁ v,

(7.14)
π(A ∪ u)

π(A)
= π(A ∪ u \ v)

π(A \ v) .

Proof. First, assume (a), so that (b) holds trivially. Let u /∈ A, v ∈ A, and
u ≁ v. Applying (7.8) with W = {u} and, for w 6= u, sw = 1 if and only if
w ∈ A, we find that

π(A ∪ u)

π(A)+ π(A ∪ u)
= π(σu = 1 | σV\u = A)

(7.15)

= π(σu = 1 | σ1u = A ∩1u)

= π(σu = 1 | σV\u = A \ v) since v /∈ 1u

= π(A ∪ u \ v)
π(A \ v) + π(A ∪ u \ v) .

Equation (7.15) is equivalent to (7.14), whence (b) and (c) are equivalent
under (a).

It remains to show that the local property implies the global property.
The proof requires a short calculation, and may be done either by Theorem
7.1 or within the proof of Theorem 7.12. We follow the first route here.
Assume that π is positive and satisfies the local Markov property. Then
u ⊥ v for all u, v ∈ V with u ≁ v. By Theorem 7.1, there exist functions
fK , K ∈M, such that

(7.16) π(A) =
∏

K∈M
fK (A ∩ K ), A ⊆ V .

Let W ⊆ V . By (7.16), for A ⊆ W and C ⊆ V \W ,

π(σW = A | σV\W = C) =
∏

K∈M fK ((A ∪ C) ∩ K )∑
B⊆W

∏
K∈M fK ((B ∪ C) ∩ K )

.

Any clique K with K ∩ W = ∅ makes the same contribution fK (C ∩ K )
to both numerator and denominator, and may be cancelled. The remaining
cliques are subsets of Ŵ = W ∪1W , so that

π(σW = A | σV\W = C) =
∏

K∈M, K⊆Ŵ fK ((A ∪ C) ∩ K )
∑

B⊆W
∏

K∈M, K⊆Ŵ fK ((B ∪ C) ∩ K )
.
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The right side does not depend on σV\Ŵ , whence

π(σW = A | σV\W = C) = π(σW = A | σ1W = C ∩1W )

as required for the global Markov property. �

Proof of Theorem 7.12. Assume first that π is a positive Markov field, and
let

(7.17) φC =
∑

L⊆C

(−1)|C\L| logπ(L), C ⊆ V .

By the inclusion–exclusion principle,

logπ(B) =
∑

C⊆B

φC , B ⊆ V ,

and we need only show that φC = 0 for C /∈ K . Suppose u, v ∈ C and
u ≁ v. By (7.17),

φC =
∑

L⊆C\{u,v}
(−1)|C\L| log

(
π(L ∪ u ∪ v)
π(L ∪ u)

/
π(L ∪ v)
π(L)

)
,

which equals zero by the local Markov property and Proposition 7.13.
Therefore, π is a Gibbs field with potential function φ.

Conversely, suppose that π is a Gibbs field with potential function φ.
Evidently, π is positive. Let A ⊆ V , and u /∈ A, v ∈ A with u ≁ v. By
(7.10),

log

(
π(A ∪ u)

π(A)

)
=

∑

K⊆A∪u, u∈K
K∈K

φK

=
∑

K⊆A∪u\v, u∈K
K∈K

φK since u ≁ v and K ∈K

= log

(
π(A ∪ u \ v)
π(A \ v)

)
.

The claim follows by Proposition 7.13. �

We close this section with some notes on the history of the equivalence
of Markov and Gibbs random fields. This may be derived from Brook’s
theorem, Theorem 7.1, but it is perhaps more informative to prove it directly
as above via the inclusion–exclusion principle. It is normally attributed
to Hammersley and Clifford, and an account was circulated (with a more
complicated formulation and proof) in an unpublished note of 1971, [129]

c© G. R. Grimmett 1 April 2010



148 Gibbs states

(see also [68]). Versions of Theorem 7.12 may be found in the later work
of several authors, and the above proof is taken essentially from [103].
The assumption of positivity is important, and complications arise for non-
positive measures, see [191] and Exercise 7.2.

For applications of the Gibbs/Markov equivalence in statistics, see, for
example, [159].

7.3 Ising and Potts models

In a famous experiment, a piece of iron is exposed to a magnetic field.
The field is increased from zero to a maximum, and then diminished to
zero. If the temperature is sufficiently low, the iron retains some residual
magnetization, otherwise it does not. There is a critical temperature for this
phenomenon, often named the Curie point after Pierre Curie, who reported
this discovery in his 1895 thesis. The famous (Lenz–)Ising model for such
ferromagnetism, [142], may be summarized as follows. Let particles be
positioned at the points of some lattice in Euclidean space. Each particle
may be in either of two states, representing the physical states of ‘spin-up’
and ‘spin-down’. Spin-values are chosen at random according to a Gibbs
state governed by interactions between neighbouring particles, and given in
the following way.

Let G = (V , E) be a finite graph representing part of the lattice. Each
vertex x ∈ V is considered as being occupied by a particle that has a
random spin. Spins are assumed to come in two basic types (‘up’ and
‘down’), and thus we take the set 6 = {−1,+1}V as the sample space.
The appropriate probability mass function λβ,J,h on6 has three parameters
satisfying β, J ∈ [0,∞) and h ∈ R, and is given by

(7.18) λβ,J,h(σ ) =
1

ZI
e−βH(σ ), σ ∈ 6,

where the ‘Hamiltonian’ H : 6 → R and the ‘partition function’ ZI are
given by

(7.19) H(σ ) = −J
∑

e=〈x,y〉∈E

σxσy − h
∑

x∈V

σx , ZI =
∑

σ∈6
e−βH(σ ).

The physical interpretation of β is as the reciprocal 1/T of temperature, of
J as the strength of interaction between neighbours, and of h as the external
magnetic field. We shall consider here only the case of zero external-field,
and we assume henceforth that h = 0. Since J is assumed non-negative,
the measure λβ,J,0 is larger for smaller H(σ ). Thus, it places greater weight
on configurations having many neighbour-pairs with like spins, and for this
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reason it is called ‘ferromagnetic’. When J < 0, it is called ‘antiferromag-
netic’.

Each edge has equal interaction strength J in the above formulation.
Since β and J occur only as a productβ J , the measure λβ,J,0 has effectively
only a single parameterβ J . In a more complicated measure not studied here,
different edges e are permitted to have different interaction strengths Je. In
the meantime we shall set J = 1, and write λβ = λβ,1,0

Whereas the Ising model permits only two possible spin-values at each
vertex, the so-called (Domb–)Potts model [202] has a general number q ≥ 2,
and is governed by the following probability measure.

Let q be an integer satisfying q ≥ 2, and take as sample space the set
of vectors 6 = {1, 2, . . . , q}V . Thus each vertex of G may be in any of q
states. For an edge e = 〈x, y〉 and a configuration σ = (σx : x ∈ V ) ∈ 6,
we write δe(σ ) = δσx ,σy , where δi, j is the Kronecker delta. The relevant
probability measure is given by

(7.20) πβ,q (σ ) =
1

ZP
e−βH ′(σ ), σ ∈ 6,

where ZP = ZP(β, q) is the appropriate partition function (or normalizing
constant) and the Hamiltonian H ′ is given by

(7.21) H ′(σ ) = −
∑

e=〈x,y〉∈E

δe(σ ).

In the special case q = 2,

(7.22) δσ1,σ2 = 1
2 (1+ σ1σ2), σ1, σ2 ∈ {−1,+1},

It is easy to see in this case that the ensuing Potts model is simply the Ising
model with an adjusted value of β, in that πβ,2 is the measure obtained from
λβ/2 by re-labelling the local states.

We mention one further generalization of the Ising model, namely the so-
called n-vector or O(n)model. Let n ∈ {1, 2, . . . } and let Sn−1 be the set of
vectors of Rn with unit length, that is, the (n− 1)-sphere. A ‘model’ is said
to have O(n) symmetry if its Hamiltonian is invariant under the operation
on Sn−1 of n × n orthonormal matrices. One such model is the n-vector
model on G = (V , E), with Hamiltonian

Hn(s) = −
∑

e=〈x,y〉∈E

sx · sy, s = (sv : v ∈ V ) ∈ (Sn−1)V ,

where sx · sy denotes the scalar product. When n = 1, this is simply the
Ising model. It is called the X/Y model when n = 2, and the Heisenberg
model when n = 3.
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The Ising and Potts models have very rich theories, and are amongst the
most intensively studied of models of statistical mechanics. In ‘classical’
work, they are studied via cluster expansions and correlation inequalities.
The so-called ‘random-cluster model’, developed by Fortuin and Kasteleyn
around 1960, provides a single framework incorporating the percolation,
Ising, and Potts models, as well as electrical networks, uniform spanning
trees, and forests. It enables a representation of the two-point correlation
function of a Potts model as a connection probability of an appropriate
model of stochastic geometry, and this in turn allows the use of geometrical
techniques already refined in the case of percolation. The random-cluster
model is defined and described in Chapter 8, see also [109].

The q = 2 Potts model is essentially the Ising model, and special features
of the number 2 allow a special analysis for the Ising model not yet repli-
cated for general Potts models. This method is termed the ‘random-current
representation’, and it has been especially fruitful in the study of the phase
transition of the Ising model on Ld . See [3, 7, 10] and [109, Chap. 9].

7.4 Exercises

7.1 Let G = (V , E) be a finite graph, and let π be a probability measure on
the power set 6 = {0, 1}V . A configuration σ ∈ 6 is identified with the subset
of V on which it takes the value 1, that is, with the set η(σ) = {v ∈ V : σv = 1}.
Show that

π(B) = exp
(∑

K⊆B

φK

)
, B ⊆ V ,

for some function φ acting on the set K of cliques of G, if and only if

π(σ) = exp
( ∑

K∈K
fK (σK )

)
, σ ∈ 6,

for some functions fK : {0, 1}K → R, with K ranging over K . Recall the
notation σK = (σv : v ∈ K ).

7.2 [191] Investigate the Gibbs/Markov equivalence for probability measures
that have zeroes. It may be useful to consider the example illustrated in Figure
7.1. The graph G = (V , E) is a 4-cycle, and the local state space is {0, 1}. Each
of the eight configurations of the figure has probability 1

8 , and the other eight
configurations have probability 0. Show that this measure µ satisfies the local
Markov property, but cannot be written in the form

µ(B) =
∏

K⊆B

f (K ), B ⊆ V ,

for some f satisfying f (K ) = 1 if K /∈ K , the set of cliques.
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Figure 7.1. Each vertex of the 4-cycle may be in either of the two states
0 and 1. The marked vertices have state 1, and the unmarked vertices
have state 0. Each of the above eight configurations has probability 1

8 ,
and the other eight configurations have probability 0.

7.3 Ising model with external field. Let G = (V , E) be a finite graph, and let
λ be the probability measure on 6 = {−1,+1}V satisfying

λ(σ) ∝ exp
(

h
∑

v∈V

σv + β
∑

e=〈u,v〉
σuσv

)
, σ ∈ 6,

where β > 0. Thinking of 6 as a partially ordered set (where σ ≤ σ ′ if and only
if σv ≤ σ ′v for all v ∈ V ), show that:

(a) λ satisfies the FKG lattice condition, and hence is positively associated,
(b) for v ∈ V , λ(· | σv = −1) ≤st λ ≤st λ(· | σv = +1).
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Random-cluster model

The basic properties of the model are summarized, and its relationship
to the Ising and Potts models described. The phase transition is
defined in terms of the infinite-volume measures. After an account
of a number of areas meritorious of further research, there is a section
devoted to planar duality and the conjectured value of the critical point
on the square lattice. The random-cluster model is linked in more
than one way to the study of a random even subgraph of a graph.

8.1 The random-cluster and Ising/Potts models

Let G = (V , E) be a finite graph, and write � = {0, 1}E . For ω ∈ �, we
write η(ω) = {e ∈ E : ω(e) = 1} for the set of open edges, and k(ω) for
the number of connected components1, or ‘open clusters’, of the subgraph
(V , η(ω)). The random-cluster measure on �, with parameters p ∈ [0, 1],
q ∈ (0,∞) is the probability measure given by

(8.1) φp,q (ω) =
1

Z

{∏

e∈E

pω(e)(1− p)1−ω(e)
}

qk(ω), ω ∈ �,

where Z = ZG,p,q is the normalizing constant.
This measure was introduced by Fortuin and Kasteleyn in a series of

papers dated around 1970. They sought a unification of the theory of elec-
trical networks, percolation, Ising, and Potts models, and were motivated by
the observation that each of these systems satisfies a certain series/parallel
law. Percolation is evidently retrieved by setting q = 1, and it turns out
that electrical networks arise via the UST limit obtained on taking the limit
p, q → 0 in such a way that q/p → 0. The relationship to Ising/Potts
models is more complex in that it involves a transformation of measures
described next. In brief, connection probabilities for the random-cluster
measure correspond to correlations for ferromagnetic Ising/Potts models,
and this allows a geometrical interpretation of their correlation structure.

1It is important to include isolated vertices in this count.
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A fuller account of the random-cluster model and its history and associ-
ations may be found in [109]. When the emphasis is upon its connection
to Ising/Potts models, the random-cluster model is often called the ‘FK
representation’.

In the remainder of this section, we summarize the relationship between a
Potts model on G = (V , E)with an integer number q of local states, and the
random-cluster measure φp,q . As configuration space for the Potts model,
we take 6 = {1, 2, . . . , q}V . Let F be the subset of the product space
6×� containing all pairs (σ, ω) such that: for every edge e = 〈x, y〉 ∈ E ,
if ω(e) = 1, then σx = σy . That is, F contains all pairs (σ, ω) such that σ
is constant on each cluster of ω.

Let φp = φp,1 be product measure on ω with density p, and let µ be the
probability measure on 6 ×� given by

(8.2) µ(σ, ω) ∝ φp(ω)1F(σ, ω), (σ, ω) ∈ 6 ×�,
where 1F is the indicator function of F .

Four calculations are now required, in order to determine the two marginal
measures of µ and the two conditional measures. It turns out that the two
marginals are exactly the q-state Potts measure on 6 (with suitable pair-
interaction) and the random-cluster measure φp,q .

Marginal on 6. When we sum µ(σ, ω) over ω ∈ �, we have a free choice
except in that ω(e) = 0 whenever σx 6= σy . That is, if σx = σy , there is no
constraint on the local state ω(e) of the edge e = 〈x, y〉; the sum for this
edge is simply p + (1 − p) = 1. We are left with edges e with σx 6= σy ,
and therefore

(8.3) µ(σ, ·) :=
∑

ω∈�
µ(σ, ω) ∝

∏

e∈E

(1− p)1−δe(σ ),

where δe(σ ) is the Kronecker delta

(8.4) δe(σ ) = δσx ,σy , e = 〈x, y〉 ∈ E .

Otherwise expressed,

µ(σ, ·) ∝ exp

{
β
∑

e∈E

δe(σ )

}
, σ ∈ 6,

where

(8.5) p = 1− e−β .

This is the Potts measure πβ,q of (7.20). Note that β ≥ 0, which is to say
that the model is ferromagnetic.
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Marginal on �. For given ω, the constraint on σ is that it be constant on
open clusters. There are qk(ω) such spin configurations, and µ(σ, ω) is
constant on this set. Therefore,

µ(·, ω) :=
∑

σ∈6
µ(σ, ω) ∝

{∏

e∈E

pω(e)(1− p)1−ω(e)
}

qk(ω)

∝ φp,q (ω), ω ∈ �.
This is the random-cluster measure of (8.1).

The conditional measures. It is a routine exercise to verify the following.
Given ω, the conditional measure on 6 is obtained by putting (uniformly)
random spins on entire clusters of ω, constant on given clusters, and
independent between clusters. Given σ , the conditional measure on � is
obtained by setting ω(e) = 0 if δe(σ ) = 0, and otherwise ω(e) = 1 with
probability p (independently of other edges).

The ‘two-point correlation function’ of the Potts measure πβ,q on G =
(V , E) is the function τβ,q given by

τβ,q(x, y) = πβ,q(σx = σy)−
1

q
, x, y ∈ V .

The ‘two-point connectivity function’ of the random-cluster measure φp,q
is the probability φp,q(x ↔ y) of an open path from x to y. It turns out that
these ‘two-point functions’ are (except for a constant factor) the same.

8.6 Theorem [148]. For q ∈ {2, 3, . . . }, β ≥ 0, and p = 1− e−β ,

τβ,q(x, y) = (1− q−1)φp,q(x ↔ y).

Proof. We work with the conditional measure µ(σ | ω) thus:

τβ,q(x, y) =
∑

σ,ω

[
1{σx=σy }(σ )− q−1]µ(σ, ω)

=
∑

ω

φp,q (ω)
∑

σ

µ(σ | ω)
[
1{σx=σy }(σ )− q−1]

=
∑

ω

φp,q (ω)
[
(1− q−1)1{x↔y}(ω)+ 0 · 1{x /↔y}(ω)

]

= (1− q−1)φp,q(x ↔ y),

and the claim is proved. �
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8.2 Basic properties

We list some of the fundamental properties of random-cluster measures in
this section.

8.7 Theorem. The measure φp,q satisfies the FKG lattice condition if
q ≥ 1, and is thus positively associated.

Proof. If p = 0, 1, the conclusion is obvious. Assume 0 < p < 1, and
check the FKG lattice condition (4.12), which amounts to the assertion that

k(ω ∨ ω′)+ k(ω ∧ ω′) ≥ k(ω) + k(ω′), ω, ω′ ∈ �.

This is left as a graph-theoretic exercise for the reader. �

8.8 Theorem (Comparison inequalities) [89]. We have that

φp′,q ′ ≤st φp,q if p′ ≤ p, q ′ ≥ q, q ′ ≥ 1,(8.9)

φp′,q ′ ≥st φp,q if
p′

q ′(1− p′)
≥ p

q(1− p)
, q ′ ≥ q, q ′ ≥ 1.(8.10)

Proof. This follows by the Holley inequality, Theorem 4.4, on checking
condition (4.5). �

In the next theorem, the role of the graph G is emphasized in the use of
the notation φG,p,q . The graph G\e (respectively, G.e) is obtained from G
by deleting (respectively, contracting) the edge e.

8.11 Theorem [89]. Let e ∈ E.

(a) Conditional onω(e) = 0, the measure obtained fromφG,p,q isφG\e,p,q .

(b) Conditional onω(e) = 1, the measure obtained fromφG,p,q isφG.e,p,q .

Proof. This is an elementary calculation of conditional probabilities. �

In the majority of the theory of random-cluster measures, we assume that
q ≥ 1, since then we may use positive correlations and comparisons. The
case q < 1 is slightly mysterious. It is easy to check that random-cluster
measures do not generally satisfy the FKG lattice condition when q < 1,
and indeed that they are not positively associated (see Exercise 8.2). It is
considered possible, even likely, that φp,q satisfies a property of negative
association when q < 1, and we return to this in Section 8.4.

c© G. R. Grimmett 1 April 2010



156 Random-cluster model

8.3 Infinite-volume limits and phase transition

Recall the cubic lattice Ld = (Zd ,Ed). We cannot define a random-cluster
measure directly on Ld , since it is infinite. There are two possible ways to
proceed. Assume q ≥ 1.

Let d ≥ 2, and� = {0, 1}Ed
. The appropriate σ -field of� is the σ -field

F generated by the finite-dimensional sets. Let3 be a finite box in Zd . For
b ∈ {0, 1}, define

�b
3 = {ω ∈ � : ω(e) = b for e /∈ E3},

where EA is the set of edges of Ld joining pairs of vertices belonging to A.
Each of the two values of b corresponds to a certain ‘boundary condition’
on 3, and we shall be interested in the effect of these boundary conditions
in the infinite-volume limit.

On �b
3, we define a random-cluster measure φb

3,p,q as follows. For
p ∈ [0, 1] and q ∈ (0,∞), let
(8.12)

φb
3,p,q(ω) =

1

Zb
3,p,q

{ ∏

e∈E3

pω(e)(1− p)1−ω(e)
}

qk(ω,3), ω ∈ �b
3,

where k(ω,3) is the number of clusters of (Zd , η(ω)) that intersect 3.
Here, as before, η(ω) = {e ∈ Ed : ω(e) = 1} is the set of open edges. The
boundary condition b = 0 (respectively, b = 1) is sometimes termed ‘free’
(respectively, ‘wired’).

8.13 Theorem [104]. Let q ≥ 1. The weak limits

φb
p,q = lim

3→Zd
φb
3,p,q , b = 0, 1,

exist, and are translation-invariant and ergodic.

The infinite-volume limit is called the ‘thermodynamic limit’ in physics.

Proof. Let A be an increasing cylinder event defined in terms of the edges
lying in some finite set S. If 3 ⊆ 3′ and 3 includes the ‘base’ S of the
cylinder A,

φ1
3,p,q(A) = φ1

3′,p,q(A | all edges in E3′\3 are open) ≥ φ1
3′,p,q(A),

where we have used Theorem 8.11 and the FKG inequality. Therefore, the
limit lim3→Zd φ1

3,p,q(A) exists by monotonicity. Since F is generated by

such events A, the weak limit φ1
p,q exists. A similar argument is valid with

the inequality reversed when b = 0.
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The translation-invariance of the φb
p,q holds in very much the same way

as in the proof of Theorem 2.11. The proof of ergodicity is deferred to
Exercises 8.10–8.11. �

The measures φ0
p,q and φ1

p,q are called ‘random-cluster measures’ on Ld

with parameters p and q, and they are extremal in the following sense. We
may generate ostensibly larger families of infinite-volume random-cluster
measures by either of two routes. In the first, we consider measures φξ3,p,q
on E3 with more general boundary conditions ξ , in order to construct a
set Wp,q of ‘weak-limit random-cluster measures’. The second construc-
tion uses a type of Dobrushin–Lanford–Ruelle (DLR) formalism rather than
weak limits (see [104] and [109, Chap. 4]). That is, we consider measures
µ on (�,F ) whose measure on any box 3, conditional on the state ξ off
3, is the conditional random-cluster measure φξ3,p,q . Such a µ is called
a ‘DLR random-cluster measure’, and we write Rp,q for the set of DLR
measures. The relationship between Wp,q and Rp,q is not fully understood,
and we make one remark about this. Any element µ of the closed con-
vex hull of Wp,q with the so-called ‘0/1-infinite-cluster property’ (that is,
µ(I ∈ {0, 1}) = 1, where I is the number of infinite open clusters) belongs
to Rp,q , see [109, Sect. 4.4]. The standard way of showing the 0/1-infinite-
cluster property is via the Burton–Keane argument used in the proof of
Theorem 5.22. We may show, in particular, that φ0

p,q , φ
1
p,q ∈ Rp,q .

It is not difficult to see that the measures φ0
p,q and φ1

p,q are extremal in
the sense that

(8.14) φ0
p,q ≤st φp,q ≤st φ

1
p,q , φp,q ∈ Wp,q ∪Rp,q ,

whence there exists a unique random-cluster measure (in either of the above
senses) if and only if φ0

p,q = φ1
p,q . It is a general fact that such extremal

measures are invariably ergodic, see [94, 109].

Turning to the question of phase transition, and remembering percolation,
we define the percolation probabilities

(8.15) θb(p, q) = φb
p,q (0↔∞), b = 0, 1,

that is, the probability that 0 belongs to an infinite open cluster. The corre-
sponding critical values are given by

(8.16) pb
c (q) = sup{p : θb(p, q) = 0}, b = 0, 1.

Faced possibly with two (or more) distinct critical values, we present the
following result.
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8.17 Theorem [9, 104]. Let d ≥ 2 and q ≥ 1. We have that:
(a) φ0

p,q = φ1
p,q if θ1(p, q) = 0,

(b) there exists a countable subset Dd,q of [0, 1], possibly empty, such
that φ0

p,q = φ1
p,q if and only if p /∈ Dd,q .

It may be shown2 that

(8.18) θ1(p, q) = lim
3↑Zd

φ1
3,p,q(0↔ ∂3).

It is not know when the corresponding statement with b = 0 holds.

Sketch proof. The argument for (a) is as follows. Clearly,

(8.19) θ1(p, q) = lim
3↑Zd

φ1
p,q(0↔ ∂3).

Suppose θ1(p, q) = 0, and consider a large box3 with 0 in its interior. On
building the clusters that intersect the boundary ∂3, with high probability
we do not reach 0. That is, with high probability, there exists a ‘cut-surface’
S between 0 and ∂3 comprising only closed edges. By taking S to be
as large as possible, the position of S may be taken to be measurable on
its exterior, whence the conditional measure on the interior of S is a free
random-cluster measure. Passing to the limit as 3 ↑ Zd , we find that the
free and wired measures are equal.

The argument for (b) is based on a classical method of statistical mechan-
ics using convexity. Let ZG,p,q be the partition function of the random-
cluster model on a graph G = (V , E), and set

YG,p,q = (1− p)−|E|ZG,p,q =
∑

ω∈{0,1}E
eπ |η(ω)|qk(ω),

where π = log[p/(1 − p)]. It is easily seen that log YG,p,q is a convex
function of π . By a standard method based on the negligibility of the
boundary of a large box 3 compared with its volume, the limit ‘pressure
function’

5(π, q) = lim
3↑Zd

{
1

|E3|
log Y ξ3,p,q

}

exists and is independent of the boundary configuration ξ ∈ �. Since 5
is the limit of convex functions of π , it is convex, and hence differentiable
except on some countable set D of values of π . Furthermore, for π /∈ D ,
the derivative of |E3|−1 log Y ξ3,p,q converges to that of 5. The former
derivative may be interpreted in terms of the edge-densities of the measures,

2Exercise 8.8.
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and therefore the limits of the last are independent of ξ for any π at which
5(π, q) is differentiable. Uniqueness of random-cluster measures follows
by (8.14) and stochastic ordering: if µ1, µ2 are probability measures on
(�,F ) with µ1 ≤st µ2 and satisfying

µ1(e is open) = µ2(e is open), e ∈ E,

then µ1 = µ2.3 �

By Theorem 8.17, θ0(p, q) = θ1(p, q) for p /∈ Dd,q , whence p0
c (q) =

p1
c (q). Henceforth we refer to the critical value as pc = pc(q). It is a basic

fact that pc(q) is non-trivial.

8.20 Theorem [9]. If d ≥ 2 and q ≥ 1, then 0 < pc(q) < 1.

It is an open problem to find a satisfactory definition of pc(q) for q < 1,
although it may be shown by the comparison inequalities (Theorem 8.8)
that there is no infinite cluster for q ∈ (0, 1) and small p, and conversely
there is an infinite cluster for q ∈ (0, 1) and large p.

Proof. Let q ≥ 1. By Theorem 8.8, φ1
p′,1 ≤st φ

1
p,q ≤st φp,1, where

p′ = p

p + q(1− p)
.

We apply this inequality to the increasing event {0↔ ∂3}, and let3 ↑ Zd

to obtain via (8.18) that

(8.21) pc(1) ≤ pc(q) ≤
q pc(1)

1+ (q − 1)pc(1)
, q ≥ 1,

where 0 < pc(1) < 1 by Theorem 3.2. �

The following is an important conjecture.

8.22 Conjecture. There exists Q = Q(d) such that:
(a) if q < Q(d), then θ1(pc, q) = 0 and Dd,q = ∅,

(b) if q > Q(d), then θ1(pc, q) > 0 and Dd,q = {pc}.
In the physical vernacular, there is conjectured a critical value of q beneath

which the phase transition is continuous (‘second order’) and above which
it is discontinuous (‘first order’). Following work of Roman Kotecký and
Senya Shlosman [156], it was proved in [157] that there is a first-order
transition for large q, see [109, Sects 6.4, 7.5]. It is expected4 that

Q(d) =
{

4 if d = 2,

2 if d ≥ 6.

3Exercise. Recall Strassen’s Theorem 4.2.
4See [25, 138, 242] for discussions of the two-dimensional case.
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This may be contrasted with the best current estimate in two dimensions,
namely Q(2) ≤ 25.72, see [109, Sect. 6.4].

Finally, we review the relationship between the random-cluster and Potts
phase transitions. The ‘order parameter’ of the Potts model is the ‘magne-
tization’ given by

M(β, q) = lim
3→Zd

{
π1
3,β(σ0 = 1)− 1

q

}
,

where π1
3,β is the Potts measure on 3 ‘with boundary condition 1’. We

may think of M(β, q) as a measure of the degree to which the boundary
condition ‘1’ is noticed at the origin after taking the infinite-volume limit.
By an application of Theorem 8.6 to a suitable graph obtained from 3,

π1
3,q(σ0 = 1)− 1

q
= (1− q−1)φ1

3,p,q(0↔ ∂3),

where p = 1− e−β . By (8.18),

M(β, q) = (1− q−1) lim
3→Zd

φ1
3,p,q(0↔ ∂3)

= (1− q−1)θ1(p, q).

That is, M(β, q) and θ1(p, q) differ by the factor 1 − q−1.

8.4 Open problems

Many questions remain at least partly unanswered for the random-cluster
model, and we list a few of these here. Further details may be found in
[109].

I. The case q < 1. Less is known when q < 1 owing to the failure of the
FKG inequality. A possibly optimistic conjecture is that some version of
negative association holds when q < 1, and this might imply the existence
of infinite-volume limits. Possibly the weakest conjecture is that

φp,q (e and f are open) ≤ φp,q (e is open)φp,q( f is open),

for distinct edges e and f . It has not been ruled out that φp,q satisfies the
stronger BK inequality when q < 1. Weak limits of φp,q as q ↓ 0 have
a special combinatorial structure, but even here the full picture has yet to
emerge. More specifically, it is not hard to see that

φp,q ⇒





UCS if p = 1
2 ,

UST if p→ 0 and q/p→ 0,

UF if p = q,

c© G. R. Grimmett 1 April 2010



8.4 Open problems 161

where the acronyms are the uniform connected subgraph, uniform spanning
tree, and uniform forest measures encountered in Sections 2.1 and 2.4. See
Theorem 2.1 and Conjecture 2.14.

We may use comparison arguments to study infinite-volume random-
cluster measures for sufficiently small or large p, but there is no proof of
the existence of a unique point of phase transition.

The case q < 1 is of more mathematical than physical interest, although
the various limits as q → 0 are relevant to the theory of algorithms and
complexity.

Henceforth, we assume q ≥ 1.

II. Exponential decay. Prove that

φp,q
(
0↔ ∂[−n, n]d) ≤ e−αn, n ≥ 1,

for some α = α(p, q) satisfying α > 0 when p < pc(q). This has been
proved for sufficiently small values of p, but no proof is known (for general
q and any given d ≥ 2) right up to the critical point.

The case q = 2 is special, since this corresponds to the Ising model,
for which the random-current representation has allowed a rich theory, see
[109, Sect. 9.3]. Exponential decay is proved to hold for general d , when
q = 2, and also for sufficiently large q (see IV below).

III. Uniqueness of random-cluster measures. Prove all or part of Conjec-
ture 8.22. That is, show that φ0

p,q = φ1
p,q for p 6= pc(q); and, furthermore,

that uniqueness holds when p = pc(q) if and only if q is sufficiently small.
These statements are trivial when q = 1, and uniqueness is proved when

q = 2 and p 6= pc(2) using the theory of the Ising model alluded to above.
The situation is curious when q = 2 and p = pc(2), in that uniqueness is
proved so long as d 6= 3, see [109, Sect. 9.4].

When q is sufficiently large, it is known as in IV below that there is a
unique random-cluster measure when p 6= pc(q) and a multiplicity of such
measures when p = pc(q).

IV. First/second-order phase transition. Much interest in Potts and random-
cluster measures is focussed on the fact that nature of the phase transition
depends on whether q is small or large, see for example Conjecture 8.22. For
small q, the singularity is expected to be continuous and of power type. For
large q, there is a discontinuity in the order parameter θ1(·, q), and a ‘mass
gap’ at the critical point (that is, when p = pc(q), the φ0

p,q -probability of a

long path decays exponentially, while the φ1
p,q -probability is bounded away

from 0).
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Of the possible questions, we ask for a proof of the existence of a value
Q = Q(d) separating the second- from the first-order transition.

V. Slab critical point. It was important for supercritical percolation in three
and more dimensions to show that percolation in Ld implies percolation in
a sufficiently fat ‘slab’, see Theorem 5.17. A version of the corresponding
problem for the random-cluster model is as follows. Let q ≥ 1 and d ≥ 3,
and write S(L, n) for the ‘slab’

S(L, n) = [0, L − 1]× [−n, n]d−1.

Let ψL ,n,p,q = φ0
S(L ,n),p,q be the random-cluster measure on S(L, n) with

parameters p, q, and free boundary conditions. Let 5(p, L) denote the
property that5

lim inf
n→∞ inf

x∈S(L ,n)

{
ψL ,n,p,q(0↔ x)

}
> 0.

It is not hard6 to see that5(p, L)⇒ 5(p′, L ′) if p ≤ p′ and L ≤ L ′, and
it is thus natural to define

(8.23) p̂c(q, L) = inf
{

p : 5(p, L) occurs
}
, p̂c(q) = lim

L→∞
p̂c(q, L).

Clearly, pc(q) ≤ p̂c(q) < 1. It is believed that equality holds in that
p̂c(q) = pc(q), and it is a major open problem to prove this. A positive
resolution would have implications for the exponential decay of truncated
cluster-sizes, and for the existence of a Wulff crystal for all p > pc(q) and
q ≥ 1. See Figure 5.3 and [60, 61, 62].

VI. Roughening transition. While it is believed that there is a unique
random-cluster measure except possibly at the critical point, there can exist
a multitude of random-cluster-type measures with the striking property of
non-translation-invariance. Take a box 3n = [−n, n]d in d ≥ 3 dimen-
sions (the following construction fails in 2 dimensions). We may think of
∂3n as comprising a northern and southern hemisphere, with the ‘equator’
{x ∈ ∂3n : xd = 0} as interface. Let φn,p,q be the random-cluster mea-
sure on 3n with a wired boundary condition on the northern and southern
hemispheres individually and conditioned on the event Dn that no open path
joins a point of the northern to a point of the southern hemisphere. By the
compactness of �, the sequence (φn,p,q : n ≥ 1) possesses weak limits.
Let φp,q be such a weak limit.

It is a geometrical fact that, in any configuration ω ∈ Dn , there exists an
interface I (ω) separating the points joined to the northern hemisphere from

5This corrects an error in [109].
6Exercise 8.9.
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those joined to the southern hemisphere. This interface passes around the
equator, and its closest point to the origin is at some distance Hn , say. It may
be shown that, for q ≥ 1 and sufficiently large p, the laws of the Hn are tight,
whence the weak limit φp,q is not translation-invariant. Such measures are
termed ‘Dobrushin measures’ after their discovery for the Ising model in
[70].

There remain two important questions. Firstly, for d ≥ 3 and q ≥ 1, does
there exist a value p̃(q) such that Dobrushin measures exist for p > p̃(q)
and not for p < p̃(q)? Secondly, for what dimensions d do Dobrushin
measures exist for all p > pc(q)? A fuller account may be found in [109,
Chap. 7].

VII. In two dimensions. There remain some intriguing conjectures in the
playground of the square lattice L2, and some of these are described in the
next section.

8.5 In two dimensions

Consider the special case of the square lattice L2. Random-cluster measures
on L2 have a property of self-duality that generalizes that of bond percola-
tion. (We recall the discussion of duality after equation (3.7).) The most
provocative conjecture is that the critical point equals the so-called self-dual
point.

8.24 Conjecture. For d = 2 and q ≥ 1,

(8.25) pc(q) =
√

q

1+√q
.

This formula is proved rigorously when q = 1 (percolation), when q = 2
(Ising model), and for sufficiently large values of q (namely, q ≥ 25.72).7

Physicists have ‘known’ for some time that the self-dual point marks a
discontinuous phase transition when q > 4.

The conjecture is motivated as follows. Let G = (V , E) be a finite planar
graph, and Gd = (Vd, Ed) its dual graph. To each ω ∈ � = {0, 1}E , there
corresponds the dual configuration8 ωd ∈ �d = {0, 1}Ed , given by

ωd(ed) = 1− ω(e), e ∈ E .

7Added in proof : Substantial progress with the above conjecture has been made recently
by Vincent Beffara and Hugo Duminil-Copin [28].

8Note that this definition of the dual configuration differs from that used in Chapter 3
for percolation.
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By drawing a picture, we may convince ourselves that every face of (V , η(ω))
contains a unique component of (Vd, η(ωd)), and therefore the number f (ω)
of faces (including the infinite face) of (V , η(ω)) satisfies

(8.26) f (ω) = k(ωd).

The random-cluster measure on G satisfies

φG,p,q (ω) ∝
(

p

1− p

)|η(ω)|
qk(ω).

Using (8.26), Euler’s formula,

(8.27) k(ω) = |V | − |η(ω)| + f (ω)− 1,

and the fact that |η(ω)| + |η(ωd)| = |E |, we have that

φG,p,q (ω) ∝
(

q(1− p)

p

)|η(ωd)|
qk(ωd),

which is to say that

(8.28) φG,p,q (ω) = φGd,pd,q(ωd), ω ∈ �,
where

(8.29)
pd

1− pd
= q(1− p)

p
.

The unique fixed point of the mapping p 7→ pd is given by p = κq , where
κ is the ‘self-dual point’

κq =
√

q

1+√q
.

Turning to the square lattice, let G = 3 = [0, n]2, with dual graph Gd =
3d obtained from the box [−1, n]2 + ( 1

2 ,
1
2 ) by identifying all boundary

vertices. By (8.28),

(8.30) φ0
3,p,q(ω) = φ1

3d,pd,q(ωd)

for configurations ω on 3 (and with a small ‘fix’ on the boundary of 3d).
Letting n→∞, we obtain that

(8.31) φ0
p,q (A) = φ1

pd,q(Ad)

for all cylinder events A, where Ad = {ωd : ω ∈ A}.
The duality relation (8.31) is useful, especially if p = pd = κq . In

particular, the proof that θ( 1
2 ) = 0 for percolation (see Theorem 5.33) may

be adapted to obtain

(8.32) θ0(κq , q) = 0,
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whence

(8.33) pc(q) ≥
√

q

1+√q
, q ≥ 1.

In order to obtain the formula of Conjecture 8.24, it would be enough to
show that

φ0
p,q

(
0↔ ∂[−n, n]2) ≤ A

n
, n ≥ 1,

where A = A(p, q) <∞ for p < κq . See [100, 109].
The case q = 2 is very special, because it is related to the Ising model,

for which there is a rich and exact theory going back to Onsager [193]. As
an illustration of this connection in action, we include a proof that the wired
random-cluster measure has no infinite cluster at the self-dual point. The
corresponding conclusion in believed to hold if and only if q ≤ 4, but a full
proof is elusive.

8.34 Theorem. For d = 2, θ1(κ2, 2) = 0.

Proof. Of the several proofs of this statement, we outline the recent simple
proof of Werner [237]. Let q = 2, and write φb = φb

psd(q),q
.

Let ω ∈ � be a configuration of the random-cluster model sampled
according to φ0. To each open cluster of ω, we allocate the spin +1 with
probability 1

2 , and −1 otherwise. Thus, spins are constant within clusters,
and independent between clusters. Let σ be the resulting spin configuration,
and let µ0 be its law. We do the same with ω sampled from φ1, with the
difference that any infinite cluster is allocated the spin +1. It is not hard to
see that the resulting measure µ1 is the infinite-volume Ising measure with
boundary condition +1.9 The spin-space 6 = {−1,+1}Z2

is a partially
ordered set, and it may be checked using the Holley inequality10, Theorem
4.4, and passing to an infinite-volume limit that

(8.35) µ0 ≤st µ
1.

We shall be interested in two notions of connectivity in Z2, the first of
which is the usual one, denoted !. If we add both diagonals to each face
of Z2, we obtain a new graph with so-called ∗-connectivity relation denoted
!∗. A cycle in this new graph is called a ∗-cycle.

Each spin-vectorσ ∈ 6 amounts to a partition of Z2 into maximal clusters
with constant spin. A cluster labelled +1 (respectively, −1) is called a

9This is formalized in [109, Sect. 4.6]; see also Exercise 8.16.
10See Exercise 7.3.
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(+)-cluster (respectively, (−)-cluster). Let N+(σ ) (respectively, N−(σ ))
be the number of infinite (+)-clusters (respectively, infinite (−)-clusters).

By (8.32), φ0(0 ↔ ∞) = 0, whence, by Exercise 8.16, µ0 is ergodic.
We may apply the Burton–Keane argument of Section 5.3 to deduce that

either µ0(N+ = 1) = 1 or µ0(N+ = 0) = 1.

We may now use Zhang’s argument (as in the proof of (8.32) and Theorem
5.33), and the fact that N+ and N− have the same law, to deduce that

(8.36) µ0(N+ = 0) = µ0(N− = 0) = 1.

Let A be an increasing cylinder event of 6 defined in terms of states
of vertices in some box 3. By (8.36), there are (µ0-a.s.) no infinite
(−)-clusters intersecting 3, so that 3 lies in the interior of some ∗-cycle
labelled +1. Let 3n = [−n, n]2 with n large, and let Dn be the event that
3n contains a ∗-cycle labelled +1 with 3 in its interior. By the above,
µ0(Dn) → 1 as n → ∞. The event Dn is an increasing subset of 6,
whence, by (8.35),

µ1(Dn)→ 1 as n→∞.
On the event Dn , we find the ‘outermost’ ∗-cycle H of 3n labelled
+1; this cycle may be constructed explicitly via the boundaries of the
(−)-clusters intersecting ∂3n . Since H is outermost, the conditional mea-
sure of µ1 (given Dn), restricted to3, is stochastically smaller than µ0. On
letting n→∞, we obtain µ1(A) ≤ µ0(A), which is to say that µ1 ≤st µ

0.
By (8.35), µ0 = µ1.

By (8.36), µ1(N+ = 0) = 1, so that θ1(κ2, 2) = 0 as claimed. �

Last, but definitely not least, we turn towards SLE, random-cluster, and
Ising models. Stanislav Smirnov has recently proved the convergence of
re-scaled boundaries of large clusters of the critical random-cluster model
on L2 to SLE16/3. The corresponding critical Ising model has spin-cluster
boundaries converging to SLE3. These results are having a major impact
on our understanding of the Ising model.

This section ends with an open problem concerning the Ising model on
the triangular lattice. Each Ising spin-configuration σ ∈ {−1,+1}V on a
graph G = (V , E) gives rise to a subgraph Gσ = (V , Eσ ) of G, where

(8.37) Eσ = {e = 〈u, v〉 ∈ E : σu = σv}.
If G is planar, the boundary of any connected component of Gσ corresponds
to a cycle in the dual graph Gd, and the union of all such cycles is a (random)
even subgraph of Gd (see the next section).
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We shall consider the Ising model on the square and triangular lattices,
with inverse-temperature β satisfying 0 ≤ β ≤ βc, where βc is the critical
value. By (8.5),

e−2βc = 1− pc(2).

We begin with the square lattice L2, for which pc(2) =
√

2/(1+
√

2). When
β = 0, the model amounts to site percolation with density 1

2 . Since this
percolation process has critical point satisfying psite

c > 1
2 , each spin-cluster

of theβ = 0 Ising model is subcritical, and in particular has an exponentially

decaying tail. More specifically, write x
±←→ y if there exists a path of L2

from x to y with constant spin-value, and let

Sx = {y ∈ V : x
±←→ y}

be the spin-cluster at x , and S = S0. By the above, there exists α > 0 such
that

(8.38) λ0(|S| ≥ n + 1) ≤ e−αn, n ≥ 1,

where λβ denotes the infinite-volume Ising measure. It is standard (and
follows from Theorem 8.17(a)) that there is a unique Gibbs state for the
Ising model when β < βc (see [113, 237] for example).

The exponential decay of (8.38) extends throughout the subcritical phase
in the following sense. Yasunari Higuchi [137] has proved that

(8.39) λβ(|S| ≥ n + 1) ≤ e−αn, n ≥ 1,

where α = α(β) satisfies α > 0 when β < βc. There is a more recent proof
of this (and more) by Rob van den Berg [34, Thm 2.4], using the sharp-
threshold theorem, Theorem 4.81. Note that (8.39) implies the weaker (and
known) statement that the volumes of clusters of the q = 2 random-cluster
model on L2 have an exponentially decaying tail.

Inequality (8.39) fails in an interesting manner when the square lattice
is replaced by the triangular lattice T. Since psite

c (T) = 1
2 , the β = 0

Ising model is critical. In particular, the tail of |S| is of power-type and,
by Smirnov’s theorem for percolation, the scaling limit of the spin-cluster
boundaries is SLE6. Furthermore, the process is, in the following sense,
critical for all β ∈ [0, βc]. Since there is a unique Gibbs state for β < βc,
λβ is invariant under the interchange of spin-values−1↔ +1. Let Rn be a
rhombus of the lattice with side-lengths n and axes parallel to the horizontal
and one of the diagonal lattice directions, and let An be the event that Rn is
traversed from left to right by a + path (that is, a path ν satisfying σy = +1
for all y ∈ ν). It is easily seen that the complement of An is the event that Rn

c© G. R. Grimmett 1 April 2010



168 Random-cluster model

is crossed from top to bottom by a− path (see Figure 5.12 for an illustration
of the analogous case of bond percolation on the square lattice). Therefore,

(8.40) λβ(An) = 1
2 , 0 ≤ β < βc.

Let Sx be the spin-cluster containing x as before, and define

rad(Sx) = max{δ(x, z) : z ∈ Sx},
where δ denotes graph-theoretic distance. By (8.40), there exists a vertex x
such that λβ(rad(Sx) ≥ n) ≥ (2n)−1. By the translation-invariance of λβ ,

λβ(rad(S) ≥ n) ≥ 1

2n
, 0 ≤ β < βc.

In conclusion, the tail of rad(S) is of power-type for all β ∈ [0, βc).
It is believed that the SLE6 cluster-boundary limit ‘propagates’ from

β = 0 to all values β < βc. Further evidence for this may be found in [23].
When β = βc, the corresponding limit is the same as that for the square
lattice, namely SLE3, see [67].

8.6 Random even graphs

A subset F of the edge-set of G = (V , E) is called even if each vertex
v ∈ V is incident to an even number of elements of F , and we write E for
the set of even subsets F . The subgraph (V , F) of G is even if F is even.
It is standard that every even set F may be decomposed as an edge-disjoint
union of cycles. Let p ∈ [0, 1). The random even subgraph of G with
parameter p is that with law

(8.41) ηp(F) =
1

Ze
p|F|(1− p)|E\F|, F ∈ E ,

where
Ze =

∑

F∈E
p|F|(1− p)|E\F|.

When p = 1
2 , we talk of a uniform random even subgraph.

We may express ηp in the following way. Let φp = φp,1 be product
measure with density p on � = {0, 1}E . For ω ∈ �, let ∂ω denote the set
of vertices v ∈ V that are incident to an odd number of ω-open edges. Then

ηp(F) =
φp(ωF)

φp(∂ω = ∅)
, F ∈ E ,

where ωF is the edge-configuration whose open set is F . In other words,
φp describes the random subgraph of G obtained by randomly and indepen-
dently deleting each edge with probability 1 − p, and ηp is the law of this
random subgraph conditioned on being even.
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Letλβ be the Ising measure on a graph H with inverse temperature β ≥ 0,
presented in the form
(8.42)

λβ(σ ) =
1

ZI
exp

(
β

∑

e=〈u,v〉∈E

σuσv

)
, σ = (σv : v ∈ V ) ∈ 6,

with 6 = {−1,+1}V . See (7.18) and (7.20). A spin configuration σ gives
rise to a subgraph Gσ = (V , Eσ ) of G with Eσ given in (8.37) as the set of
edges whose endpoints have like spin. When G is planar, the boundary of
any connected component of Gσ corresponds to a cycle of the dual graph
Gd, and the union of all such cycles is a (random) even subgraph of Gd. A
glance at (8.3) informs us that the law of this even graph is ηr , where

r

1− r
= e−2β .

Note that r ≤ 1
2 . Thus, one way of generating a random even subgraph of

a planar graph G = (V , E) with parameter r ∈ [0, 1
2 ] is to take the dual of

the graph Gσ with σ is chosen with law (8.42), and with β = β(r) chosen
suitably.

The above recipe may be cast in terms of the random-cluster model on the
planar graph G. First, we sampleω according to the random-cluster measure
φp,q with p = 1 − e−2β and q = 2. To each open cluster of ω we allocate
a random spin taken uniformly from {−1,+1}. These spins are constant
on clusters and independent between clusters. By the discussion of Section
8.1, the resulting spin-configuration σ has law λβ . The boundaries of the
spin-clusters may be constructed as follows from ω. Let C1,C2, . . . ,Cc be
the external boundaries of the open clusters of ω, viewed as cycles of the
dual graph, and let ξ1, ξ2, . . . , ξc be independent Bernoulli random variables
with parameter 1

2 . The sum
∑

i ξi Ci , with addition interpreted as symmetric
difference, has law ηr .

It turns out that we can generate a random even subgraph of a graph G
from the random-cluster model on G, for an arbitrary, possibly non-planar,
graph G. We consider first the uniform case of ηp with p = 1

2 .
We identify the family of all spanning subgraphs of G = (V , E)with the

family of all subsets of E (the word ‘spanning’ indicates that these subgraphs
have the original vertex-set V ). This family can further be identified with
� = {0, 1}E = ZE

2 , and is thus a vector space over Z2; the operation + of
addition is component-wise addition modulo 2, which translates into taking
the symmetric difference of edge-sets: F1+F2 = F1 △ F2 for F1, F2 ⊆ E .

The family E of even subgraphs of G forms a subspace of the vector
space ZE

2 , since F1 △ F2 is even if F1 and F2 are even. In particular, the
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number of even subgraphs of G equals 2c(G), where c(G) = dim(E). The
quantity c(G) is thus the number of independent cycles in G, and is known
as the cyclomatic number or co-rank of G. As is well known,

(8.43) c(G) = |E | − |V | + k(G).

Cf. (8.27).

8.44 Theorem [113]. Let C1,C2, . . . ,Cc be a maximal set of independent
cycles in G. Let ξ1, ξ2, . . . , ξc be independent Bernoulli random variables
with parameter 1

2 . Then
∑

i ξi Ci is a uniform random even subgraph of G.

Proof. Since every linear combination
∑

i ψi Ci , ψ ∈ {0, 1}c, is even, and
since every even graph may be expressed uniquely in this form, the uniform
measure on {0, 1}c generates the uniform measure on E . �

One standard way of choosing such a set C1,C2, . . . ,Cc, when G is
planar, is given as above by the external boundaries of the finite faces.
Another is as follows. Let (V , F) be a spanning subforest of G, that is, the
union of a spanning tree from each component of G. It is well known, and
easy to check, that each edge ei ∈ E \ F can be completed by edges in F
to form a unique cycle Ci . These cycles form a basis of E . By Theorem
8.44, we may therefore find a random uniform subset of the C j by choosing
a random uniform subset of E \ F .

We show next how to couple the q = 2 random-cluster model and the
random even subgraph of G. Let p ∈ [0, 1

2 ], and letω be a realization of the
random-cluster model on G with parameters 2 p and q = 2. Let R = (V , γ )
be a uniform random even subgraph of (V , η(ω)).

8.45 Theorem [113]. The graph R = (V , γ ) is a random even subgraph
of G with parameter p.

This recipe for random even subgraphs provides a neat method for their
simulation, provided p ≤ 1

2 . We may sample from the random-cluster mea-
sure by the method of coupling from the past (see [203]), and then sample
a uniform random even subgraph from the outcome, as above. If G is itself
even, we can further sample from ηp for p > 1

2 by first sampling a subgraph
(V , F̃) from η1−p and then taking the complement (V , E \ F̃), which has
the distribution ηp . We may adapt this argument to obtain a method for
sampling from ηp for p > 1

2 and general G (see [113] and Exercise 8.18).
When G is planar, this amounts to sampling from an antiferromagnetic Ising
model on its dual graph.

There is a converse to Theorem 8.45. Take a random even subgraph
(V , F) of G = (V , E) with parameter p ≤ 1

2 . To each e /∈ F , we assign
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an independent random colour, blue with probability p/(1 − p) and red
otherwise. Let B be obtained from F by adding in all blue edges. It is left
as an exercise to show that the graph (V , B) has law φ2p,2.

Proof of Theorem 8.45. Let g ⊆ E be even, and let ω be a sample configu-
ration of the random-cluster model on G. By the above,

P(γ = g | ω) =
{

2−c(ω) if g ⊆ η(ω),
0 otherwise,

where c(ω) = c(V , η(ω)) is the number of independent cycles in theω-open
subgraph. Therefore,

P(γ = g) =
∑

ω: g⊆η(ω)
2−c(ω)φ2p,2(ω).

By (8.43),

P(γ = g) ∝
∑

ω: g⊆η(ω)
(2p)|η(ω)|(1− 2p)|E\η(ω)|2k(ω)(1

2

)|η(ω)|−|V |+k(ω)

∝
∑

ω: g⊆η(ω)
p|η(ω)|(1− 2p)|E\η(ω)|

= [p + (1− 2p)]|E\g|p|g|

= p|g|(1− p)|E\g|, g ⊆ E .

The claim follows. �

The above account of even subgraphs would be gravely incomplete with-
out a reminder of the so-called ‘random-current representation’ of the Ising
model. This is a representation of the Ising measure in terms of a random
field of loops and lines, and it has enabled a rigorous analysis of the Ising
model. See [3, 7, 10] and [109, Chap. 9]. The random-current representa-
tion is closely related to the study of random even subgraphs.

8.7 Exercises

8.1 [119] Let φp,q be a random-cluster measure on a finite graph G = (V , E)
with parameters p and q. Prove that

d

dp
φp,q (A) =

1

p(1− p)

{
φp,q (M1A)− φp,q(M)φp,q (A)

}

for any event A, where M = |η(ω)| is the number of open edges of a configuration
ω, and 1A is the indicator function of the event A.
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8.2 (continuation) Show that φp,q is positively associated when q ≥ 1, in that
φp,q(A∩B) ≥ φp,q(A)φp,q(B) for increasing events A, B, but does not generally
have this property when q < 1.

8.3 For an edge e of a graph G, we write G\e for the graph obtained by deleting
e, and G.e for the graph obtained by contracting e and identifying its endpoints.
Show that the conditional random-cluster measure on G given that the edge e is
closed (respectively, open) is that of φG\e,p,q (respectively, φG.e,p,q ).

8.4 Show that random-cluster measures φp,q do not generally satisfy the BK
inequality if q > 1. That is, find a finite graph G and increasing events A, B such
that φp,q(A ◦ B) > φp,q(A)φp,q(B).

8.5 (Important research problem, hard if true) Prove or disprove that random-
cluster measures satisfy the BK inequality if q < 1.

8.6 Let φp,q be the random-cluster measure on a finite connected graph G =
(V , E). Show, in the limit as p, q → 0 in such way that q/p → 0, that φp,q
converges weakly to the uniform spanning tree measure UST on G. Identify the
corresponding limit as p, q → 0 with p = q. Explain the relevance of these limits
to the previous exercise.

8.7 [89] Comparison inequalities. Use the Holley inequality to prove the fol-
lowing ‘comparison inequalities’ for a random-cluster measure φp,q on a finite
graph:

φp′,q ′ ≤st φp,q if q ′ ≥ q, q ′ ≥ 1, p′ ≤ p,

φp′,q ′ ≥st φp,q if q ′ ≥ q, q ′ ≥ 1,
p′

q ′(1− p′)
≥ p

q(1− p)
.

8.8 [9] Show that the wired percolation probability θ1(p, q) on Ld equals the
limit of the finite-volume probabilities, in that, for q ≥ 1,

θ1(p, q) = lim
3↑Zd

φ1
3,p,q(0↔ ∂3).

8.9 Let q ≥ 1 and d ≥ 3, and consider the random-cluster measure ψL ,n,p,q

on the slab S(L , n) = [0, L] × [−n, n]d−1 with free boundary conditions. Let
5(p, L) denote the property that:

lim inf
n→∞ inf

x∈S(L ,n)

{
ψL ,n,p,q(0↔ x)

}
> 0.

Show that 5(p, L)⇒ 5(p′, L ′) if p ≤ p′ and L ≤ L ′.
8.10 [109, 180] Mixing. A translation τ of Ld induces a translation of � =
{0, 1}Ed

given by τ (ω)(e) = ω(τ−1(e)). Let A and B be cylinder events of �.
Show, for q ≥ 1 and b = 0, 1, that

φb
p,q(A ∩ τ n B)→ φb

p,q (A)φ
b
p,q(B) as n→∞.
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The following may help when b = 0, with a similar argument when b = 1.
a. Assume A is increasing. Let A be defined on the box3, and let1 be a larger

box with τ n B defined on 1 \3. Use positive association to show that

φ0
1,p,q(A ∩ τ n B) ≥ φ0

3,p,q(A)φ
0
1,p,q(τ

n B).

b. Let 1 ↑ Zd , and then n→∞ and 3 ↑ Zd , to obtain

lim inf
n→∞ φ0

p,q(A ∩ τ n B) ≥ φ0
p,q(A)φ

0
p,q(B).

By applying this to the complement B also, deduce that φ0
p,q(A ∩ τ n B)→

φ0
p,q(A)φ

b
p,q(B).

8.11 Ergodicity. Deduce from the result of the previous exercise that the φb
p,q

are ergodic.
8.12 Use the comparison inequalities to prove that the critical point pc(q) of the

random-cluster model on Ld satisfies

pc(1) ≤ pc(q) ≤
q pc(1)

1+ (q − 1)pc(1)
, q ≥ 1.

In particular, 0 < pc(q) < 1 if q ≥ 1 and d ≥ 2.
8.13 Let µ be the ‘usual’ coupling of the Potts measure and the random-cluster

measure on a finite graph G. Derive the conditional measures of the first component
given the second, and of the second given the first.

8.14 Let q ∈ {2, 3, . . . }, and let G = (V , E) be a finite graph. Let W ⊆ V ,
and let σ1, σ2 ∈ {1, 2, . . . , q}W . Starting from the random-cluster measure φW

p,q
on G with members of W identified as a single point, explain how to couple the
two associated Potts measures π(· | σW = σi ), i = 1, 2, in such a way that: any
vertex x not joined to W in the random-cluster configuration has the same spin in
each of the two Potts configurations.

Let B ⊆ {1, 2, . . . , q}Y , where Y ⊆ V \W . Show that

∣∣π(B | σW = σ1)− π(B | σW = σ2)
∣∣ ≤ φW

p,q (W ↔ Y ).

8.15 Infinite-volume coupling. Letφb
p,q be a random-cluster measure on Ld with

b ∈ {0, 1} and q ∈ {2, 3, . . . }. If b = 0, we assign a uniformly random element of
Q = {1, 2, . . . , q} to each open cluster, constant within clusters and independent
between. We do similarly if b = 1 with the difference that any infinite cluster
receives spin 1. Show that the ensuing spin-measures πb are the infinite-volume
Potts measures with free and 1 boundary conditions, respectively.

8.16 Ising mixing and ergodicity. Using the results of the previous two ex-
ercises, or otherwise, show that the Potts measures πb, b = 0, 1, are mixing
(in that they satisfy the first equation of Exercise 8.10), and hence ergodic, if
φb

p,q(0↔∞) = 0.
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8.17 [104] Show for the random-cluster model on L2 that pc(q) ≥ κq , where
κq = √q/(1+√q) is the self-dual point.

8.18 [113] Make a proposal for generating a random even subgraph of the graph
G = (V , E) with parameter p satisfying p > 1

2 .
You may find it useful to prove the following first. Let u, v be distinct vertices

in the same component of G, and let π be a path from u to v. Let F be the set of
even subsets of E , and F

u,v the set of subsets F such that degF (x) is even if and
only if x 6= u, v. [Here, degF (x) is the number of elements of F incident to x .]
Then F and F

u,v are put in one–one correspondence by F ↔ F △ π .
8.19 [113] Let (V , F) be a random even subgraph of G = (V , E) with law

ηp, where p ≤ 1
2 . Each e /∈ F is coloured blue with probability p/(1 − p),

independently of all other edges. Let B be the union of F with the blue edges.
Show that (V , B) has law φ2p.2.
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Quantum Ising model

The quantum Ising model on a finite graph G may be transformed into
a continuum random-cluster model on the set obtained by attaching a
copy of the real line to each vertex of G. The ensuing representation
of the Gibbs operator is susceptible to probabilistic analysis. One
application is to an estimate of entanglement in the one-dimensional
system.

9.1 The model

The quantum Ising model was introduced in [166]. Its formal definition
requires a certain amount of superficially alien notation, and proceeds as
follows on the finite graph G = (V , E). To each vertex x ∈ V is associated
a quantum spin- 1

2 with local Hilbert space C2. The configuration space H

for the system is the tensor product1
H =⊗v∈V C2. As basis for the copy

of C2 labelled by v ∈ V , we take the two eigenvectors, denoted as

|+〉v =
(

1
0

)
, |−〉v =

(
0
1

)
,

of the Pauli matrix

σ (3)v =
(

1 0
0 −1

)

at the site v, with corresponding eigenvalues ±1. The other two Pauli
matrices with respect to this basis are:

σ (1)v =
(

0 1
1 0

)
, σ (2)v =

(
0 −i
i 0

)
.

In the following, |φ〉 denotes a vector and 〈φ| its adjoint (or conjugate
transpose).2

1The tensor product U ⊗ V of two vector spaces over F is the dual space of the set of
bilinear functionals on U × V . See [99, 127].

2With apologies to mathematicians who dislike the bra-ket notation.
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176 Quantum Ising model

Let D be the set of 2|V | basis vectors |η〉 for H of the form |η〉 =⊗v |±〉v .
There is a natural one–one correspondence between D and the space

6 = 6V = {−1,+1}V .
We may speak of members of 6 as basis vectors, and of H as the Hilbert
space generated by 6.

Let λ, δ ∈ [0,∞). The Hamiltonian of the quantum Ising model with
transverse field is the matrix (or ‘operator’)

(9.1) H = − 1
2λ

∑

e=〈u,v〉∈E

σ (3)u σ (3)v − δ
∑

v∈V

σ (1)v ,

Here, λ is the spin-coupling and δ is the transverse-field intensity. The
matrix H operates on vectors (elements of H ) through the operation of
each σv on the component of the vector at v.

Let β ∈ [0,∞) be the parameter known as ‘inverse temperature’. The
Hamiltonian H generates the matrix e−βH , and we are concerned with the
operation of this matrix on elements of H . The right way to normalize a
matrix A is by its trace

tr(A) =
∑

η∈6
〈η|A|η〉.

Thus, we define the so-called ‘density matrix’ by

(9.2) νG(β) =
1

ZG(β)
e−βH ,

where

(9.3) ZG (β) = tr(e−βH ).

It turns out that the matrix elements of νG(β) may be expressed in terms
of a type of ‘path integral’ with respect to the continuum random-cluster
model on V × [0, β] with parameters λ, δ, and q = 2. We explain this in
the following two sections.

The Hamiltonian H has a unique pure ground state |ψG〉 defined at zero-
temperature (that is, in the limit as β →∞) as the eigenvector correspond-
ing to the lowest eigenvalue of H .

9.2 Continuum random-cluster model

The finite graph G = (V , E) may be used as a base for a family of proba-
bilistic models that live not on the vertex-set V but on the ‘continuum’ space
V ×R. The simplest of these models is continuum percolation, see Section
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9.2 Continuum random-cluster model 177

6.6. We consider here a related model called the continuum random-cluster
model. Let β ∈ (0,∞), and let 3 be the ‘box’ 3 = V × [0, β]. In the
notation of Section 6.6, let P3,λ,δ denote the probability measure associated
with the Poisson processes Dx , x ∈ V , and Be, e = 〈x, y〉 ∈ E . As sample
space, we take the set �3 comprising all finite sets of cuts and bridges in
3, and we may assume without loss of generality that no cut is the endpoint
of any bridge. For ω ∈ �3, we write B(ω) and D(ω) for the sets of bridges
and cuts, respectively, of ω. The appropriate σ -field F3 is that generated
by the open sets in the associated Skorohod topology, see [37, 83].

For a given configuration ω ∈ �3, let k(ω) be the number of its clusters
under the connection relation↔. Let q ∈ (0,∞), and define the ‘continuum
random-cluster’ measure φ3,λ,δ,q by

(9.4) dφ3,λ,δ,q(ω) =
1

Z
qk(ω)dP3,λ,δ(ω), ω ∈ �3,

for an appropriate normalizing constant Z = Z3(λ, δ, q) called the
‘partition function’. The continuum random-cluster model may be studied
in much the same way as the random-cluster model on a (discrete) graph,
see Chapter 8.

The space �3 is a partially ordered space with order relation given by:
ω1 ≤ ω2 if B(ω1) ⊆ B(ω2) and D(ω1) ⊇ D(ω2). A random variable
X : �3 → R is called increasing if X (ω) ≤ X (ω′) whenever ω ≤ ω′. A
non-empty event A ∈ F3 is called increasing if its indicator function 1A
is increasing. Given two probability measures µ1, µ2 on the measurable
pair (�3,F3), we write µ1 ≤st µ2 if µ1(X) ≤ µ2(X) for all bounded
increasing continuous random variables X : �3→ R.

The measures φ3,λ,δ,q have certain properties of stochastic ordering as
the parameters vary. In rough terms, the φ3,λ,δ,q inherit the properties of
stochastic ordering and positive association enjoyed by their counterparts
on discrete graphs. This will be assumed here, and the reader is referred
to [40] for further details. Of value in the forthcoming Section 9.5 is the
stochastic inequality

(9.5) φ3,λ,δ,q ≤st P3,λ,δ, q ≥ 1.

The underlying graph G = (V , E) has so far been finite. Singularities
emerge only in the infinite-volume (or ‘thermodynamic’) limit, and this may
be taken in much the same manner as for the discrete random-cluster model,
whenever q ≥ 1, and for certain boundary conditions τ . Henceforth, we
assume that V is a finite connected subgraph of the lattice G = Ld , and
we assign to the box 3 = V × [0, β] a suitable boundary condition. As
described in [109] for the discrete case, if the boundary condition τ is chosen
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in such a way that the measures φτ3,λ,δ,q are monotonic as V ↑ Zd , then the
weak limit

φτλ,δ,q,β = lim
V↑Zd

φτ3,λ,δ,q

exists. We may similarly allow the limit as β → ∞ to obtain the ‘ground
state’ measure

φτλ,δ,q = lim
β→∞

φτλ,δ,q,β .

We shall generally work with the measure φτλ,δ,q with free boundary condi-
tion τ , written simply as φλ,δ,q , and we note that it is sometimes appropriate
to take β <∞.

The percolation probability is given by

θ(λ, δ, q) = φλ,δ,q (|C| = ∞),
where C is the cluster at the origin (0, 0), and |C| denotes the aggregate (one-
dimensional) Lebesgue measure of the time intervals comprising C . By
re-scaling the continuum R, we see that the percolation probability depends
only on the ratio ρ = λ/δ, and we write θ(ρ, q) = θ(λ, δ, q). The critical
point is defined by

ρc(L
d , q) = sup{ρ : θ(ρ, q) = 0}.

In the special case d = 1, the random-cluster model has a property of
self-duality that leads to the following conjecture.

9.6 Conjecture. The continuum random-cluster model on L × R with
cluster-weighting factor satisfying q ≥ 1 has critical value ρc(L, q) = q.

It may be proved by standard means that ρc(L, q) ≥ q. See (8.33) and
[109, Sect. 6.2] for the corresponding result on the discrete lattice L2. The
cases q = 1, 2 are special. The statement ρc(L, 1) = 1 is part of Theorem
6.18(b). When q = 2, the method of so-called ‘random currents’ may
be adapted to the quantum model with several consequences, of which we
highlight the fact that ρc(L, 2) = 2; see [41].

The continuum Potts model on V × R is given as follows. Let q be an
integer satisfying q ≥ 2. To each cluster of the random-cluster model with
cluster-weighting factor q is assigned a uniformly chosen ‘spin’ from the
space 6 = {1, 2, . . . , q}, different clusters receiving independent spins.
The outcome is a function σ : V × R → 6, and this is the spin-vector of
a ‘continuum q-state Potts model’ with parameters λ and δ. When q = 2,
we refer to the model as a continuum Ising model.
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It is not hard to see3 that the law P of the continuous Ising model on
3 = V × [0, β] is given by

d P(σ ) = 1

Z
eλL(σ ) dP3,δ(Dσ ),

where Dσ is the set of (x, s) ∈ V × [0, β] such that σ(x, s−) 6= σ(x, s+),
P3,δ is the law of a family of independent Poisson processes on the time-
lines {x} × [0, β], x ∈ V , with intensity δ, and

L(σ ) =
∑

〈x,y〉∈EV

∫ β

0
1{σ(x,u)=σ(y,u)} du

is the aggregate Lebesgue measure of those subsets of pairs of adjacent
time-lines on which the spins are equal. As usual, Z is the appropriate
normalizing constant.

9.3 Quantum Ising via random-cluster

In this section, we describe the relationship between the quantum Ising
model on a finite graph G = (V , E) and the continuum random-cluster
model on G× [0, β] with q = 2. We shall see that the density matrix νG(β)

may be expressed in terms of ratios of probabilities. The basis of the fol-
lowing argument lies in the work of Jean Ginibre [97], and it was developed
further by Campanino, von Dreyfus, Klein, and Perez. The reader is referred
to [13] for more recent account. Similar geometrical transformations exist
for certain other quantum models, see [14, 192].

Let 3 = V × [0, β], and let �3 be the configuration space of the con-
tinuum random-cluster model on 3. For given λ, δ, and q = 2, let φG,β
denote the corresponding continuum random-cluster measure on �3 (with
free boundary conditions). Thus, for economy of notation we suppress
reference to λ and δ.

We next introduce a coupling of edge and spin configurations as in Sec-
tion 8.1. For ω ∈ �3, let S(ω) denote the (finite) space of all functions
s : V × [0, β]→ {−1,+1} that are constant on the clusters of ω, and let S
be the union of the S(ω) over ω ∈ �3. Given ω, we may pick an element
of S(ω) uniformly at random, and we denote this random element as σ .
We shall abuse notation by using φG,β to denote the ensuing probability
measure on the coupled space �3 × S. For s ∈ S and W ⊆ V , we write
sW,0 (respectively, sW,β) for the vector (s(x, 0) : x ∈ W ) (respectively,
(s(x, β) : x ∈ W )). We abbreviate sV,0 and sV,β to s0 and sβ , respectively.

3This is Exercise 9.3.
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9.7 Theorem [13]. The elements of the density matrix νG(β) satisfy

(9.8) 〈η′|νG(β)|η〉 =
φG,β (σ0 = η, σβ = η′)

φG,β (σ0 = σβ)
, η, η′ ∈ 6.

Readers familiar with quantum theory may recognize this as a type of
Feynman–Kac representation.

Proof. We use the notation of Section 9.1. By (9.1) with γ = 1
2

∑
〈x,y〉 λI

and I the identity matrix4,

(9.9) e−β(H+γ ) = e−β(U+V ),

where

U = −δ
∑

x∈V

σ (1)x , V = − 1
2

∑

e=〈x,y〉∈E

λ(σ (3)x σ (3)y − I).

Although these two matrices do not commute, we may use the so-called
Lie–Trotter formula (see, for example, [219]) to express e−β(U+V ) in terms
of single-site and two-site contributions due to U and V , respectively. By
the Lie–Trotter formula,

e−(U+V )1t = e−U1t e−V1t + O(1t2) as 1t ↓ 0,

so that
e−β(U+V ) = lim

1t→0
(e−U1t e−V1t )β/1t .

Now expand the exponential, neglecting terms of order o(1t), to obtain

e−β(H+γ ) =
(9.10)

lim
1t→0

(∏

x

[
(1− δ1t)I + δ1t P1

x

] ∏

e=〈x,y〉

[
(1− λ1t)I+ λ1t P3

x,y

])β/1t

,

where P1
x = σ 1

(x) + I and P3
x,y = 1

2 (σ
(3)
x σ

(3)
y + I).

As noted earlier, 6 = {−1,+1}V may be considered as a basis for H .
The product (9.10) contains a collection of operators acting on sites x and
on neighbouring pairs 〈x, y〉. We partition the time interval [0, β] into N
time-segments labelled 1t1, 1t2, . . . , 1tN , each of length 1t = β/N . On
neglecting terms of order o(1t), we may see that each given time-segment
arising in (9.10) contains exactly one of: the identity matrix I, a matrix of

4Note that 〈η′|eJ+cI|η〉 = ec〈η′|eJ |η〉, so the introduction of γ into the exponent is
harmless.
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the form P1
x , a matrix of the form P3

x,y . Each such matrix occurs within the
given time-segment with a certain weight.

Let us consider the actions of these matrices on the states |η〉 for each
time interval1ti , i ∈ {1, 2, . . . , N}. The matrix elements of the single-site
operator at x are given by

(9.11) 〈η′|σ (1)x + I|η〉 ≡ 1.

This is easily checked by exhaustion. When this matrix occurs in some
time-segment 1ti , we place a mark in the interval {x} × 1ti , and we call
this mark a cut. Such a cut has a corresponding weight δ1t + o(1t).

The matrix element involving the neighbouring pair 〈x, y〉 yields, as
above,

(9.12) 1
2 〈η′|σ (3)x σ (3)y + I|η〉 =

{
1 if ηx = ηy = η′x = η′y,
0 otherwise.

When this occurs in some time-segment1ti , we place a bridge between the
intervals {x}×1ti and {y}×1ti . Such a bridge has a corresponding weight
λ1t + o(1t).

In the limit 1t → 0, the spin operators generate thus a Poisson process
with intensity δ of cuts in each time-line {x}× [0, β], and a Poisson process
with intensityλof bridges between each pair {x}×[0, β], {y}×[0, β] of time-
lines, for neighbouring x and y. These Poisson processes are independent
of one another. We write Dx for the set of cuts at the site x , and Be for
the set of bridges corresponding to an edge e = 〈x, y〉. The configuration
space is the set�3 containing all finite sets of cuts and bridges, and we may
assume without loss of generality that no cut is the endpoint of any bridge.

For two points (x, s), (y, t) ∈ 3, we write as before (x, s) ↔ (y, t)
if there exists a cut-free path from the first to the second that traverses
time-lines and bridges. A cluster is a maximal subset C of 3 such that
(x, s) ↔ (y, t) for all (x, s), (y, t) ∈ C . Thus the connection relation
↔ generates a continuum percolation process on 3, and we write P3,λ,δ

for the probability measure corresponding to the weight function on the
configuration space �3. That is, P3,λ,δ is the measure governing a family
of independent Poisson processes of cuts (with intensity δ) and of bridges
(with intensity λ). The ensuing percolation process has appeared in Section
6.6.

Equations (9.11)–(9.12) are to be interpreted in the following way. In
calculating the operator e−β(H+γ ), we average over contributions from
realizations of the Poisson processes, on the basis that the quantum spins
are constant on every cluster of the corresponding percolation process, and
each such spin-function is equiprobable.
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More explicitly,
(9.13)

e−β(H+γ ) =
∫

dP3,λ,δ(ω)

(
T

∏

(x,t)∈D

P1
x (t)

∏

(〈x,y〉,t ′)∈B

P3
x,y(t

′)
)
,

where T denotes the time-ordering of the terms in the products, and B (re-
spectively, D) is the set of all bridges (respectively, cuts) of the configuration
ω ∈ �3.

Let ω ∈ �3. Let µω be the counting measure on the space S(ω) of
functions s : V × [0, β] → {−1,+1} that are constant on the clusters of
ω. Let K (ω) be the time-ordered product of operators in (9.13). We may
evaluate the matrix elements of K (ω) by inserting the ‘resolution of the
identity’

(9.14)
∑

η∈6
|η〉〈η| = I

between any two factors in the product, obtaining by (9.11)–(9.12) that

(9.15) 〈η′|K (ω)|η〉 =
∑

s∈S(ω)

1{s0=η}1{sβ=η′}, η, η′ ∈ 6.

This is the number of spin-allocations to the clusters of ω with given spin-
vectors at times 0 and β.

The matrix elements of νG(β) are therefore given by

(9.16) 〈η′|νG(β)|η〉 =
1

ZG,β

∫
1{s0=η}1{sβ=η′} dµω(s) dP3,λ,δ(ω),

for η, η′ ∈ 6, where

(9.17) ZG,β = tr(e−β(H+γ )).

For η, η′ ∈ 6, let Iη,η′ be the indicator function of the event (in �3) that,
for all x, y ∈ V ,

if (x, 0)↔ (y, 0), then ηx = ηy,

if (x, β)↔ (y, β), then η′x = η′y,
if (x, 0)↔ (y, β), then ηx = η′y .

This is the event that the pair (η, η′) of initial and final spin-vectors is
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Figure 9.1. An example of a space–time configuration contributing to
the Poisson integral (9.18). The cuts are shown as circles and the distinct
connected clusters are indicated with different line-types.

‘compatible’ with the random-cluster configuration. We have that

〈η′|νG(β)|η〉 =
1

ZG,β

∫
dP3,λ,δ(ω)

∑

s∈S(ω)

1{s0=η}1{sβ=η′}(9.18)

= 1

ZG,β

∫
2k(ω) Iη,η′ dP3,λ,δ(ω)

= 1

ZG,β
φG,β(σ0 = η, σβ = η′). η, η′ ∈ 6,

where k(ω) is the number of clusters of ω containing no point of the form
(v, 0) or (v, β), for v ∈ V . See Figure 9.1 for an illustration of the space–
time configurations contributing to the Poisson integral (9.18).

On setting η = η′ in (9.18) and summing over η ∈ 6, we find that

(9.19) ZG,β = φG,β(σ0 = σβ),
as required. �

This section closes with an alternative expression for the trace formula for
ZG,β = tr(e−β(H+γ )). We consider ‘periodic’ boundary conditions on 3
obtained by, for each x ∈ V , identifying the pair (x, 0) and (x, β) of points.
Let kper(ω) be the number of open clusters of ω with periodic boundary
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conditions, and φper
G,β be the corresponding random-cluster measure. By

setting η′ = η in (9.18) and summing,

(9.20) 1 =
∑

η∈6
〈η|νG(β)|η〉 =

1

ZG,β

∫
2k(ω)2kper(ω)−k(ω) dP3,λ,δ(ω),

whence ZG,β equals the normalizing constant for the periodic random-
cluster measure φper

G,β .

9.4 Long-range order

The density matrix has been expressed in terms of the continuous random-
cluster model. This representation incorporates a relationship between the
phase transitions of the two models. The so-called ‘order parameter’ of
the random-cluster model is of course its percolation probability θ , and the
phase transition takes place at the point of singularity of θ . Another way of
expressing this is to say that the two-point connectivity function

τG,β(x, y) = φper
G,β

(
(x, 0)↔ (y, 0)

)
, x, y ∈ V ,

is a natural measure of long-range order in the random-cluster model. It
is less clear how best to summarize the concept of long-range order in the
quantum Ising model, and, for reasons that are about to become clear, we
use the quantity

tr
(
νG(β)σ

(3)
x σ (3)y

)
, x, y ∈ V .

9.21 Theorem [13]. Let G = (V , E) be a finite graph, and β > 0. We
have that

τG,β(x, y) = tr
(
νG(β)σ

(3)
x σ (3)y

)
, x, y ∈ V .

Proof. The argument leading to (9.18) is easily adapted to obtain

tr
(
νG(β) · 1

2 (σ
(3)
x σ (3)y + I)

)
= 1

ZG,β

∫
2k(ω)

( ∑

η: ηx=ηy

Iη,η

)
dP3,λ,δ(ω).

Now,
∑

η: ηx=ηy

Iη,η =
{

2kper(ω)−k(ω) if (x, 0)↔ (y, 0),

2kper(ω)−k(ω)−1 if (x, 0) /↔ (y, 0),

whence, by the remark at the end of the last section,

tr
(
νG(β) · 1

2 (σ
(3)
x σ (3)y + I)

)
= τG,β(x, y)+ 1

2 (1− τG,β(x, y)),

and the claim follows. �
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The infinite-volume limits of the quantum Ising model on G are obtained
in the ‘ground state’ as β →∞, and in the spatial limit as |V | → ∞. The
paraphernalia of the discrete random-cluster model may be adapted to the
current continuous setting in order to understand the issues of existence and
uniqueness of these limits. This is not investigated here. Instead, we point
out that the behaviour of the two-point connectivity function, after taking
the limits β → ∞, |V | → ∞, depends pivotally on the existence or not
of an unbounded cluster in the infinite-volume random-cluster model. Let
φλ,δ,2 be the infinite-volume measure, and let

θ(λ, δ) = φλ,δ,2(C0 is unbounded)

be the percolation probability. Then τλ,δ(x, y) → 0 as |x − y| → ∞,
when θ(λ, δ) = 0. On the other hand, by the FKG inequality and the (a.s.)
uniqueness of the unbounded cluster,

τλ,δ(x, y) ≥ θ(λ, δ)2,
implying that τλ,δ(x, y) is bounded uniformly away from 0 when
θ(λ, δ) > 0. Thus the critical point of the random-cluster model is also
a point of phase transition for the quantum model.

A more detailed investigation of the infinite-volume limits and their
implications for the quantum Ising model may be found in [13]. As pointed
out there, the situation is more interesting in the ‘disordered’ setting, when
the λe and δx are themselves random variables.

A principal technique for the study of the classical Ising model is the
so-called random-current method. This may be adapted to a ‘random-parity
representation’ for the continuum Ising model corresponding to the continu-
ous random-cluster model of Section 9.3, see [41, 69]. Many results follow
for the quantum Ising model in a general number of dimensions, see [41].

9.5 Entanglement in one dimension

It is shown next how the random-cluster analysis of the last section enables
progress with the problem of so-called ‘quantum entanglement’ in one
dimension. The principle reference for the work of this section is [118].

Let G = (V , E) be a finite graph, and let W ⊆ V . A considerable effort
has been spent on understanding the so-called ‘entanglement’ of the spins
in W relative to those of V \W , in the (ground state) limit as β →∞. This
is already a hard problem when G is a finite subgraph of the line L. Various
methods have been used in this case, and a variety of results, some rigorous,
obtained.

The first step in the definition of entanglement is to define the reduced
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density matrix
νW

G (β) = trV\W (νG(β)),

where the trace is taken over the Hilbert space HV\W =
⊗

x∈V\W C2 of
spins of vertices of V \W . An analysis (omitted here) exactly parallel to that
leading to Theorem 9.7 allows the following representation of the matrix
elements of νW

G (β).

9.22 Theorem [118]. The elements of the reduced density matrix νW
G (β)

satisfy
(9.23)

〈η′|νW
G (β)|η〉 =

φG,β(σW,0 = η, σW,β = η′ | F)

φG,β(σ0 = σβ | F)
, η, η′ ∈ 6W ,

where F is the event that σV\W,0 = σV\W,β .

Let DW be the set of 2|W | vectors |η〉 of the form |η〉 = ⊗
w∈W |±〉w,

and write HW for the Hilbert space generated by DW . Just as before, there
is a natural one–one correspondence between DW and the space 6W =
{−1,+1}W , and we shall thus regard HW as the Hilbert space generated by
6W .

We may write

νG = lim
β→∞

νG(β) = |ψG〉〈ψG |

for the density matrix corresponding to the ground state of the system, and
similarly

(9.24) νW
G = trV\W (|ψG〉〈ψG |) = lim

β→∞
νW

G (β).

The entanglement of the spins in W may be defined as follows.

9.25 Definition. The entanglement of the spins of W relative to its com-
plement V \W is the entropy

(9.26) SW
G = −tr(νW

G log2 ν
W
G ).

The behaviour of SW
G , for general G and W , is not understood at present.

We specialize here to the case of a finite subset of the one-dimensional lattice
L. Let m, L ≥ 0 and take V = [−m,m + L] and W = [0, L], viewed as
subsets of Z. We obtain the graph G from V by adding edges between
each pair x, y ∈ V with |x − y| = 1. We write νm(β) for νG(β), and SL

m
(respectively, νL

m ) for SW
G (respectively, νW

G ). A key step in the study of SL
m
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for large m is a bound on the norm of the difference νL
m − νL

n . The operator
norm of a Hermitian matrix5 A is given by

‖A‖ = sup
‖ψ‖=1

∣∣〈ψ |A|ψ〉
∣∣,

where the supremum is over all vectors ψ with L2-norm 1.

9.27 Theorem [40, 118]. Let λ, δ ∈ (0,∞) and write ρ = λ/δ. There
exist constants C, α, γ depending on ρ and satisfying γ > 0 when ρ < 2
such that

(9.28) ‖νL
m − νL

n ‖ ≤ min
{
2,C Lαe−γm}, 2 ≤ m ≤ n <∞, L ≥ 1.

This was proved in [118] for ρ < 1, and the stronger result follows from
the identification of the critical point ρc = 2 of [41]. The constant γ is,
apart from a constant factor, the reciprocal of the correlation length of the
associated random-cluster model.

Inequality (9.28) is proved by the following route. Consider the con-
tinuum random-cluster model with q = 2 on the space–time graph 3 =
V × [0, β] with ‘partial periodic top/bottom boundary conditions’; that is,
for each x ∈ V \W , we identify the two points (x, 0) and (x, β). Let φp

m,β
denote the associated random-cluster measure on �3. To each cluster of
ω ∈ �3 we assign a random spin from {−1,+1} in the usual manner, and
we abuse notation by using φp

m,β to denote the measure governing both the
random-cluster configuration and the spin configuration. Let

am,β = φp
m,β(σW,0 = σW,β),

noting that
am,β = φm,β(σ0 = σβ | F)

as in (9.23).
By Theorem 9.22,

〈ψ |νL
m(β)− νL

n (β)|ψ〉(9.29)

=
φ

p
m,β(c(σW,0)c(σW,β))

am,β
−
φ

p
n,β(c(σW,0)c(σW,β))

an,β
,

where c : {−1,+1}W → C and

ψ =
∑

η∈6W

c(η)η ∈ HW .

5A matrix is called Hermitian if it equals its conjugate transpose.
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The property of ratio weak-mixing (for a random-cluster measure φ) is
used in the derivation of (9.28) from (9.29). This may be stated roughly as
follows. Let A and B be events in the continuum random-cluster model that
are defined on regions RA and RB of space, respectively. What can be said
about the difference φ(A ∩ B)− φ(A)φ(B) when the distance d(RA, RB)

between RA and RB is large? It is not hard to show that this difference is
exponentially small in the distance, so long as the random-cluster model
has exponentially decaying connectivities, and such a property is called
‘weak mixing’. It is harder to show a similar bound for the difference
φ(A | B)−φ(A), and such a bound is termed ‘ratio weak-mixing’. The ratio
weak-mixing property of random-cluster measures has been investigated in
[19, 20] for the discrete case and in [118] for the continuum model.

At the final step of the proof of Theorem 9.27, the random-cluster model
is compared via (9.5) with the continuum percolation model of Section
6.6, and the exponential decay of Theorem 9.27 follows by Theorem 6.18.
A logarithmic bound on the entanglement entropy follows for sufficiently
small λ/δ.

9.30 Theorem [118]. Let λ, δ ∈ (0,∞) and write ρ = λ/δ. There exists
ρ0 ∈ (0, 2] such that: for ρ < ρ0, there exists K = K (ρ) <∞ such that

SL
m ≤ K log2 L, m ≥ 0, L ≥ 2.

Here is the idea of the proof. Theorem 9.27 implies, by a classic theorem
of Weyl, that the spectra (and hence the entropies) of νL

m and νL
n are close

to one another. It is an easy calculation that SL
m ≤ c log L for m ≤ c′ log L,

and the conclusion follows.
A stronger result is known to physicists, namely that the entanglement

SL
m is bounded above, uniformly in L, whenever ρ is sufficiently small, and

perhaps for all ρ < ρc, where ρc = 2 is the critical point. It is not clear
whether this is provable by the methods of this chapter. See Conjecture 9.6
above, and the references in [118].

There is no rigorous picture known of the behaviour of SL
m for large ρ,

or of the corresponding quantity in dimensions d ≥ 2, although Theorem
9.27 has a counterpart in these settings. Theorem 9.30 may be extended to
the disordered system in which the intensities λ, δ are independent random
variables indexed by the vertices and edges of the underlying graph, subject
to certain conditions on these variables (cf. Theorem 6.19 and the preceding
discussion).
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9.6 Exercises

9.1 Explain in what manner the continuum random-cluster measure φλ,δ,q on
L× R is ‘self-dual’ when ρ = λ/δ satisfies ρ = q.

9.2 (continuation) Show that the critical value of ρ satisfies ρc ≥ q when
q ≥ 1.

9.3 Let φλ,δ,q be the continuum random-cluster measure on G× [0, β], where
G is a finite graph, β <∞, and q ∈ {2, 3, . . . }. To each cluster is assigned a spin
chosen uniformly at random from the set {1, 2, . . . , q}, these spins being constant
within clusters and independent between them. Find an expression for the law of
the ensuing (Potts) spin-process on V × [0, β].
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Interacting particle systems

The contact, voter, and exclusion models are Markov processes in
continuous time with state space {0, 1}V for some countable set V .
In the voter model, each element of V may be in either of two states,
and its state flips at a rate that is a weighted average of the states
of the other elements. Its analysis hinges on the recurrence or tran-
sience of an associated Markov chain. When V = Z2 and the model
is generated by simple random walk, the only invariant measures
are the two point masses on the (two) states representing unanim-
ity. The picture is more complicated when d ≥ 3. In the exclusion
model, a set of particles moves about V according to a ‘symmetric’
Markov chain, subject to exclusion. When V = Zd and the Markov
chain is translation-invariant, the product measures are invariant for
this process, and furthermore these are exactly the extremal invariant
measures. The chapter closes with a brief account of the stochastic
Ising model.

10.1 Introductory remarks

There are many beautiful problems of physical type that may be modelled as
Markov processes on the compact state space 6 = {0, 1}V for some count-
able set V . Amongst the most studied to date by probabilists are the contact,
voter, and exclusion models, and the stochastic Ising model. This significant
branch of modern probability theory had its nascence around 1970 in the
work of Roland Dobrushin, Frank Spitzer, and others, and has been brought
to maturity through the work of Thomas Liggett and colleagues. The basic
references are Liggett’s two volumes [167, 169], see also [170].

The general theory of Markov processes, with its intrinsic complexities,
is avoided here. The first three processes of this chapter may be constructed
via ‘graphical representations’ involving independent random walks. There
is a general approach to such important matters as the existence of processes,
for an account of which the reader is referred to [167]. The two observations
of note are that the state space6 is compact, and that the Markov processes
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10.1 Introductory remarks 191

(ηt : t ≥ 0) of this section are Feller processes, which is to say that the
transition measures are weakly continuous functions of the initial state.1

For a given Markov process, the two main questions are to identify the
set of invariant measures, and to identify the ‘basin of attraction’ of a given
invariant measure. The processes of this chapter will possess a non-empty
set I of invariant measures, although it is not always possible to describe all
members of this set explicitly. Since I is a convex set of measures, it suffices
to describe its extremal elements. We shall see that, in certain circumstances,
|I| = 1, and this may be interpreted as the absence of long-range order.

Since V is infinite, 6 is uncountable. We normally specify the transition
operators of a Markov chain on such 6 by specifying its generator. This
is an operator L acting on an appropriate dense subset of C(6), the space
of continuous functions on 6 endowed with the product topology and the
supremum norm. It is determined by its values on the space C(6) of cylinder
functions, being the set of functions that depend on only finitely many
coordinates in 6. For f ∈ C(6), we write L f in the form

(10.1) L f (η) =
∑

η′∈6
c(η, η′)[ f (η′)− f (η)], η ∈ 6,

for some function c sometimes called the ‘speed (or rate) function’. For
η 6= η′, we think of c(η, η′) as being the rate at which the process, when in
state η, jumps to state η′.

The processes ηt possesses a transition semigroup (St : t ≥ 0) acting on
C(6) and given by

(10.2) St f (η) = Eη( f (ηt )), η ∈ 6,
where Eη denotes expectation under the assumption η0 = η. Under certain
conditions on the process, the transition semigroup is related to the generator
by the formula

(10.3) St = exp(tL),

suitably interpreted according to the Hille–Yosida theorem, see [167, Sect.
I.2]. The semigroup acts on probability measures by

(10.4) µSt(A) =
∫

6

Pη(ηt ∈ A) dµ(η).

1Let C(6) denote the space of continuous functions on 6 endowed with the product
topology and the supremum norm. The process ηt is called Feller if, for f ∈ C(6),
ft (η) = E

η( f (ηt )) defines a function belonging to C(6). Here, E
η denotes expectation

with initial state η.
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A probability measure µ on 6 is called invariant for the process ηt if
µSt = µ for all t . Under suitable conditions, µ is invariant if and only if

(10.5)
∫

L f dµ = 0 for all f ∈ C(6).

In the remainder of this chapter, we shall encounter certain construc-
tions of Markov processes on 6, and all such constructions will satisfy the
conditions alluded to above.

10.2 Contact process

Let G = (V , E) be a connected graph with bounded vertex-degrees. The
state space is6 = {0, 1}V , where the local state 1 (respectively,0) represents
‘ill’ (respectively, ‘healthy’). Ill vertices recover at rate δ, and healthy
vertices become ill at a rate that is linear in the number of ill neighbours.
See Chapter 6.

We proceed more formally as follows. For η ∈ 6 and x ∈ V , let ηx
denote the state obtained from η by flipping the local state of x . That is,

(10.6) ηx(y) =
{

1− η(x) if y = x,

η(y) otherwise.

We let the function c of (10.1) be given by

c(η, ηx) =
{
δ if η(x) = 1,

λ|{y ∼ x : η(y) = 1}| if η(x) = 0,

where λ and δ are strictly positive constants. If η′ = ηx for no x ∈ V , and
η′ 6= η, we set c(η, η′) = 0.

We saw in Chapter 6 that the point mass on the empty set, ν = δ∅, is the
minimal invariant measure of the process, and that there exists a maximal
invariant measure ν obtained as the weak limit of the process with initial
state V . As remarked at the end of Section 6.3, when G = Ld , the set
of extremal invariant measures is exactly Ie = {δ∅, ν}, and δ∅ = ν if and
only if there is no percolation in the associated oriented percolation model in
continuous time. Of especial use in proving these facts was the coupling of
contact models in terms of Poisson processes of cuts and (directed) bridges.

We revisit duality briefly, see Theorem 6.1. For η ∈ 6 and A ⊆ V , let

(10.7) H(η, A) =
∏

x∈A

[1− η(x)] =
{

1 if η(x) = 0 for all x ∈ A,

0 otherwise.

The conclusion of Theorem 6.1 may be expressed more generally as

EA(H(At, B)) = EB(H(A, Bt)),
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where At (respectively, Bt ) denotes the contact model with initial state
A0 = A (respectively, B0 = B). This may seem a strange way to express
the duality relation, but its significance may become clearer soon.

10.3 Voter model

Let V be a countable set, and let P = (px,y : x, y ∈ V ) be the transition
matrix of a Markov chain on V . The associated voter model is given by
choosing

(10.8) c(η, ηx) =
∑

y: η(y) 6=η(x)
px,y

in (10.1). The meaning of this is as follows. Each member of V is an
individual in a population, and may have either of two opinions at any given
time. Let x ∈ V . At times of a rate-1 Poisson process, x selects a random y
according to the measure px,y , and adopts the opinion of y. It turns out that
the behaviour of this model is closely related to the transience/recurrence of
the chain with transition matrix matrix P , and of properties of its harmonic
functions.

The voter model has two absorbing states, namely all 0 and all 1, and
we denote by δ0 and δ1 the point masses on these states. Any convex
combination of δ0 and δ1 is invariant also, and thus we ask for conditions
under which every invariant measure is of this form. A duality relation will
enable us to answer this question.

It is helpful to draw the graphical representation of the process. With
each x ∈ V is associated a ‘time-line’ [0,∞), and on each such time-
line is marked the set of epochs of a Poisson process Pox with intensity
1. Different time-lines possess independent Poisson processes. Associated
with each epoch of the Poisson process at x is a vertex y chosen at random
according to the transition matrix P . The choice of y has the interpretation
given above.

Consider the state of vertex x at time t . We imagine a particle that is
at position x at time t , and we write Xx(0) = x . When we follow the
time-line x × [0, t] backwards in time, that is, from the point (x, t) towards
the point (x, 0), we encounter a first point (first in this reversed ordering
of time) belonging to Pox . At this time, the particle jumps to the selected
neighbour of x . Continuing likewise, the particle performs a simple random
walk about V . Writing Xx (t) for its position at time 0, the (voter) state of
x at time t is precisely that of Xx (t) at time 0.

Suppose we proceed likewise starting from two vertices x and y at time
t . Tracing the states of x and y backwards, each follows a Markov chain
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with transition matrix P , denoted Xx and X y respectively. These chains are
independent until the first time (if ever) they meet. When they meet, they
‘coalesce’: if they ever occupy the same vertex at any given time, then they
follow the same trajectory subsequently.

We state this as follows. The presentation here is somewhat informal,
and may be made more complete as in [167]. We write (ηt : t ≥ 0) for the
voter process, and S for the set of finite subsets of V .

10.9 Theorem. Let A ∈ S, η ∈ 6, and let (At : t ≥ 0) be a system of
coalescing random walks beginning on the set A0 = A. Then,

Pη(ηt ≡ 1 on A) = PA(η ≡ 1 on At), t ≥ 0.

This may be expressed in the form

Eη(H(ηt , A)) = EA(H(η, At)),

with
H(η, A) =

∏

x∈A

η(x).

Proof. Each side of the equation is the measure of the complement of the
event that, in the graphical representation, there is a path from (x, 0) to (a, t)
for some x with η(x) = 0 and some a ∈ A. �

For simplicity, we restrict ourselves henceforth to a case of special inter-
est, namely with V the vertex-set Zd of the d-dimensional lattice Ld with
d ≥ 1, and with px,y = p(x − y) for some function p. In the special case
of simple random walk, where

(10.10) p(z) = 1

2d
, z a neighbour of 0,

we have that η(x) flips at a rate equal to the proportion of neighbours of x
whose states disagree with the current value η(x). The case of general P is
treated in [167].

Let X t and Yt be independent random walks on Zd with rate-1 exponential
holding times, and jump distribution px,y = p(y − x). The difference
X t −Yt is a Markov chain also. If X t −Yt is recurrent, we say that we are in
the recurrent case, otherwise the transient case. The analysis of the voter
model is fairly simple in the recurrent case.
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10.11 Theorem. Assume we are in the recurrent case.
(a) Ie = {δ0, δ1}.
(b) If µ is a probability measure on 6 with µ(η(x) = 1) = α for all

x ∈ Zd , then µSt ⇒ (1− α)δ0 + αδ1 as t →∞.

The situation is quite different in the transient case. We may construct a
family of distinct invariant measures να indexed by α ∈ [0, 1], and we do
this as follows. Let φα be product measure on 6 with density α. We shall
show the existence of the weak limits να = limt→∞ φαSt , and it turns out
that the να are exactly the extremal invariant measures. A partial proof of
the next theorem is provided below.

10.12 Theorem. Assume we are in the transient case.
(a) The weak limits να = limt→∞ φαSt exist.
(b) The να are translation-invariant and ergodic2, with density

να(η(x) = 1) = α, x ∈ Zd .

(c) Ie = {να : α ∈ [0, 1]}.
We return briefly to the voter model corresponding to simple random walk

on Ld , see (10.10). It is an elementary consequence of Pólya’s theorem,
Theorem 1.32, that we are in the recurrent case if and only d ≤ 2.

Proof of Theorem 10.11. By assumption, we are in the recurrent case. Let
x, y ∈ Zd . By duality and recurrence,

P(ηt(x) 6= ηt (y)) ≤ P
(
Xx(u) 6= X y(u) for 0 ≤ u ≤ t

)
(10.13)

→ 0 as t →∞.
For A ∈ S, A 6= ∅,

P(ηt is non-constant on A) ≤ PA(|At | > 1),

and, by (10.13),

PA(|At | > 1) ≤
∑

x,y∈A

P
(
Xx (u) 6= X y(u) for 0 ≤ u ≤ t

)
(10.14)

→ 0 as t →∞.
It follows that, for any invariant measure µ, the µ-measure of the set of
constant configurations is 1. Only the convex combinations of δ0 and δ1
have this property.

2A probability measure µ on6 is ergodic if any shift-invariant event hasµ-probability
either 0 or 1. It is standard that the ergodic measures are extremal within the class of
translation-invariant measures, see [94] for example.
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Let µ be a probability measure with density α, as in the statement of the
theorem, and let A ∈ S, A 6= ∅. By Theorem 10.9,

µSt({η : η ≡ 1 on A}) =
∫

Pη(ηt ≡ 1 on A) µ(dη)

=
∫

PA(η ≡ 1 on At) µ(dη)

=
∫

PA(η ≡ 1 on At , |At | > 1) µ(dη)

+
∑

y∈Zd

PA(At = {y})µ(η(y) = 1),

whence ∣∣µSt({η : η ≡ 1 on A})− α
∣∣ ≤ 2PA(|At | > 1).

By (10.14), µSt ⇒ (1− α)δ0 + αδ1 as claimed. �

Partial proof of Theorem 10.12. For A ∈ S, A 6= ∅, by Theorem 10.9,

φαSt(η ≡ 1 on A) =
∫

Pη(ηt ≡ 1 on A) φα(dη)(10.15)

=
∫

PA(η ≡ 1 on At) φα(dη)

= EA(α|At |).

The quantity |At | is non-increasing in t , whence the last expectation con-
verges as t → ∞, by the monotone convergence theorem. Using the
inclusion–exclusion principle (as in Exercises 2.2–2.3), we deduce that the
µSt-measure of any cylinder event has a limit, and therefore the weak limit
να exists (see the discussion of weak convergence in Section 2.3). Since
the initial state φα is translation-invariant, so is να . We omit the proof of
ergodicity, which may be found in [167, 170]. By (10.15) with A = {x},
φαSt(η(x) = 1) = α for all t , so that να(η(x) = 1) = α.

It may be shown that the set I of invariant measures is exactly the convex
hull of the set {να : α ∈ [0, 1]}. The proof of this is omitted, and may be
found in [167, 170]. Since the να are ergodic, they are extremal within the
class of translation-invariant measures, whence Ie = {να : α ∈ [0, 1]}. �

10.4 Exclusion model

In this model for a lattice gas, particles jump around the countable set V ,
subject to the excluded-volume constraint that no more than one particle may
occupy any given vertex at any given time. The state space is 6 = {0, 1}V ,
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where the local state 1 represents occupancy by a particle. The dynamics are
assumed to proceed as follows. Let P = (px,y : x, y ∈ V ) be the transition
matrix of a Markov chain on V . In order to guarantee the existence of the
corresponding exclusion process, we shall assume that

sup
y∈V

∑

x∈V

px,y <∞.

If the current state is η ∈ 6, and η(x) = 1, the particle at x waits
an exponentially distributed time, parameter 1, before it attempts to jump.
At the end of this holding time, it chooses a vertex y according to the
probabilities px,y . If, at this instant, y is empty, then this particle jumps to
y. If y is occupied, the jump is suppressed, and the particle remains at x .
Particles are deemed to be indistinguishable.

The generator L of the Markov process is given by

L f (η) =
∑

x,y∈V :
η(x)=1, η(y)=0

px,y[ f (ηx,y)− f (η)],

for cylinder functions f , where ηx,y is the state obtained from η by inter-
changing the local states of x and y, that is,

(10.16) ηx,y(z) =





η(x) if z = y,

η(y) if z = x,

η(z) otherwise.

We may construct the process via a graphical representation, as in Section
10.3. For each x ∈ V , we let Pox be a Poisson process with rate 1; these are
the times at which a particle at x (if, indeed, x is occupied at the relevant
time) attempts to move away from x . With each ‘time’ T ∈ Pox , we
associate a vertex Y chosen according to the mass function px,y , y ∈ V . If
x is occupied by a particle at time T , this particle attempts to jump at this
instant of time to the new position Y . The jump is successful if Y is empty
at time T , otherwise the move is suppressed.

It is immediate that the two Dirac measures δ0 and δ1 are invariant. We
shall see below that the family of invariant measures is generally much richer
than this. The theory is substantially simpler in the symmetric case, and thus
we assume henceforth that

(10.17) px,y = py,x , x, y ∈ V .

See [167, Chap. VIII] and [170] for bibliographies for the asymmetric case.
If V is the vertex-set of a graph G = (V , E), and P is the transition matrix
of simple random walk on G, then (10.17) amounts to the assumption that
G be regular.
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Mention is made of the totally asymmetric simple exclusion process
(TASEP), namely the exclusion process on the line L in which particles
may move only in a given direction, say to the right. This apparently simple
model has attracted a great deal of attention, and the reader is referred to
[86] and the references therein.

We shall see that the exclusion process is self-dual, in the sense of the
following Theorem 10.18. Note first that the graphical representation of a
symmetric model may be expressed in a slightly simplified manner. For
each unordered pair x, y ∈ V , let Pox,y be a Poisson process with intensity
px,y [= py,x ]. For each T ∈ Pox,y , we interchange the states of x and
y at time T . That is, any particle at x moves to y, and vice versa. It is
easily seen that the corresponding particle system is the exclusion model.
For every x ∈ V , a particle at x at time 0 would pursue a trajectory through
V that is determined by the graphical representation, and we denote this
trajectory by Rx (t), t ≥ 0, noting that Rx (0) = x . The processes Rx (·),
x ∈ V , are of course dependent.

The family (Rx (·) : x ∈ V ) is time-reversible in the following ‘strong’
sense. Let t > 0 be given. For each y ∈ V , we may trace the trajec-
tory arriving at (y, t) backwards in time, and we denote the resulting path
by By,t (s), 0 ≤ s ≤ t , with By,t(0) = y. It is clear by the properties
of a Poisson process that the families (Rx (u) : u ∈ [0, t], x ∈ V ) and
(By,t(s) : s ∈ [0, t], y ∈ V ) have the same laws.

Let (ηt : t ≥ 0) denote the exclusion model. We distinguish the general
model from one possessing only finitely many particles. Let S be the set
of finite subsets of V , and write (At : t ≥ 0) for an exclusion process with
initial state A0 ∈ S. We think of ηt as a random 0/1-vector, and of At as a
random subset of the vertex-set V .

10.18 Theorem. Consider a symmetric exclusion model on V . For every
η ∈ 6 and A ∈ S,

(10.19) Pη(ηt ≡ 1 on A) = PA(η ≡ 1 on At ), t ≥ 0.

Proof. The left side of (10.19) equals the probability that, in the graphical
representation: for every y ∈ A, there exists x ∈ V with η(x) = 1 such
that Rx (t) = y. By the remarks above, this equals the probability that
η(Ry(t)) = 1 for every y ∈ A. �

10.20 Corollary. Consider a symmetric exclusion model on V . For each
α ∈ [0, 1], the product measure φα on 6 is invariant.

Proof. Let η be sampled from 6 according to the product measure φα . We
have that

PA(η ≡ 1 on At ) = E(α|At |) = α|A|,
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since |At | = |A|. By Theorem 10.18, if η0 has law φα , then so does ηt for
all t . That is, φα is an invariant measure. �

The question thus arises of determining the circumstances under which
the set of invariant extremal measures is exactly the set of product measures.

Assume for simplicity that
(i) V = Zd ,

(ii) the transition probabilities are symmetric and translation-invariant in
that

px,y = py,x = p(y − x), x, y ∈ Zd ,

for some function p, and
(iii) the Markov chain with transition matrix P = (px,y) is irreducible.
It can be shown in this case (see [167, 170]) that Ie = {φα : α ∈ [0, 1]},
and that

µSt ⇒ φα as t →∞,
for any translation-invariant and spatially ergodic probability measure µ
with µ(η(0) = 1) = α.

In the more general symmetric non-translation-invariant case on an arbi-
trary countable set V , the constants α are replaced by the set H of functions
α : V → [0, 1] satisfying

(10.21) α(x) =
∑

y∈V

px,yα(y), x ∈ V ,

that is, the bounded harmonic functions, re-scaled if necessary to take values
in [0, 1].3 Letµα be the product measure on6 with µα(η(x) = 1) = α(x).
It turns out that the weak limit

να = lim
t→∞µαSt

exists, and that Ie = {να : α ∈ H}. It may be shown that: να is a product
measure if and only if α is a constant function. See [167, 170].

We may find examples in which the set H is large. Let P = (px,y) be
the transition matrix of simple random walk on a binary tree T (each of
whose vertices has degree 3, see Figure 6.3). Let 0 be a given vertex of the
tree, and think of 0 as the root of three disjoint sub-trees of T . Any solution
(an : n ≥ 0) to the difference equation

(10.22) 2an+1 − 3an + an−1 = 0, n ≥ 1,

3An irreducible symmetric translation-invariant Markov chain on Z
d has only constant

bounded harmonic functions. Exercise: Prove this statement. It is an easy consequence of
the optional stopping theorem for bounded martingales, whenever the chain is recurrent.
See [167, pp. 67–70] for a discussion of the general case.
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defines a harmonic function α on a given such sub-tree, by α(x) = an ,
where n is the distance between 0 and x . The general solution to (10.22) is

an = A + B( 1
2 )

n,

where A and B are arbitrary constants. The three pairs (A, B), correspond-
ing to the three sub-trees at 0, may be chosen in an arbitrary manner, subject
to the condition that a0 = A+ B is constant across sub-trees. Furthermore,
the composite harmonic function on T takes values in [0, 1] if and only
if each pair (A, B) satisfies A, A + B ∈ [0, 1]. There exists, therefore, a
continuum of admissible non-constant solutions to (10.21), and therefore
a continuum of extremal invariant measures of the associated exclusion
model.

10.5 Stochastic Ising model

The Ising model is designed as a model of the ‘local’ interactions of a
ferromagnet: each neighbouring pair x , y of vertices have spins contributing
−σxσy to the energy of the spin-configuration σ . The model is static in time.
Physical systems tend to evolve as time passes, and we are thus led to the
study of stochastic processes having the Ising model as invariant measure. It
is normal to consider Markovian models for time-evolution, and this section
contains a very brief summary of some of these. The theory of the dynamics
of spin models is very rich, and the reader is referred to [167] and [179, 185,
214] for further introductory accounts.

Let G = (V , E) be a finite connected graph (infinite graphs are not
considered here). As explained in Section 10.1, a Markov chain on 6 =
{−1, 1}V is specified by way of its generator L, acting on suitable functions
f by

(10.23) L f (σ ) =
∑

σ ′∈6
c(σ, σ ′)[ f (σ ′)− f (σ )], σ ∈ 6,

for some function c sometimes called the ‘rate (or speed) function’. For
σ 6= σ ′, we think of c(σ, σ ′) as being the rate at which the process jumps
to state σ ′ when currently in state σ . Equation (10.23) requires nothing of
the diagonal terms c(σ, σ ), and we choose these such that∑

σ ′∈6
c(σ, σ ′) = 0, σ ∈ 6.

The state space 6 is finite, and thus there is a minimum of technical
complications. The probability measure µ is invariant for the process if and
only if µL = 0, which is to say that

(10.24)
∑

σ∈6
µ(σ)c(σ, σ ′) = 0, σ ′ ∈ 6.
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The process is reversible with respect to µ if and only if the ‘detailed balance
equations’

(10.25) µ(σ)c(σ, σ ′) = µ(σ ′)c(σ ′, σ ), σ, σ ′ ∈ 6,
hold, in which case µ is automatically invariant.

Let π be the Ising measure on the spin-space 6 satisfying

(10.26) π(σ) ∝ e−βH(σ ), σ ∈ 6,
where β > 0,

H(σ ) = −h
∑

x∈V

σx −
∑

x∼y

σxσy,

and the second summation is over unordered pairs of neighbours. We shall
consider Markov processes having π as reversible invariant measure. Many
possible choices for the speed function c are possible in (10.25), of which
we mention four here.

First, some notation: for σ ∈ 6 and x, y ∈ V , the configuration σx is
obtained from σ by replacing the state of x by−σ(x) (see (10.6)), and σx,y
is obtained by swapping the states of x and y (see (10.16)). The process is
said to proceed by: spin-flips if c(σ, σ ′) = 0 except possibly for pairs σ , σ ′

that differ on at most one vertex; it proceeds by spin-swaps if (for σ 6= σ ′)
c(σ, σ ′) = 0 except when σ ′ = σx,y for some x, y ∈ V .

Here are four rate functions that have attracted much attention, presented
in a manner that emphasizes applicability to other Gibbs systems. It is easily
checked that each is reversible with respect to π .4

1. Metropolis dynamics. Spin-flip process with

c(σ, σx) = min
{
1, exp

(
−β[H(σx)− H(σ )]

)}
.

2. Heat-bath dynamics/Gibbs sampler. Spin-flip process with

c(σ, σx) =
[
1+ exp

(
β[H(σx)− H(σ )]

)]−1
.

This arises as follows. At times of a rate-1 Poisson process, the state
at x is replaced by a state chosen at random with the conditional law
given σ(y), y 6= x .

3. Simple spin-flip dynamics. Spin-flip process with

c(σ, σx) = exp
(
− 1

2β[H(σx)− H(σ )]
)
.

4. Kawasaki dynamics. Spin-swap process with speed function satisfying

c(σ, σx,y) = exp
(
− 1

2β[H(σx,y)− H(σ )]
)
, x ∼ y.

4This is Exercise 10.3.
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The first three have much in common. In the fourth, Kawasaki dynamics,
the ‘total magnetization’ M = ∑

x σ(x) is conserved. This conservation
law causes complications in the analysis.

Examples 1–3 are of so-called Glauber-type, after Glauber’s work on the
one-dimensional Ising model, [98]. The term ‘Glauber dynamics’ is used
in several ways in the literature, but may be taken to be a spin-flip process
with positive, translation-invariant, finite-range rate function satisfying the
detailed balance condition (10.25).

The above dynamics are ‘local’ in that a transition affects the states of sin-
gletons or neighbouring pairs. There is another process called ‘Swendsen–
Wang dynamics’, [228], in which transitions are more extensive. Let π
denote the Ising measure (10.26) with h = 0. The random-cluster model
corresponding to the Ising model with h = 0 has state space � = {0, 1}E
and parameters p = 1 − e−2β , q = 1. Each step of the Swendsen–Wang
evolution comprises two steps: sampling a random-cluster state, followed
by resampling a spin configuration. This is made more explicit as follows.
Suppose that, at time n, we have obtained a configuration σn ∈ 6. We
construct σn+1 as follows.

I. Let ωn ∈ � be given by: for all e = 〈x, y〉 ∈ E ,

if σn(x) 6= σn(y), let ωn(e) = 0,

if σn(x) = σn(y), let ωn(e) =
{

1 with probability p,

0 otherwise,

different edges receiving independent states. The edge-configuration
ωn is carried forward to the next stage.

II. To each cluster C of the graph (V , η(ωn)) we assign an integer cho-
sen uniformly at random from the set {1, 2, . . . , q}, different clusters
receiving independent labels. Let σn+1(x) be the value thus assigned
to the cluster containing the vertex x .

It may be shown that the unique invariant measure of the Markov chain
(σn : n ≥ 1) is indeed the Ising measure π . See [109, Sect. 8.5]. Transi-
tions of the Swendsen–Wang algorithm move from a configuration σ to a
configuration σ ′ which is usually very different from σ . Thus, in general,
we expect the Swendsen–Wang process to converge faster to equilibrium
than the local dynamics given above.

The basic questions for stochastic Ising models concern the rate at which
a process converges to its invariant measure, and the manner in which this
depends on: (i) the size and topology of G, (ii) any boundary condition
that is imposed, and (iii) the values of the external field h and the inverse
temperature β. Two ways of quantifying the rate of convergence is via the
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so-called ‘mixing time’ and ‘relaxation time’ of the process. The following
discussion is based in part on [18, 165].

Consider a continuous-time Markov process with unique invariant mea-
sure µ. The mixing time is given as

τ1 = inf

{
t : sup

σ1,σ2∈6
dTV(P

σ1
t ,P

σ2
t ) ≤ e−1

}
,

where
dTV(µ1, µ2) = 1

2

∑

σ∈6

∣∣µ1(σ )− µ2(σ )
∣∣,

is the total variation distance between two probability measures on 6, and
Pσt denotes the law of the process at time t having started in state σ at time
0.

Write the eigenvalues of the negative generator −L as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

The relaxation time τ2 of the process is defined as the reciprocal of the
‘spectral gap’ λ2. It is a general result that

τ2 ≤ τ1 ≤ τ2

(
1+ log 1/

[
min
σ
µ(σ)

])
,

so that τ2 ≤ τ1 ≤ O(|E |)τ2 for the stochastic Ising model on the connected
graph G = (V , E). Therefore, mixing and relaxation times have equivalent
orders of magnitude, up to the factor O(|E |).

No attempt is made here to summarize the very substantial literature
on the convergence of Ising models to their equilibria, for which the reader
is directed to [185, 214] and more recent works including [179].
A phenomenon of current interest is termed ‘cut-off’. It has been
observed for certain families of Markov chain that the total variation d(t) =
dTV(Pt , µ) has a threshold behaviour: there is a sharp threshold between
values of t for which d(t) ≈ 1, and values for which d(t) ≈ 0. The re-
lationship between mixing/relaxation times and the cut-off phenomenon is
not yet fully understood, but has been studied successfully by Lubetzky and
Sly [178] for Glauber dynamics of the high-temperature Ising model in all
dimensions.

10.6 Exercises

10.1 [239] Biased voter model. Each point of the square lattice is occupied,
at each time t , by either a benign or a malignant cell. Benign cells invade their
neighbours, each neighbour being invaded at rate β, and similarly malignant cells
invade their neighbours at rate µ. Suppose there is exactly one malignant cell
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at time 0, and let κ = µ/β ≥ 1. Show that the malignant cells die out with
probability κ−1.

More generally, what happens on Ld with d ≥ 2?
10.2 Exchangeability. A probability measure µ on {0, 1}Z is called exchange-

able if the quantity µ({η : η ≡ 1 on A}), as A ranges over the set of finite subsets
of Z, depends only on the cardinality of A. Show that every exchangeable measure
µ is invariant for a symmetric exclusion model on Z.

10.3 Stochastic Ising model. Let6 = {−1,+1}V be the state space of a Markov
process on the finite graph G = (V , E) which proceeds by spin-flips. The state at
x ∈ V changes value at rate c(x, σ ) when the state overall is σ . Show that each
of the rate functions

c1(x, σ ) = min
{

1, exp
(
−2β

∑

y∈∂x

σxσy

)}
,

c2(x, σ ) =
1

1+ exp
(
2β
∑

y∈∂x σxσy
) ,

c3(x, σ ) = exp
(
−β

∑

y∈∂x

σxσy

)
,

gives rise to reversible dynamics with respect to the Ising measure with zero
external-field. Here, ∂x denotes the set of neighbours of the vertex x .
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Random graphs

In the Erdős–Rényi random graph Gn,p, each pair of vertices is con-
nected by an edge with probability p. We describe the emergence of
the giant component when pn ≈ 1, and identify the density of this
component as the survival probability of a Poisson branching process.
The Hoeffding inequality may be used to show that, for constant p,
the chromatic number of Gn,p is asymptotic to 1

2 n/ logπ n, where
π = 1/(1− p).

11.1 Erdős–Rényi graphs

Let V = {1, 2, . . . , n}, and let (X i, j : 1 ≤ i < j ≤ n) be independent
Bernoulli random variables with parameter p. For each pair i < j , we
place an edge 〈i, j 〉 between vertices i and j if and only if X i, j = 1. The
resulting random graph is named after Erdős and Rényi [82]1, and it is
commonly denoted Gn,p. The density p of edges may vary with n, for
example, p = λ/n with λ ∈ (0,∞), and one commonly considers the
structure of Gn,p in the limit as n→∞.

The original motivation for studying Gn,p was to understand the proper-
ties of ‘typical’ graphs. This is in contrast to the study of ‘extremal’ graphs,
although it may be noted that random graphs have on occasion manifested
properties more extreme than graphs obtained by more constructive means.

Random graphs have proved an important tool in the study of the ‘typical’
runtime of algorithms. Consider a computational problem associated with
graphs, such as the travelling salesman problem. In assessing the speed
of an algorithm for this problem, we may find that, in the worst situation,
the algorithm is very slow. On the other hand, the typical runtime may
be much less than the worst-case runtime. The measurement of ‘typical’
runtime requires a probability measure on the space of graphs,and it is in this
regard that Gn,p has risen to prominence within this subfield of theoretical
computer science. While Gn,p is, in a sense, the obvious candidate for such

1See also [96].
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a probability measure, it suffers from the weakness that the ‘mother graph’
Kn has a large automorphism group; it is a poor candidate in situations in
which pairs of vertices may have differing relationships to one another.

The random graph Gn,p has received a very great deal of attention, largely
within the community working on probabilistic combinatorics. The theory
is based on a mix of combinatorial and probabilistic techniques, and has
become very refined.

We may think of Gn,p as a percolation model on the complete graph Kn .
The parallel with percolation is weak in the sense that the theory of Gn,p is
largely combinatorial rather than geometrical. There is however a sense in
which random graph theory has enriched percolation. The major difficulty
in the study of physical systems arises out of the geometry of Rd ; points are
related to one another in ways that depend greatly on their relative positions
in Rd . In a so-called ‘mean-field theory’, the geometrical component is
removed through the assumption that points interact with all other points
equally. Mean-field theory leads to an approximate picture of the model
in question, and this approximation improves in the limit as d →∞. The
Erdős–Rényi random graph may be seen as a mean-field approximation to
percolation. Mean-field models based on Gn,p have proved of value for
Ising and Potts models also, see [45, 242].

This chapter contains brief introductions to two areas of random-graph
theory, each of which uses probability theory in a special way. The first
is an analysis of the emergence of the so-called giant component in Gn,p
with p = λ/n, as the parameter λ passes through the value λc = 1. Of
the several possible ways of doing this, we emphasize here the relevance
of arguments from branching processes. The second area considered here
is a study of the chromatic number of Gn,p , as n → ∞ with constant p.
This classical problem was solved by Béla Bollobás [42] using Hoeffding’s
inequality for the tail of a martingale, Theorem 4.21.

The two principal references for the theory of Gn,p are the earlier book
[44] by Bollobás, and the more recent work [144] of Janson, Łuzcak and
Ruciński. We say nothing here about recent developments in random-graph
theory involving models for the so-called small world. See [79] for example.

11.2 Giant component

Consider the random graph Gn,λ/n , where λ ∈ (0,∞) is a constant. We
build the component at a given vertex vas follows. The vertex v is adjacent to
a certain number N of vertices, where N has the bin(n−1, λ/n) distribution.
Each of these vertices is joined to a random number of vertices, distributed
approximately as N , and such that, with probability 1 − o(1), these new
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vertex-sets are disjoint. Since the bin(n − 1, λ/n) distribution is ‘nearly’
Poisson Po(λ), the component at v grows very much like a branching process
with family-size distribution Po(λ). The branching-process approximation
becomes less good as the component grows, and in particular when its size
becomes of order n. The mean family-size equals λ, and thus the process
with λ < 1 is very different from that with λ > 1.

Suppose that λ < 1. In this case, the branching process is (almost surely)
extinct, and possesses a finite number of vertices. With high probability, the
size of the growing cluster at v is sufficiently small to be well approximated
by a Po(λ) branching-process. Having built the component at v, we pick
another vertex w and act similarly. By iteration, we obtain that Gn,p is
the union of clusters each with exponentially decaying tail. The largest
component has order log n.

When λ > 1, the branching process grows beyond limits with strictly
positive probability. This corresponds to the existence in Gn,p of a com-
ponent of size having order n. We make this more formal as follows. Let
Xn be the number of vertices in a largest component of Gn,p. We write
Zn = op(yn) if Zn/yn → 0 in probability as n →∞. An event An is said
to occur asymptotically almost surely (abbreviated as a.a.s.) if P(An)→ 1
as n→∞.

11.1 Theorem [82]. We have that

1

n
Xn =

{
op(1) if λ ≤ 1,

α(λ)(1+ op(1)) if λ > 1,

where α(λ) is the survival probability of a branching process with a single
progenitor and family-size distribution Po(λ).

It is standard (see [121, Sect. 5.4], for example) that the extinction prob-
ability η(λ) = 1 − α(λ) of such a branching process is the smallest non-
negative root of the equation s = G(s), where G(s) = eλ(s−1). It is left as
an exercise2 to check that

η(λ) = 1

λ

∞∑

k=1

kk−1

k!
(λe−λ)k .

2Here is one way that resonates with random graphs. Let pk be the probability that
vertex 1 lies in a component that is a tree of size k. By enumerating the possibilities,

pk =
(

n − 1

k − 1

)
kk−2

(
λ

n

)k−1 (
1− λ

n

)k(n−k)+(k2)−k+1
.

Simplify and sum over k.
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Proof. By a coupling argument, the distribution of Xn is non-decreasing in
λ. Since α(1) = 0, it suffices to consider the case λ > 1, and we assume
this henceforth. We follow [144, Sect. 5.2], and use a branching-process
argument. (See also [21].) Choose a vertex v. At the first step, we find
all neighbours of v, say v1, v2, . . . , vr , and we mark v as dead. At the
second step, we generate all neighbours of v1 in V \ {v, v1, v2, . . . , vr }, and
we mark v1 as dead. This process is iterated until the entire component of
Gn,p containing v has been generated. Any vertex thus discovered in the
component of v, but not yet dead, is said to be live. Step i is said to be
complete when there are exactly i dead vertices. The process terminates
when there are no live vertices remaining.

Conditional on the history of the process up to and including the (i−1)th
step, the number Ni of vertices added at step i is distributed as bin(n−m, p),
where m is the number of vertices already generated.

Let

k− =
16λ

(λ− 1)2
log n, k+ = n2/3.

In this section, all logarithms are natural. Consider the above process started
at v, and let Av be the event that: either the process terminates after fewer
than k− steps, or, for every k satisfying k− ≤ k ≤ k+, there are at least
1
2 (λ − 1)k live vertices after step k. If Av does not occur, there exists
k ∈ [k−, k+] such that: step k takes place and, after its completion, fewer
than

m = k + 1
2 (λ− 1)k = 1

2 (λ+ 1)k

vertices have been discovered in all. For simplicity of notation, we assume
that 1

2 (λ+ 1)k is an integer.

On the event Av , and with such a choice for k,

(N1, N2, . . . , Nk) ≥st (Y1, Y2, . . . , Yk),

where the Yj are independent random variables with the binomial distribu-
tion3 bin(n − 1

2 (λ+ 1)k, p). Therefore,

1− P(Av) ≤
k+∑

k=k−

πk,

where

(11.2) πk = P

( k∑

i=1

Yi ≤ 1
2 (λ+ 1)k

)
.

3Here and later, we occasionally use fractions where integers are required.
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Now, Y1+Y2+· · ·+Yk has the bin(k(n− 1
2 (λ+1)k), p)distribution. By the

Chernoff bound4 for the tail of the binomial distribution, for k− ≤ k ≤ k+
and large n,

πk ≤ exp

(
− (λ− 1)2k2

9λk

)
≤ exp

(
− (λ− 1)2

9λ
k−

)

= O(n−16/9).

Therefore, 1 − P(Av) ≤ k+O(n−16/9) = o(n−1), and this proves that

P

(⋂

v∈V

Av

)
≥ 1−

∑

v∈V

[1− P(Av)]→ 1 as n→∞.

In particular, a.a.s., no component of Gn,λ/n has size between k− and k+.
We show next that, a.a.s., there do not exist more than two components

with size exceeding k+. Assume that
⋂
v Av occurs, and let v′, v′′ be

distinct vertices lying in components with size exceeding k+. We run the
above process beginning at v′ for the first k+ steps, and we finish with a
set L ′ containing at least 1

2 (λ − 1)k+ live vertices. We do the same for
the process from v′′. Either the growing component at v′′ intersects the
current component v′ by step k+, or not. If the latter, then we finish with a
set L ′′, containing at least 1

2 (λ − 1)k+ live vertices, and disjoint from L ′.
The chance (conditional on arriving at this stage) that there exists no edge
between L ′ and L ′′ is bounded above by

(1− p)[
1
2 (λ−1)k+]2 ≤ exp

(
− 1

4λ(λ− 1)2n1/3) = o(n−2).

Therefore, the probability that there exist two distinct vertices belonging to
distinct components of size exceeding k+ is no greater than

1− P

(⋂

v∈V

Av

)
+ n2o(n−2) = o(1).

In summary, a.a.s., every component is either ‘small’ (smaller than k−)
or ‘large’ (larger than k+), and there can be no more than one large com-
ponent. In order to estimate the size of any such large component, we use
Chebyshev’s inequality to estimate the aggregate sizes of small components.
Let v ∈ V . The chance σ = σ(n, p) that v is in a small component satisfies

(11.3) η− − o(1) ≤ σ ≤ η+,
where η+ (respectively, η−) is the extinction probability of a branching pro-
cess with family-size distribution bin(n − k−, p) (respectively, bin(n, p)),
and the o(1) term bounds the probability that the latter branching process
terminates after k− or more steps. It is an easy exercise5 to show that

4See Exercise 11.3.
5See Exercise 11.2.
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η−, η+→ η as n→∞, where η(λ) = 1− α(λ) is the extinction probabil-
ity of a Po(λ) branching process.

The number S of vertices in small components satisfies

E(S) = σn = (1+ o(1))ηn.

Furthermore, by an argument similar to that above,

E(S(S − 1)) ≤ nσ
[
k− + nσ(n − k−, p)

]
= (1+ o(1))(ES)2,

whence, by Chebyshev’s inequality, Gn,p possesses (η + op(1))n vertices
in small components. This leaves just n − (η + op(1))n = (α + op(1))n
vertices remaining for the large component, and the theorem is proved. �

A further analysis yields the size Xn of the largest subcritical component,
and the size Yn of the second largest supercritical component.

11.4 Theorem.
(a) When λ < 1,

Xn = (1+ op(1))
log n

λ− 1− log λ
.

(b) When λ > 1,

Yn = (1+ op(1))
log n

λ′ − 1− log λ′
,

where λ′ = λ(1− α(λ)).
If λ > 1, and we remove the largest component, we are left with a random

graph on n − Xn ∼ n(1− α(λ)) vertices. The mean vertex-degree of this
subgraph is approximately

λ

n
· n(1− α(λ)) = λ(1− α(λ)) = λ′.

It may be checked that this is strictly smaller than 1, implying that the
remaining subgraph behaves as a subcritical random graph on n − Xn

vertices. Theorem 11.4(b) now follows from part (a).
The picture is more interesting when λ ≈ 1, for which there is a detailed

combinatorial study of [143]. Rather than describing this here, we deviate
to the work of David Aldous [16], who has demonstrated a link, via the
multiplicative coalescent, to Brownian motion. We set

p = 1

n
+ t

n4/3
,

where t ∈ R, and we write C t
n(1) ≥ C t

n(2) ≥ · · · for the component sizes
of Gn,p in decreasing order. We shall explore the weak limit (as n →∞)
of the sequence n−2/3(C t

n(1),C t
n(2), . . . ).
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Let W = (W (s) : s ≥ 0) be a standard Brownian motion, and

W t(s) = W (s)+ ts − 1
2 s2, s ≥ 0,

a Brownian motion with drift t − s at time s. Write

B t(s) = W t (s)− inf
0≤s′≤s

W t (s′)

for a reflecting inhomogenous Brownian motion with drift.

11.5 Theorem [16]. As n→∞,

n−2/3(C t
n(1),C t

n(2), . . . )⇒ (C t(1),C t(2), . . . ),

where C t ( j ) is the length of the j th largest excursion of B t .

We think of the sequences of Theorem 11.5 as being chosen at random
from the space of decreasing non-negative sequences x = (x1, x2, . . . ),
with metric

d(x, y) =
√∑

i

(xi − yi)2.

As t increases, two components of sizes xi , x j ‘coalesce’ at a rate pro-
portional to the product xi x j . Theorem 11.5 identifies the scaling limit of
this process as that of the evolving excursion-lengths of W t reflected at
zero. This observation has contributed to the construction of the so-called
‘multiplicative coalescent’.

In summary, the largest component of the subcritical random graph (when
λ < 1) has order log n, and of the supercritical graph (when λ > 1) order
n. When λ = 1, the largest component has order n2/3, with a multiplicative
constant that is a random variable. The discontinuity at λ = 1 is sometimes
referred to as the ‘Erdős–Rényi double jump’.

11.3 Independence and colouring

Our second random-graph study is concerned with the chromatic number of
Gn,p for constant p. The theory of graph-colourings is a significant part of
graph theory. The chromatic number χ(G) of a graph G is the least number
of colours with the property that: there exists an allocation of colours to
vertices such that no two neighbours have the same colour. Let p ∈ (0, 1),
and write χn,p for the chromatic number of Gn,p .

A subset W of V is called independent if no pair of vertices in W are
adjacent, that is, if X i, j = 0 for all i, j ∈ W . Any colouring of Gn,p

partitions V into independent sets each with a given colour, and therefore
the chromatic number is related to the size In,p of the largest independent
set of Gn,p.
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11.6 Theorem [116]. We have that

In,p = (1+ op(1))2 logπ n,

where the base π of the logarithm is π = 1/(1− p).

The proof follows a standard route: the upper bound follows by an esti-
mate of an expectation, and the lower by an estimate of a second moment.
When performed with greater care, such calculations yield much more accu-
rate estimates of In,p than those presented here, see, for example, [44], [144,
Sect. 7.1], and [186, Sect. 2]. Specifically, there exists an integer-valued
function r = r(n, p) such that

(11.7) P(r − 1 ≤ In,p ≤ r)→ 1 as n→∞.
Proof. Let Nk be the number of independent subsets of V with cardinality
k. Then

(11.8) P(In,p ≥ k) = P(Nk ≥ 1) ≤ E(Nk).

Now,

(11.9) E(Nk) =
(

n

k

)
(1− p)(

k
2),

With ǫ > 0, set k = 2(1+ ǫ) logπ n, and use the fact that
(

n

k

)
≤ nk

k!
≤ (ne/k)k,

to obtain

logπ E(Nk) ≤ −(1+ o(1))kǫ logπ n→−∞ as n→∞.
By (11.8), P(In,p ≥ k) → 0 as n → ∞. This is an example of the use of
the so-called ‘first-moment method’.

A lower bound for In,p is obtained by the ‘second-moment method’ as
follows. By Chebyshev’s inequality,

P(Nk = 0) ≤ P
(
|Nk − ENk | ≥ ENk

)
≤ var(Nk)

E(Nk)2
,

whence, since Nk takes values in the non-negative integers,

(11.10) P(Nk ≥ 1) ≥ 2 − E(N2
k )

E(Nk)2
.

Let ǫ > 0 and k = 2(1− ǫ) logπ n. By (11.10), it suffices to show that

(11.11)
E(N2

k )

E(Nk)2
→ 1 as n→∞.
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By the Cauchy–Schwarz inequality, the left side is at least 1. By an elemen-
tary counting argument,

E(N2
k ) =

(
n

k

)
(1− p)(

k
2)

k∑

i=0

(
k

i

)(
n − k

k − i

)
(1− p)(

k
2)−(

i
2).

After a minor analysis using (11.9) and (11.11), we may conclude that
P(In,p ≥ k)→ 1 as n→∞. The theorem is proved. �

We turn now to the chromatic number χn,p. Since the size of any set of
vertices of given colour is no larger than In,p , we have immediately that

(11.12) χn,p ≥
n

In,p
= (1+ op(1))

n

2 logπ n
.

The sharpness of this inequality was proved by Béla Bollobás [42], in a
striking application of Hoeffding’s inequality for the tail of a martingale,
Theorem 4.21.

11.13 Theorem [42]. We have that

χn,p = (1+ op(1))
n

2 logπ n
,

where π = 1/(1− p).

The term op(1)may be estimated quite precisely by a more detailed anal-
ysis than that presented here, see [42, 187] and [144, Sect. 7.3]. Specifically,
we have, a.a.s., that

χn,p =
n

2 logπ n − 2 logπ logπ n + Op(1)
,

where Zn = Op(yn) means P(|Zn/yn| > M) ≤ g(M)→ 0 as M →∞.

Proof. The lower bound follows as in (11.12), and so we concentrate on
finding an upper bound for χn,p . Let 0 < ǫ < 1

4 , and write

k = ⌊2(1− ǫ) logπ n⌋.
We claim that, with probability 1− o(1), every subset of V with cardinality
at least m = ⌊n/(logπ n)2⌋ possesses an independent subset of size at least
k. The required bound on χn,p follows from this claim, as follows. We
find an independent set of size k, and we colour its vertices with colour 1.
From the remaining set of n− k vertices, we find an independent set of size
k, and we colour it with colour 2. This process may be iterated until there
remains a set S of size smaller than ⌊n/(logπ n)2⌋. We colour the vertices
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of S ‘greedily’, using |S| further colours. The total number of colours used
in the above algorithm is no greater than

n

k
+ n

(logπ n)2
,

which, for large n, is smaller than 1
2 (1+ 2ǫ)n/ logπ n. The required claim

is a consequence of the following lemma.

11.14 Lemma. With the above notation, the probability that Gm,p contains

no independent set of size k is less than exp
(
−n

7
2−2ǫ+o(1)/m2

)
.

There are
(n

m

)
(< 2n) subsets of {1, 2, . . . , n} with cardinality m. The

probability that some such subset fails to contain an independent set of size
k is, by the lemma, no larger than

2n exp(−n
7
2−2ǫ+o(1)/m2) = o(1).

We turn to the proof of Lemma 11.14, for which we shall use the Hoeffding
inequality, Theorem 4.21.

For M ≥ k, let

(11.15) F(M, k) =
(

M

k

)
(1− p)(

k
2).

We shall require M to be such that F(M, k) grows in the manner of a power
of n, and to that end we set

(11.16) M = ⌊(Ck/e)n1−ǫ⌋,
where

logπ C = 3

8(1− ǫ)
has been chosen in such a way that

(11.17) F(M, k) = n
7
4−ǫ+o(1).

Let I(r) be the set of independent subsets of {1, 2, . . . , r}with cardinality
k. We write Nk = |I(m)|, and N ′k for the number of elements I of I(m)
with the property that |I ∩ I ′| ≤ 1 for all I ′ ∈ I(m), I ′ 6= I . Note that

(11.18) Nk ≥ N ′k .

We shall estimate P(Nk = 0) by applying Hoeffding’s inequality to a
martingale constructed in a standard manner from the random variable N ′k .
First, we order as (e1, e2, . . . , e(m

2)
) the edges of the complete graph on the

vertex-set {1, 2, . . . ,m}. Let Fs be the σ -field generated by the states of
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the edges e1, e2, . . . , es , and let Ys = E(N ′k | Fs). It is elementary that
the sequence (Ys,Fs), 0 ≤ s ≤

(m
2

)
, is a martingale (see [121, Example

7.9.24]). The quantity N ′k has been defined in such a way that the addition
or removal of an edge causes its value to change by at most 1. Therefore,
the martingale differences satisfy |Ys+1 − Ys | ≤ 1. Since Y0 = E(N ′k) and
Y(m

2)
= N ′k ,

P(Nk = 0) ≤ P(N ′k = 0)(11.19)

= P
(
N ′k − E(N ′k) ≤ −E(N ′k)

)

≤ exp

(
− 1

2 E(N ′k)
2
/(

m

2

))

≤ exp
(
−E(N ′k)

2/m2),

by (11.18) and Theorem 4.21. We now require a lower bound for E(N ′k).
Let M be as in (11.16). Let Mk = |I(M)|, and let M ′k be the number of

elements I ∈ I(M) such that |I ∩ I ′| ≤ 1 for all I ′ ∈ I(M), I ′ 6= I . Since
m ≥ M ,

(11.20) N ′k ≥ M ′k,

and we shall bound E(M ′k) from below. Let K = {1, 2, . . . , k}, and let A
be the event that K is an independent set. Let Z be the number of elements
of I(M), other than K , that intersect K in two or more vertices. Then

E(M ′k) =
(

M

k

)
P(A ∩ {Z = 0})(11.21)

=
(

M

k

)
P(A)P(Z = 0 | A)

= F(M, k)P(Z = 0 | A).

We bound P(Z = 0 | A) by

P(Z = 0 | A) = 1− P(Z ≥ 1 | A)(11.22)

≥ 1− E(Z | A)

= 1−
k−1∑

t=2

(
k

t

)(
M − k

k − t

)
(1− p)(

k
2)−(

t
2)

= 1−
k−1∑

t=2

Ft , say.
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For t ≥ 2,

Ft/F2 =
(M − 2k + 2)!

(M − 2k + t)!
·
(
(k − 2)!

(k − t)!

)2

· 2

t!
(1− p)−

1
2 (t+1)(t−2)

(11.23)

≤
[

k2(1− p)−
1
2 (t+1)

M − 2k

]t−2

.

For 2 ≤ t ≤ 1
2 k,

logπ
[
(1− p)−

1
2 (t+1)] ≤ 1

4 (k + 2) ≤ 1
2 + 1

2 (1− ǫ) logπ n,

so (1− p)−
1
2 (t+1) = O(n

1
2 (1−ǫ)). By (11.23),
∑

2≤t≤ 1
2 k

Ft = (1+ o(1))F2.

Similarly,

Ft/Fk−1 =
(

k

t

)(
M − k

k − t

)
(1− p)

1
2 (k+t−2)(k−t−1)

k(M − k)

≤
[
kn(1 − p)

1
2 (k+t−2)]k−t−1

.

For 1
2 k ≤ t ≤ k − 1, we have as above that

(1− p)
1
2 (k+t) ≤ (1− p)

3
4 k ≤ n−

9
8 ,

whence ∑

1
2 k<t≤k−1

Ft = (1+ o(1))Fk−1.

In summary,

(11.24)
k−1∑

t=2

Ft = (1+ o(1))(F2 + Fk−1).

By (11.15) and (11.17),

F2 ≤
k4

2(1− p)(M − k)2
F(M, k)

= n−
1
4+ǫ+o(1) = o(1),

and similarly
Fk−1 = k(M − k)(1 − p)k−1 = o(1).
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By (11.24) and (11.21)–(11.22),

E(M ′k) = (1+ o(1))F(M, k) = n
7
4−ǫ+o(1).

Returning to the martingale bound (11.19), it follows by (11.20) that

P(Nk = 0) ≤ exp(−n
7
2−2ǫ+o(1)/m2)

as required. �

11.4 Exercises

11.1 Let η(λ) be the extinction probability of a branching process whose family-
sizes have the Poisson distribution Po(λ). Show that

η(λ) = 1

λ

∞∑

k=1

kk−1

k!
(λe−λ)k .

11.2 Consider a branching process whose family-sizes have the binomial dis-
tribution bin(n, λ/n). Show that the extinction probability converges to η(λ) as
n → ∞, where η(λ) is the extinction probability of a branching process with
family-sizes distributed as Po(λ).

11.3 Chernoff bounds. Let X have the binomial distribution bin(n, p), and let
λ = np. Obtain exponentially decaying bounds for the probabilities of
upper and lower deviations of X from its mean λ, such as those to be found in
[144, Sect. 2.1]:

P(X ≥ λ+ t) ≤ e−λφ(t/λ) ≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0,

P(X ≤ λ− t) ≤ e−λφ(−t/λ) ≤ exp

(
− t2

2λ

)
, t ≥ 0,

where

φ(x) =
{
(1+ x) log(1+ x)− x if x ≥ −1,

∞ if x < −1.

11.4 [44] Show that the size of the largest independent set of Gn,p is, a.a.s.,
either r − 1 or r , for some deterministic function r = r(n, p).

11.5 Consider a branching process with a single progenitor and family-sizes
distributed as the random variable X . Let

T = min{n ≥ 1 : X1 + X2 + · · · + Xn = n − 1},

where the X i are independent copies of X . Show that T has the same distribution
as the total number of individuals in the branching process. (The minimum of the
empty set is defined to be∞.)
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11.6 (continuation) In the random graph Gn,p with p = λ/n, where λ ∈ (0, 1),
show that the size Mn of the largest cluster satisfies P(Mn ≥ a log n) → 0 as
n→∞ for any a > λ− 1− log λ.

11.7 (continuation) Prove the complementary fact that P(Mn ≤ a log n) → 0
as n→∞ for any a < λ− 1− log λ.
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Lorentz gas

A small particle is fired through an environment of large particles,
and is subjected to reflections on impact. Little is known about the
trajectory of the small particle when the larger ones are distributed at
random. The notorious problem on the square lattice is summarized,
and open questions are posed for the case of a continuum of needle-
like mirrors in the plane.

12.1 Lorentz model

In a famous sequence [176] of papers of 1906, Hendrik Lorentz introduced
a version of the following problem. Large (heavy) particles are distributed
about Rd . A small (light) particle is fired through Rd , with a trajectory
comprising straight-line segments between the points of interaction with
the heavy particles. When the small particle hits a heavy particle, the small
particle is reflected at its surface, and the large particle remains motionless.
See Figure 12.1 for an illustration.

We may think of the heavy particles as objects bounded by reflecting sur-
faces, and the light particle as a photon. The problem is to say something
non-trivial about how the trajectory of the photon depends on the ‘envi-
ronment’ of heavy particles. Conditional on the environment, the photon
pursues a deterministic path about which the natural questions include:

1. Is the path unbounded?
2. How distant is the photon from its starting point after time t?

For simplicity, we assume henceforth that the large particles are identical to
one another, and that the small particle has negligible volume.

Probability may be injected naturally into this model through the assump-
tion that the heavy particles are distributed at random around Rd according
to some probability measure µ. The questions above may be rephrased, and
made more precise, in the language of probability theory. Let X t denote the
position of the photon at time t , assuming constant velocity. Under what
conditions on µ:

c© G. R. Grimmett 1 April 2010



220 Lorentz gas

Figure 12.1. The trajectory of the photon comprises straight-line seg-
ments between the points of reflection.

I. Is there strictly positive probability that the function X t is unbounded?
II. Does X t converge to a Brownian motion, after suitable re-scaling?

For a wide choice of measures µ, these questions are currently unanswered.
The Lorentz gas is very challenging to mathematicians,and little is known

rigorously in reply to the questions above. The reason is that, as the photon
moves around space, it gathers information about the random environment,
and it carries this information with it for ever more.

The Lorentz gas was developed by Paul Ehrenfest [81]. For the relevant
references in the mathematics and physics journals, the reader is referred to
[106, 107]. Many references may be found in [229].

12.2 The square Lorentz gas

Probably the most provocative version of the Lorentz gas for probabilists
arises when the light ray is confined to the square lattice L2. At each vertex
v of L2, we place a ‘reflector’ with probability p, and nothing otherwise
(the occupancies of different vertices are independent). Reflectors come in
two types: ‘NW’ and ‘NE’. A NW reflector deflects incoming rays heading
northwards (respectively, southwards) to the west (respectively, east) and
vice versa. NE reflectors behave similarly with east and west interchanged.
See Figure 12.2. We think of a reflector as being a two-sided mirror placed
at 45◦ to the axes, so that an incoming light ray is reflected along an axis
perpendicular to its direction of arrival. Now, for each vertex v, with proba-
bility p we place a reflector at v, and otherwise we place nothing at v. This
is done independently for different v. If a reflector is placed at v, then we
specify that it is equally likely to be NW as NE.

We shine a torch northwards from the origin. The light is reflected by

c© G. R. Grimmett 1 April 2010



12.2 The square Lorentz gas 221

NW NE

Figure 12.2. An illustration of the effects of NW and NE reflectors on
the light ray.

the mirrors, and it is easy to see that: either the light ray is unbounded, or it
traverses a closed loop of L2 (generally with self-crossings). Let

η(p) = Pp(the light ray returns to the origin).

Very little is known about the function η. It seems reasonable to conjecture
that η is non-decreasing in p, but this has not been proved. If η(p) = 1, the
light follows (almost surely) a closed loop, and we ask: for which p does
η(p) = 1? Certainly, η(0) = 0, and it is well known that η(1) = 1.1

12.1 Theorem. We have that η(1) = 1.

We invite the reader to consider whether or not η(p) = 1 for some
p ∈ (0, 1). A variety of related conjectures, not entirely self-consistent,
may be found in the physics literature. There are almost no mathematical
results about this process beyond Theorem 12.1. We mention the paper
[204], where it is proved that the number N(p) of unbounded light rays on
Z2 is almost surely constant, and is equal to one of 0, 1,∞. Furthermore,
if there exist unbounded light trajectories, then they self-intersect infinitely
often. If N(p) = ∞, the position Xn of the photon at time n, when following
an unbounded trajectory, is superdiffusive in the sense that E(|Xn |2)/n is
unbounded as n → ∞. The principal method of [204] is to observe the
environment of mirrors as viewed from the moving photon.

In a variant of the standard random walk, termed the ‘burn-your-bridges’
random walk by Omer Angel, an edge is destroyed immediately after it is
traversed for the first time. When p = 1

3 , the photon follows a burn-your-
bridges random walk on L2.

1See the historical remark in [105].
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0
0

Figure 12.3. (a) The heavy lines form the lattice L, and the central
point is the origin of L2. (b) An open cycle in L constitutes a barrier of
mirrors through which no light may penetrate.

Proof. We construct an ancillary lattice L as follows. Let

A =
{
(m + 1

2 , n + 1
2 ) : m + n is even

}
.

Let∼ be the adjacency relation on A given by(m+ 1
2 , n+ 1

2 ) ∼ (r+ 1
2 , s+ 1

2 )

if and only if |m − r | = |n − s| = 1. We obtain thus a graph L on A that is
isomorphic to L2. See Figure 12.3.

We declare the edge of L joining (m − 1
2 , n − 1

2 ) to (m + 1
2 , n + 1

2 ) to
be open if there is a NE mirror at (m, n); similarly, we declare the edge
joining (m− 1

2 , n+ 1
2 ) to (m+ 1

2 , n− 1
2 ) to be open if there is a NW mirror

at (m, n). Edges that are not open are designated closed. This defines a
bond percolation process in which north-easterly and north-westerly edges
are open with probability 1

2 . Since pc(L
2) = 1

2 , the process is critical, and
the percolation probability θ satisfies θ( 1

2 ) = 0. See Sections 5.5–5.6.
Let N be the number of open cycles in L with the origin in their interiors.

Since there is (a.s.) no infinite cluster in the percolation process on the dual
lattice, we have that P(N ≥ 1) = 1. Such an open cycle corresponds to a
barrier of mirrors surrounding the origin (see Figure 12.3) , from which no
light can escape. Therefore η(1) = 1. �

The problem above may be stated for other lattices such as Ld , see [105]
for example. It is much simplified if we allow the photon to flip its own
coin as it proceeds through the disordered medium of mirrors. Two such
models have been explored. In the first, there is a positive probability that
the photon will misbehave when it hits a mirror, see [234]. In the second,
there is allowed a small density of vertices at which the photon acts in the
manner of a random walk, see [38, 117].
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12.3 In the plane

Here is a continuum version of the Lorentz gas. Let 5 be a Poisson process
in R2 with intensity 1. For each x ∈ 5, we place a needle (that is, a
closed rectilinear line-segment) of given length l with its centre at x . The
orientations of the needles are taken to be independent random variables
with a common law µ on [0, π). We call µ degenerate if it has support on
a singleton, that is, if all needles are (almost surely) parallel.

Each needle is interpreted as a (two-sided) reflector of light. Needles are
permitted to overlap. Light is projected from the origin northwards, and
deflected by the needles. Since the light strikes the endpoint of some needle
with probability 0, we shall overlook this possibility.

In a related problem, we may study the union M of the needles, viewed as
subsets of R2, and ask whether either (or both) of the sets M , R2\M contains
an unbounded component. This problem is known as ‘needle percolation’,
and it has received some attention (see, for example, [188, Sect. 8.5], and
also [134]). Of concern to us in the present setting is the following. Let
λ(l) = λµ(l) be the probability that there exists an unbounded path of R2\M
with the origin 0 as endpoint. It is clear that λ(l) is non-increasing in l. The
following is a fairly straightforward exercise of percolation type.

12.2 Theorem [134]. There exists lc = lc(µ) ∈ (0,∞] such that

λ(l)

{
> 0 if l < lc,

= 0 if l > lc,

and furthermore lc <∞ if and only if µ is non-degenerate.

The phase transition has been defined here in terms of the existence of
an unbounded ‘vacant path’ from the origin. When no such path exists,
the origin is almost surely surrounded by a cycle of pairwise-intersecting
needles. That is,

(12.3) Pµ,l(E)

{
< 1 if l < lc,

= 1 if l > lc,

where E is the event that there exists a component C of needles such that
the origin of R2 lies in a bounded component of R2 \ C , and Pµ,l denotes
the probability measure governing the configuration of mirrors.

The needle percolation problem is a type of continuum percolation model,
cf. the space–time percolation process of Section 6.6. Continuum percola-
tion, and in particular the needle (or ‘stick’) model, has been summarized
in [188, Sect. 8.5].

We return to the above Lorentz problem. Suppose that the photon is
projected from the origin at angle θ to the x-axis, for given θ ∈ [0, 2π). Let
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2 be the set of all θ such that the trajectory of the photon is unbounded. It
is clear from Theorem 12.2 that Pµ,l(2 = ∅) = 1 if l > lc. The strength
of the following theorem of Matthew Harris lies in the converse statement.

12.4 Theorem [134]. Let µ be non-degenerate, with support a subset of
the rational angles πQ.
(a) If l > lc, then Pµ,l(2 = ∅) = 1.
(b) If l < lc, then

Pµ,l(2 has Lebesgue measure 2π) = 1− Pµ,l(E) > 0.

That is to say, almost surely on the complement of E , the set 2 differs
from the entire interval [0, 2π) by a null set. The proof uses a type of
dimension-reduction method, and utilizes a theorem concerning so-called
‘interval-exchange transformations’ taken from ergodic theory, see [149]. It
is a key assumption for this argument thatµ be supported within the rational
angles.

Let η(l) = ηµ(l) be the probability that the light ray is bounded, hav-
ing started by heading northwards from the origin. As above, ηµ(l) = 1
when l > lc(µ). In contrast, it is not known for general µ whether or not
ηµ(l) < 1 for sufficiently small positive l. It seems reasonable to conjec-
ture the following. For any probability measure µ on [0, π), there exists
lr ∈ (0, lc] such that ηµ(l) < 1 whenever l < lr. This conjecture is open
even for the arguably most natural case when µ is uniform on [0, π).

12.5 Conjecture. Letµ be the uniform probability measure on [0, π), and
let lc denote the critical length for the associated needle percolation problem
(as in Theorem 12.2).
(a) There exists lr ∈ (0, lc] such that

η(l)

{
< 1 if l < lr,

= 1 if l > lr,

(b) We have that lr = lc.

As a first step, we seek a proof that η(l) < 1 for sufficiently small positive
values of l. It is typical of such mirror problems that we lack even a proof
that η(l) is monotone in l.

12.4 Exercises

12.1 There are two ways of putting in the barriers in the percolation proof of
Theorem 12.1, depending on whether one uses the odd or the even vertices. Use
this fact to establish bounds for the tail of the size of the trajectory when the density
of mirrors is 1.
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12.2 In a variant of the square Lorentz lattice gas, NE mirrors occur with prob-
ability η ∈ (0, 1) and NW mirrors otherwise. Show that the photon’s trajectory is
almost surely bounded.

12.3 Needles are dropped in the plane in the manner of a Poisson process with
intensity 1. They have length l, and their angles to the horizontal are independent
random variables with law µ. Show that there exists lc = lc(µ) ∈ (0,∞] such
that: the probability that the origin lies in an unbounded path of R2 intersecting
no needle is strictly positive when l < lc, and equals zero when l > lc.

12.4 (continuation) Show that lc <∞ if and only if µ is non-degenerate.
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Reimer inequality 55
relaxation time 203
renormalized lattice 123
root 24
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RSW theorem 101
Russo’s formula 75
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second-order phase transition 159
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semigroup 191
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space–time percolation 138, 176
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spectral gap 203
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square lattice 18, 14
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stochastic Ising model 200
stochastic Löwner evolution, see

Schramm–Löwner evolution
stochastic ordering 50
Strassen theorem 51
strong survival 136
subadditive inequality 43
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superposition principle 5
support, of measure 29
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thermodynamic limit 156
Thomson principle 9
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total variation distance 203
trace

t. of matrix 176
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tree 17
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uniform
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