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Preface

Within the menagerie of objectsstudied in contemporary probability theory,
a number of related animals have attracted great interest amongst proba-
bilists and physicists in recent years. The inspiration for many of these
objects comes from physics, but the mathematical subject has taken on a
life of its own, and many beautiful constructions have emerged. The overall
target of these notesisto identify some of these topics, and to devel op their
basic theory at alevel suitable for mathematics graduates.

If the two principal characters in these notes are random walk and per-
colation, they are only part of the rich theory of uniform spanning trees,
self-avoiding walks, random networks, models for ferromagnetism and the
spread of disease, and motion in random environments. Thisisan areathat
has attracted many fine scientists, by virtue, perhaps, of its special mixture
of modelling and problem-solving. There remain many open problems. It
is the experience of the author that these may be explained successfully to
a graduate audience open to inspiration and provocation.

The material described here may be used for personal study, and as the
bases of lecture courses of between 24 and 48 hours duration. Little is
assumed about the mathematical background of the audience beyond some
basic probability theory, but students should be willing to get their hands
dirty if they areto profit. Careshould betakeninthe setting of examinations,
since problems can be unexpectedly difficult. Successful examinationsmay
be designed, and some help is offered through the inclusion of exercises
at the ends of chapters. As an alternative to a conventional examination,
students may be asked to deliver presentations on aspects and extensions of
the topics studied.

Chapter 1isdevoted to therel ationship betweenrandomwalks (ongraphs)
and electrical networks. Thisleadsto the Thomson and Rayleigh principles,
and thenceto aproof of Polya stheorem. In Chapter 2, wedescribe Wilson's
algorithm for constructing a uniform spanning tree (UST), and we discuss
boundary conditions and weak limits for UST on a lattice. This chapter
includes a brief introduction to Schramm-—L dwner evolutions (SLE).
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X Preface

Percolation theory appearsfirst in Chapter 3, together with a short intro-
duction to self-avoiding walks. Correlation inequalities and other general
techniques are described in Chapter 4. A special feature of this part of the
book isafairly full treatment of influence and sharp-threshold theoremsfor
product measures, and more generally for monotone measures.

We return to the basic theory of percolation in Chapter 5, including afull
account of Smirnov’s proof of Cardy’sformula. Thisisfollowedin Chapter
6 by a study of the contact model on lattices and trees.

Chapter 7 begins with a proof of the equivalence of Gibbs states and
Markov fields, and continues with an introduction to the Ising and Potts
models. Chapter 8isan account of the random-cluster model. The quantum
Ising model featuresin the next chapter, particularly through itsrelationship
to a continuum random-cluster model, and the consequent analysis using
stochastic geometry.

Interacting particle systems form the basis of Chapter 10. Thisisalarge
field in its own right, and little is done here beyond introductions to the
contact, voter, exclusion models, and the stochastic Ising model. Chapter
11 is devoted to random graphs of Erdés—Reényi type. There are accounts
of the giant cluster, and of the chromatic number via an application of
Hoeffding'sinequality for the tail of amartingale.

The final Chapter 12 contains one of the most notorious open problems
in stochastic geometry, namely the Lorentz model (or Ehrenfest wind-tree
model) on the square lattice.

These notes are based in part on courses given by the author within Part
3 of the Mathematical Tripos at Cambridge University over aperiod of sev-
era years. They have been prepared in thisform as background material for
lecture courses presented to outstanding audiences of students and profes-
sors at the 2008 PIM S-UBC Summer School in Probability, and during the
programme on Statistical Mechanics at the Institut Henri Poincaré, Paris,
during the last quarter of 2008. They were written in part during a visit
to the Mathematics Department at UCLA (with partial support from NSF
grant DM S-0301795), to which the author expresses his gratitude for the
warm welcome received there, and in part during programmes at the I saac
Newton Institute and the Institut Henri Poincaré~Centre Emile Borel.

Throughout this work, pointers are included to more extensive accounts
of the topics covered. The selection of references is intended to be useful
rather than comprehensive.

The author thanks four artists for permission to include their work: Tom
Kennedy (Fig. 2.1), Oded Schramm (Figs 2.2—2.4), Raphagl Cerf (Fig. 5.3),
and Julien Dubédat (Fig. 5.18). The section on influence has benefited
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from conversations with Rob van den Berg and Tom Liggett. Stanislav
Smirnov and Wendelin Werner have consented to the inclusion of some of
their neat arguments, hitherto unpublished. Severa readers have proposed
suggestions and corrections. Thank you, everyone!

G.R.G.
Cambridge
April 2010

Note added at third printing. The author is grateful to students and col-
leagues for their suggestions for improvements. Special thanks are due
to Naser Talebizadeh Sardari, Claude Bélisle, Svante Janson, and Russell
Lyons.

May 2012
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1

Random walks on graphs

The theory of electrical networks is a fundamental tool for studying
the recurrence of reversible Markov chains. The Kirchhoff laws and
Thomson principle permit aneat proof of Polya’ stheorem for random
walk on ad-dimensional grid.

1.1 Random walks and reversible Markov chains

A basic knowledgeof probability theory isassumedinthisvolume. Readers
keento acquirethisarereferred to [122] for an elementary i ntroduction, and
to[121] for asomewhat more advanced account. We shall generally usethe
letter P to denote ageneric probability measure, with more specific notation
when helpful. The expectation of a random variable f will be written as
either P(f) or E(f).

Only alittle knowledge is assumed about graphs, and many readers will
have sufficient acquaintance already. Others are advised to consult Section
1.6. Of the many books on graph theory, we mention [43].

LetG = (V, E) beafiniteor countably infinitegraph, whichwegenerally
assume, for simplicity, to have neither loops nor multiple edges. If G is
infinite, we shall usually assume in addition that every vertex-degree is
finite. A particle moves around the vertex-set V. Having arrived at the
vertex S, at time n, its next position S, 1 is chosen uniformly at random
from the set of neighbours of S,. The trgjectory of the particleis called a
symmetric randomwalk (SRW) on G.

Two of the basic questions concerning symmetric random walk are:

1. Under what conditionsisthe walk recurrent, in that it returns (almost

surely) to its starting point?

2. How doesthe distance between S, and & behaveasn — 00?

The above SRW is symmetric in that the jumps are chosen uniformly
from the set of available neighbours. In a more general process, we take a
function w : E — (0, o0), and we jump along the edge e with probability
proportional to we.
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2 Random walks on graphs

Any reversible Markov chain' on the set V givesrise to such awalk as
follows. Let Z = (Z, : n > 0) be a Markov chain on V with transition
matrix P, and assume that Z is reversible with respect to some positive
functionz : V — (0, o0), which isto say that

(11) 7Ty Pu,v = Ty Po,us uveVv.

With each distinct pair u, v € V, we associate the weight

(12) Wuy,v = Tu Pu,v>
noting by (1.1) that wy , = wy.u. Then

w
(1.3) Puv = WLU uvev,
where

Wu = Z Wu,v, ueV.
veV

Thatis, giventhat Z, = u, thechainjumpsto anew vertex v with probability
proportional to wy . This may be set in the context of a random walk on
the graph with the vertex-set V, and with edge-set containing all e = (u, v)
such that p,, > 0. With the edge e we associate the weight we = wy v -

In this chapter, we devel op the rel ationship between random walks on G
and electrical networks on G. There are some excellent accounts of this
area, and the reader is referred to the books of Doyle and Snell [72], Lyons
and Peres[181], and Aldous and Fill [18], amongst others. The connection
between these two topics is made via the so-called ‘ harmonic functions' of
the random walk.

1.4 Definition. LetU C V, and let Z beaMarkov chain on V with tran-
sition matrix P, that is reversible with respect to the positive function .
Thefunction f : V — R isharmonic on U (with respect to the transition
matrix P) if

fwy =Y puf@, ueU,

veV
or equivalently, if f(u) =E(f(Z1) | Zo=u) foru e U.

From the pair (P, ), we can construct the graph G as above, and the
weight function w asin (1.2). We refer to the pair (G, w) as the weighted
graph associated with (P, 7). We shall speak of f asbeing harmonic (for
(G, w)) if it is harmonic with respect to P.

1An account of the basic theory of Markov chains may be found in [121].
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1.2 Electrical networks 3

The so-called hitting probabilities are the basic examples of harmonic
functionsforthechain Z. LetU € V, W=V \U,andse U. Foru e V,
let g(u) bethe probability that the chain, started at u, hits s before W. That
is,

g(u) = Py(Zy = sforsomen < Ty),

where
Tw=inf{(n>0:2Z, e W}

is the first-passage time to W, and Py(-) = P(- | Zo = u) denotes the
probability measure conditional on the chain starting at u.

1.5 Theorem. The function g isharmoniconU \ {s}.

Evidently, g(s) = 1, and g(v) = O for v € W. We speak of these values
of g as being the ‘boundary conditions’ of the harmonic function g. See
Exercise1.13for the uniquenessof harmonic functionswith given boundary
conditions.

Proof. This is an elementary exercise using the Markov property. For
ug¢ Wuf{s},

gu) = Z Pu,vPu(Zn = sfor somen < Tw | Z1 = v)
veV

= pug),

veV
asrequired. 0

1.2 Electrical networks

Throughout this section, G = (V, E) is afinite graph with neither loops
nor multiple edges, and w : E — (0, oo) isaweight function on the edges.
We shall assume further that G is connected.

We may build an electrical network with diagram G, in which the edge
e has conductance we (or, equivalently, resistance 1/we). Let s,t € V
be distinct vertices termed sources, and write S = {s, t} for the source-set.
Supposewe connect abattery acrossthepair s, t. Itisaphysical observation
that electronsflow along the wiresin the network. Theflow is described by
the so-called Kirchhoff laws, as follows.

To each edge e = (u, v), there are associated (directed) quantities ¢y
andiy, ,, called the potential difference from u to v, and the current from u
to v, respectively. These are antisymmetric,

¢u,v = —¢v,u» iu,v = —iu,u~
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4 Random walks on graphs

1.6 Kirchhoff’spotential law. Thecumulativepotential differencearound
any cyclevs, vo, ..., vn, vne1 = v1 Of G iszero, that is,

n
(1.7) > by =0.
j=1

1.8 Kirchhoff’s current law. The total current flowing out of any vertex
u € V other than the source-set is zero, that is,

(1.9) D iuy=0,  u#st

veV

The relationship between resistance/conductance, potential difference,
and current is given by Ohm’s law.

1.10 Ohm’slaw. For any edge e = (u, v),
iu,v = wedu,v-

Kirchhoff’s potential law is equivalent to the statement that there exists
afunction¢ : V — R, called a potential function, such that

Gu = ¢ ) —¢(U), (u,v) € E.

Since ¢ is determined up to an additive constant, we are free to pick the
potential of any singlevertex. Notethe conventionthat current flows uphill:
iuy hasthesamesignas ¢y, = ¢ (v) — P (U).

1.11 Theorem. Apotential functionisharmoniconthe set of verticesother
than the source-set.

Proof. LetU =V \ {s, t}. By Kirchhoff’s current law and Ohm’s law,
Y wuld@) —pW] =0, ueU,
veV

which isto say that

Wy, v
= ’ , u,
0 Zvj TR ue

Wy = Z wy,y-

veV

Thatis, ¢ isharmonicon U. O

where
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1.2 Electrical networks 5

We can use Ohm'’slaw to expressthe potential differencesin termsof the
currents, and thus the two Kirchhoff laws may be viewed as concerning the
currentsonly. Equation (1.7) becomes

n

iy v
(1.12) oA o,
=1 W(vj,vj41)
vaidfor any cyclevs, vo, ..., vp, vne1 = v1. With (1.7) written thus, each

law islinear in the currents, and the superposition principle follows.

1.13 Theorem (Superposition principle). Ifil andi? aresolutionsof the
two Kirchhoff laws with the same source-set, then soisthe sumi® +i2.

Next we introduce the concept of a‘flow’ on the graph.

1.14 Definition. Let s,t € V, s # t. An s/t-flow j isavector j =
(juw 1 U, v €V, U # v), such that:
@ Jjuv=—lvu
(b) ju.» = Owhenever u < v,
(c) foranyu #s,t, wehavethat >,y ju» = O.
Theverticessandt are called the ‘source’ and ‘sink’ of an s/t flow, and
we usualy abbreviate‘s/t flow’ to ‘flow’. For any flow j, we write

Ju:Zju,vs uel,

veV
noting by (c) abovethat J, = Ofor u # s, t. Thus,

I+ J = ZJU = Z ju,u=% Z (ju,v+jv,u) =0.
ueV u,veV u,veV

Therefore, Js = — J;, and wecall | Js| the size of theflow |, denoted | j|. If
|Js| = 1, wecal j aunit flow. We shall normally take Js > 0, in which
case s is the source, and t the sink of the flow, and we say that j isaflow
fromstot.

Note that any solutioni to the Kirchhoff laws with source-set {s, t} isan
s/t flow.

1.15 Theorem. Let il andi2 be two solutions of the Kirchhoff laws with
the same source and sink and equal size. Theni® = iZ.

Proof. By the superposition principle, j = i1 — i2 satisfies the two Kirch-
hoff laws. Furthermore, under the flow j, no current enters or leaves
the system. Therefore, J, = O for al v € V. Suppose jy,u, > O for
some edge (u1, Uz). By the Kirchhoff current law, there exists uz such that
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6 Random walks on graphs

jus,us > 0. Since |V| < oo, there exists by iteration acycle u;, U411, . . .,
Um, Umt1 = Uy such that jy, ., > Ofork =1,1 +1,..., m. By Ohm's
law, the corresponding potential function satisfies

dU) < pU41) < -+ < P(Umt1) = ¢ (W),
acontradiction. Therefore, j, , = Ofor al u, v. O

For agiven size of input current, and given source s and sink t, there can
be no morethan one solution to thetwo Kirchhoff laws, but isthereasolution
a al? The answer is of course affirmative, and the unique sol ution can be
expressed explicitly in termsof countsof spanningtrees.2 Consider first the
special casewhen we = 1foral e € E. Let N be the number of spanning
treesof G. For any edge (a, b), let TI(s, a, b, t) bethe property of spanning
treesthat: the unique s/t path in the tree passes along the edge (a, b) in the
directionfromatob. Let N (s, a, b, t) be the set of spanning trees of G
with the property T1(s, a, b, t),and N(s, a, b, t) = |N (S, &, b, t)].

1.16 Theorem. Thefunction
1
(1.17) iab = N[N(S’ a,b,t) — N(s,b,a t)]. (a,b) € E,

defines a unit flow from s to t satisfying the Kirchhoff laws.

Let T be aspanning tree of G chosen uniformly at random from the set
T of all such spanning trees. By Theorem 1.16 and the previousdiscussion,
the unique solution to the Kirchhoff laws with source s, sink t, and size 1 is
given by
iab=P(T hasTi(s,a,b,t)) — P(T hasTI(s, b, a, t)).

We shall return to uniform spanning trees in Chapter 2.
We prove Theorem 1.16 next. Exactly the same proof isvalid in the case
of general conductanceswe. Inthat case, we definetheweight of aspanning

treeT as
w(T) = [ ] we,
ecT
and we set
(118)  N*= > w(™), N*(s, a, b, t) = > w(T).
TeT T with TI(s,a,b,t)

The conclusion of Theorem 1.16 holds in this setting with
. 1
iap = W[N*(S’ a, b, t) — N*(s,b,a, )], (a,b) € E.
2This was discovered in an equivalent form by Kirchhoff in 1847, [153].
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1.2 Electrical networks 7

Proof of Theorem 1.16. We first check the Kirchhoff current law. In every
spanning tree T, there exists a unique vertex b such that the s/t path of
T contains the edge (s, b), and the path traverses this edge from s to b.
Therefore,

ZN(s,s,b,t)zN, N(s, b, s, t) =0forbe V.
beV

By (1.17),

Zis,b =1,

beV

and, by asimilar argument, "\ ibt = 1.

Let T be a spanning tree of G. The contribution towards the quantity
ia,b, madeby T, dependson the s/t path = of T, and equals

N1 if 7 passesalong (a, b) fromatob,
(1.19) —N~1 if 7 passesalong (a, b) frombto a,
0 if 7 doesnot contain the edge (a, b).

LetveV,v#s t,andwritel, =) .y ivw. Ifv e m,the contribution
of T towards |, isN~t — N~1 = 0, since arrivesat v along some edge of
theform (a, v), and departs v along some edge of theform (v, b). If v ¢ 7,
then T contributesOto I,,. Summing over T, we obtain that |, = O for al
v # S, t, asrequired for the Kirchhoff current law.

We next check the Kirchhoff potential law. Let vy, vo, ..., vn, vpt1 = v1
beacycle C of G. We shall show that

n
(1-20) Z ivj,vj+1 =0,
j=1

and this will confirm (1.12), on recalling that we = 1 for al e € E. Itis
more convenient in this context to work with ‘bushes’ than spanning trees.
A bush (or, more precisely, an s/t-bush) is defined to be a forest on V
containing exactly two trees, one denoted T and containing s, and the other
denoted T; and containingt. Wewrite (Ts, T;) for thisbush. Lete = (a, b),
and let B(s, a, b, t) be the set of busheswitha € Tsand b € T;. The
sets B(s,a, b, t) and N (s, a, b, t) are in one-one correspondence, since
the addition of eto B € B(s, a, b, t) createsa unique member T = T(B)
of N (s, a, b, t),and viceversa
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8 Random walks on graphs

By (1.19) and the above, a bush B = (Ts, T;) makes a contribution to
ia,b Of
N-1 ifBeB(s ab,t),
—-N"1 ifBeB(s b at),
0 otherwise.

Therefore, B makes a contribution towardsthe sumin (1.20) that is equal to
N~1(F; — F_), where F (respectively, F_) isthe number of pairsv;, vj 1
of C,1 < j <n,withvj € Ts, vj41 € Ty (respectively, vj41 € Ts,vj € Ty).
Since C isacycle, F, = F_, whence each bush contributes O to the sum,
and (1.20) is proved. d

1.3 Flowsand energy

Let G = (V, E) be a connected graph as before. Let s,t € V be distinct
vertices, and let j be an s/t flow. With we the conductance of the edge e,
the (dissipated) energy of j is defined as

EQ) =) idv/we=3 Y i&u/wuu-

e=(u,v)eE u,veV
U~v

The following piece of linear algebrawill be useful.

1.21 Proposition. Lety : V — R, andlet j bean s/t flow. Then
[ —v©ls=3 > [¥©) —¥Wlju.

u,veV
Proof. By the properties of aflow,
YW@ =Y Wliuwe =Y YO)(=3) =Y ¥y

u,veV veV ueV
= =2[Y(9)Is + ¥ (1) A
=2[y ) — ¥ ()]s,
as required. d

Let ¢ andi satisfy the Kirchhoff laws. We apply Proposition 1.21 with
Y =¢ and j =i tofind by Ohm'slaw that

(1.22) E@) =[¢p®) —o©)]ls.
That is, the energy of thetrue current-flow i betweenstot equalsthe energy
dissipated in asingle (s, t) edge carrying the same potentia difference and
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1.3 Flowsand energy 9

total current. The conductance W of such an edge would satisfy Ohm’s
law, that is,
(1.23) Is = Wett[¢ (1) — & (S)],

and we define the effective conductance Wt by thisequation. The effective
resistanceis

1
(1.24) Rest

= W_eff’
which, by (1.22)—(1.23), equals E(i)/12. We state this as alemma.

1.25 Lemma. Theeffectiveresistance Rgs of the network between vertices
s andt equalsthe dissipated energy when a unit flow passesfromstot.

Itisuseful to beabletodo calculations. Electrical engineershavedevised
avariety of formulaic methods for calculating the effective resistance of a
network, of which the simplest are the series and parallel laws, illustrated
inFigure 1.1.

e

f

Figurel.l. Twoedgeseand f inparalel andin series.

1.26 Serieslaw. Two resistorsof sizerq and rz in series may be replaced
by asingleresistor of sizery +ro.

1.27 Parallel law. Two resistors of sizerq and ro in parallel may be re-
placed by asingle resistor of size Rwhere R™* =t ;L.

A third such rule, the so-called ‘ star—triangle transformation’, may be
found at Exercise 1.5. Thefollowing ‘variational principle’ has many uses.

1.28 Theorem (Thomson principle). Let G = (V, E) be a connected
graph, and we, € € E, (strictly positive) conductances. Let s, t € V,s # t.
Amongst all unit flows through G from s to t, the flow that satisfies the
Kirchhoff lawsisthe uniques/t flowi that minimizesthe dissipated energy.
That is,

E@i) =inf{E(j): j aunitflow fromstot}.

Proof. Let j beaunitflow fromsourcestosinkt, andsetk = j —i where
i isthe (unique) unit-flow solution to the Kirchhoff laws. Thus, k isaflow
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10 Randomwalks on graphs

with zero size. Now, with e = (u, v) andre = 1/we,

2E()= ) iZfe= D (kuv+iuw)’Te

u,veV u,veV

_ 2 P2 H

= K ofe + iofe+2 iuvkuvle
u,veV u,veV u,veV

Let ¢ be the potential function corresponding to i. By Ohm’s law and
Proposition 1.21,

D iuckuate= Y [p(0) — p(W]ky

u,veV u,veV
=2[¢t) — #(9]Ks,
which equals zero. Therefore, E(j) > E(i), with equality if and only if
j=li. O
The Thomson ‘variational principle’ leadsto aproof of the‘ obvious' fact

that the effective resistance of anetwork is anon-decreasi ng function of the
resistances of individual edges.

1.29 Theorem (Rayleigh principle). The effective resistance R of the
network is a non-decreasing function of the edge-resistances (re : € € E).

It isleft asan exerciseto show that Ry isaconcave function of the (re).
See Exercise 1.6.

Proof. Consider two vectors (fre : € € E) and (r; : e € E) of edge-
resistanceswithre < r/foral e. Leti andi’ denote the corresponding unit
flows satisfying the Kirchhoff laws. By Lemma 1.25, withre = 1y ),

i2
2 Iu,vre
u,veV
u~v

Reft =

Nl

IA
Nl

Z (i,.,)%e by the Thomson principle

u,veV
u~v

IA
Nl

> (i e sincere<ry

u,veV
u~v

= Rat.

asrequired. d
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1.4 Recurrence and resistance 11

1.4 Recurrence and resistance

Let G = (V, E) be an infinite connected graph with finite vertex-degrees,
and let (we : € € E) be (strictly positive) conductances. We shall consider
areversible Markov chain Z = (Z, : n > 0) on the state space V with
transition probabilitiesgiven by (1.3). Our purposeisto establish acondition
onthe pair (G, w) that is equivalent to the recurrence of Z.

Let O be a distinguished vertex of G, called the ‘origin’, and suppose
Zy = 0. The graph-theoretic distance between two vertices u, v is the
number of edgesin a shortest path between u and v, denoted § (u, v). Let

An={ueV:45(0,v) <n}
aAnZAn\An_lZ{UGV:S(O,U)Zn}.

We think of d A, asthe ‘boundary’ of A,. Let G, be the subgraph of G
comprising the vertex-set Ap, together with all edges between them. We let
Gp, be the graph obtained from G, by identifying all verticesin A, and
we denote the identified vertex as I,,. The resulting finite graph G,, may be
considered an electrical network with sources 0 and I. Let Rgs(n) be the
effective resistance of this network. The graph G, may be obtained from
Gny1 by identifying all vertices lying in dAn U {In41}, and thus, by the
Rayleigh principle, Ref(n) is hon-decreasing in n. Therefore, the limit

Ret = 1im Retr ()
exists.

1.30 Theorem. The probability of ultimate return by Z to the origin O is
given by
1

Wo Rest

Po(Z, =0forsomen>1)=1-—

whereWo = ). o W(0,v)-

The return probability is non-decreasing if Wo R is increased. By the
Rayleigh principle, this can be achieved, for example, by removing an edge
of E that isnot incident to 0. Theremoval of an edge incident to O can have
the opposite effect, since Wp decreaseswhile Refs increases (seeFigure 1.2).

A O/ocoflowisavector | = (ju,y : U, v € V, U # v) satisfying (1.14)(a)—
(b) and also (c) foral u # 0. That is, it has source 0 but no sink.

1.31 Corollary.
(@ Thechain Z isrecurrent if and only if Rgs = oo.
(b) Thechain Z istransientif and only if there exists a non-zero 0/ oo flow
j on G whoseenergy E(j) = 3, j2/we satisfies E(j) < oo.
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12 Random walks on graphs

I\

I\

I\

I\

Figurel.2. Thisisaninfinitebinary treewithtwo parallel edgesjoining
the origin to the root. When each edge has unit resistance, it is an easy

calculation that Reg = % so the probability of returnto O is % If the

edge e is removed, this probability becomes % .

It is left as an exercise to extend this to countable graphs G without the
assumption of finite vertex-degrees.
Proof of Theorem1.30. Let
gn(v) = PU(Z hItS 8An beforeO), S An.

By Theorem 1.5 and Exercise 1.13, g, is the unique harmonic function on
Gn with boundary conditions

gn(0) =0, On(v) = 1forv € dA,.

Therefore, g, isapotential function on Gy, viewed as an electrical network
with source O and sink I,.
By conditioning on the first step of the walk, and using Ohm’s law,

Po(Z returnsto O beforereaching 0 Ap,)
=1- )" Pouth()

viv~0
1 wo,v _
=1 ZNO We LG = Gn (0]
1 Ii(n)l’

Wo

wherei (n) isthe flow of currentsin G, and |i (n)| isits size. By (1.23)—
(2.24), i (n)| = 1/Rgf(n). The theorem is proved on noting that

Po(Z returnsto O beforereaching 9 Ap) — Po(Zn = O for somen > 1)
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1.5 Recurrence and resistance 13
asn — oo, by the continuity of probability measures. O

Proof of Corollary 1.31. Part (a) isan immediate consequence of Theorem
1.30, and we turn to part (b). By Lemma 1.25, there exists a unit flow i (n)
in Gy, with source 0 and sink 1, and with energy E(i (n)) = Rgt(n). Leti
be anon-zero 0/cc flow; by dividing by its size, we may takei to be a unit
flow. When restricted to the edge-set E, of Gy, i forms a unit flow from O
to I,,. By the Thomson principle, Theorem 1.28,

EG(m) < ) i&/we < E),

eckEp
whence
E@) > n[ngo E(i (n)) = Ret.

Therefore, by part (a), E(i) = oo if the chain isrecurrent.

Suppose, conversely, that the chain is transient. By diagonal selectiond,
there exists a subsequence (ng) along which i (n) convergesto some limit
j (thatis, i(nk)e — je for every e € E). Since eachi(nk) isaunit flow
from the origin, j isaunit 0/co flow. Now,

() =Y i ()3/we

ecE
> > i/ we
ecEn
N Z j(©%/we ask— oo
ecEm
— E()) asm — oo.
Therefore,
E(j) < lim Ref(nk) = Ret < o0,
k—o00
and j isaflow with the required properties. d

3Diagonal selection: Let (xm(n) : m, n > 1) be abounded collection of reals. There
exists an increasing sequence n1, Ny, ... of positive integers such that, for every m, the
limit limg_, o0 Xm(Nk) exists.
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14 Random walks on graphs

1.5 Polya’stheorem

Thed-dimensional cubiclattice L9 hasvertex-set Z¢ and edgesbetween any
two verticesthat are Euclidean distance one apart. Thefollowing celebrated
theorem can be proved by estimating effective resistances.*

1.32 Polya’sTheorem [200]. Symmetric randomwalk onthelattice L% in
d dimensionsisrecurrentifd = 1, 2 and transient if d > 3.

The advantage of the following proof of Polya'stheorem over more stan-
dard argumentsisiits robustness with respect to the underlying graph. Sim-
ilar arguments are valid for graphsthat are, in broad terms, comparable to
L9 when viewed as electrical networks.

Proof. For simplicity, and with only little loss of generality (see Exercise
1.10), we shall concentrateonthecasesd = 2, 3. Letd = 2, for which case
weaim to show that Rgs = co. Thisisachieved by finding aninfinite lower
bound for Rgt, and lower bounds can be obtained by decreasing individual
edge-resistances. The identification of two vertices of a network amounts
tothe addition of aresistor with O resistance, and, by the Rayleigh principle,
the effective resistance of the network can only decrease.

==

0

:

Figure 1.3. The vertex labelled i is a composite vertex obtained by
identifying all verticeswith distancei from 0. There are 8i — 4 edges of
L2 joining verticesi — 1 andi.

From L2, we construct a new graph in which, for each k = 1,2, ...,
theset 9Ax = {v € Z2 : §(0,v) = k} is identified as a singleton. This
transforms IL2 into the graph shown in Figure 1.3. By the series/parallel
laws and the Rayleigh principle,

whence Rg(n) > clogn — oo ash — oo.
Suppose now that d = 3. There are at least two ways of proceeding.
We shall present one such route taken from [182], and we shall then sketch

4An amusing story is told in [201] about Polya’s inspiration for this theorem.

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



15 Polya'stheorem 15

Figure 1.4. The flow along the edge (u, v) is equal to the area of
the projection IT(Fy,,) on the unit sphere centred at the origin, with a
suitable convention for its sign.

the second which hasits inspiration in [72]. By Corollary 1.31, it suffices
to construct a non-zero 0/oco flow with finite energy. Let S be the surface
of the unit sphere of R3 with centre at the origin 0. Takeu € Z3, u # 0,
and position a unit cube Cy, in R® with centre at u and edges parallel to the
axes (see Figure 1.4). For each neighbour v of u, the directed edge [u, v)
intersects a unique face, denoted Fy ,, of Cy.

For x € R3, x # 0, let TI(x) be the point of intersection with S of the
straight line segment from O to x. Let j, , beequal in absolute value to the
surface measure of T1(F ,). Thesignof j, , istaken to be positive if and
only if the scalar product of %(u +v) and v — u, viewed as vectorsin R3, is
positive. Let j, y = —ju,»- Weclaimthat j isa0/oco flow on 3. Parts (a)
and (b) of Definition 1.14 follow by construction, and it remains to check
().

Thesurfaceof C, hasaprojectionTT(Cy) onS. Thesum Jy = ), Ju.v
is the integral over x € TI1(Cy), with respect to surface measure, of the
number of neighbours v of u (counted with sign) for which x € TI(Fy ).
Almost every x € T1(Cy) is counted twice, with signs + and —. Thusthe
integral equals 0, whence J, = Ofor al u # 0.

It iseasily seenthat Jy # 0, so j isanon-zero flow. Next, we estimate
its energy. By an elementary geometric consideration, there exist ¢; < oo
such that:
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16 Random walks on graphs

(i) lju.ol < c1/lul?for u # O, where u| = (0, u) is the length of a
shortest path from O to u,
(i) the number of u € Z3 with |u| = n is smaller than con?.
It follows that

oo
EG) <Y Y02, = D 6en? () < ov,
n=1

u£0v~u
asrequired. O

Another way of showing Rgs < co when d = 3isto find afinite upper
bound for Rg. Upper bounds can be obtained by increasing individual
edge-resistances, or by removing edges. The idea is to embed a tree with
finite resistance in IL3. Consider a binary tree T, in which each connection
between generation n— 1 and generation n hasresistance p", where p > 0. It
isan easy exercise using the series/parallel lawsthat the effective resistance
between the root and infinity is

Ret(T,) = Y (p/2)",
n=1

which we makefinite by choosing p < 2. We proceed to embed T, in Z3in
such away that a connection between generation n — 1 and generationnisa
|lattice-path of length order p". There are 2" verticesof T, in generation n,
and their |attice-distance from 0 has order Y"p_; p¥, that is, order p". The
surface of the k-ball in R® has order k?, and thus it is necessary that

c(pM? = 2",
whichisto say that p > +/2.
Letv/2 < p < 2. Itisnow fairly smpleto check that Reft < ¢’ Rest (T,).
This method has been used in [114] to prove the transience of the infinite

open cluster of percolation on 3. It is related to, but different from, the
tree embeddings of [72].

1.6 Graph theory

A graph G = (V, E) comprises afinite or countably infinite vertex-set V
and an associated edge-set E. Each element of E isan unordered pair u, v
of verticeswritten (u, v). Two edges with the same vertex-pairs are said to
bein parallel, and edges of the form (u, u) are called loops. The graphs of
these noteswill generally contain neither parallel edgesnor loops, and thisis
assumed henceforth. Two vertices u, v are said to be joined (or connected)
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1.6 Graphtheory 17

by an edge if (u, v) € E. Inthiscase, u and v are the endvertices of e,
and we write u ~ v and say that u is adjacent to v. An edge e issaidto
be incident to its endvertices. The number of edgesincident to vertex u is
called the degree of u, denoted deg(u). The negation of the relation ~ is
written ~.

Since the edges are unordered pairs, we call such agraph undirected (or
unoriented). If someor all of its edgesare ordered pairs, written [u, v), the
graphiscalled directed (or oriented).

A path of G isdefined asan alternating sequencevo, €g, v1, €1, . . ., €n—1,
vp Of distinct vertices vi and edges g = (vj, vi+1). Such a path has length
n; it issaid to connect vg to vy, andiscalled avg/v, path. A cycleor circuit
of G is an alternating sequence vo, €, v1, ..., €1—1, Un, €n, Vo Of vertices
and edges such that vg, ep, . . ., en—1, vy iSapath and e, = (v, vo). Such
acycle haslength n + 1. The (graph-theoretic) distance §(u, v) from u to
v is defined to be the number of edgesin a shortest path of G from u to v.

Wewriteu «~ v if thereexistsapath connectingu andv. Therelation «»
isan equivalencerelation, and its equivalenceclasses are called components
(or clusters) of G. The componentsof G may be considered as either sets of
vertices, or graphs. Thegraph G isconnected if it has aunique component.
Itisaforest if it containsno cycle, and atreeif in addition it is connected.

A subgraph of the graph G = (V, E) isagraph H = (W, F) with
W C Vand F C E. The subgraph H isaspanningtreeof Gif V = W
and H isatree. A subset U C V of the vertex-set of G has boundary
dU={ueU:u~vforsomeveV\U}.

The lattice-graphs are the most important for applications in areas such
as statistical mechanics. Lattices are sometimes termed ‘ crystalline’ since
they are periodic structures of crystal-like units. A general definition of a
lattice may confuse readers more than help them, and instead we describe
some principal examples.

Let d be a positive integer. WewriteZ = {...,—-1,0,1, ...} for the
set of al integers, and 74 for the set of all d-vectorsv = (v1, vy, . . ., vd)
with integral coordinates. For v € Z4, we generally write v; for theith
coordinate of v, and we define

d
S(u,v) = ui —il.
i=1

The origin of Z9 is denoted by 0. We turn Z9 into a graph, called the d-
dimensional (hyper)cubic lattice, by adding edges between all pairsu, v of
pointsof Z9 with §(u, v) = 1. Thisgraphisdenoted asLLY, and its edge-set
asEY: thus, L9 = (29, EY). We often think of L9 as a graph embedded
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Figure 1.5. The square, triangular, and hexagonal (or ‘honeycomb’)
lattices. The solid and dashed lines illustrate the concept of ‘planar
duality’ discussed on page 41.

in RY, the edges being straight line-segments between their endvertices.
The edge-set Ey of V C 79 is the set of all edges of L9 both of whose
endverticesliein V.

The two-dimensional cubic lattice 1.2 is called the square lattice and is
illustrated in Figure 1.5. Two other lattices in two dimensions that feature
in these notes are drawn there also.

1.7 Exercises

11 Let G = (V, E) beafinite connected graph with unit edge-weights. Show
that the effective resistance between two distinct vertices s, t of the associated
electrical network may be expressed as B/N, where B is the number of s/t-
bushes of G, and N isthe number of its spanning trees. (Seethe proof of Theorem
1.16 for an explanation of the term ‘bush’.)

Extend this result to general positive edge-weights we.

12 Let G = (V, E) be afinite connected graph with positive edge-weights

(we : €€ E),and let N* be given by (1.18). Show that

iab= % [N*(s,a,b,t) — N*(s,b,a,1)]
congtitutes a unit flow through G from s to t satisfying Kirchhoff’s laws.

1.3 (continuation) Let G = (V, E) befinite and connected with given conduc-
tances (we : € € E), and let (x, : v € V) bereas satisfying >, x, = 0. ToG
we append anotional vertex labelled co, and wejoin co to each v € V. Show that
thereexistsasolution i to Kirchhoff’slaws on the expanded graph, viewed as two
laws concerning current flow, such that the current along the edge (v, co) IS X, .
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C
ra
2
A ri B

Figure1.6. Edge-resistances in the star—triangle transformation. The
triangle T on the left is replaced by the star S on the right, and the
corresponding resistances are as marked.

1.4 Provethe seriesand parallel laws for electrical networks.

1.5 Sar—triangle transformation. The triangle T is replaced by the star Sin
an electrical network, asillustrated in Figure 1.6. Explain the sense in which the
two networks are the same, when the resistances are chosen such that rjr J’ = cfor
j =1,2,3and somec = c(rq, o, r3) to be determined.

1.6 Let R(r) be the effective resistance between two given vertices of afinite
network with edge-resistancesr = (r (e) : e € E). Show that R is concavein that

1[Rr) + R(2)] < R(3(r1 +r12).

1.7 Maximum principle. Let G = (V, E) be afinite or infinite network with
finite vertex-degreesand associated conductances (we : € € E). LetH = (W, F)
be a connected subgraph of G, and write

AW ={veV\W:v~wforsomew e W}

for the ‘external boundary’ of W. Let¢ : V — [0, co) be harmonic on the set W,
and suppose the supremum of ¢ on W is achieved and satisfies

up ¢ (w) = [|@llec 1= SUP @ (v).
weW veV

Show that ¢ is constant on W U AW, where it takes the value ||¢ || oo

1.8 Let G be an infinite connected graph, and let 3 A be the set of vertices
distance n from the vertex labelled 0. With E,, the number of edgesjoining d An
t0 8 An 1, show that random walk on G isrecurrent if 3°,, E; L = oo.

1.9 (continuation) Assume that G is ‘ spherically symmetric’ in that: for all n,
for al x, y € 3An, there exists a graph automorphism that fixes 0 and maps x to
y. Show that random walk on G istransient if 3", E; 1 < oo.

1.10 Let G be acountably infinite connected graph with finite vertex-degrees,
and with a nominated vertex 0. Let H be a connected subgraph of G containing
0. Show that simple random walk, starting at O, is recurrent on H whenever it is
recurrent on G, but that the converse need not hold.
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20 Random walks on graphs

111 Let G be a finite connected network with positive conductances
(we : € € E), andlet a, b be distinct vertices. Let ixy denote the current along an
edge from x to y when a unit current flows from the source vertex a to the sink
vertex b. Run the associated Markov chain, starting at a, until it reachesb for the
first time, and let ux, y be the mean of the total number of transitions of the chain
between x and y. Transitionsfrom x to y count positive, and from y to x negative,
so that uy, y isthe mean number of transitions from x to y, minus the mean number
from y to x. Show that iy y = Uxy.

1.12 [72] Let G be an infinite connected graph with bounded vertex-degrees.
Let k > 1, and let Gk be obtained from G by adding an edge between any pair
of vertices that are non-adjacent (in G) but separated by graph-theoretic distance
k or less. (The graph Gy is sometimes called the k-fuzz of G.) Show that smple
random walk is recurrent on Gy if and only if it isrecurrent on G.

1.13 Uniqueness theorem. Let G = (V, E) be afinite or infinite connected
network with finite vertex-degrees, and let W be a proper subset of V. Let f, g:
V — R beharmonic on W and equal on'VV \ W. Show, by the maximum principle
or otherwise, that f = g.
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Uniform spanning tree

TheUniform Spanning Tree (UST) measurehasaproperty of negative
association. A similar property is conjectured for Uniform Forest
and Uniform Connected Subgraph. Wilson's algorithm uses loop-
erased random walk (LERW) to construct a UST. The UST on the
d-dimensional cubic lattice may be defined as the weak limit of the
finite-volume measures. When d = 2, the corresponding LERW
(respectively, UST) convergesin a certain manner to the Schramm-—
Loéwner evolution process SLE; (respectively, SLEg) asthe grid size
approaches zero.

2.1 Definition

Let G = (V, E) be afinite connected graph, and write 7 for the set of all
spanning trees of G. Let T be picked uniformly at random from 7. We
cal T auniform spanning tree, abbreviated to UST. It is governed by the
uniform measure

1
P(T=t) = — teT.

T

We may think of T either as a random graph, or as a random subset of
E. Inthelatter case, T may be thought of as a random element of the set
Q = {0, 1}F of 0/1 vectorsindexed by E.

It is fundamental that UST has a property of negative association. In its
simplest form, this property may be expressed as follows.

2.1 Theorem. For f,ge E, f #g,
(2.2) P(feT|geT)<P(feT).

The proof makes striking use of the Thomson principle via the mono-
tonicity of effectiveresistance. We obtain the following by amild extension
of theproof. For BC Eandg € E \ B,

(2.3 PBCT|geT)<P(BCT).
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22 Uniform spanning tree

Proof. Consider G as an electrical network in which each edge has resis-
tance 1. Denoteby i = (i, : v, w € V) the current flow in G when aunit
current entersat x and leavesat y, and let ¢ be the corresponding potential
function. Let e = (X, y). By Theorem 1.16,

iy = N(X, X, Y, Y)
Y N ’
where N(X, X, Y, Y) isthe number of spanning trees of G with the property
that the unique x/ y path passesalong the edgeeinthedirectionfrom x to y,
andN = |T7|. Therefore, iy y = P(e € T). Since (X, y) hasunit resistance,
ix,y equalsthe potential difference ¢ (y) — ¢ (x). By (1.22),

(2.4) Pee T) = RG(x, y),

the effective resistance of G between x and y.

Let f, g be distinct edges, and write G.g for the graph obtained from
G by contracting g to a single vertex. Contraction provides a one-one
correspondence between spanning trees of G containing g, and spanning
trees of G.g. Therefore, P(f € T | g € T) issimply the proportion of
spanning trees of G.g containing f. By (2.4),

P(feT|geT) =R y).
By the Rayleigh principle, Theorem 1.29,

Re? (. y) = RG(x, Y.
and the theorem is proved. O

Theorem 2.1 hasbeen extended by Feder and Mihail [85] to more general
‘increasing’ events. Let Q = {0, 1}, the set of 0/1 vectorsindexed by E,
anddenoteby w = (w(e) : e € E) atypical member of Q2. Thepartial order
< on £ is the usual pointwise ordering: v < o' if w(€) < o'(€) for all
ec E. Asubset A C Qiscaledincreasingif: forall w, o’ € Q satisfying
o < o', wehavethat o’ € Awhenever w € A.

For A C QandF C E,wesaythat Aisdefinedon F if A = Cx{0, 1}E\F
for some C C {0, 1}F. Werefer to F asthe ‘base’ of theevent A. If Ais
defined on F, we need only know the w (e), e € F, to determine whether or
not A occurs.

2.5 Theorem [85]. Let F C E, and let A and B be increasing subsets of
Q such that Aisdefinedon F, and B isdefinedon E \ F. Then

P(TeA|TeB) <P(TeA).
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2.2 Wilson'salgorithm 23

Theorem 2.1 is retrieved by setting A = {w € Q : o(f) = 1} and
B={weQ:w(g = 1}. Theorigina proof of Theorem 2.5is set in the
context of matroid theory, and a further proof may be found in [32].

Whereas ‘positive association’ is well developed and understood as a
techniquefor studying interacting systems, ‘ negative association’ possesses
some inherent difficulties. See [198] for further discussion.

2.2 Wilson'salgorithm

There are various ways to generate a uniform spanning tree (UST) of the
graph G. Thefollowing method, called Wil son’salgorithm[240], highlights
the close relationship between UST and random walk.

Take G = (V, E) to be a finite connected graph. We shall perform
random walks on G subject to a process of so-called |oop-erasure that we
describe next.l Let W = (wo, w1, ..., wk) beawak on G, which is to
say that w; ~ wj+1 for 0 < i < k (note that the walk may have self-
intersections). From ‘W, we construct a non-self-intersecting sub-walk,
denoted LE('W), by the removal of loops as they occur. More precisely, let

J=min{j > 1:w; = w;j forsomei < j}.

If such J exists, let | betheuniquevalueofi satisfyingl < Jandw, = wj.
Let W = (wg, w1, ..., w;, wyt1, ..., wk) bethe sub-walk of W obtained
through the removal of the cycle (wy, w41, ..., wy). This operation of
single-loop-removal is iterated until no loops remain, and we denote by
LE(W) the surviving path from wg to wy.

Wilson's algorithm is presented next. First, let V = (v1, v, ..., vp) be

an arbitrary but fixed ordering of the vertex-set.

1. Perform a random walk on G beginning at v, with iy = 1, and
stopped at the first time it visits v,. The outcome is awalk Wy =
(U1 = w1, Ug, ..., U = vp).

2. From Wy, we obtain theloop-erased path LE(Wh ), joining v1 to v, and
containing no loops.2 Set Ty = LE(W4).

3. Find theearliest vertex, vj, say, of V not belonging to Ty, and perform
arandom walk beginning at vi,, and stopped at the first moment it hits
some vertex of Ty. Call the resulting walk W>, and loop-erase W5 to
obtain some non-self-intersecting path LE(W>) from v, to T;. Set
To = T1 U LE(W5), the union of two edge-digjoint paths.

1Graph theorists might prefer to call this cycle-erasure.
2|f we run arandom walk and then erase its loops, the outcome is called loop-erased
randomwalk, often abbreviated to LERW.
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4. lterate the above process, by running and loop-erasing arandom walk
from a new vertex vj;,, ¢ T until it strikes the set Tj previously
constructed.

5. Stop when all vertices have been visited, and set T = Ty, the final
value of the Tj.

Each stage of the above algorithm results in a sub-tree of G. The fina

such sub-tree T is spanning since, by assumption, it contains every vertex
of V.

2.6 Theorem [240]. Thegraph T isa uniform spanning tree of G.

Note that theinitial ordering of V playsnoroleinthelaw of T.

Thereareof course other waysof generatingaUST on G, and wemention
thewell known Aldous-Broder algorithm, [17, 53], that proceedsasfollows.
Choose a vertex r of G and perform a random walk on G, starting at r,
until every vertex has been visited. For w € V, w # r, let [v, w) be the
directed edge that was traversed by the walk on its first visit to w. The
edges thus obtained, when undirected, constitute a uniform spanning tree.
The Aldous—Broder algorithm is closely related to Wilson's algorithm via
acertain reversal of time, see [203] and Exercise 2.1.

We present the proof of Theorem 2.6 in a more general setting than
UST. Heavy use will be made of [181] and the concept of ‘ cycle popping’
introduced in the original paper [240] of David Wilson. Of considerable
interest is an analysis of the run-time of Wilson's algorithm, see [203].

Consider an irreducible Markov chain with transition matrix P on the
finite state space S. With this chain we may associate a directed graph
H = (S, F) much asin Section 1.1. The graph H has vertex-set S, and
edge-set F = {[x,y) : pxy > 0}). We refer to x (respectively, y) as the
head (respectively, tail) of the (directed) edge e = [X, y), written X = e_,
y = e,. Sincethechainisirreducible, H isconnected in the sense that, for
al x, y € S, there exists adirected path from x to y.

Letr € Sheadistinguished vertex called theroot. A spanning arbores-
cenceof H with root r isasubgraph A with the following properties:

(a) eachvertex of Sapart fromr isthe head of aunique edge of A,

(b) theroot r isthe head of no edge of A,

(c) A possesses no (directed) cycles.
Let 3 be the set of al spanning arborescences with root r, and ¥ =
Ures Zr. A spanning arborescence is specified by its edge-set.

It is easily seen that there exists a unique (directed) path in the spanning
arborescence A joining any given vertex x to the root. To the spanning
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arborescence A we assign the weight
27) a(A) =[] Pe_e.

ecA

and we shall describe arandomized algorithm that selects a given spanning
arborescence A with probability proportional to «(A). Sincex(A) contains
no diagonal element p; ; of P, and each x (s r) is the head of a unique
edge of A, wemay assumethat p,, =0foralze S

Letr € S. Wilson'sagorithm is easily adapted in order to sample from
. Letvg, vo, ..., vn—1 beanordering of S\ {r}.

1. Letog=1{r}.

2. SampleaMarkov chain with transition matrix P beginning at vj, with

i1 = 1, and stopped at the first time it hits op. The outcome is a

(directed) walk W1 = (u1 = vq, Up, ..., Uk, ). From Wy, we obtain
the loop-erased path o1 = LE(W), joining v1 tor and containing no
loops.

3. Find the earliest vertex, vj, say, of Snot belonging to o1, and sample
a Markov chain beginning at vi,, and stopped at the first moment it
hits some vertex of 1. Call the resulting walk W>, and loop-erase it
to obtain some non-self-intersecting path LE(W-) from vj, to o1. Set
02 = 01 U LE(W>), the union of o1 and the directed path LE(W5).

4. lterate the above process, by loop-erasing the trajectory of a Markov
chain starting at a new vertex vj, ., ¢ oj until it strikes the graph oj
previously constructed.

5. Stop when al vertices have been visited, and set 0 = oy, the fina
value of the oj.

2.8 Theorem [240]. Thegraph o isa spanning arborescencewith rootr,
and
P(oc = A) xa(A), Ae %

Since Sisfiniteand the chainisassumedirreducible, there existsaunique
stationary distributionw = (s : s € S). Supposethat thechainisreversible
with respect to  in that

7x Px,y = 7Ty Py, x> X,yeS.
Asin Section 1.1, to each edge e = [X, y) we may allocate the weight
w(€) = mx Px,y, Noting that the edges [x, y) and [y, x) have equal weight.
Let A beaspanning arborescencewith root r. Since each vertex of H other
than the root is the head of a unique edge of the spanning arborescence A,
we have by (2.7) that

[Tecame Pe_e;

a(A) =
HXES, XFI Tx

= CW(A), Ac %y,
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whereC = C; and

(2.9) W(A) = [ Jwe.
ecA
Therefore, for a given root r, the weight functions « and W generate the
same probability measureon % .
We shall see that the UST measure on G = (V, E) arises through a
consideration of therandom walk on G. This hastransition matrix given by

X ~ b
Bxy =1 deg(x) Y
0 otherwise,
and stationary distribution
_ deg(x)
T = 21E] s eV.

Let H = (V, F) be the graph obtained from G by replacing each edge
by apair of edges with opposite orientations. Now, w(€) = me_Pe_,e, IS
independent of e € F, sothat W(A) isaconstant function. By Theorem 2.8
andthe observationfollowing (2.9), Wilson'salgorithm generatesauniform
random spanning arborescence o of H, with given root. When we neglect
the orientations of the edges of o, and also the identity of the root, o is
transformed into a uniform spanning tree of G.

The remainder of this section is devoted to aproof of Theorem 2.8, and it
usesthe beautiful construction presented in [240]. We prepare for the proof
asfollows.

Foreach x € S\ {r}, we provideourselvesin advance with an infinite set
of ‘moves from x. Let Mx(i),i > 1, x € S\ {r}, beindependent random
variableswith laws

P(Mx() =Yy) = px.y, yes

For each x, we organize the My(i) into an ordered ‘stack’. We think of
an element My (i) as having ‘colour’ i, where the coloursindexed by i are
distinct. The root r is given an empty stack. At stages of the following
construction, we shall discard elements of stacks in order of increasing
colour, and we shall call the set of uppermost elements of the stacks the
‘visible moves'.

The visible moves generate a directed subgraph of H termed the ‘visible
graph’. There will generally be directed cycles in the visible graph, and
we shall remove such cycles one by one. Whenever we decide to remove
acycle, the corresponding visible moves are removed from the stacks, and
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a new set of moves beneath is revealed. The visible graph thus changes,
and a second cycle may be removed. This process may be iterated until the
earliest time, N say, a which the visible graph contains no cycle, which
is to say that the visible graph is a spanning arborescence o with root r.
If N < oo, we terminate the procedure and ‘output’ o. The removal of a
cycleiscalled ‘cycle popping’. It would seem that the value of N and the
output o will depend on the order in which we decide to pop cycles, but the
converse turns out to be the case.

The following lemmaholds‘ pointwise’: it contains no statement involv-
ing probabilities.

2.10 Lemma. The order of cycle popping is irrelevant to the outcome, in
that:
either N = oo for all orderings of cycle popping,
or the total number N of popped cycles, and the output o, are inde-
pendent of the order of popping.

Proof. A colouredcycleisaset My (i), =1,2,...,J,0f moves,indexed
by vertices x; and coloursij, with the property that they form acycle of the
graph H. A coloured cycle C is called poppableif there exists a sequence
C1,Co, ..., Ch = C of coloured cycles that may be popped in sequence.
We claim the following for any cycle-popping algorithm. If the algorithm
terminatesin finitetime, then al poppable cyclesare popped, and no others.
The lemmafollows from this claim.

Let C be a poppable coloured cycle, and let C1, Co, ..., Ch = C beas
above. It suffices to show the following. Let C’ # C; be a poppable cycle
every move of which has colour 1, and suppose we pop C’ at the first stage,
rather than C1. Then C is still poppable after the removal of C'.

Let V(D) denote the vertex-set of a coloured cycle D. The itaicized
clamisevidentif V(C)NV(Cx) = ofork=1,2,..., n. Supposeonthe
contrary that V(C") NV (Cy) # @ for somek, and let K bethe earliest such
k. Let x € V(C)NV(Ck). Sincex ¢ V(Cy) fork < K, the visible move
at x has colour 1 even after the popping of C1, Co, ..., Ck_1. Therefore,
the edge of Ck with head x hasthe sametail, y say, asthat of C’ with head
X. This argument may be applied to y also, and then to all vertices of Ck
in order. In conclusion, Ck has colour 1, and C' = Ck.

Were we to decide to pop C’ first, then we may choose to pop in the
sequence Ck [= C'], C1,C2,Cs, ..., Ck -1, Ck+1, ..., Ch = C, and the
claim has been shown. O

Proof of Theorem 2.8. It is clear by construction that Wilson's algorithm
terminates after finite time, with probability 1. It proceeds by popping
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cycles, and so, by Lemma 2.10, N < oo almost surely, and the output o is
independent of the choices availablein itsimplementation.

We show next that o has the required law. We may think of the stacks
as generating a pair (C, o), where C = (Cyq, Cy, ..., Cy) is the ordered
set of coloured cycles that are popped by Wilson's algorithm, and o is the
spanning arborescence thus revealed. Note that the colours of the moves
of o are determined by knowledge of C. Let C be the set of all sequences
C that may occur, and IT the set of al possible pairs (C, o). Certainly
IT = C x %y, since knowledge of C imparts no information about o .

The spanning arborescence o containsexactly onecoloured movein each
stack (other than the empty stack at the root). Stacked above this move are
a number of coloured moves, each of which belongs to exactly one of the
popped cycles Cj. Therefore, the law of (C, o) is given by the probability
that the coloured movesin and above o are given appropriately. That is,

P((C,0) = (c, A) = (]_[]_[ pe_,e+>a(A), ceC, Ae .

cec eeC

Since this factorizes in the form f (c)g(A), the random variables C and o
areindependent, and P(c = A) is proportional to «(A) as required. O

2.3 Weak limitson lattices

This section is devoted to the uniform-spanning-tree measure on the d-
dimensional cubic lattice LY = (z9, EY) with d > 2. The UST is not
usually defined directly on this graph, since it is infinite. It is defined
instead on a finite subgraph A, and the limit istaken as A 1 Z9. Thus, we
areledto study limits of probability measures, and to appeal to theimportant
technique known as ‘weak convergence’. Thistechnique playsamajor role
in much of the work described in this volume. Readersin need of a good
book on the topic are referred to the classic texts [39, 73]. They may in
addition find the notes at the end of this section to be useful.

Let un be the UST measure on the box A(n) = [—n, n]d of the lattice
LY. Hereand later, we shall consider the y,, as probability measures on the
measurable pair (2, £) comprising: the sample space Q2 = {0, 1}Ed, and
the o-algebra F of Q generated by the cylinder sets. Elements of Q are
written v = (w(e) : e € E9).

2.11 Theorem [195]. The weak limit © = limp_ o un exists and is a
trandation-invariant and ergodic probability measure. It is supported on
the set of forests of 1.9 with no bounded component.
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Here is some further explanation of the language of this theorem. So-
called ‘ergodic theory’ is concerned with certain actions on the sample
space. Let x € Z9. The function 7y acts on Z9 by mx(y) = X + y; itis
the tranglation by x, and it is a graph automorphism in that (u, v) € E9
if and only if (my(u), 7x(v)) € EY. The trandation 7k acts on E9 by
mx((U, v)) = (Tx (W), 7x(v)), and on Q by 7x (@) = (w(T_x(€)) : e € EY).

Anevent A € ¥ iscalled shift-invariant if A = {7x(®) : @ € A} for
every x € Z9. A probability measure ¢ on (2, F) isergodicif every shift-
invariant event A issuch that ¢ (A) iseither 0 or 1. The measureis said to
be supported ontheevent F if ¢ (F) = 1.

Since we are working with the o-field of © generated by the cylinder
events, it suffices for weak convergencethat un(B C T) — u(B C T) for
any finite set B of edges(seethe notesat the end of thissection, and Exercise
2.4). Note that the limit measure © may place strictly positive probability
on the set of forests with two or more components. By a mild extension of
the proof of Theorem 2.11, we obtain that the limit measure u is invariant
under the action of any automorphism of the lattice 9.

Proof. Let F be a finite set of edges of E9. By the Rayleigh principle,
Theorem 1.29 (asin the proof of Theorem 2.1, see Exercise 2.5),

(212) un(F € T) > pnta(F CT),
for al large n. Therefore, the limit

p(FCT)=lim pun(F S T)

n—o00

exists. The domain of « may be extended to al cylinder events, by the
inclusion—exclusion principle or otherwise (see Exercises 2.3-2.4), and this
in turn specifies a unique probability measure u on (2, ). Since no tree
containsacycle, and since each cycleisfinite and there are countably many
cyclesin L9, u has support in the set of forests. By a similar argument,

these forests may be taken with no bounded component.
Let = beatranslation of Z9, and let F befinite as above. Then

prF CT)= lim up(zF CT) = lim u;n(FCST),
n—o0 n—oo
where (i, n isthelaw of a UST on 77 1A(n). Thereexistsr =r () such

that A(n —r) € 7~ 1A(n) € A(n +r) for al large n. By the Rayleigh
principle again,

pnr(FCT) < ,U«n,n(F CT)<puns(FCST)
for all large n. Therefore,
im prn(FCT)=pn(FCT),
n—oo
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whence the tranglation-invariance of n. The proof of ergodicity is omitted,
and may be found in [195]. O

This leads immediately to the question of whether or not the support of
w isthe set of spanning trees of LY. The proof of the following is omitted.

2.13 Theorem [195]. The limit measure u is supported on the set of
spanning trees of L9 if and only if d < 4.

Themeasure 1« may betermed ‘ free UST measure’, wheretheword ‘ free’
refers to the fact that no further assumption is made about the boundary
dA(n). Thereis another boundary condition giving rise to the so-called
‘wired UST measure’: we identify as a single vertex all vertices not in
A(n—1), and chooseaspanning tree uniformly at randomfromtheresulting
(finite) graph. We can passto the limit asn — oo in very much the same
way as before, with inequality (2.12) reversed. It turns out that the free and
wired measures areidentical on L9 for all d. Thekey reasonisthat L% isa
so-called amenable graph, which amountsin this context to saying that the
boundary/volume approaches zero in the limit of large boxes,

oA  nd-t
~ C—
|A()| nd
See Exercise 2.9 and [32, 181, 195, 196] for further details and discussion.

This section closes with a brief note about weak convergence, for more
details of which the reader is referred to the books [39, 73]. Let E =
{6 :1<i < oo} beacountably infiniteset. Theproduct space2 = {0, 1}
may be viewed as the product of copies of the discrete topological space
{0, 1} and, as such, 2 is compact, and is metrisable by

-0 asn — oo.

[e¢)
a(w,w’)=22—' lw(e) — o' (&), w, o € Q.
i=1
A subset C of Qiscalled a(finite-dimensional) cylinder event (or, simply,
acylinder) if there exists afinite subset F < E such that: » € C if and
only if " € C for all ' equal to w on F. The product o-algebra ¥ of
is the o -algebra generated by the cylinders. The Borel o-algebra 8 of Q2
is defined as the minimal o -algebra containing the open sets. It is standard
that B is generated by the cylinders, and therefore & = B in the current
setting. We note that every cylinder is both open and closed in the product
topology.
Let (un : n > 1) and u be probability measureson (2, ). We say that
wn convergesweakly to w, written pup = u, if

un(f) = w(f) asn — oo,
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for al bounded continuous functions f : @ — R. (Hereand later, P(f)
denotes the expectation of the function f under the measure P.) Severa
other definitions of weak convergence are possible, and the so-called ‘ port-
manteau theorem’ asserts that certain of these are equivalent. In particular,
the weak convergence of u, to u isequivalent to each of the two following
statements:

@ limsup,_, o #n(C) < u(C) for al closed events C,

(b) liminfp_ oo un(C) > u(C) for all open events C.
The matter is simpler in the current setting: since the cylinder events are
both open and closed, and they generate F , it is necessary and sufficient for
weak convergencethat

(©) limp— oo un(C) = u(C) for al cylinders C.

Thefollowing is useful for the construction of infinite-volume measures
in the theory of interacting systems. Since 2 is compact, every family
of probability measures on (2, ¥) is relatively compact. That is to say,
for any such family TT = (uj : i € 1), every sequence (un, : k > 1)
in TT possesses a weakly convergent subseguence. Suppose now that
(un : n > 1) is asequence of probability measures on (2, ). If the
limit limp— o0 un(C) exists for every cylinder C, then it is necessarily the
case that i := limp_ o un exists and is a probability measure. We shall
seein Exercises 2.3-2.4 that thisholdsif and only if limp_ o un(C) exists
for @l increasing cylinders C. This justifies the argument of the proof of
Theorem 2.11.

2.4 Uniform forest

We saw in Theorems 2.1 and 2.5 that the UST has a property of negative
association. There is evidence that certain related measures have such a
property also, but such claims have resisted proof.

Let G = (V, E) be afinite graph, which we may as well assume to be
connected. Write & for the set of forests of G (that is, subsets H € E
containing no cycle), and € for the set of connected subgraphs of G (that
is, subsets H € E such that (V, H) is connected). Let F be a uniformly
chosen member of F, and C auniformly chosen member of . Werefer to
F and C asauniformforest (UF) and auniform connected subgraph (USC),
respectively.

2.14 Conjecture. For f,g € E, f # g, the UF and USC satisfy:
(2.15) P(feF|geF)<P(feF),
(2.16) P(feC|geC) <P(f €C).
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This is a specia case of a more general conjecture for random-cluster
measuresindexed by the parameters p € (0, 1) andq € (0, 1). See Section
8.4.

We may further ask whether UF and USC might satisfy the stronger
conclusion of Theorem 2.5. As positive evidence of Conjecture 2.14, we
cite the computer-aided proof of [124] that the UF on any graph with eight
or fewer vertices (or nine vertices and eighteen or fewer edges) satisfies
(2.15).

Negative association presents difficulties that are absent from the better
established theory of positive association (see Sections 4.1-4.2). Thereis
an analogy with the concept of socia (dis)agreement. Within a family or
population, there may be alimited number of outcomes of consensus; there
are generally many more outcomes of failure of consensus. Nevertheless,
probabilists have made progress in developing systematic approaches to
negative association, see for example[146, 198].

2.5 Schramm-L dwner evolutions

Thereisabeautiful result of Lawler, Schramm, and Werner [164] concerning
the limiting LERW (loop-erased random walk) and UST measures on L2.
This cannot be described without a detour into the theory of Schramm-—
Lowner evolutions (SLE).3

Thetheory of SLE isamajor piece of contemporary mathematics which
promises to explain phase transitions in an important class of two-dimen-
sional disordered systems, and to help bridge the gap between probability
theory and conformal field theory. It playsakey rolein the study of critical
percolation (see Chapter 5), and al so of the critical random-cluster and Ising
models, [224, 225]. In addition, it has provided complete explanations of
conjectures made by mathematiciansand physicists concerning theintersec-
tion exponents and fractionality of frontier of two-dimensional Brownian
motion, [160, 161, 162]. The purposes of the current section are to give a
brief non-technical introduction to SLE, and to indicate its relevance to the
scaling limits of LERW and UST.

Let H = (—o0, 00) x (0, oo) bethe upper half-plane of R2, with closure
H, viewed as subsets of the complex plane. Consider the (Ldwner) ordinary
differential equation

d —
3@ = ze H\ {0},

9:(2) = b(t)’

3SLE was originally an abbreviation for stochastic L éwner evolution, but is now re-
garded as named after Oded Schramm in recognition of hiswork reported in [215].
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SLE, 0 SLE4

Figure2.1. Simulationsof thetracesof chordal SLE, fork = 2, 4, 6, 8.
The four pictures are generated from the same Brownian driving path.

subject to the boundary condition go(z) = z, wheret € [0, c0), and
b: R — R istermed the ‘driving function’. Randomness is injected
into this formula through setting b(t) = B, wherex > Oand (B; : t > 0)
isastandard Brownian motion.* The solution existswhen g (z) is bounded
away from B,¢. More specificaly, for z € H, let t, be the infimum of all
times t such that O isalimit point of gs(z) — Bsinthelimitass 4 . We
let

Hi={zeH: ;> t}, Ki={zeH: 1, <t}

so that H; is open, and K is compact. It may now be seen that g; is a
conformal homeomorphism from H; to H. There exists a random curve
y : [0, 00) — H, called the trace of the process, such that H \ K; is the
unbounded component of H \ y[0, t]. Thetrace y satisfies y(0) = 0 and
y(t) - oo ast — oo. (Seetheillustrations of Figure 2.1.)

4An interesting and topical account of the history and practice of Brownian mation
may be found at [75].
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Wecall (g; : t > 0) aSchramm-Lodwner evolution (SLE) with parameter
Kk, written SLE,, and the K; are called the hulls of the process. There is
good reason to believe that the family K = (K; : t > 0) provides the
correct scaling limits for a variety of random spatial processes, with the
value of « depending on the process in question. General properties of
SLE,, viewed asafunction of «, have been studied in [207, 235, 236], and
a beautiful theory has emerged. For example, the hulls K form (almost
surely) asimple path if and only if k < 4. If ¥k > 8, thetrace of SLE, is
(almost surely) a space-filling curve.

The above SLE process is termed ‘chordal’. In another version, called
‘radia’ SLE, the upper half-plane H is replaced by the unit disc U, and a
different differential equationissatisfied. Let 9U denotethe boundary of U.
The corresponding curve y satisfiesy (t) — Oast — oo, and y(0) € U,
say y(0) is uniformly distributed on dU. Both chordal and radia SLE
may be defined on an arbitrary simply connected domain D with a smooth
boundary, by applying a suitable conformal map ¢ from either H or U to D.

It is believed that many discrete modelsin two dimensions, when at their
critical points, converge in the limit of small mesh-size to an SLE, with
k chosen appropriately. Oded Schramm [215, 216] identified the correct
valuesof « for several different processes, and indicated that percol ation has
scaling limit SLEg. Full rigorous proofs are not yet known even for general
percolation models. For the specia but presumably representative case of
site percolation on the triangular lattice T, Smirnov [222, 223] proved the
very remarkable result that the crossing probabilities of re-scaled regions of
IR? satisfy Cardy’sformula(see Section 5.6), and heindicated therouteto the
full SLEg limit. See [56, 57, 58, 236] for more recent work on percolation,
and [224, 225] for progress on the SLE limits of the critical random-cluster
and Ising modelsin two dimensions.

This chapter closes with abrief summary of the results of [164] concern-
ing SLE limitsfor loop-erased randomwalk (LERW) and uniform spanning
tree (UST) on the squarelattice L2. We saw earlier in this chapter that there
isavery close relationship between LERW and UST on a finite connected
graph G. For example, the unique path joining vertices u and v in a UST
of G hasthe law of aLERW from u to v (see [195] and the description of
Wilson's algorithm). See Figure 2.2.

Let D beabounded simply connected subset of C with asmooth boundary
dD and such that O liesin itsinterior. Asremarked above, we may define
radial SLE> on D, and we write v for itslaw. Let § > 0, and let 15 be the
law of LERW on the re-scaled lattice §Z2, starting at 0 and stopped when it
first hitsaD.
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a

Figure 2.2. A uniform spanning tree (UST) on a large square of the
square lattice. It contains a unique path between any two vertices a, b,
and this has the law of aloop-erased random walk (LERW) between a
and b.

For two parametrizable curves g, y in C, we define the distance between
them by

p(B,y) =inf [ sup |B(t) — ?(t)l} ,
te[0,1]

where the infimum is over al parametrizations B and 7 of the curves
(see [8]). The distance function p generates a topology on the space of
parametrizable curves, and hence a notion of weak convergence, denoted

=",
2.17 Theorem [164]. We havethat s = v asé — O.

Weturntothe convergenceof UST to SL Eg, and begin with adiscussion of
mixed boundary conditions. Let D be abounded simply connected domain
of C with asmooth (C*) boundary curve d D. For distinct pointsa, b € 3D,
we write o (respectively, g) for the arc of 9D going clockwise from a to
b (respectively, bto a). Let § > 0 and let Gs be a connected graph that
approximates to that part of §Z2 lying inside D. We shall construct a UST
of G5 with mixed boundary conditions, namely afree boundary near « and
awired boundary near 8. To each tree T of Gy there corresponds a dual
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Figure2.3. Anillustration of the Peano UST path lying between atree
anditsdual. Thethinner continuouslinedepictsthe UST, and the dashed
lineits dual tree. Thethicker lineisthe Peano UST path.

tree T9 on the dual® graph G, namely the tree comprising edges of GY that
do not intersect those of T. Since Gs has mixed boundary conditions, so
doesits dual GY. With G5 and G¢ drawn together, there is a simple path
7(T, T9) that windsbetween T and T9. Let IT be the path thus constructed
between the UST on G and its dual tree. The construction of this ‘ Peano
UST path’ isillustrated in Figures 2.3 and 2.4.

Figure2.4. Aninitial segment of the Peano path constructed from a
UST on alarge rectangle with mixed boundary conditions.

5This s the planar duality of graph theory, see page 41.
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2.18 Theorem [164]. The law of IT convergesas § — O to that of the
image of chordal SLEg under any conformal map from H to D mapping 0
toaandoo tob.

2.6 Exercises

2.1 [17, 53] Aldous-Broder algorithm. Let G = (V, E) be afinite connected
graph, and pick arootr € V. Perform arandom wak on G starting fromr. For
eachv € V, v #, let e, bethe edge traversed by the random walk just before it
hitsv for thefirst time, and let T bethetree| J, e, rooted at r. Show that T, when
viewed as an unrooted tree, is a uniform spanning tree. It may be helpful to argue
asfollows.

(@) Consider astationary simple random walk (X, : —00 < n < 00) on G, with
distribution 7, o« deg(v), the degree of v. Let T; be the rooted tree obtained
by the above procedure applied to the sub-walk X;, Xj41,.... Show that
T =(Tj : —o0 < i < 00) isastationary Markov chain with state space the
set R of rooted spanning trees.

(b) Let Q(t,t") =P(To =1t | Ty =1), and let d(t) be the degree of the root of
t € R. Show that:

(i) for givent € R, there are exactly d(t) treest’ € R with Q(t,t') =
1/d(t), and Q(t,t") = Ofor al other t’,
(i) for givent’ € R, there are exactly d(t’) treest € R with Q(t,t') =
1/d(t), and Q(t, t") = Ofor all other t.
(c) Show that
Y dmQ.t) =dt), t'eR,
teR
and deduce that the stationary measure of T is proportional to d(t).

(d) Letr € V,andlett beatreewithrootr. Showthat P(To =t | Xg =r) is
independent of the choice of t.

2.2 Inclusion—exclusion principle. Let F be afinite set, and let f, g be real-
valued functions on the power-set of F. Show that

f(A)=> 9B), ACcF,
BCA

if and only if
gA) = > (-pABIf(B),  ACF.
BCA

Show the corresponding fact with the two summations replaced by > " g-a
and the exponent |A\ B| by |[B\ A|. B
2.3 Let © = {0, 1}F, where F isfinite, and let P be a probability measure on
@, and A C Q. Show that P(A) may be expressed as a linear combination of
certain P(A;), wherethe A; areincreasing events.
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2.4 (continuation) Let G = (V, E) be an infinite graph with finite vertex-
degrees, and Q = {0, 1}E, endowed with the product o-field. Anevent A inthe
product o-field of Q is called a cylinder event if it has the form Ag x {0, 1}F
for some Ag € {0, 1}F and some finite F € E. Show that a sequence (un) of
probability measures converges weakly if and only if un(A) convergesfor every
increasing cylinder event A.

25 Let G = (V, E) beaconnected subgraph of the finite connected graph G'.
Let T and T’ be uniform spanning treeson G and G’ respectively. Show that, for
any edgeeof G,P(ec T) > P(ec T).

Moregenerally, let B beasubsetof E, andshowthatP(B € T) > P(B € T').

2.6 Review the proof of Theorem 2.11, as follows. Let T be a UST of the
lattice box [—n, n]9 of Z9. Show that the limit A(e) = limn_ « P(e € Tn) exists.

More generally, show that the weak limit of T, existsasn — oo.

2.7 Adapt the conclusions of thelast two exercisesto the ‘wired’ UST measure
uW on Ld.

2.8 Let F be the set of forests of LY with no bounded component, and let
be an automorphism-invariant probability measure with support . Show that the
mean degree of every vertex is 2.

2.9 [195] Let A be an increasing cylinder event in {0, l}Ed, where E9 de-
notes the edge-set of the hypercubic lattice L9, Us ng the Feder—Mihail Theorem
2.5 or otherwise, show that the free and wired UST measures on L9 satisfy
uf(A) > puY(A). Deduce by the last exercise and Strassen’s theorem, or oth-
erwise, that uf = uW.

2.10 Consider the square lattice 1.2 as an infinite electrical network with unit
edge-resistances. Show that the effective resistance between two neighbouring
verticesis 2.

211 Let G = (V, E) befinite and connected, and let W C V. Let £y bethe
set of forests of G comprising exactly |W| treeswith respective roots the members
of W. Explain how Wilson's algorithm may be adapted to sample uniformly from
Fw-
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Per colation and self-avoiding walk

The central feature of the percolation model is the phase transition.
The existence of the point of transition is proved by path-counting
and planar duality. Basic facts about self-avoiding walks, oriented
percolation, and the coupling of models are reviewed.

3.1 Percolation and phasetransition

Percolation is the fundamental stochastic model for spatial disorder. In
its simplest form introduced in [52]%, it inhabits a (crystalline) lattice and
possesses the maximum of (statistical) independence. We shall consider
mostly percolation on the (hyper)cubic lattice LY = (z9,E%) ind > 2
dimensions, but much of thefollowing may be adapted to an arbitrary lattice.

Percolation comes in two forms, ‘bond’ and ‘site’, and we concentrate
here on the bond model. Let p € [0, 1]. Each edge e € EY is desig-
nated either open with probability p, or closed otherwise, different edges
receiving independent states. We think of an open edge as being open to
the passage of some material such as disease, liquid, or infection. Suppose
we remove all closed edges, and consider the remaining open subgraph of
the lattice. Percolation theory is concerned with the geometry of this open
graph. Of particular interest are such quantitesasthe size of the open cluster
Cx containing a given vertex x, and particularly the probability that Cy is
infinite.

The sample space is the set Q@ = {0, 1}]Ed of 0/1-vectors w indexed
by the edge-set; here, 1 represents ‘open’, and O ‘closed’. As o -field we
take that generated by the finite-dimensional cylinder sets, and the relevant
probability measure is product measure P, with density p.

For x, y € Z9, wewritex <> y if there exists an open path joining x and
y. The open cluster Cx at X isthe set of al vertices reachable along open

1Seealso [241].
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40 Percolation and self-avoiding walk

paths from the vertex x,
CX:{yeZd:x<—>y}.
The origin of Z9 is denoted 0, and we write C = Cq. The principal object
of study is the percolation probability 6 (p) given by
6(p) = Pp(|C| = c0).
The critical probability is defined as

(31) Pe = Pe(L) = sup(p : 6(p) = 0}.
It is fairly clear (and will be spelled out in Section 3.3) that 6 is non-
decreasing in p, and thus

=0 if p< pe,

6(p) { . ‘

>0 if p> pe.
Itisfundamental that O < p; < 1, and we state this asatheorem. It iseasy
to see that p. = 1 for the corresponding one-dimensional process.

3.2 Theorem. For d > 2, wehavethat 0 < p; < 1.

Theinequalitiesmay be strengthened using countsof self-avoiding walks,
asin Theorem 3.12. It is an important open problem to prove the following
conjecture. The conclusionis known only ford = 2 and d > 19.

3.3 Conjecture. For d > 2, we havethat 6(p;) = 0.

It is the edges (or ‘bonds’) of the lattice that are declared open/closed
above. If, instead, we designate the vertices (or ‘sites’) to be open/closed,
the ensuing model istermed site percolation. Subject to minor changes, the
theory of site percolation may be developed just asthat of bond percolation.

Proof of Theorem3.2. This proof introducestwo basic methods, namely the
counting of paths and the use of planar duality. We show first by counting
pathsthat pc > O.

A self-avoiding walk (SAW) is a lattice path that visits no vertex more
than once. Let o, be the number of SAWs with length n beginning at the
origin, and let N, be the number of such SAWs all of whose edges are open.
Then

6(p) = Pp(Np > 1foraln>1)
lim Pp(Np > 1).
n—o0

Now,
(34) Pp(Nn = 1) < Ep(Nn) = plon.
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3.1 Percolation and phase transition 41

A acrude upper bound for oy, we have that
(3.5) on<2d@d-1" 1t n>1,

since the first step of a SAW from the origin can be to any of its 2d neigh-
bours, and there are no more than 2d — 1 choices for each subsequent step.
Thus

6(p) < lim 2d(2d — H"1p",

which egquals 0 whenever p(2d — 1) < 1. Therefore,

Pc = d—1
We turn now to the proof that pc < 1. Thefirst step is to observe that
(36) L) > peth,  d=2

This follows by the observation that LY may be embedded in L9+ in such
away that the origin liesin an infinite open cluster of L9+1 whenever it lies
in an infinite open cluster of the smaller lattice 9. By (3.6), it suffices to
show that

(3.7) pe(L?) < 1,

and to this end we shall use a technique known as planar duality, which
arises asfollows.

Let G beaplanar graph, drawn in the plane. The planar dual of G isthe
graph constructed in the following way. We place avertex in every face of
G (including the infinite face if it exists) and we join two such vertices by
an edgeif and only if the corresponding faces of G share a boundary edge.
It is easy to seethat the dual of the square lattice 1.2 is a copy of 1.2, and we
refer therefore to the square lattice as being self-dual. See Figure 1.5.

There is a natural one—one correspondence between the edge-set of the
dual lattice ]Lg and that of the primal 1.2, and this givesrise to a percolation
model on L3 by: for an edge e € E? and its dual edge ey, we declare g to
beopenif andonly if eisopen. Asillustrated in Figure 3.1, each finite open
cluster of L2 liesin the interior of a closed cycle of ]Lg lying ‘just outside’
the cluster.

We use a so-called Peierls argument? to obtain (3.7). Let My be the
number of closed cycles of the dual lattice, having length n and containing

2Thismethod wasused by Peierls[194] to prove phasetransitioninthetwo-dimensional
Ising model.
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S e
0-i-0 | & & -:
e L IR
O---0 b-i-0
e
0 6| o-t-0 | b---0
: A et

Figure3.1. A finite open cluster of the primal lattice lies ‘just inside’
aclosed cycle of the dual lattice.

Oin their interior. Note that |C| < oo if and only if M, > 1 for some n.
Therefore,

(3.8) 1—6(p) = Pp(IC| <oo):]Pp<Z anl>
n
= Ep(z Mn)
n
=Y Ep(Mp) <Y (ndH(1—p)",
n=4 n=4

where we have used the facts that the shortest dual cycle containing O has
length 4, and that the total number of dua cycles, having length n and
surrounding the origin, is no greater than n4" (see Exercise 3.12). Thefinal
sum may be made strictly smaller than 1 by choosing p sufficiently close
tol,say p> 1— e wheree > 0. Thisimpliesthat p.(L?) < 1 — ¢ as
required for (3.7). O

3.2 Self-avoiding walks

How many self-avoiding walks of length n exist, starting from the origin?
What isthe‘shape’ of a SAW chosen at random from this set? In particular,
what can be said about the distance between itsendpoints? These and rel ated
guestionshaveattracted agreat deal of attention sincethe publicationin 1954
of the pioneering paper [130] of Hammersley and M orton, and never more so
thanin recent years. Itisbelieved but not proved that a typical SAW on .2,
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3.2 Sf-avoiding walks 43

starting at the origin, convergesin asuitable manner asn — oo toaSLEg,3
curve, and the proof of this statement is an open problem of outstanding
interest. See Section 2.5, in particular Figure 2.1, for an illustration of the
geometry, and [183, 216, 224] for discussion and results.

The use of subadditivity was one of the several stimulating ideasof [130],
and it has proved extremely fruitful in many contexts since. Consider the
lattice L9, and let §,, be the set of SAWswith length n starting at the origin,
and o, = | 4| as before.

3.9 Lemma. We havethat omin < omon, for m,n > 0.

Proof. Let 7 and r’ be finite SAWSs starting at the origin, and denote by
7 * v’ the walk obtained by following 7 from 0 to its other endpoint x, and
then following the translated walk 7" + x. Every v € $mn may be written
inauniqueway asv = 7 x ' forsomerx € §nandx’ € $,. Theclaim of
the lemmafollows. d

3.10 Theorem [130]. The limit x = liMp_ o (on)Y" exists and satisfies
d<k=<2d-1

Thisisin essence aconsequence of the ‘ sub-multiplicative’ inequality of
Lemma3.9. The constant « is called the connective constant of the lattice.
The exact value of ¥ = « (%) is unknown for every d > 2, see [141, Sect.
7.2, pp. 481-483]. On the other hand, the ‘hexagonal’ (or ‘honeycomb’)
lattice (see Figure 1.5) has a specia structure which has permitted a proof
by Duminil-Copin and Smirnov [74] that its connective constant equals

V2+ 2.
Proof. By Lemma 3.9, Xm = log on, satisfies the ‘ subadditive inequality’
(3.11) Xman < Xm =+ Xn.
The existence of the limit
A= nIergo{xn/n}
follows immediately (see Exercise 3.1), and

A= i%f {Xm/m} € [—o0, 00).

By (35), k = € < 2d — 1. Finally, oy is at least the number of ‘stiff’
walks every step of which is in the direction of an increasing coordinate.
The number of such walksisd", and therefore « > d. d

The bounds of Theorem 3.2 may be improved as follows.
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3.12 Theorem. The critical probability of bond percolation on L9, with
d > 2, satisfies

- 1— —
K(d)fpcf 2
where « (d) denotes the connective constant of 9.

Proof. Asin (3.4),
0(p) < lim p"on.
n—oo

Now, o, = «(d) oD ‘o that 6(p) = 0if pr(d) < 1.

For the upper bound, we elaborate on the proof of the corresponding part
of Theorem 3.2. Let Fr, be the event that there exists a closed cycle of the
dual lattice L3 containing the primal box A(m) = [—m, m]? initsinterior,
and let G, be the event that all edges of A (m) are open. These two events
are independent, since they are defined in terms of digjoint sets of edges.
Asin (3.8),

(3.13) Pp(Fm) < Pp( > Mn> 1)

n=4m

o
< Y nd-pon.
n=4m
Recall that o, = «(2)AT°M)" and choose p such that (1 — p)«(2) < 1.
By (3.13), we may find m such that Pp(Fm) < 3. Then,

6(p) = Pp(Fm N Gm) = Pp(Fm)Pp(Gm) > 3Pp(Gm) > 0.
The upper bound on pc follows. d

There are some extraordinary conjectures concerning SAWSs in two di-
mensions. We mention the conjecture that

11/32,n

on ~ An whend = 2.

Thisisexpectedtoholdfor any latticeintwo dimensions, with an appropriate
choice of constant A depending on the choice of lattice. It is known in
contrast that no polynomial correction is necessary whend > 5,

on ~ A" whend > 5,

for the cubic lattice at least. Related to the above conjecture is the belief
that arandom SAW of Z2, starting at the origin and of length n, converges
weakly asn — oo to SLEg/3. See[183, 216, 224] for further details of
these and other conjectures and results.
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3.3 Coupled percolation

The use of coupling in probability theory goes back at least as far as the
beautiful proof by Doeblin of the ergodic theorem for Markov chains, [71].
In percolation, we couple together the bond model swith different values of
p asfollows. Let Ue, e € EY, be independent random variables with the
uniform distribution on [0, 1]. For p € [0, 1], let
1 if Ue < p,
e =
p(8) { 0 otherwise.
Thus, the configuration np (€ ) has law Py, and in addition
np<n if p<r.

3.14 Theorem. For any increasing non-negative random variable
f:Q — Q,thefunction g(p) = Pp(f) isnon-decreasing.

Proof. For p < r, we havethat np < nr, whence f(np) < f(nr). There-
fore,

g(p) = P(f(np)) < P(f(nr)) = g(r),
asrequired. O

3.4 Oriented percolation

The* north—east’ lattice L9 isobtained by orienting each edgeof L¢ inthedi-
rection of increasing coordinate-val ue (see Figure 3.2 for atwo-dimensional
illustration). There are many parallels between resultsfor oriented percola-
tion and thosefor ordinary percolation; on the other hand, the corresponding
proofsoften differ, largely because the existence of one-way streetsrestricts
the degree of spatial freedom of the traffic.

Let p € [0, 1]. Wedeclarean edgeof Ldto beopenwith probability pand
otherwise closed. The states of different edges are taken to be independent.
We supply fluid at the origin, and allow it to travel along open edges in
the directions of their orientations only. Let C be the set of vertices that
may be reached from the origin along open directed paths. The percolation
probability is

(3.15) 6(p) = Pp(IC| = 00),
and the critical probability pc(d) by
(3.16) Pe(d) = sup{p : 6(p) = 0}.
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46 Percolation and self-avoiding walk

Figure3.2. Part of the two-dimensiona ‘north—east’ lattice in which
each edge has been deleted with probability 1 — p, independently of all
other edges.

3.17 Theorem. For d > 2, we havethat 0 < p¢(d) < 1.

Proof. Since an oriented path is also a path, it is immediate that é(p) <
6(p), whence pe(d) > pc. Asin the proof of Theorem 3.2, it suffices for
the converseto show that p. = pc(2) < 1.

Letd = 2. Thecluster C comprises the endvertices of open edges that
are oriented northwards/eastwards. Assume |é| < oo. We may draw a
dual cycle A surrounding C in the manner illustrated in Figure 3.3. Aswe
traverse A in the clockwise direction, we traverse dual edges each of which
is oriented in one of the four compass directions. Any edge of A that is
oriented either eastwards or southwards crosses aprimal edgethat is closed.
Exactly one half of the edges of A are oriented thus, so that, asin (3.8),

Pp(IC| < 00) <Y 4321 p)zn-1

n>4
In particular, é(p) > 0if 1 — pissufficiently small and positive. g

Theprocessisunderstood quitewell whend = 2, see[77]. Byloolfingat
the set A, of wet verticeson the diagonal {x € Z2 : X1 4+ xo = n} of L2, we
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A

—
ju—

Figure3.3. Aswe trace the dual cycle A, we traverse edges exactly
one half of which cross closed boundary edges of the cluster C at the
origin.

may reformul ate two-dimensional oriented percolation asaone-dimensional
contact processin discrete time (see [167, Chap. 6]). It turns out that pc(2)
may be characterized in terms of the velocity of the rightwards edge of a
contact processon Z whoseinitial distribution placesinfectivesto theleft of
the origin and susceptiblesto theright. With the support of argumentsfrom
branching processes and ordinary percolation, we may prove such results
as the exponential decay of the cluster-size distribution when p < pe(2),
and its sub-exponential decay when p > p¢c(2): thereexist a(p), B(p) > 0
such that

(3.18)

e PV <p n<|Cl <o0)<e PPV if B2 < p<1.

Thereisacloserelationship between oriented percolation and the contact
model (see Chapter 6), and methods devel oped for thelatter model may often
be applied to the former. It has been shown in particular that 5( Pc) = Ofor
general d > 2, see[112].

We close this section with an open problem of a different sort. Suppose
that each edge of 12 is oriented in a random direction, horizontal edges
being oriented eastwards with probability p and westwards otherwise, and
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vertical edges being oriented northwardswith probability p and southwards
otherwise. Let n(p) be the probability that there exists an infinite oriented
path starting at the origin. It isnot hard to show that 77(%) = 0 (seeExercise
3.9). We ask whether or not n(p) > 0if p # 1. Partial results in this
direction may be found in [108], see also [174, 175].

3.5 Exercises

3.1 Subadditive inequality. Let (xn : n > 1) be area sequence satisfying
Xm+n < Xm + Xp for m,n > 1. Show that the limit A = limp_ co{Xn/N} exists
and satisfies 1 = infg{xk/k} € [—o0, 00).

3.2 (continuation) Find reasonable conditions on the sequence («n) such that:
the generalized inequality

Xm+n < Xm + Xn + om, m,n>1,

implies the existence of the limit A = limp— co{Xn/N}.

3.3 [120] Bond/sitecritical probabilities. Let G be an infinite connected graph
with maximal vertex degree A. Show that the critical probabilities for bond and
site percolation on G satisfy

ptgond < p(s:jte <1-(1- p(k:)ond)A’

The second inequality isin fact valid with A replaced by A — 1.

3.4 Show that bond percolation on agraph G may be reformulated in terms of
site percolation on a graph derived suitably from G.

3.5 Show that the connective constant of 1.2 lies strictly between 2 and 3.

3.6 Show the strict inequality pc(d) < pc(d) for the critical probabilities of
unoriented and oriented percolation on L9 with d > 2.

3.7 One-dimensional percolation. Each edge of the one-dimensional lattice L
is declared open with probability p. For k € Z, letr (k) = max{u : k < k + u},
and Lp = max{r(k) : 1 < k < n}. Show that Pp(Ln > u) < npY, and deduce
that, for e > 0,

IP’( >(1+e)|ogn
P log(/p)

Thisis the famous problem of the longest run of heads in n tosses of a coin.
3.8 (continuation) Show that, for e > 0,

>—>0 asn — oo.

(1—-e)logn
]P’p<Ln<W>—>O asn — oo.

By suitable refinements of the error estimates above, show that, for € > 0,

<(1—<—t)logn< <(14—e)logn
P\ log1/p) "~ Tlog(1/p)
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3.9 [108] Each edge of the square lattice L2 is oriented in a random direc-
tion, horizontal edges being oriented eastwards with probability p and westwards
otherwise, and vertical edges being oriented northwards with probability p and
southwards otherwise. Let n(p) be the probability that there exists an infinite
oriented path starting at the origin. By coupling with undirected bond percolation,
or otherwise, show that 77(%) =0.

It is an open problem to decide whether or not n(p) > O for p # %

3.10 Thevertex (i, j) of LZ iscalled eveniif i + j iseven, and odd otherwise.
Vertical edgesare oriented from the even endpoint to the odd, and horizontal edges
vice versa. Each edge is declared open with probability p, and closed otherwise
(independently between edges). Show that, for p sufficiently close to 1, there
is strictly positive probability that the origin is the endpoint of an infinite open
oriented path.

3.11 [111, 171, 172] A word isan element of the set {0, 13N of singly infinite0/1
sequences. Let p € (0,1) and M > 1. Consider oriented site percolation on 72,
inwhich the state w (x) of avertex x equals 1 with probability p, and O otherwise.
Aword w = (wq, wop, ...) issaid to be M-seen if there exists an infinite oriented
path xg = 0, X1, X2, ... of vertices such that w(xj) = wj andd(xj_1,Xj) < M
fori > 1. [Here, asusual, d denotes graph-theoretic distance.]

Calculate the probability that the square {1, 2, ... ., k}2 contains both a0 and
al. Deduce by ablock argument that

Yp(M) = Pp(al words are M-seen)

satisfies yp(M) > 0 for M > M(p), and determine an upper bound on the
required M(p).

3.12 By counting dual SAWSs or otherwise, show that the number of cycles of
the dual lattice of IL2, of length n and containing the origin in their interior, is at
most n4".
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Association and influence

Correlation inequalities have played a significant role in the theory
of disordered spatial systems. The Holley inequality provides a suf-
ficient condition for the stochastic ordering of two measures, and
also aroute to a proof of the famous FKG inequality. For product
measures, the complementary BK inequality involves the concept of
‘digioint occurrence’. Two concepts of concentration are considered
here. The Hoeffding inequality providesabound on the tail of amar-
tingale with bounded differences. Ancther concept of ‘influence’
proved by Kahn, Kalai, and Linial leads to sharp-threshold theorems
for increasing events under either product or FKG measures.

4.1 Holley inequality

We review the stochastic ordering of probability measures on a discrete
space. Let E be anon-empty finite set, and Q@ = {0, 1}E. The sample space
Q ispartially ordered by

w1 <wy if wi(e) <wye)fordlecE.
A non-empty subset A C Q iscalled increasing if
wehA w<od = o €A
and decreasing if
welA o<w = oeA
If A (£ Q) isincreasing, then its complement A =  \ A isdecreasing.

4.1 Definition. Given two probability measures pi, i = 1,2, on Q, we
write w1 <g u2 if

1w1(A) < u2(A) foral increasing events A.

Equivalently, 1 <g u2 if andonly if u1(f) < u2(f) for al increasing
functions f : Q — R. Thereisanimportant and useful result, often termed
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Strassen’s theorem, that asserts that measures satisfying 1 <« w2 may be
coupled in a‘pointwise monotone’ manner. Such a statement is valid for
very general spaces (see[173]), but we restrict ourselves hereto the current
context. The proof is omitted, and may be found in many places including
[181, 237].

4.2 Theorem [227]. Let 1 and uo be probability measures on Q. The
following two statements are equivalent.
(@ p1<s p2.
(b) There exists a probability measure v on ©22 such that
v({(mw) i <w}) =1,
and whose marginal measures are w1 and wo.

For w1, wp € , we define the (pointwise) maximum and minimum
configurations by
w1V w2(€) = max{wi(e), w2(e)},

4. i
(43 w1 A w2(€) = min{wi(e), wa(e)},

fore € E. A probability measure u on 2 is called positiveif u(w) > 0for
adlwe Q.

4.4 Theorem (Holley inequality) [140]. Let n1 and w2 be positive prob-
ability measures on 2 satisfying

(45)  p2(w1Vw)pi(wr A w2) > pi(w)p(ws), w1, w2 € Q.
Then g <g p2.

Condition (4.5) isnot necessary for the stochasticinequality, but isequiv-
alent to a stronger property of ‘monotonicity’, see [109, Thm 2.3].

Proof. Themain step isthe proof that 1 and w2 can be‘coupled’ insucha
way that the component with marginal measure 12 lies above (in the sense
of sample realizations) that with marginal measure 1. Thisis achieved by
constructing a certain Markov chain with the coupled measure as unique
invariant measure.

Hereisapreliminary calculation. Let u beapositive probability measure
on . We can construct atime-reversible Markov chain with state space 2
and unique invariant measure . by choosing a suitable generator G satis-
fying the detail ed balance equations. The dynamicsof the chain involvethe
‘switching on or off’ of single components of the current state.

For w € Q and e € E, we define the configurations €, we by

o [o(f) iff#e _{a)(f) if f£e,
(4.6) w(f)_{l ff—e D10  iff=e
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Let G : Q2 — R begivenby

w(we)

(@)’

fordl w € 2,e € E. Set G(w, w') = 0 for al other pairs w, o’ with
o # o'. The diagonal elements are chosen in such away that

4.7) G(we, %) =1, G(0f we) =

ZG(a),a/):O, weQ.
' eQ
It is elementary that
w(w)G(w, ®) = pe)G(', w), w, 0 €Q,

and therefore G generates atime-reversible Markov chain on the state space
Q. Thischainisirreducible (using (4.7)), and therefore possesses a unique
invariant measure u (see[121, Thm 6.5.4]).

We next follow asimilar route for pairsof configurations. Let 11 and o
satisfy the hypotheses of the theorem, and let Sbe the set of all pairs (i, )
of configurationsin Q satisfyingr < w. WedefineH : Sx S— R by

(4.8) H (e, w; 7€, o) = 1,
(4.9) H (7, 0 e, we) = MZ(w:),
w2(w®)

_ halre)  p2(we)

S pa(w®)’

for dl (7w, w) € Sand e € E; al other off-diagona values of H are set to
0. The diagonal terms are chosen in such away that

(4.10) H (7%, 0% e, ©°)

Z Hr, o', o) =0, (7, w) € S.

ARO4
Equation (4.8) specifiesthat, for r € Q2 ande € E, theedgeeisacquired by
s (if it does not already contain it) at rate 1; any edge so acquired is added
asotow if it doesnot already containit. (Here, we speak of aconfiguration
Y containing an edge e if ¥ (e) = 1.) Equation (4.9) specifies that, for
w € Qande e E withw(e) = 1, the edge e is removed from w (and also
from 7 if 7(e) = 1) at the rate given in (4.9). For e with 7 (e) = 1, there
is an additional rate given in (4.10) at which e is removed from x but not
from w. We need to check that this additional rate is indeed non-negative,
and the required inequality,

p2(@®)pa(me) > pa(r® pua(we), T <o,

follows from (and is indeed equivalent to) assumption (4.5).
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Let (Xt, Yi)t=0 be a Markov chain on S with generator H, and set
(Xo, Yo) = (0, 1), whereO (respectively, 1) isthe state of all Os(respectively,
1s). By examination of (4.8)—«4.10), we see that X = (Xt)t>0 isaMarkov
chain with generator given by (4.7) with © = pq, and that Y = (Yoo
arises similarly with u = uo.

Let « be an invariant measure for the paired chain (Xt, Yi)t>0. Since X
and Y have (respective) uniqueinvariant measures 11 and w2, the marginals
of x are u1 and up. We have by construction that «(S) = 1, and « isthe
required ‘coupling’ of w1 and wo.

Let (r, w) € Sbechosen according to the measure . Then

pi(f) =k (f(m) < k(f(w)) = pa(f),

for any increasing function f. Therefore, u1 <g wo. O

4.2 FKG inequality

The FK G inequality for product measures was discovered by Harris [135],
and is often named now after the authors Fortuin, K asteleyn, and Ginibre of
[91] who proved the more general version that is the subject of this section.
See the appendix of [109] for a historical account. Let E be afinite set, and
Q = {0, 1}F asusual.

4.11 Theorem (FKG inequality) [91]. Let © be a positive probability
measure on 2 such that

(412)  p(wrV w2)u(wi A w2) > (w1 u(wr), w1, w2 € Q.
Then p is*positively associated’ in that

(4.13) w(fg) = u(fHu(g)

for all increasing randomvariables f, g : @ — R.

It is explained in [91] how the condition of (strict) positivity can be
removed. Condition (4.12) is sometimes called the ‘ FK G lattice condition’.

Proof. Assume that u satisfies (4.12), and let f and g be increasing func-
tions. By adding aconstant to the function g, we seethat it sufficesto prove
(4.13) under the additional hypothesisthat g isstrictly positive. Assumethe
last holds. Define positive probability measures g and up on Q by g =
and

9(@)pu(w)
Y 9@)p(@)’
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Since g is increasing, the Holley condition (4.5) follows from (4.12). By
the Holley inequality, Theorem 4.4,
pa(f) < pa(f),
whichisto say that
>0 F@g(@)p(w)
2w (@) ()
asrequired. d

> f@)u)

4.3 BK inequality

In the special case of product measure on 2, there is a type of converse
inequality to the FK G inequality, named the BK inequality after van den
Berg and Kesten [35]. Thisis based on a concept of ‘disjoint occurrence’
that we make more precise as follows.
For w € @ and F C E, we define the cylinder event C(w, F) generated
by w on F by
Cw,F)={w eQ:0'(e) =w(e) foral ec F)

= (w(e): e F) x {0, 1}E\F,
We define the event A B asthe set of all w € 2 for which there existsa
set F C E suchthat C(w, F) € AandC(w, E\ F) C B. Thus, Al B is
the set of configurationsw for which thereexist digjoint sets F, G of indices
with the property that: knowledge of w restricted to F (respectively, G)
impliesthat w € A (respectively, w € B). In the special case when A and
B areincreasing, C(w, F) € Aif andonly if wg € A, where
w(e) foreeF,
wF(e) = {
0 fore¢ F.
Thus, inthiscase, ALD B = Ao B, where

Ao B = {w:thereexists F C E suchthat or € A, wg\r € B}.
The set F is permitted to depend on the choice of configuration w.
Three notes about disjoint occurrence:

(4149 AOBC ANB,
(4.15) if Aand B areincreasing, thensois A B (= Ao B),
(4.16) if Alincreasing and B decreasing, then ALl B = AN B.
Let P be the product measure on 2 with local densities pe, € € E, that is

P= H Me,
ecE
where 11e(0) = 1 — pe and j1e(1) = Pe.
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4.17 Theorem (BK inequality) [35]. For increasing subsets A, B of 2,
(4.18) P(Ao B) < P(A)P(B).

It is not known for which non-product measures (4.18) holds. It seems
reasonable, for example, to conjecture that (4.18) holds for the measure Pk
that selectsak-subset of E uniformly at random. It would be very useful to
show that the random-cluster measure ¢p, q on 2 satisfies (4.18) whenever
0 < g < 1, athough we may have to survive with rather less. See Chapter
8, and [109, Sect. 3.9].

The conclusion of the BK inequality is in fact valid for all pairs A, B
of events, regardless of whether or not they are increasing. This is much
harder to prove, and has not yet been as valuable as originally expected in
the analysis of disordered systems.

4.19 Theorem (Reimer inequality) [206]. For A, B C Q,
P(AO B) < P(A)P(B).

Let Aand B beincreasing. By applying Reimer’sinequality to the events
A and B, we obtain by (4.16) that P(A N B) > P(A)P(B). Therefore,
Reimer’'s inequality includes both the FKG and BK inequalities for the
product measure P. The proof of Reimer’s inequality is omitted, see [50,
206].

Proof of Theorem 4.17. We present the ‘simple’ proof of [33, 106, 237].
Those who prefer proofs by induction are directed to [48]. Let1,2,..., N
be an ordering of E. We shall consider the duplicated sample space Q2 x €/,
where @ = Q' = {0, 1}E, with which we associate the product measure
P =P x P. Elementsof Q (respectively, Q') are written as w (respectively,
«'). Let A and B beincreasing subsetsof {0, 1}5. For1 < j < N+ 1and
(w, ') € Q x Q', define the N-vector wj by

wj = ('), 2),....0(j =D, 0()),...,o(N)),

so that the wj interpolate between w; = w and wny1 = o', Let the events
Aj, B of @ x Q" begiven by

A ={wo):wjehA, B={w o) oecB)

Note that:
(@ Ap=AxQ and B =B x @, sothat P(A; o B) = P(Ac B),
(b) Ans1and B aredefined in terms of disjoint subsets of E, so that

P(An+10 B) = P(An41)P(B) = P(A)P(B).
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It thus suffices to show that
(4.20) P(AjoB) <P(Aj;10B), 1<j<N,

and thiswe do, for given j, by conditioning on the valuesof the w (i), «’(i)
forali # j. Supposethese values are given, and classify them asfollows.
There are three cases.

1 Kj o B does not occur when w(j))=d(j)=1

2. AjoBoccurswhenw(j) = '(j) = 0,inwhich case Aj ;1 0 B occurs

aso.

3. Neither of the two cases above hold.
Consider thethird case. Since KJ o B doesnot dependonthevaluew’(j), we
havein this case that Aj o B occursif and only if w(j) = 1, and therefore
the conditional probablllty of AJ o Bis pj. Whenw(j) = 1, edge j is

‘contributing’ to either AJ or B but not both. Replam ng o ( Dby ao'(j),we

find similarly that the conditional probability of A,H o Bisat least P; -

In each of the three cases above, the conditional probability of AJ oBis
no greater than that of Kjﬂ o B, and (4.20) follows. d

4.4 Hoeffding inequality

Let (Yn, 1), n > 0, be amartingale. We can obtain bounds for the tail
of Y, in terms of the sizes of the martingale differences Dy = Yk — Yk—1.
Theseboundsare surprisingly tight, and they have had substantial impact in
variousareas of application, especially those with acombinatorial structure.
We describe such a bound in this section for the case when the Dy are
bounded random variables.

4.21 Theorem (Hoeffding inequality). Let (Yy, £n), n > 0, be a martin-
gale such that |Yx — Yk—1| < Kk (a.s) for all k and some real sequence
(Ky). Then

P(Yn— Yo = X) < exp(—3x?/Ln). x>0,
where Ln = Y p_; K2.

Since Y, isamartingale, so is — Y}, and thus the same bound is valid for
P(Yn — Yo < —X). Suchinequalities are often named after Azuma[22] and
Hoeffding [139].

Theorem 4.21 is one of afamily of inequalities frequently used in prob-
abilistic combinatorics, in what is termed the ‘method of bounded dif-
ferences'. See the discussion in [186]. Its applications are of the fol-
lowing general form. Suppose that we are given N random variables
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X1, X2, ..., XN, and we wish to study the behaviour of some function
Z = Z(X1, Xg,..., XN). For example, the X; might be the sizes of ob-
jects to be packed into bins, and Z the minimum number of bins required
to pack them. Let £, = o(Xq, X2, ..., Xp), and define the martingale
Ynh =E(Z | Fn). Thus, Yo = E(Z) and YN = Z. If the martingale differ-
ences are bounded, Theorem 4.21 provides a bound for the tail probability
P(|Z — E(Z)| > x). We shall see an application of this type at Theorem
11.13, which deals with the chromatic number of random graphs. Further
applications may be found in [121, Sect. 12.2], for example.

Proof. Thefunction g(d) = e¥9 is convex for ¢ > 0, and therefore
(4.22) eV <la-deV+Ia+de’, Id| < 1.

Applying this to a random variable D having mean 0 and satisfying
P(|D| < 1) = 1, weobtain

(4.23) EE@D) <leV +el)<e?’,  y=0

where the final inegquality is shown by a comparison of the coefficients of
the powers y2".
By Markov's inequality,

(4.24) P(Yn — Yo > X) < e PXE(n—Y0)), 6 > 0.
With Dp = Yn — Yo_1,
E(e’(n—Y0)) — (e (Yn-1-Y0)f Dny.
Since Yn_1 — Yp is Fn_1-measurable,
(425 EE@O0 | £y = OO EE P | £y
< 1770 exp(162K 2),

by (4.23) applied to the random variable Dy/Kp. Take expectations of
(4.25) and iterate to obtain

E(e” Y0y < B(&/Yn-17Y0)) exp(362K ) < exp(36°Ln).
Therefore, by (4.24),
P(Yn — Yo > X) < exp(—0x + 26%Ly), 6 > 0.

Letx > 0,andsetd = x/L, (thisisthe valuethat minimizesthe exponent).
Then
P(Yn — Yo = X) < exp(—3x?/Ln), X > 0,

asrequired. d
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4.5 Influence for product measures
LeeN > 1and E = {1,2,..., N}, and write @ = {0, 1}E. Let x bea
probability measure on €2, and A an event (that is, a subset of 2). Two
ways of defining the ‘influence’ of an element e € E on the event A come
to mind. The (conditional) influenceis defined to be

(4.26) Jae) = u(AlwE =1 — u(Alw(e =0).
The absolute influenceis
(4.27) Ia(€) = n(1a(®®) # 1a(we)).

where 14 is the indicator function of A, and w®, we are the configurations
given by (4.6). In avoting analogy, each of N voters has 1 vote, and A
is the set of vote-vectors that result in a given outcome. Then [ a(e) isthe
probability that voter e can influence the outcome.

We make two remarks concerning the above definitions. First, if Ais
increasing,
(4.28) Ia(e) = n(A%) — u(Ae),
where

A={weQ:0®c A, Ac={weQ: weeA.

If, in addition, u is a product measure, then 1a(e) = Ja(e). Note that
influences depend on the underlying measure.

Let ¢p be product measure with density p on Q, and write ¢ = ¢%, the
uniform measure. All logarithms are taken to base 2 until further notice.

There hasbeen extensive study of thelargest (absolute) influence, namely
maXe | a(€), when p isa product measure, and this has been used to obtain
‘sharp threshold’ theorems for the probability ¢p(A) of an increasing event
Aviewed asafunction of p. The principal theoremsaregiveninthissection,

with proofsin the next. The account presented here differs in a number of
respects from the original references.

4.29 Theorem (Influence) [145]. Thereexistsa constant ¢ € (0, co) such
that thefollowing holds. Let N > 1, let E beafinite set with |E| = N, and
let Abeasubsetof Q= {0, 1}E with¢(A) € (0, 1). Then

(4:30) > 1a@®) = co(A) (L~ ¢(A) log[1/ max | a(e)].
ecE

where the reference measureis ¢ = (b%. There exists e € E such that

logN

(4.31) 1A©) 2 CHAL— (AN
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Note that
P(A(L—¢(A) = min{p(A), 1— ¢(A)}.

We indicate at this stage the reason why (4.30) implies (4.31). We may
assumethat m = maxe | a(e) satisfiesm > 0, since otherwise

d(AL—-¢(A) =0
Since
>_la® < Nm,
ecE

we have by (4.30) that

m__AL-9A)
log(l/m) — N '
Inequality (4.31) follows with an amended value of ¢, by the monotonicity
of m/log(1/m) or otherwise.

Such results have applicationsto several topicsincluding random graphs,
randomwalks, and percolation, see[147]. We summarize two such applica-
tions next, and we defer until Section 5.8 an application to site percolation
on the triangular lattice.

I. First-passage percolation. Thisisthetheory of passagetimeson agraph
whose edges have random *travel-times’. Supposewe assign to each edge e
of the d-dimensional cubic lattice LY arandom travel-time Te, the Te being
non-negative and independent with common distribution function F. The
passage time of a path 7 isthe sum of the travel-times of its edges. Given
two vertices u, v, the passage time Ty, is defined as the infimum of the
passage times of the set of paths joining u to v. The main question is to
understand the asymptotic properties of Tp, as|v| — oo. Thismodel for
the time-dependent flow of material was introduced in [131], and has been
studied extensively since.

It is a consequence of the subadditive ergodic theorem that, subject to a
suitable moment condition, the (deterministic) limit

1
= lim =T
My e 0,nv

existsalmost surely. Indeed, the subadditive ergodic theoremwas conceived
explicitly in order to prove such a statement for first-passage percolation.
The constant 1, is called the time constant in direction v. One of the
open problems is to understand the asymptotic behaviour of var(Tg ) as

IWhen N = 1, thereis nothing to prove. Thisisleft asan exercisewhen N > 2.
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|lv] — oo. Various relevant results are known, and one of the best uses
an influence theorem due to Talagrand [231] and related to Theorem 4.29.
Specifically, it is proved in [31] that var(To,) < Clv|/log|v| for some
constant C = C(a, b, d), in the situation when each T is equally likely
to take either of the two positive values a, b. It has been predicted that
var(To.,) ~ [v|%3 whend = 2. Thiswork has been continued in [29].

I1. Voronoi percolation model. This continuum model is constructed asfol-
lows in R2. Let IT be a Poisson process of intensity 1 in R2. With any
u € I1, we associate the ‘til€

Tu={xeR?:|x—ul < |x—vforalv eI}

Two points u, v € II are declared adjacent, written u ~ v, if Ty and
T, share a boundary segment. We now consider site percolation on the
graph IT with this adjacency relation. It waslong believed that the critical
percolation probability of thismodel is % (almost surely, with respect to the
Poisson measure), and thiswas proved by Bollobasand Riordan [46] using a
version of the threshold Theorem 4.82 that is consequent on Theorem 4.29.

Bollobasand Riordan showed also in [47] that asimilar argument leadsto
an approach to the proof that the critical probability of bond percolation on
72 equals % They used Theorem 4.82 in place of Kesten'sexplicit proof of
sharp threshold for this model, see [151, 152]. A “shorter” version of [47]
is presented in Section 5.8 for the case of site percolation on the triangular
lattice.

Wereturnto theinfluencetheorem and itsramifications. Thereare several
useful references concerning influence for product measures, see [92, 93,
145, 147, 150] and their bibliographies.? Theorder of magnitude N~ log N
is the best possible in (4.31), as shown by the following ‘tribes’ example
taken from [30]. A population of N individuals comprisest ‘tribes’ each
of cardinality s = logN — loglogN + «. Each individual votes 1 with
probability % and otherwise 0, and different individual s vote independently
of one another. Let A be the event that there exists a tribe all of whose
membersvote 1. It is easily seen that

1 t
1-PA = <1— 5)
~ e 2 e—1/2°"
2The treatment presented here makes heavy use of the work of the ‘Israeli’ school.
The earlier paper of Russo [213] must not be overlooked, and there are several important

papersof Talagrand [230, 231, 232, 233]. Later approachesto Theorem 4.29 can befound
in [84, 208, 209].
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1\'*1 1
|A(i)=(l—§) > 1

N e—1/2“2—a+1IOLN’
N
The ‘basic’ Theorem 4.29 on the discrete cube = {0, 1}F can be
extended to the ‘ continuum’ cube K = [0, 1] &, and hence to other product
spaces. Westatetheresult for K next. Let A beuniform (L ebesgue) measure
on K. For ameasurable subset A C K, itisusua (see, for example, [51])
to definetheinfluence of e € E on A as

and, for al i,

La(e) = AN,l({w € K : 1a(w) isanon-constant function of a)(e)}).

That is, L a(e) isthe (N — 1)-dimensional Lebesgue measure of the set o_f
al ¥ e [0, 1]F\(® with the property that: both A and its complement A
intersect the ‘fibre’

Fy ={¥} x[0,1]] = {w e K :0(f) = y(f), f#e}.

It is more natural to consider elements 1 for which AN Fy, has Lebesgue
measure strictly between 0 and 1, and thus we define the influence in these
notes by

(4.32) Ia(®) = An—1({y € [0, 25V 10 < 2 (AN Fy) < 1)).

Here and later, when convenient, we write L for k-dimensional Lebesgue
measure. Notethat 1a(e) < L a(e).

4.33 Theorem [51]. There existsa constant ¢ € (0, co) such that the fol-
lowing holds. Let N > 1, let E be a finite set with |[E| = N, and let A be
an increasing subset of the cube K = [0, 1]F with A(A) € (0, 1). Then

(4.34) 2 1A® = c(A)(L—A(A) log[1/2m)],
ecE
wherem = maxe | a(€), and the reference measure on K is Lebesgue mea-
sure . Thereexistse € E such that
(4.35) Ia(€) > CA(A)(1— )\(A))lo%N.

We shall see in Theorem 4.38 that the condition of monotonicity of A
canberemoved. Thefactor ‘2" in (4.34) isinnocent in thefollowing regard.
The inequality isimportant only when mis small, and, for m < % say, we
may removethe ‘2’ and replace ¢ by a smaller positive constant.
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Results similar to those of Theorems 4.29 and 4.33 have been proved in
[100] for certain non-product measures, and all increasing events. Let u be
apositive probability measure on the discrete space 2 = {0, 1}F satisfying
the FK G lattice condition (4.12). For any increasing subset A of Q with
w(A) € (0, 1), we have that

(4.36) Z Ja(®) > cu(A)(1— (M) logll/(2m)],

ecE
where m = maxe Ja(e). Furthermore, as above, there exists e € E such
that
log N
(4.37) IA©) 2 Cu(A(L— u(A) 2=
Note the use of conditional influence Ja(e), with non-product reference
measure w. Indeed, (4.37) canfail for all ewhen Ja isreplaced by I a. The
proof of (4.36) makes use of Theorem 4.33, and is omitted here, see [100,
101].

The domain of Theorem 4.33 can be extended to powers of an arbitrary
probability space, that iswith ([0, 1], A1) replaced by a general probability
space. Let [E| = N andlet X = (2, F, P) be a probability space. We
write XE for the product space of X. Let A € ©F be measurable. The
influence of e € E isgiven asin (4.32) by

la@) =P({y € 2F\® 10 < P(ANFy) < 1)),

with P = PE and F, = {y} x X, the ‘fibre’ of al @ € XF such that
w(f)y=y(f)for f £e.

The following theorem contains two statements: that the influence in-
equalities are valid for general product spaces, and that they hold for non-
increasing events. We shall require a conditionon X = (X, #, P) for the
first of these, and we state this next. The pair (¥, P) generates a mea-
sure ring (see [126, 840] for the relevant definitions). We call this measure
ring separableif it is separable when viewed as a metric space with metric
p(B,B)=P(B A B).3

4.38 Theorem[51,244]. Let X = (X2, ¥, P) beaprobability spacewhose
non-atomic part has a separable measurering. Let N > 1, let E bea finite
setwith |[E| = N, andlet A € =F bemeasurablein the product space X E,
with P(A) € (0, 1). There exists an absolute constant ¢ € (0, co) such that
(4.39) > " 1a(e) = cP(A) (1 - P(A)) log[1/(2m)],

ecE

3A metric spaceis called separableif it possesses a countable dense subset. Added at
reprinting: The condition of separability has been removed, and the proof improved, in
[244].
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wherem = maxe | a(€), and thereferencemeasureisP = PE. Thereexists
e € E with

(4.40) Ia(e) = cP(A)(1— ]P’(A))IO%N.

Of especial interest is the case when £ = {0, 1} and P is Bernoulli
measure with density p. Notethat the atomic part of X isalways separable,
since there can be at most countably many atoms.

4.6 Proofs of influence theorems
This section contains the proofs of the theorems of the last.

Proof of Theorem 4.29. We use a (discrete) Fourier analysis of functions
f : @ — R. Definethe inner product by

(f.9) =¢(fg), f.g:Q—->R,
where ¢ = ¢%,sothat the L2-norm of f isgiven by

Ifll2 = /¢ (f2) = y(f, f).

We call f Boolean if it takes values in the set {0, 1}. Boolean functions
are in one—one correspondence with the power set of E via the relation
f =15 < A If fisBoolean, say f = 14, then

(4.41) 113=0(f%) =¢(f) = $(A).
For F C E, let
Up(@) = [[(-D*® = (-DZeF®@ weQ.
ecF

It can be checked that the functionsug, F C E, form an orthonormal basis
for the function space. Thus, afunction f : @ — R may be expressed in

the form R
f=>" f(Fuk,
FCE
where the so-called Fourie—Walsh coefficients of f are given by
f(F) = (f, ug), F CE.
In particular,
f(@) =¢(f),

and A
(f,oy= > f(FaF),

FCE
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and the latter yields the Parseval relation
(4.42) 1f13=">Y" (P2
FCE

Fourier analysis operates harmoniously with influences as follows. For
f =1aandec E, let
fe(w) = f(w) — f(kew),

where kew is the configuration w with the state of e flipped. Since fe takes
valuesinthe set {—1, 0, +1}, we havethat | fo| = fez. The Fourier—Walsh
coefficients of fe are given by

N 1
fo(F) = (fe.ur) = 3~ o[ (@) = f ke | (-1)/*"F

weR

= Z ZiNf(a,)[(_l)\BﬂF\ — (—DlBAEDFI],

weR

where B = n(w) := {e € E : w(e) = 1} isthe set of w-openindices. Now,

0 ife¢F
_)/BOFI _ (_1)[(BAEDNFI] — { :
(D =D ] 2(—=1)'B"Fl = 2up(w) ifeeF,
so that
(4.43) fu(F) = { 0 Te¢F.
' ST 2f(F) ifeeF.
Theinfluence | (e) = I a(e) isthemean of | fg| = fez, so that, by (4.42),
(4.44) L@ =lflz=4 Y f(F?2
F:ecF
and the total influenceis
(4.45) Y 1@ =4) [FIf(F)Z
ecE FCE

We propose to find an upper bound for the sum ¢(A) = > f(F)2.
From (4.45), wewill extract an upper bound for the contributionsto thissum
from the f(F)2 for large |F|. Thiswill be combined with a corresponding
estimate for small |F| that will be obtained as follows by considering a
re-weighted sum Y f(F)2p2Fl for0 < p < 1.

For w € [1, 00), we define the L*-norm

Iglly = ¢(19I"HYY,  g:Q—R,
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recalling that ||gll,, iS non-decreasing in w. For p € R, let T,g be the
function

T,9= Y a(F)p'FluE,
FCE

so that
IT,gl5= > a(F)?p?Fl.

FCE
When p € [—1, 1], T,g hasaprobabilistic interpretation. For w € €, let
v, = (¥,(e) : e e E) beavector of independent random variables with
e with probability (1
\I/w(e)={w() p. y 5(1+ p),
1—w(e) otherwise.
We claim that

(4.46) Tp9(w) = E(Q(Vo)).

thus explaining why T, is sometimes called the ‘ noise operator’. Equation
(4.46) is proved asfollows. Firgt, for F C E,

E(UF (Vo)) = E(]‘[(—l)“’w@)

ecF
= [[D°@[3+p - 3L -0)]
ecF

= p!Flug (o).

Now, g = Y ¢ §(F)uF, so that

E(Q(V,)) = Z G(FEUF (Vs))

FCE
= > §(F)0'Flup (@) = T,g(w),
FCE

as claimed at (4.46).

The next proposition is pivotal for the proof of the theorem. It is some-
times referred to as the “hypercontractivity’ lemma, and it is related to the
log-Sobolev inequality. Itiscommonly attributed to subsets of Bonami [49],
Gross [125], Beckner [26], each of whom has worked on estimates of this
type. The proof is omitted.

4.47 Proposition. Forg: Q2 — Rand p > 0,
ITogll2 = 1191114 p2-
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LetO < p < 1. Setg = fewhere f = 14, noting that g takesthe values
0, &1 only. Then,

> af(F)?pAF

F.ecF
= Y fe(F)2p?F by (4.43)
FCE
=T, fell3
2 2 .
<| fellirpz = [p(Ifel*™ )]2/(”‘) ) by Proposition 4.47
2 2
= [ felly TPV = 1 @%@+ by (4.44).
Therefore,
(4.48) 1@ = 4 3 FIf(F)2p2F.
ecE FCE

Lett = ¢(A) = f(2). By (4.48),

(4.49) Y 1@ = 202 3 f(F)?
ecE 0<|F|<b
= 4p2b< > fF? —tz),
[FI<b

whereb € (0, co) will be chosen later. By (4.45),
Yol =4 ) f(F)?
ecE [F|>b

which we add to (4.49) to obtain

—2b 2/(14p?) | L
450) P2 1Y 4 bZI(e)

ecE ecE

>4 f(F)?—at?
FCE
=4t(1—t) by (4.42).

We are now ready to prove (4.30). Let m = maxe | (€), notingthatm > 0
since¢ (A) # 0, 1. Theclaimistrivial if m = 1, andweassumethatm < 1.

Then
d 1@ <mBy e,

ecE ecE
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; 1
whence, by (4.50) and the choice p? = 3,

1
(4.51) (me1/3 + B) >l =4atd-t).

ecE

We choose b such that 2°mY/3 = b~1, and it is an easy exercise that b >
Alog(1/m) for someabsolute constant A > 0. With thischoiceof b, (4.30)
follows from (4.51) with ¢ = 2A. Inequality (4.35) follows, as explained
after the statement of the theorem. d

Proof of Theorem 4.33. We follow [92]. The idea of the proof is to ‘dis-
cretize' the cube K and the increasing event A, and to apply Theorem 4.29.

Let k € {1,2,...} to be chosen later, and partition the N-cube K =
[0, 1]E into 2N disjoint smaller cubes each of side-length 27K, These
small cubes are of the form

(452) B() = []lle.le+27),
ecE
where|l = (le : e € E) and each l¢ is a ‘binary decimal’ of the form

le =0.lg1le2---lek witheachle j € {0, 1}. Thereisaspecial case. When
le = 0.11- - - 1, we put the closed interval [le, le + 27¥] into the product of
(4.52). Lebesgue measure A on K induces product measure ¢ with density
%onthespaceQ = {0, 1}kN of 0/1-vectors(lej : j=1,2,...,k e E).
We call each B(l) a‘small cube'.

Let A C K beincreasing. For later convenience, we assume that the
complement A is a closed subset of K. This amounts to reallocating the
‘boundary’ of A to its complement. Since A is increasing, this changes
neither A(A) nor any influence.

We claim that it sufficesto consider events A that are the unions of small
cubes. For a measurable subset A C K, let A be the subset of K that
‘approximates to A, givenby A = Uies B(), where

A={eQ:BlnA£a.

Note that 4 is an increasing subset of the discrete KN-cube Q2. We write
I 4 (e, j) for the influence of the index (e, j) on the subset A C Q under
the measure ¢. The next task is to show that, when replacing A by A, the
measure and influences of A are not greatly changed.

453 Lemma[51]. Inthe above notation,

(4.54) 0<A(A) —A(A) < N27K,
(4.55) 15(6) — 1a(®) < N27%,  ecE.
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Proof. Clearly A € A, whence A(A) < A(A). Let u : K — K bethe
projection mapping that maps (x; : f € E)to (xf —m: f € E), where
m = Mingeg Xg. We have that

(4.56) A(A) — A(A) < |R|27KN,

where R is the set of small cubes that intersect both A and its complement
‘A. Since Aisincreasing, R cannot contain two distinct elementsr, r’ with
w(r) = u(r’). Therefore, |R| isno larger than the number of faces of small
cubeslying in the ‘hyperfaces' of K, that is,

(4.57) IR| < N2K(N-D

Inequality (4.54) follows by (4.56).

Lete € E,andlet K€ = {w € K : w(e) = 1}. The hyperface K€ of
K is the union of ‘small faces' of small cubes. Each such small face L
correspondsto a‘tube’ T (L) comprising small cubesof K, based on L with
axisparallel to the eth direction (see Figure4.1). Such atubehas’last’ face
L and ‘first’ face F = F(L) :=T(F)N{w € K : w(e) = 0}, and we write
B (respectively, Br) for the (unique) small cubewith face L (respectively,
F). Let £ denotethe set of all last faces.

We shall consider the contributionto A := 1;(€) — 1 a(€) made by each
L € «£. Since A is aunion of small cubes, the contribution of L € £ to
| 1(e), denoted & (L), equalseither Oor An—1(L) = 27*(N=D_ Asin (4.32),
the contribution of L to I a(€) is

(4.58) k(L) =an—1({y e L:0<a(ANFy) < 1}).

(Here, Fy, denotesthe fibre associated with (¢ : f € E \ {e}).) Notethat
0 <«k(L) < An_1(L),andwrite A(L) = k(L) — «(L).

Since (4.57) isan upper bound for A, we need consider only L for which
A(L) > 0. Wemay assumethatc (L) = An_1(L), sinceotherwise A(L) =
—k (L) < 0. Under this assumption, it follows that AN B = @ and
AN BL # @. Since Aisincreasing, thereexistse € AN L.

Wemay assumethat « (L) < An—1(L), sinceotherwise A(L) < 0. Since
AN BrF = o, thesubset {y € L : A1(AN Fy) = 0} has dtrictly positive
AN—1-measure. Since A isclosed, thereexists g € AN L.

We adapt the argument leading to (4.57), working within the (N — 1)-
dimensional set K €, to deducethat thetotal contributionto A from all such
L € £ isbounded above by (N — 1)2k(N=2) » 2—k(N-1) < N2k, O

Assume0 <t = A(A) < 1, and let m = maxe | o(€). We may assume
that 0 < m < % since otherwise (4.34) is a triviality. With A given as
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w(e)

Figure4.1. The small boxes B = B(r, s) form the tube T(r). The
region A is shaded.

above for some value of k to be chosen soon, we write { = A(A) and
M = maxe | 4(e). We shall prove below that

(4.59) > 1a(e) = cf(1 - f)log[1/ (2],

ecE
for some absolute constant ¢ > 0. Suppose for the moment that this has
been proved. Lete = e = N27%, andletk = k(N, A) besufficiently large
that the following inequalities hold:

(4.60)
1 1 1
inlit1-1t.1_ - - il
e<mm{2t(1 ), 5 m], IOg(Z(m+e))ZZIOg<2m)’
(4.61) Ne < Zct(1—t)log[1/(2m)].
By Lemma4.53,
(4.62) t—fl<e, M<m+e,

whence, by (4.60),
(4.63)
t—fl<3td-t, m<3i logll/2m)] > Jlog[1/(2m)].
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By Lemma4.53 again,

IRNCEDRRCENS
ecA

ecA

The required inequality follows thus by (4.59), (4.61), and (4.63):
> Iae) = cft(d—t) — |t — f]]log[1/(21)] — Ne

ecA
> fct(1—t)log[1/(2m)].
It suffices therefore to prove (4.59), and we shall henceforth assume that
(4.64) Alisaunion of small cubes.

465 Lemmal51,92]. Foree E,

k
Y lale ) < 21a®.

=1

Proof. Lete € E. Forafixedvectorr = (r1,ro, ..., rn_1) € ({0, 1}%)E\el
consider the ‘tube’ T (r) comprising the union of the small cubes B(r, s)
of (4.52) over the 2K possible valuesin s € {0, 1}X. We see after alittle
thought (see Figure 4.1) that

Late ) =Y (HNTIK, ).
r

where K (r, j) isthe number of unordered pairs S= B(r,s), S' = B(r, 8
of small cubesof T(r)suchthat: SC A,S ¢ A,and|s—s| =271. Since
Aisanincreasing subset of K, we can seethat

K, <21, j=12..k
whence

: 2K 2
Z la(e ]) < WJN = mJN,
j

where_JN isthe number of tubes T (r) that intersect both A and its comple-
ment A. By (4.64),

1
la(e) = mJN,
and the lemmais proved. O

We return to the proof of (4.59). Assumethat m = maxe la(e) < % By
Lemma 4.65,
l4(e j) <2m forale, j.
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By (4.30) applied to the event 4 of the KN-cube €,
> late ) = cat@ -t log[1/(2m)],

ej
where c; is an absolute positive constant andt = A(A). By Lemma 4.65
again,

> la® = zeat(L—t)log[1/2m)],

ecE

asrequired at (4.59). O

Proof of Theorem 4.38. We prove thisin two steps.

I. In the notation of the theorem, there exists a Lebesgue-measurable
subset B of K = [0, 1]F such that: P(A) = A(B), and la(e) >
Ig(e) for al e, where the influences are calculated according to the
appropriate probability measures.

Il. There exists an increasing subset C of K such that A(B) = A(C), and
Ig(e) > Ic(e) for dl e.
The claims of the theorem follow via Theorem 4.33 from these two facts.

A versionof Claim| wasstated in[51] without proof. Weusethemeasure-

space isomorphism theorem, Theorem B of [126, p. 173] (seedso[1, p. 3]
or [199, p. 16]). Let x1, X2, ... be an ordering of the atoms of X, and let
Qi bethe sub-interval [q;, gi+1) of [0, 1], whereq; = 0 and
i—1
G =Y P{xh fori>=2  dw=) PUx).

j=1 j=1

The non-atomic part of X has sample space &' = T \ {x1, X2, ...}, and
total measure 1 — (. By theisomorphism theorem, there exists ameasure-
preserving map w from the o-algebra £’ of ¥’ to the Borel o-algebra of
theinterval [0, 1] endowed with Lebesgue measure A1, satisfying

A
w(AL\ A2) = nAr\ nhAg,

(4.66) © o0
M(U An) = U wAR,
n=1

n=1

for A, € ¥/, where A 2 B means that rM(A A B) = 0. We extend
the domain of n to F by setting 1 ({X;j}) = Qj. In summary, there exists
u:F — B[O, 1] suchthat P(A) = A1(nA) for A € F, and (4.66) holds
for A e F.
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The product o -algebra  E of XF is generated by the class RF of ‘rect-
angles' of theform R = [[..g Aefor Ac € . ForsuchR e RE, let

pER =T 1nAe
ecE

We extend the domain of 1 to the class of countable unions of rectangles

by
nE(UR) =Unr.
i=1 i=1

A union can be broken up in various ways, so this is not well defined.
However, any two such representations differ on a null set, and null sets
play no rolein the current calculation. It can be checked that

(4.67) P(R) = 1(1FR),

for any such union R.

Let A € FE. The set U of finite unions of rectangles is a ring, and
it generates an outer measure that agrees with P on #E. Therefore, for
j = 1, there exists a countable union W of setsin U such that A € W,
and P(W; \ A) < 1/j. ThesetsUn = ('_; Wj, n > 1, form adecreasing
sequence of countable unions of rectangles whose limit U = limp_ oo Up
satisfies AC U and P(U \ A) = 0. For later use, we let

m [e’e}
Unm=|JRnj. where Up=|JR;
j=1 j=1
is arepresentation of Uy, as a countable union of rectangles.

Let Vn = uFUp := U2, 1B Ra j. Notethat Vy, is non-increasing in n
apart from on anull set. By (4.67), B := (pe; Vn Stisfies

A(B) = lim A(xBUn) = lim PU,) = P(A).
n—oo n—oo
We turn now to influences. Let e € E. By Fubini’s theorem, I a(e) =
ly(e). For v € E\® let Fy, = [y} x ¥ bethe‘fibre’ at v, so that
(4.68) lue) =1-39 - 3.
where
3§ =PE\E({y : PUNFy) =a)), a=0,1

We use corresponding notation for the event B inthespace K = [0, 1]E. It
suffices to show that

(4.69) B =3 a=01
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LetO<n<1land
(4.70) Z’,{m ={y:PUnmNFy) >n}
Since Up m is afinite union of rectangles,

PEME (Zy ) = 2BV ({w : iy (uFUnm N Fy) = 1}).
Take the (monotone) limitsasm — oo andn — oo, in that order, to obtain
PRV ({y : PUNFy) =) =25 ({1 a(BN Fo) = m)).

Letn 1 1toobtain J} = J%, andn | Otoobtain1— 33 =1 J8.
Claim | is proved.

Claim Il is proved by an elaboration of the method laid out in [30, 51].
Let B € K beanon-increasing event. For e € E and ¢ = (w(Q) : g #

e) € [0, 1]E\®, we define thefibre F,, asusual by Fy, = (v} x [0, 1]. We
replace B N Fy, by the set

(4.71) B, = { Wixd-y.1 ify>o.
Z if y= 0,

where

(4.72) Y =y) = M(BNFy).

Thus By, isobtained from B by ‘pushing B N Fy, up thefibre' in ameasure-
preserving manner (see Figure4.2). Clearly, MeB = Uw By isincreasing®
in the direction e and, by Fubini’s theorem,

4.73) (MeB) = A(B).
L I — 3
V—BAE, B
e o @

Figure4.2. Inthee/f-plane, we push every B N Fy, asfar rightwards
along the fibre Fy, as possible.

4Exercise: Show that MeB is Lebesgue-measurable.
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We order E in an arbitrary manner, and let
C= (]‘[ Me> B,
ecE

wherethe product isconstructed inthegiven order. By (4.73), A(C) = A(B).
We show that C isincreasing by provingthat: if B isincreasingin direction
f € E,where f £ e, thensois MeB. Itisenoughto work with the reduced
sample space K’ = [0, 1]{¢ "}, asillustrated in Figure 4.2. Suppose that
w, o € K'aresuchthat w(e) = o'(e) and w(f) < o'(f). Then
1l ifwE>1-y,
0 ifwe=<1l-vy,
wherey = y(w(f)) isgiven according to (4.72), with asimilar expression
withw and y replaced by «’ and y’. Since B isassumedincreasinginw( f),
we havethat y < y'. By (4.74), if o € M¢B, then o’ € MeB, whichisto
say that MeB isincreasing in direction f.

Finally, we show that

(4.75) ImMe(T) < IB(T), f e E,

(4.74) o) = |

whence Ic(f) < Ig(f) and the theorem is proved. First, by construction,
Im.B(€) = IB(€). Let f # e. By conditioningonw(g) forg # e, f,

e (f) = AE\{e*f}(kl({w(e) 10 < Mm(MeBNFy) < 1})),
wherev = (w(g) : g # f)and F, = {v} x [0, 1]. We shall show that
(4.76)  r1(fw(®) : 0 < 11(MeBNF,) < 1)

<M({w(e):0<r1(BNF,) < 1}),

and the claim will follow. Inequality (4.76) depends only on w(e), w(f),
and thus we shall make no further reference to the remaining coordinates
w(Q), g # e, f. Henceforth, we write o for w(e) and ¢ for w(f).

With theaid of Figure 4.2, we seethat theleft side of (4.76) equalsw — w,
where

= supf{w : A1 (MeBN F,) < 1},

%)
@.77) w=inf{w: A1(MeBNF,) > 0.

Wemay assumethat w < 1andw > 0, sinceotherwise® = w and (4.76)
istrivial. Let € be positive and small, and let

(4.78) Ac={y  M(BNFy) >1—w—e).
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Since A1(B N Fy) = A1(MeB N Fy), A1(Ac) > Oby (4.77). Let A, =
[0,1] x Ac. We now estimate the two-dimensional Lebesgue measure
X2(B N A)) intwo ways:

22(BNA) > 1(A)d—w—€)  by(478),
12BN A) < A(A) (o : A(BNFy,) > 0)),
whence Dg = {w : A1(BN F,) > 0} satisfies

21(Do) > limM[l—w —€] =1-w.
€l0

By asimilar argument, D1 = {w : A1(BN F,) = 1} satisfies
r(Dp) <= 1-w.
Forw e Do\ D1,0 < A1 (BN F,) < 1, sothat
lg(€) > 21(Do \ D1) > @ — w,
and (4.75) follows. O

4.7 Russo’'sformulaand sharp thresholds
Let ¢p denote product measure with density p on the finite product space
Q = {0, 1}E.

4.79 Theorem (Russo’'sformula). For any event A C Q,

dipcﬁp(A) = [¢p(A®) — p(Ae)].
ecE

Russo’s formula, or its equivalent, has been discovered by a number
of authors. See, for example, [24, 184, 212]. The element e € E is
called pivotal for the event A if the occurrence or not of A depends on
thestate of e, that is, if 1a(we) # 1a(0®). When Aisincreasing, the above
summation equals ) 1 a(e) where the influence 1 a(e) is given in (4.27).
Thatis, Russo’'sformulastatesthat ¢|’O(A) equal sthe mean number of pivotal
elementsof E.

Proof. Thisis standard, see for example [106]. Since

Pp(A) = 1a(@)¢p(),
it is elementary that

d _ n@)]| N = [n()]
(4.80) d—p¢p(A>—a§z( o i-p )1A<w)¢p<w),
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where n(w) = {e € E: w(e) = 1} and N = |E|. Let 1¢ be theindicator
function that e is open. Since ¢p(le) = pforal ec E, and || = Y ¢ Le,

d
Pl - p)d—p¢p(A) = ¢p([Inl — PN]1a)

= [¢p(leln) — ¢p(le)pp(1n)].

ecE
The summand equals

PPp(A%) — p[Pdp(A%) + (1 — P)gp(Ae)],
and the formulais proved. O

Let A be an increasing subset of Q@ = {0, 1}F that is non-trivial in that
A # @, Q. Thefunction f(p) = ¢p(A) is non-decreasing with f(0) =0
and f (1) = 1. Thenext theoremisanimmediate consequenceof Theorems
4.38 and 4.79 (or of Exercise 4.13).

4.81 Theorem [231]. Thereexistsaconstantc > 0 suchthat thefollowing
holds. Let A be an increasing subset of Q with A # @, Q. For p € (0, 1),

d
d—p¢>p(A) > Chpp(A)(1— ¢p(A)) log[1/(2 max la(e)],

where | A(e) isthe influence of e on A with respect to the measure ¢p.

Theorem 4.81 takes an especially simple form when A has a certain
property of symmetry. In such acase, thefollowing sharp-threshold theorem
implies that f(p) = ¢p(A) increases from (near) O to (near) 1 over an
interval of p-valueswith length of order not exceeding 1/ log N.

Let IT be the group of permutations of E. Any = € II acts on Q by
Tw = (w(me) : € € E). We say that a subgroup 4 of IT acts transitively
on E if, for &l pairs j, k € E, thereexistsa € 4 with oj = k.

Let A beasubgroup of I1. A probability measure ¢ on (2, ) iscalled
A-invariant if ¢ (w) = ¢(aw) foral o € A. Anevent A € ¥ iscalled
A-invariantif A = a Aforall ¢ € . Itiseasily seenthat, for any subgroup
A, ¢p is A-invariant.

4.82 Theorem (Sharp threshold) [93]. Thereexistsaconstant ¢ satisfying
¢ € (0, o0) such that the following holds. Let N = |E| > 1. Let Ae F
be an increasing event, and suppose there exists a subgroup 4 of IT acting
transitively on E such that Ais A-invariant. Then

d
(4.83) d—p¢p(A) > Chpp(A)(1— ¢p(A)) logN, pe (1.
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Proof. We show first that the influences | o(e) are constant for e € E. Let
e, f € E,andfinda € A suchthat ae = f. Under the given conditions,

Pp(A. 1t =1 = ¢p@)li (@) = Y pplaw)le(aw)

weA weA
=Y ¢p@)le(@) = ¢p(A, Lle=1),
' eA

where 14 is the indicator function that w(g) = 1. On setting A = Q,
we deduce that ¢p(1f = 1) = ¢p(le = 1). On dividing, we obtain that
dp(A | 1f =1 = ¢p(A| 1le = 1). A similar equality holds with 1
replaced by 0, and therefore 1 a(€) = I a(f).
It follows that
> 1a(f) = Nlace).

feE

By Theorem 4.38 applied to the product space (2, ¥, ¢p), theright sideis
at least cop(A) (1 — ¢p(A)) log N, and (4.83) is aconsequence of Theorem
4.79. O

Lete € (O, %) and let A be increasing and non-trivial. Under the condi-
tions of Theorem 4.82, ¢p(A) increases from € to 1 — € over an interval of
valuesof p having length of order not exceeding 1/ log N. Thisamountsto
aquantification of the so-called S-shape results described and cited in [ 106,
Sect. 2.5]. An early step in the direction of sharp thresholds was taken by
Russo [213] (see dso [231]), but without the quantification of log N.

Essentially the same conclusions hold for a family {up : p € (0, 1)}
of probability measures given as follows in terms of a positive measure
satisfying the FK G lattice condition. For p € (0, 1), let 1., be given by

1
484)  pp(@) = Z—(]"[ P (L — p)l‘“@)u(w), weQ,

P NecE
where Z, is chosen in such away that ip is a probability measure. It is
easy to check that each 1., satisfies the FKG lattice condition. It turns out

that, for an increasing event A £ @, Q,

d Cép
(4.85) d—pup(A) )

Tp)up(A)(l — up(A) log[1/(2 max Jae)],

where
&p = rer;ig[up(w(e) = Dup(w(e) = 0)].

Theproof usesinequality (4.36), see[100, 101]. Thisextension of Theorem
4.81 does not appear to have been noted before. 1t may be used in the study
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of the random-cluster model, and of the Ising model with external field (see
[101]).

A dlight variant of Theorem 4.82 isvalid for measures ¢p, given by (4.84),
with the positive probability measure u satisfying: u satisfies the FKG
lattice condition, and p is A-invariant. See (4.85) and [100, 109].

From amongst the issues arising from the sharp-threshold Theorem 4.82,
we identify two. First, to what degree is information about the group +4
relevant to the sharpness of the threshold? Secondly, what can be said when
p = pn tendsto 0 as N — oo. The reader is referred to [147] for some
answers to these questions.

4.8 Exercises

4.1 Let Xn, Yp € L2(Q, F, P) besuch that Xn — X, Yn — Y in L2, Show
that XnYn — XY in L1, [Reminder: LP isthe set of random variables Z with
E(1Z|P) < oo, and Zn — Zin LPif E(J]Z, — Z|P) — 0. You may use any
standard fact such as the Cauchy—Schwarz inequality.]

4.2 [135] Let Pp be the product measure on the space {0, 1}" with density p.
Show by induction on n that P, satisfies the Harris-FK G inequality, which is to
say that Pp(AN B) > Pp(A)Pp(B) for any pair A, B of increasing events.

4.3 (continuation) Consider bond percolation on the square lattice Z2. Let X
and Y be increasing functions on the sample space, such that Ep(X?), Ep(Y?) <
oo. Show that X and Y are positively correlated in that E(XY) > E(X)E(Y).

4.4 Coupling.

() Take 2 = [0, 1], with the Borel o-field and Lebesgue measure P. For
any distribution function F, define arandom variable Zg on 2 by

ZE(w) =inf{z:w < F(2)}, w € Q.

Prove that
P(Zr <2) =P([0, F(2)]) = F(2),
whence Zg has distribution function F.

(b) Forreal-valued random variables X, Y, wewrite X <g Y if P(X < u) >
P(Y < u) forall u. Show that X <4 Y if and only if there exist random
variables X', Y’ on , with the same respective distributions as X and
Y, suchthat P(X’ < Y’) = 1.

4.5 [109] Let u be a positive probability measure on the finite product space
Q= {0, 1E.
(@) Show that n satisfiesthe FK G lattice condition

w1V o)pu(w1 A w2) = plopp(w?), w1, w2 € K,

if and only if thisinequality holdsfor al pairswq , w2 that differ on exactly
two elements of E.
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(b) Show that the FK G lattice condition is equivalent to the statement that w
is monotone, in that, for e € E,

fe &) =pu(w@=1wo(f)=£,(f)for f #£e)

is non-decreasing in & € {0, 1}E\(€},
4.6 [109] Let uq, uo be positive probability measures on the finite product
Q = {0, 1}E. Assume that they satisfy

u(w1 vV w)pui(wi A w2) = pi(wp)uz(wz),

for al pairs w1, wp € Q that differ on exactly one element of E, and in addition
that either 11 or up satisfies the FK G lattice condition. Show that o >g 1.
4.7 Let X1, X2, ... beindependent Bernoulli random variableswith parameter
p, and Sy = X1+ Xo2 + - -+ + Xp. Show by Hoeffding's inequality or otherwise
that
P(ISh —np| = xJ/N) < 2exp(—3x%/m?), x>0,

wherem = max{p, 1 — p}.

4.8 Let Gp, p betherandom graph with vertex set V = {1, 2, . .., n} obtained
by joining each pair of distinct vertices by an edge with probability p (different
pairs are joined independently). Show that the chromatic number xn p satisfies

P(Ixn.p — Exn.pl = X) < 2exp(—3x%/n), x> 0.

4.9 Russo’s formula. Let X be arandom variable on the finite sample space
Q = {0, 1}F. Show that

d

3B =D Ep(deX),
P ecE

where e X () = X (w®) — X(we), and w® (respectively, we) is the configuration
obtained from w by replacing w (e) by 1 (respectively, 0).

Let A beanincreasing event, with indicator function 1 5. An edgeeiscalled
pivotal for the event A in the configuration w if del o(w) = 1. Show that the
derivative of Pp(A) equalsthe mean number of pivotal edgesfor A. Find arelated
formula for the second derivative of Pp(A).

What can you show for the third derivative, and so on?

4.10 [100] Show that every increasing subset of the cube [0, 1]V is Lebesgue-
measurable.

4.11 Heads turn up with probability p on each of N coin flips. Let A be
an increasing event, and suppose there exists a subgroup 4 of permutations of
{1,2,..., N} acting transitively, such that A is A-invariant. Let pc be the value
of p suchthat Pp(A) = % Show that there exists an absolute constant ¢ > 0 such
that

Pp(A) > 1— N"P=P)  p>p
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with asimilar inequality for p < pc.
4.12 Let u be a positive measure on © = {0, 1}E satisfying the FKG lattice
condition. For p € (0, 1), let 1.y be the probability measure given by

1
fip(w) = Z—(H p?©® 1 - p)l"”(e)>u(w), we Q.
P N\ecE

Let A be an increasing event. Show that there exists an absolute constant ¢ > 0
such that

Ipy (AL — pupy(A)] < ABP2=PD 0 < p < pp < 1,

where
B= inf {&} , &p= min[up(a)(e) = Dup(w(e) = o)},
pe(p1.p2) L PL—p) ecE
and A satisfies
2maxJa(®) <4,  eeE, pe(py, P,
ecE

with Ja(e) the conditional influence of e on A.

4.13 Let ¢p betheproduct measureon @ = {0, 1}E withdensity p € (0, 1), and
let Abeanincreasing subset of Q2. Apply theinfluence theorem for the continuous
cube [0, 1]E in order to obtain the corresponding inequality for the pair ép, A
That is, use Theorem 4.33 to prove (4.30) with ¢ replaced by ¢p.
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Further percolation

The subcritical and supercritical phases of percolation are charac-
terized respectively by the absence and presence of an infinite open
cluster. Connection probabilities decay exponentially when p < pc,
and there is a unique infinite cluster when p > pc. Thereis a
power-law singularity at the point of phase transition. It is shown
that pc = % for bond percolation on the square lattice. The Russo—
Seymour-Welsh (RSW) method is described for site percolation on
thetriangular lattice, and thisleadsto astatement and proof of Cardy’s
formula.

5.1 Subcritical phase

In language borrowed from the theory of branching processes, a percolation
processis termed subcritical if p < pc, and supercritical if p > pc.

In the subcritical phase, al open clusters are (almost surely) finite. The
chance of along-range connection is small, and it approaches zero as the
distance between the endpoints diverges. The processis considered to be
‘disordered’, and the probabilities of long-range connectivities tend to zero
exponentially in the distance. Exponential decay may be proved by ele-
mentary means for sufficiently small p, as in the proof of Theorem 3.2,
for example. It is quite another matter to prove exponential decay for al
p < pc, and thiswas achieved for percolation by Aizenman and Barsky [6]
and Menshikov [189, 190] around 1986.

The methods of Sections 5.1-5.4 are fairly robust with respect to choice
of process and lattice. For concreteness, we consider bond percolation on
LY with d > 2. Thefirst principal result isthe following theorem, in which
A(n) =[—n,n]9and dA(N) = A(N)\ A(n—1).

5.1 Theorem [6, 189, 190]. Thereexistsy (p), satisfying ¥ (p) > 0when
0 < p < pe, suchthat

(5.2) Pp(0 <> dA(N)) < e (P, n>1
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82 Further percolation

The reader is referred to [106] for a full account of this important the-
orem. The two proofs of Aizenman-Barsky and Menshikov have some
interesting similarities, while differing in fundamental ways. An outline
of Menshikov’s proof is presented later in this section. The Aizenman—
Barsky proof proceeds via an intermediate result, namely the following of
Hammersley [128]. Recall the open cluster C at the origin.

5.3 Theorem [128]. Suppose that x (p) = Ep|C| < oo. There exists
o (p) > 0 such that

(5.4) Pp(0 < dA(M) <e™®  n>1

Seen in the light of Theorem 5.1, we may take the condition x (p) < oo
as a characterization of the subcritical phase. It is not difficult to see, using
subadditivity, that the limit of n=1logP,(0 <> dA(n)) existsasn — oo.
See[106, Thm 6.10].

Proof. Let x € dA(n), and let 7p(0, X) = Pp(0 < X) be the probability
that there exists an open path of LY joining the origin to x. Let R, be the
number of verticesx € 9 A(n) with this property, so that the mean value of
R, is

(5.5) Ep(R) = Y 7p(0.x).
xedA(n)
Note that
(5.6) D Ep(Ry =Y > p(0.%)
n=0 n=0xe€dA(n)
=) 1p(0.%)
xezd

=Epl{x € 79:0< X} = x(p).

If there exists an open path from the origin to some vertex of 9 A(m+ k),
thenthereexistsavertex x in 3 A (m) that is connected by disjoint open paths
both to the origin and to a vertex on the surface of thetranslate 9 A (k, X) =
X + dA(K) (seeFigure 5.1). By the BK inequality,

(5.7)
Pp(0 <> dA(M+K)) < Z Pp(0 <> X)Pp(X <> X + dA(K))
xed A(m)

= Z p(0, X)Pp(0 <> dA(K))
XedA(m)
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A
dA(M+ k)

~ dA(m)

T
(‘\_,

\_—1

Figure5.1. Thevertex x isjoined by disjoint open paths to the origin
and to the surface of the trandate A (k, X) = x + A(K), indicated by the
dashed lines.

by trand ation-invariance. Therefore,
(5.8) Pp(0 < dA(M+K)) < Ep(Rn)Pp(0 <> dA(K)), m, k > 1.

Whereas the BK inequality makes this calculation simple, Hammersley
[128] employed a more elaborate argument by conditioning.

Let p besuchthat x(p) < oo, sothat Y i_oEp(Rm) < oo from (5.6).
Then Ep(Rm) — 0asm — oo, and we may choose m such that n =
Ep(Rm) satisfiesn < 1. Let n be apositive integer and write n = mr + s,
wherer and s are non-negativeintegersand 0 < s < m. Then

Pp(0 < dA(N)) < Pp(0 < dA(Mr)) sincen > mr
< by iteration of (5.8)
<y~ it/m sincen < m(r + 1),

which provides an exponentially decaying bound of the form of (5.4), valid
for n > m. Itisleft asan exerciseto extend theinequality ton <m. [
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Outline proof of Theorem5.1. Thefull proof can befoundin[105, 106, 190,

237). Let S(n) bethe‘diamond’ S(n) = {x € Z9 : §(0, x) < n} containing

al points within graph-theoretic distance n of the origin, and write Ay =

{0 <> 9S(n)}. We are concerned with the probabilities gp(n) = Pp(An).
By Russo’s formula, Theorem 4.79,

(5.9 g;o(n) = Ep(Nn),

where N, isthe number of pivotal edgesfor Ay, that is, the number of edges
e for which 1a(w®) # 1a(we). By asimple calculation,

1 1
(5.10) g;)(n) = BEp(anAn) = BEp(Nn | An)gp(n),

which may be integrated to obtain

£ 1
(5.11) 0« (N) = gg(n) exp (—/ BEp(Nn | An)dp)

B
= gg(n) PXD(—/ Ep(Nn | An)dp>,

where0 < o < 8 < 1. Thevast mgjority of thework in the proof isdevoted
to showing that Ep(Nn | An) growsat least linearly in n when p < pc, and
the conclusion of the theorem then follows immediately.

The rough argument is as follows. Let p < pe, so that Pp(An) — Oas
n — oo. Incaculating Ep(N, | An), we are conditioning on an event of
diminishing probability, and thus it is feasible that there are many pivotal
edges of A,. Thiswill be proved by bounding (above) the mean distance
between consecutive pivotal edges, and then applying a version of Wald's
equation. The BK inequality, Theorem 4.17, plays an important role.

Suppose that A, occurs, and denote by e1, e, ... , en the pivotal edges
for An inthe order in which they are encountered when building the cluster
fromtheorigin. Itiseasily seenthat al open paths from the originto 9 S(n)
traverseevery €j. Furthermore, asillustrated in Figure 5.2, there must exist
at least two edge-disjoint paths from the second endpoint of each g (in the
above ordering) to thefirst of gj ;1.

Let M = max{k : Ak occurs}, so that

Pp(M > K) = gp(k) — 0 ask — oo.
The key inequality states that
(5.12) Pp(Nn = k| Ay) = P(M1+ M2+ -+ Mg < n—Kk),
where the M; are independent copies of M. This is proved using the BK
inequality, using the above observation concerning disjoint paths between
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as(n) ® [ ]

Figure5.2. Assumethat 0 <> dS(n). For any consecutive pair €, €j 1
of pivotal edges, taken in the order of traversal from 0 to 3 S(n), there
must exist at |east two edge-digoint open pathsjoining the second vertex
of g and thefirst of gj ;1.

consecutive pivotal edges. The proof is omitted here. By (5.12),
(5.13) Pp(Nn = k| Aq) = P(M3 + My + - + My < n),

where M{' = 1+ min{M;, n}. Summing (5.13) over k, we obtain

o0
(514)  Ep(Nn|An) =Y P(Mj+Mj+---+ My <n)
k=1

o
=Y Pp(K 2 k+1) =E(K) - 1,
k=1
where K = minfk : S > n}and S = M; + M, +--- + M. By Wald's
equation,
n < E(S) = E(K)E(My),
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whence
n n

n
E(M) ~ 1+Emin{Mg,n) Y1 o0p()
In summary, this shows that

E(K) >

n
_ — ]_7
> o9p()
Inequality (5.15) may befed into (5.10) to obtain adifferential inequality
for the gp(k). By a careful analysis of the latter inequality, we obtain that
Ep(Nn | An) growsat least linearly with n whenever psatisfiesO < p < pc.

Thisstepisneither short nor easy, but it isconceptually straightforward, and
it completes the proof. d

(5.15) Ep(Nn | An) > O<p<l

5.2 Supercritical phase

Thecritical value pcisthevalueof pabovewhich the percolation probability
0 (p) becomes strictly positive. It is widely believed that 6(pc) = 0, and
thisis perhaps the major conjecture of the subject.

5.16 Conjecture. For percolation on L9 with d > 2, it is the case that
0(pc) = 0.

It is known that 0(p;) = 0 when either d = 2 (by results of [135], see
Theorem 5.33) or d > 19 (by the lace expansion of [132, 133]). Theclaim
is believed to be canonical of percolation models on all lattices and in all
dimensions.

Suppose now that p > pe, sothat 6(p) > 0. What can be said about the
number N of infinite open clusters? Sincetheevent {N > 1} istranslation-
invariant, it istrivial under the product measure IP, (see Exercise 5.8). Now,

Pp(N > 1) > 6(p) > 0,

whence
Pp(N>1 =1, P> Pe.

We shall see in the forthcoming Theorem 5.22 that Pp(N = 1) = 1 when-
ever 0(p) > 0, whichisto say that there existsauniqueinfinite open cluster
throughout the supercritical phase.

A supercritical percolation process in two dimensions may be studied
in either of two ways. The first of these is by duality. Consider bond
percolation on L2 with density p. The dual process (as in the proof of
the upper bound of Theorem 3.2) is bond percolation with density 1 — p.
We shall see in Theorem 5.33 that the self-dual point p = % is aso the
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critical point. Thus, the dual of a supercritical process is subcritical, and
thisenablesastudy of supercritical percolationon 2. A similar argumentis
valid for certain other lattices, athough the self-duality of the square lattice
is special.

While duality is the technique for studying supercritical percolation in
two dimensions, the process may also be studied by the block argument
that follows. The block method was devised expressly for three and more
dimensionsin the hopethat, amongst other things, it would imply the claim
of Conjecture 5.16. Block arguments are a work-horse of the theory of
general interacting systems.

We assume henceforththat d > 3andthat pissuchthat 6(p) > 0O; under
thishypothesis, we wish to gain some control of the geometry of theinfinite
open paths. The main result is the following, of which an outline proof is
included later in the section. Let A € 79, and write pc(A) for the critical
probability of bond percolation on the subgraph of 19 induced by A. Thus,
for example, pc = pe(Z9). Recall that A (k) = [—k, k]9.

5.17 Theorem[115]. Letd > 3. If F isan infinite connected subset of Zd
with pc(F) < 1, then for each > 0 there exists an integer k such that

Pc(2kF + A(K) < pc+ 1.

Thatis, forany set F sufficiently largethat pc(F) < 1, wemay ‘fatten’ F
to aset having critical probability as closeto pc asrequired. One particular
application of this theorem is to the limit of dlab critical probabilities, and
we elaborate on this next.

Many resultshave been proved for subcritical percolation under the*finite
susceptibility’ hypothesisthat x (p) < co. The validity of this hypothesis
for p < pcisimplied by Theorem 5.1. Similarly, several important results
for supercritical percolation have been proved under the hypothesis that
‘percolation occursin slabs'. The two-dimensional slab Fy of thickness 2k
isthe set

Fi = 2% x [k K972 = (2% x {0}972) + A(K),
with critical probability pe(F). Since Fx € Fxr1 € Z9, the decreas-

ing limit pc(F) = limk_ o pc(Fk) exists and satisfies pc(F) > pc. The
hypothesis of ‘ percolation in slabs’ isthat p > pc(F). By Theorem 5.17,

(5.18) lim pe(Fo) = pe.
k— o0
One of the best examples of the use of ‘ slab percolation’ isthe following
estimate of the extent of a finite open cluster. It asserts the exponential

decay of a‘truncated’ connectivity function whend > 3. A similar result
may be proved by duality for d = 2.
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Figure5.3. Images of the Wulff crystal in two dimensions. These are
in fact images created by numerical simulation of the Ising model, but
the general features are similar to those of percolation. The simulations
were for finite time, and the images are therefore only approximations
to the true crystals. The pictures are 1024 pixels square, and the Ising
inverse-temperaturesare g = %, %. The corresponding random-cluster
modelshaveq = 2and p= 1 — e=%/3,1 — e=10/11 g that the right-
hand pictureis closer to criticality than the | eft.

5.19 Theorem [65]. Letd > 3. Thelimit
1
o(p) = lim {—— logPp(0 <> dA(N), |C| < oo)}
n— o0 n

exists. Furthermoreo (p) > Oif p > pc.

Weturn briefly to adiscussion of the so-called ‘Wulff crystal’, illustrated
in Figure 5.3. Much attention has been paid to the sizes and shapes of
clusters formed in models of statistical mechanics. When a cluster C is
infinite with a strictly positive probability, but is constrained to have some
large finite size n, then C is said to form alarge ‘droplet’. The asymptotic
shape of such adroplet asn — oo is prescribed in general terms by the
theory of the so-called Wulff crystal, seethe original paper [243] of Wulff.
Specializing to percolation, we ask for properties of the open cluster C at
the origin, conditioned on the event {|C| = n}.

The study of the Wulff crystal is bound up with the law of the volume of
afinite cluster. This hasatail that is ‘ quenched exponential’,

(5.20) Pp(IC| = n) ~ exp(—pn(@-D/),
where p = p(p) € (0, oo) for p > pc, and ~ isto be interpreted in terms
of exponential asymptotics. The explanation for the curious exponent is as
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follows. The‘most economic’ way to createalargefinite cluster istofind a
region R containing an open connected component D of size n, satisfying
D < oo, and then to cut al connections leaving R. Since p > pe, such
regions R exist with |R| (respectively, |0 R|) having order n (respectively,
n@-1/d) and the ‘cost’ of the construction is exponential in [ R|.

The above argument yields alower bound for Py (|C| = n) of quenched-
exponential type, but considerably more work is required to show the exact
asymptotic of (5.20), and indeed one obtainsmore. The (conditional) shape
of Cn~/9 convergesas n — oo to the solution of a certain variational
problem, and the asymptotic region is termed the *Wulff crystal’ for the
model. Thisisnot too hard to makerigorouswhen d = 2, sincethe external
boundary of C isthen a closed curve. Serious technical difficulties arise
when pursuing this programme when d > 3. See [60] for an account and a
bibliography.

Outline proof of Theorem 5.19. The existence of the limit is an exercise
in subadditivity of a standard type, although with some complications in
this case (see [64, 106]). We sketch here a proof of the important estimate
o(p) > 0.

Let S bethe (d — 1)-dimensional slab

Sc=[0,K x z4-1.

Since p > pc, we have by Theorem 5.17 that p > pc(S) for somek, and
we choosek accordingly. Let Hy, bethe hyperplane of vertices x of LY with
X1 = n. It sufficesto prove that

(5.21) Pp(0 <> Hy, [C| < 00) <e 7"
for somey = y(p) > 0. Define the dlabs
Ti={xezZd:(i—-Dk<xi<ikl, 1<i < [n/kl.

Any path from O to H,, traverses each T;. Since p > p¢(S), each dab
contains (almost surely) aninfinite open cluster (see Figure5.4). If 0 <> Hp
and |C| < oo, thenall pathsfromOto H, must evadeall such clusters. There
are |n/k] slabsto traverse, and apriceis paid for each. Modulo atouch of
rigour, thisimplies that

Pp(0 < Hn, |C| < 00) < [1— 6(p)]""VX,

where
Ok(p) =Pp(0 < 0 in§) > 0.

Theinequality o (p) > 0isproved. 0
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\ Hak

"

T T2 T3

Figure5.4. All paths from the origin to Hgy traverse the regions T;,
i=123.

Outline proof of Theorem 5.17. The full proof can be found in [106, 115].
For simplicity, wetake F = 72 x {0}9-2, so that

2kF + A(k) = 72 x [—k, K972,

There are two main stepsin the proof. In thefirst, we show the existence of
long finite paths. In the second, we show how to take such finite paths and
build an infinite cluster in aslab.

The principal parts of the first step are as follows. Let p be such that
o(p) > 0.

1. Lete > 0. Sinced(p) > 0, there exists m such that

Pp(A(M) <> 00) > 1 —e.

[This holds since there exists, almost surely, an infinite open cluster.]

2. Letn > 2m, say, and let k > 1. We may choose n sufficiently large
that, with probability at least 1 — 2¢, A(m) isjoined to at least k points
indaA(n). [If, for somek, thisfails for unbounded n, then there exists
N > msuchthat A(m) <54 dA(N).]

3. By choosing k sufficiently large, we may ensure that, with probability
at least 1 — 3¢, A(m) is joined to some point of dA(n), which is
itself connected to a copy of A(m), lying ‘on’ the surface 9 A(n) and
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Figure55. Anillustration of the event that the block centred at the
origin is open. Each black square is a seed.

every edge of which is open. [We may choose k sufficiently large
that there are many non-overlapping copies of A(m) in the correct
positions, indeed sufficiently many that, with high probability, oneis
totally open.]

4. The open copy of A(m), constructed above, may be used as a ‘ seed’
for iterating the above construction. When doing this, we shall need
some control over where the seed is placed. It may be shown that
every face of 3 A (n) contains (with large probability) a point adjacent
to some seed, and indeed many such points. See Figure 5.5. [Thereis
sufficient symmetry to deduce this by the FKG inequality.]

Aboveisthe schemefor constructing long finite paths, and we turn to the

second step.

5. This construction is now iterated. At each stage there is a certain
(small) probability of failure. In order that there be a strictly positive
probability of an infinite sequence of successes, we iterate in two ‘in-
dependent’ directions. With care, we may show that the construction
dominates a certain supercritical site percolation process on L2.

6. We wish to deduce that an infinite sequence of successes entails an
infinite open path of L9 within the corresponding slab. There are two
difficulties with this. First, since we do not have total control of the
positions of the seeds, the actual pathin L9 may leave every slab. This
may be overcomeby aprocessof ‘ steering’, inwhich, at each stage, we
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choose aseed in such aposition asto compensatefor earlier deviations
in space.

7. A greater problem is that, in iterating the construction, we carry with
usamixture of ‘positive’ and ‘ negative’ information (of the form that
‘certain paths exist’ and ‘others do not’). In combining events, we
cannot usethe FK G inequality. Thepractical difficulty isthat, although
we may have an infinite sequence of successes, therewill generally be
breaks in any corresponding open route to co. This is overcome by
sprinkling down a few more open edges, that is, by working at edge-
density p + § where § > 0, rather than at density p.

In conclusion, we find that, if 6(p) > 0 and § > 0, then there exists,
with large probability, an infinite (p + §)-open path in a slab of the form
Tk = Z2 x [—k, K]9-2 for sufficiently large k. The claim of the theorem
follows.

There are many details to be considered in carrying out the above pro-
gramme, and these are omitted here. O

5.3 Uniqueness of the infinite cluster

The principal result of this section is the following: for any value of p for
which 8(p) > 0, there exists (almost surely) a unigque infinite open cluster.
Let N = N(w) be the number of infinite open clusters.

5.22 Theorem [12]. If6(p) > O,thenPp(N =1) = 1.

A similar conclusion holds for more general probability measures. The
two principal ingredients of the generalization are the translation-invariance
of the measure, and the so-called ‘finite-energy property’ that states that,
conditional on the states of all edges except e, say, the state of e is O (re-
spectively, 1) with astrictly positive (conditional) probability.

Proof. We follow [55]. The claim is trivia if p = 0, 1, and we assume
henceforththat 0 < p < 1. Let S = S(n) be the ‘diamond’ S(n) =
{x € 79 : 5(0,x) < n}, and let Es be the set of edges of L9 joining
pairs of verticesin S. We write Ns(0) (respectively, Ns(1)) for the total
number of infinite open clusters when all edges in Es are declared to be
closed (respectively, open). Finaly, Ms denotes the number of infinite
open clustersthat intersect S.

The sample space 2 = {0, 1}]Ed is a product space with a natural family
of trandations, and IPp is a product measure on 2. Since N is atranslation-
invariant function on €2, it is almost surely constant (see Exercise 5.8):

(5.23)  3k=k(p) €{0,1,2,...} U {oc} suchthat Py(N = k) = 1.
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Next we show that the k in (5.23) necessarily satisfies k € {0, 1, oo}.
Suppose that (5.23) holds with k < oco. Since every configuration on Eg
hasastrictly positive probability, it follows by the a most-sure constantness
of N that

Pp(Ns(O) = Ns(1) = k) =1

Now Ns(0) = Ns(1) if and only if S intersects at most one infinite open
cluster (this is where we use the assumption that k < oo), and therefore

Pp(Ms > 2) = 0.

Clearly, Mg isnon-decreasingin S = S(n), and Mgy — N asn — oo.
Therefore,

(5.24) 0= Pp(Msy = 2) — Pp(N > 2),

whichistosay that k < 1.

It remains to rule out the case k = co. Suppose that k = co. We will
derive a contradiction by using a geometrical argument. We call a vertex x
atrifurcation if:

(8 x liesin aninfinite open cluster,
(b) there exist exactly three open edgesincident to x, and
(c) the deletion of x and its three incident open edges splits this infinite
cluster into exactly threedisjoint infinite clustersand no finite clusters;
Let Ty betheevent that x isatrifurcation. By trandation-invariance, Pp(Tx)
is constant for all x, and therefore

1

xeS(n)
It will be useful to know that the quantity Pp(To) is strictly positive, and it
is here that we use the assumed infinity of infinite clusters. Let Ms(0) be
the number of infinite open clusters that intersect S when al edges of Eg
are declared closed. Since Ms(0) > Mg, by the remarks around (5.24),
Therefore, there exists m such that
Pp(Msm)(0) > 3) > %

Weset S= S(m)and 3S = S(m) \ S(m — 1). Note that:
(a) theevent {Ms(0) > 3} isindependent of the states of edgesin Esg,
(b) if the event {Mg(0) > 3} occurs, there exist x,y,z € aSlying in
distinct infinite open clusters of E9 \ Es.
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Figure 5.6. Take a diamond S that intersects at least three distinct
infinite open clusters, and then alter the configuration inside Sin order
to create a configuration in which 0 is atrifurcation.

Let w € {Mg(0) > 3}, and pick X = X(w), Y = Y(w), Z = z(w)
accordingto (b). If thereis morethan one possible such triple, we pick such
a triple according to some predetermined rule. It is a minor geometrical
exercise (see Figure 5.6) to verify that there exist in Es three pathsjoining
the origin to (respectively) x, y, and z, and that these paths may be chosen
in such away that:

() theorigin isthe unigque vertex common to any two of them, and

(ii) each touches exactly onevertex lyingin 0S.
Let Jy y - betheevent that all the edgesin these paths are open, and that all
other edgesin Eg are closed.

Since Sisfinite,

Pp(dxy.z | Ms(0) = 3) = [min{p,1- p}]" > 0,
where R = |Eg|. Now,
Pp(Oisatrifurcation) > Pp(Jx,y.z | Ms(0) > 3)Pp(Ms(0) > 3)
> 4[min(p.1- p}]" >0,

whichisto say that Pp(To) > 0in (5.25).

It follows from (5.25) that the mean number of trifurcations inside S =
S(n) growsin the manner of |S| asn — oco. Onthe other hand, we shall see
next that the number of trifurcationsinside Scan beno larger than the size of
the boundary of S, and this provides the necessary contradiction. Thisfinal
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step must be performed properly (see [55, 106]), but the following rough
argument is appealing and may be made rigorous. Select a trifurcation
(t1, say) of S, and choose some vertex y; € dSsuchthatt; <> y1in S. We
now select a new trifurcation t; € S. It may be seen, using the definition
of the term ‘trifurcation’, that there exists y» € aS such that y1 # y» and
to <> y2in S. We continuesimilarly, at each stage picking anew trifurcation
tx € Sand anew vertex yx € dS. If thereare t trifurcationsin S, then we
obtain T distinct vertices yx of 3S. Therefore, 0S| > . However, by the
remarks above, Ep(7) is comparableto S. Thisis a contradiction for large
nasince |8S| grows in the manner of nd—1 and |S| grows in the manner of
n“. O

5.4 Phasetransition

Macroscopic functions, such asthe percolation probability and mean cluster
size,
0(p) =Pp(ICl =00), x(p)=EplC|,

have singularities at p = pc, and there is overwhelming evidence that
these are of ‘power law’ type. A great dea of effort has been invested
by physicists and mathematicians towards understanding the nature of the
percolation phase-transition. The picture is now fairly clear whend = 2,
owing to the very significant progress in recent years in relating critical
percolation to the Schramm-L dwner curve SLEg. There remain however
substantial difficulties to be overcome before this chapter of percolation
theory can be declared written, even when d = 2. The case of large d
(currently, d > 19) is also well understood, through work based on the
so-called ‘lace expansion’. Most problems remain open in the obvious case
d = 3, and ambitious and brave students are thus directed with caution.

The nature of the percolation singularity is supposed to be canonical, in
that it is expected to have certain general features in common with phase
transitions of other models of statistical mechanics. These features are
sometimes referred to as ‘ scaling theory’ and they relate to ‘critical expo-
nents'. There aretwo sets of critical exponents, arising firstly in thelimit as
p — pe, and secondly in the limit over increasing distanceswhen p = pe.
We summarize the notation in Table 5.7.

The asymptotic relation =~ should be interpreted loosely (perhaps via
logarithmic asymptoticst). The radius of C is defined by

rad(C) = sup{|Ix|| : 0 < x},

1We say that f(x) is logarithmically asymptotic to g(x) as x — O (respectively,
X — oo)if log f (x)/logg(x) — 1. Thisisoften written as f (x) ~ g(x).
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connectivity function

Ppe(0 <> x) ~ ||x[[2~9"

Function Behaviour Exp.
percolation
probability | 6(p) = Pp(IC| = o0) 0(p) ~ (p — Po)? B
truncated
mean cluster size | x'(p) = Ep(ICILic|<00) X ()~ 1p— pel” y
number of
clusters per vertex|  «(p) = Ep(IC|™) K"(p) ~ |p — pe|~L o
{ K X2 (P) A
cluster moments | x, (p) = Ep(IC[*1cj<c0) | —¢ ~lp—pcl™? k=1 A
xk(P)
correlation length £(p) £(p) ~ |p— pel™” v
cluster volume Ppc(IC| = n) ~ n~1-1/8 s
cluster radius Py (rad(C) = n) ~ n—1-1e | ,

Table5.7. Eight functions and their critical exponents.

where

IxIl = sup|xil,
I

X = (X1, X2, ..

. Xq) € 79,

is the supremum (L*°) norm on Z9. The limit as p — pc should be
interpreted inamanner appropriatefor thefunctionin question (for example,
aspl pcforb(p),butasp — pcfor«(p)).

There are eight critical exponents listed in Table 5.7, denoted «, 8, y,
8, v, m, p, A, but thereis no general proof of the existence of any of these
exponents for arbitrary d. In general, the eight critical exponents may be
defined for phase transitions in a quite large family of physical systems.
However, it is not believed that they are independent variables, but rather
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that they satisfy the scaling relations

2—a=y+28=B06+1),
A =58,
y =v(@2—n),
and, when d is not too large, the hyperscaling relations

do=48+1,
2— o =dv.

Theupper critical dimensionisthelargest valued. suchthat thehyperscaling
relations hold for d < d.. Itisbelieved that d; = 6 for percolation. There
isno general proof of the validity of the scaling and hyperscaling relations,
although quite alot is known when d = 2 and for large d.

In the context of percolation, there is an analytical rationale behind the
scaling relations, namely the ‘ scaling hypotheses’ that

Pp(IC| =n) ~n~? f(n/&(p)")
Pp(0 <> X, |C| < 00) ~ [IxIZ~97"g(IIx|l/&(p))

in the double limit as p — p¢, N — oo, and for some constants o, 7, 7
and functions f, g. Playing loose with rigorous mathematics, the scaling
relationsmay be derived from these hypotheses. Similarly, the hyperscaling
relations may be shown to be not too unreasonable, at least when d is not
too large. For further discussion, see [106].

We note some further points.
Universality. It is believed that the numerical values of critical exponents
depend only on the value of d, and are independent of the particular perco-
lation model.
Two dimensions. When d = 2, perhaps

a:—%, 523%’ y:%, 8:9—51,...

See (5.45).

Large dimension. When d is sufficiently large (actualy, d > dg) it is
believed that the critical exponents are the same as those for percolation on
atree (the ‘mean-field model’), namely 6 = 2,y = 1, v = 3, p = 3,
and so on (the other exponents are found to satisfy the scaling relations).
Using the first hyperscaling relation, this is consistent with the contention
that d. = 6. Such statements are known to hold for d > 19, see[132, 133]
and the remarks later in this section.
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Open challengesinclude to prove:

— the existence of critical exponents,

— universality,

— the scaling and hyperscaling relations,

— the conjectured valueswhend = 2,

— the conjectured valueswhen d > 6.

Progress towards these goals has been positive. For sufficiently large d,
exact values are known for many exponents, namely the values from per-
colation on a regular tree. There has been remarkable progress in recent
yearswhen d = 2, inspired largely by work of Schramm [215], enacted
by Smirnov [222], and confirmed by the programme pursued by Lawler,
Schramm, and Werner to understand SLE curves. See Section 5.6.

We close this section with some further remarks on the case of large d.
The expression ‘mean-field’ permits several interpretations depending on
context. A narrow interpretation of the term * mean-field theory’ for perco-
lation involves trees rather than lattices. For percolation on aregular tree,
it is quite easy to perform exact calculations of many quantities, including
the numerical values of critical exponents. Thatis, § =2,y =1, v = %
o= % and other exponents are given according to the scaling relations, see
[106, Chap. 10].

Turning to percolation on 19, it is known as remarked above that the
critical exponents agree with those of a regular tree when d is sufficiently
large. In fact, thisis believed to hold if and only if d > 6, but progress so
far assumesthat d > 19. In the following theorem, we write f(x) >~ g(x)
if there exist positive constants c1, ¢z such that ¢ f (X) < g(X) < ¢ f(X)
for al x closeto alimiting value.

5.26 Theorem [133]. For d > 19,

o(p)~(p—p)t aspl pe
x(P=(pc—p) "t asprt pe

1
(P = (Pc—P) 2 aspr P
X2 (P)
(P
Note the strong form of the asymptotic relation ~, and the identification

of the critical exponents 8, ¥, A, v. The proof of Theorem 5.26 centres on
aproperty known as the ‘triangle condition’. Define

(5.27) TP = Y Pp(0< X)Pp(x < Y)Pp(y < 0),

x,yezd

~ (pc—p)"2 asp1 pe fork> 1.
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and consider the triangle condition
T ( pc) < OQ.

Thetriangle condition wasintroduced by Aizenman and Newman[15], who
showed that it implied that x (p) ~ (pc — p) "t as p 1 pe. Subsequently
other authorsshowed that the triangle condition implied similar asymptotics
for other quantities. It was Takashi Hara and Gordon Slade [132] who
verified the triangle condition for large d, exploiting a technique known as
the ‘lace expansion’.

5.5 Open pathsin annuli

The remainder of this chapter is devoted to percolation in two dimensions,
inthe context of either the site model on the triangular lattice T or the bond
model on the square lattice ..

There is a very useful technique for building open paths with certain
geometry in two dimensions. It leads to a proof that the chance of an open
cyclewithinan annulus[—3n, 3n]?\[—n, n]2isatleast f (§), wheres isthe
chanceof an open crossing of thesquare[—n, n]2, and f isastrictly positive
function. This result was useful in some of the original proofs concerning
thecritical probability of bond percolation on L2 (see[106, Sect. 11.7]), and
it has re-emerged more recently as central to estimates that permit the proof
of Cardy’s formulaand conformal invariance. It is commonly named after
Russo [211] and Seymour-Welsh[221]. The RSW lemmawill be stated and
proved in this section, and utilized in the next three. Since our application
in Sections 5.6-5.7 is to site percolation on the triangular lattice, we shall
phrase the RSW lemmain that context. It is left to the reader to adapt and
develop the arguments of this section for bond percolation on the square
lattice (see Exercise 5.5). The triangular lattice T is drawn in Figure 5.8,
together with its dual hexagonal lattice H.

There is a special property in common to the bond model on 1.2 and
the site model on T, namely that the ‘external’ boundary of a finite open
cluster contains a closed cycle. Thiswasillustrated in Figure 3.1 for bond
percolation on L2, and may be seen similarly for T. This property is central
to the proofs that these models have critical probability pe = %

RSW theory is presented in [106, Sect. 11.7] for the square lattice 12
and general bond-density p. We could follow the same route here for the
triangular lattice, but for the sake of variation (and with an eye to later
applications) we shall restrict ourselvesto the case p = % and shall givea
shortened proof dueto Stanislav Smirnov. The more conventional approach
may be found in [238], see aso [237], and [46] for a variant on the square

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



100 Further percolation

Figure5.8. Thetriangular lattice T and the (dual) hexagonal lattice H.

lattice. Thus, in this section we restrict ourselves to site percolation on T
with density 3. Each site of T is coloured black with probability 3, and
white otherwise, and the relevant probability measure is denoted as IP.

The triangular lattice is embedded in R? with vertex-set {mi + nj :
(m,n) e z?}, wherei = (1,0) andj = 3(1,+/3). Write Ry for the
subgraph induced by vertices in the rectangle [0, a] x [0, b], and we shall
restrict ourselves always to integers a and integer multiples b of %ﬁ We
shall consider left—right crossings of rectangles R, and to this end we let
its left edge L(R) (respectively, right edge R(R)) be the set of vertices of
R within distance % of its left side (respectively, right side). This minor
geometrical complication arises becausethe vertical linesof L2 are not con-
nected subgraphs of T. Let Hy p be the event that there exists a black path
that traverses Ra p fromL (Ra,p) toR(Ra,p). The'engineroom’ of the RSW
method is the following lemma.

5.28 Lemma. P(Hzap) > 3P(Hap)2
By iteration,
1 v
(5.29) P(Hokap) = 4[3P(Hap)]” . k> 0.
As‘input’ to thisinequality, we prove the following.
5.30 Lemma. Wehavethat P(H, , ) > 3.

Let Am be the set of verticesin T at graph-theoretic distance m or less
from the origin O, and define the annulus A, = Aszp \ Ap—1. Let O, be
the event that A, contains a black cycle C such that 0 lies in the bounded
component of R? \ C.
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______

0 Jg

0 a 2a

Figure5.9. Thecrossing g and its reflection pg in the box Rog p. The
events By and W,g are illustrated by the two lower paths, and exactly
one of these events occurs.

5.31 Theorem (RSW). There existso > 0 such that P(O,) > o for all
n>1

Proof of Lemma 5.28. We follow an unpublished argument of Stanislav
Smirnov.? Let g be a path that traverses R, p from left to right. Let p
denote reflection in the line X = a, so that pg connects the left and right
edgesof [a, 2a] x [0, b]. SeeFigure5.9. Assumefor themoment that g does
not intersect the x-axis. Let Ug be the connected subgraph of Rap lying
‘strictly beneath’ g, andU_g the corresponding graph lying ‘ on or beneath’ g.
Let Jg (respectively, Jy) bethe part of the boundary dUg (respectively, Ra 1)
lying on either the x-axis or y-axis but not in g, and let p Jg (respectively,
pJp) beitsreflection.

Next we use the self-duality of site percolation on T. Let By be the event
that there existsapath of Ug U pUg joining some vertex of g to some vertex
of pJg, with the property that every vertex not belonging to g is black. Let
W,,g bedefined similarly intermsof awhite path of UgU pUg from pgto Jg.
Thekey factisthefollowing: W, occurswhenever By doesnot. Thisholds
as follows. Assume By does not occur. The set of vertices reached along
black pathsfrom g doesnot intersect p Jq. Itsexternal boundary (away from
gU pQg) iswhite and connected, and thus contains a path of the sort required
for W,g. Thereis acomplication that does not arise for the bond model on
1.2, namely that both By and W, can occur if the right endvertex of g lies

2See also [236].
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onthelinex = a.

By symmetry, P(Bg) = P(W,q), and by the above,
(5.32) P(Bg) = P(W,g) > 3.
The same holdsif g touches the x-axis, with Jg suitably adapted.

LetL betheleft edgeof Roa b and Ritsright edge. By the FK G inequality,

P(Hz2a,b) > P(L < pJp, R< Jp)
> P(L < pIp)P(R < Jp) =P(L < pp)?,

where <> denotes connection by a black path.

Let y bethe 'highest’ black path from the | eft to the right sides of Ra p,
if such a path exists. Conditional on the event {y = g}, the states of sites

beneath g are independent Bernoulli variables, whence, in particular, the
events By and {y = g} areindependent. Therefore,

P(L < pJ) = Y P(y =0, By) =Y P(By)P(y = Q)
9 9

>3 P(y =0) = 3P(Hapb)
¢}

by (5.32), and the lemmaiis proved. O

Proof of Lemma 5.30. This is similar to the argument leading to (5.32).
Consider therhombus R of T comprising all verticesof theform mi + nj for
0 <m,n < 2a. Let B betheeventthat Ristraversed from left to right by a
black path, and W the event that it istraversed from top to bottom by awhite
path. These two events are mutually exclusive with the same probability,
and one or the other necessarily occurs. Therefore, P(B) = % On B, there
exists a |eft—right crossing of the (sub-)rectangle [a, 2a] x [0, a+/3], and
the claim follows. d

Proof of Theorem5.31. By (5.29) and Lemma5.30, thereexistsae > 0such
that
]P(Hgn,nﬁ) >, n>1

We may represent the annulus A, as the pairwise-intersection of six copies
of Ry, ,,/3 Obtained by translation and rotation, illustrated in Figure 5.10.
If each of these is traversed by a black path in its long direction, then the
event Op occurs. By the FKG inequality,

P(On) > a®,
and the theorem is proved. O

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



5.6 The critical probability in two dimensions 103

Figure 5.10. If each of six long rectangles are traversed in the long
direction by black paths, then the intersection of these paths contains a
black cycle within the annulus Ap.

5.6 Thecritical probability in two dimensions

Werevert to bond percolation onthe squarelatticein thissection. Thesquare
lattice has a property of self-duality, illustrated in Figure 1.5. ‘ Percolation
of open edges on the primal lattice' is dua to ‘percolation of closed edges
on the dual lattice’. The self-dual value of p isthus p = % and it was
long believed that the self-dual point is also the critical point pe. Theodore
Harris [135] proved by a geometric construction that 0(%) = 0, whence

pe(Z?) > % Harry Kesten [151] proved the complementary inequality.

5.33 Theorem [135, 151]. Thecritical probability of bond percolation on
the square |attice equals 1. Furthermore, 6(3) = 0.

Before giving a proof, we make some comments on the original proof.
Harris [135] showed that, if 6(%) > 0, then we can construct closed dual
cycles around the origin. Such cycles prevent the cluster C from being in-
finite, and therefore@(%) = 0, acontradiction. Similar ‘ path-construction’
arguments were developed by Russo [211] and Seymour—Welsh [221] in
aproof that p > pcif andonly if x(1 — p) < oco. Thisso-caled ‘RSW
method’ hasacquired prominencethrough recent work on SLE (see Sections
5.5and 5.7).

The complementary inequality pc(Z?) < % was proved by Kesten in
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[151]. More specifically, he showed that, for p < % the probability of an
open left—right crossing of the rectangle [0, 2K] x [0, 2K*1] tends to zero
ask — oo. With the benefit of hindsight, we may view his argument as
establishing a type of sharp-threshold theorem for the event in question.

The argumentsthat prove Theorem 5.33 may be adapted to certain other
situations. For example, Wierman [238] has proved that the critical proba-
bilities of bond percolation on the hexagonal /triangular pair of lattices (see
Figure 5.8) are the dual pair of values satisfying the star-triangle transfor-
mation. Russo [212] adapted the argumentsto site percolation on the square
lattice. It is easily seen by the same arguments that site percolation on the
triangular lattice has critical probability %.3

The proof of Theorem 5.33 is broken into two parts.

Proof of Theorem5.33: 6(3) = 0, and hence pc > 3. Zhang discovered a
beautiful proof of this, using only the uniqueness of the infinite cluster, see
[106, Sect. 11.3]. Set p = 3, andassumethatd(3) > 0. Let T (n) = [0, n]?,
and find N sufficiently large that

Pi(@T(M) < 00) >1- (% n=N.
Wesetn = N + 1. Let Al, A", A, AP be the (respective) events that the

left, right, top, bottom sides of T (n) arejoined to co off T (n). By the FKG
inequality,

Py (T () 4 o) :P%(Emﬁmﬁmﬁ)
= P1(A)P(A)P(A)P(AD)
=Py (AY*
by symmetry, for g = I,r,t, b. Therefore,
Pi(A%) = 1-P3(T(n) ¢ 00)V* > {.

We consider next the dual box, with vertex set T(n)q = [0,n — 1]% +
(3, D). Let A, AL, A, AJ denotethe (respective) eventsthat theleft, right,
top, bottom sides of T (n)q are joined to co by aclosed dua path off T (n)g.

Since each edge of the dual is closed with probability 3,
P%(Ag) > I g=1rtb.

Consider theevent A = A' 0 A" N A4y N Af, illustrated in Figure 5.11.

Clearly, IP%(K) < 3. sothat Py(A) = 3. However, on A, either L? has

3See also Section 5.8.
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T(m)

~—< [

Figure 5.11. The left and right sides of the box T(n) are joined to
infinity by open paths of the primal |attice, and the top and bottom sides
of the dual box T (n)q arejoined to infinity by closed dual paths. Using
the uniqueness of the infinite open cluster, the two open paths must be
joined by an open path. Thisforcesthe existence of two digoint infinite
closed clustersin the dual.

two infinite open clusters, or its dual has two infinite closed clusters. By
Theorem 5.22, each event has probability O, a contradiction. We deduce
that 6(3) = 0, implying in particular that pc > 3. O
Proof of Theorem5.33: pc < % We givetwo proofs. Thefirst usesthegen-
eral exponential-decay Theorem 5.1. The second was proposed by Stanislav
Smirnov, and avoids the appeal to Theorem 5.1. It is close in spirit to
Kesten'soriginal proof, and resonates with Menshikov’s proof of Theorem
5.1. A third approach to the proof uses the sharp-threshold Theorem 4.81,
and thisis deferred to Section 5.8.

Proof A. Supposeinstead that p; > % By Theorem 5.1, thereexistsy > 0
such that

(5.34) P1(0 < 9[-n, n?) <e " n>1
Let S(n) be the graph with vertex set [0, n 4+ 1] x [0, n] and edge set con-
taining all edgesinherited from 1.2 except those in either the left side or the

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



106 Further percolation

o o o ) o
1
- * , o °
o o o---4 o
1
LI } ° °
1
o ¢-=-=-0 o o
1
N ° ° °
o b -cwo---0 o
1
1 e °
1
o o o Q o
1
° T °
o o o b o

Figure5.12. If thereisno open left—right crossing of S(n), there must
exist a closed top—bottom crossing in the dual.

right side of S(n). Let A bethe event that there exists an open path joining
the left side and right side of S(n). If A does not occur, then the top side of
the dual of S(n) isjoined to the bottom side by a closed dual path. Since
the dual of S(n) isisomorphic to S(n), and since p = % it follows that

Py(A) = 3 (see Figure 5.12). However, by (5.34),
P1(A) = (n+ e ",
acontradiction for large n. We deducethat pe < %

Proof B. Let A(K) = [—k, k]2, andlet Ay = A(3k) \ A(k) bean‘annulus'.
The principal ingredient is an estimate that follows from the square-lattice
version of the RSW Theorem 5.31.% Let p = % Thereexist c, o > 0such
that:

(a) thereareat least clogr disjoint annuli Ax within[—r, ]2,

(b) each such annulus contains, with probability at least «, a dual closed

cyclehaving Oinitsinside.

Therefore, g(r) = IP’%(O < JA(r)) satisfies

(5.35) g(r) < (1—0)%'%9" =~
4See Exercise 5.5.
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wherea = a(c, o) > 0. For future use, let D be a random variable with
(5.36) P(D >r)=g(r), r >0.

There are a variety of ways of implementing the basic argument of this
proof, of which we choosethe following. Let R, = [0, 2n] x [0, n], where
n > 1, and let H, be the event that R, is traversed by an open path from
left to right. The event A givenin Proof A saIisfi%]P’%(A) = 1. Hence by

Lemma 5.28 rewritten for the square lattice, there exists y > 0 such that
(5.37) P%(Hn) >y, n>1.

Thisinequality will be used later in the proof.

We take p > % and work with the dual model. Let S, be the dual box
(2, 3)+10,2n— 1] x [0, n+ 1], and let Vi, bethe event that S, istraversed
from top to bottom by a closed dual path. Let N = Nj be the number of
pivotal edges for the event Vj,, and let TT be the event that N > 1 and all
pivotal edges are closed (in the dual). We shall prove that

(5.38) Ep(N | IT) > ¢'n“,

for some absol ute positive constant ¢’

For any top—bottom path X of S,, wewrite L(1) (respectively, R()) for
the set of edges of S, lying strictly to the ‘left’ (respectively, ‘right’) of A.
On I1, there exists a closed top—bottom path of S,, and from amongst such
pathswe may pick theleftmost, denoted A. Asinthe proof of Lemma5.28,
A ismeasurable on the states of edgesin and to the left of A; that isto say,
for any admissible path A, the event {A = 1} depends only on the states of
edgesin A U L(A). (SeeFigure 5.13.)

Assume as abovethat IT occurs, and that A = A. Every pivotal edge for
Vp liesin A. Eachedgee = (X, y) € A hasadua edge e = (u, u;), for
someu;, Uy € Z2. Since 1 is leftmost, exactly one of these endvertices, uj
say, is necessarily connected to the left side of R, by an open primal path
of edges dual to edgesof L(A). In addition, e is pivotal for V, if and only
if ur isconnected to theright side of R, by an open primal path.

We now take awalk along A from bottom to top, encountering its edges
in order. Let f1, fo, ..., fn be the pivotal edges thus encountered, with
fi = (X, i), and let yg be theinitial vertex of A and xn 41 the final vertex.
GivenIl,wehavethat N > 1, andthereisa‘lowest’ open path & connecting
theright side of R, to an endvertex of the dual edge of f1. By symmetry,

(5.39) Pp(y1 liesin the lower half of S, | IT) > 1.
Consider now aconfiguration w € I, with A = A and ¥ = , say. The
states of edgesin theregion T (%, ) of S,, lying both to the right of A and
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TG, ¥)

R(L)

Figure5.13. The leftmost closed top—bottom crossing A. Primal ver-
tices just to the ‘left’ of A are connected by open (dotted) paths to the
left side of the rectangle. An edge f; of A is pivotal if the vertex just
toits ‘right’ is joined by an open path to the right side. Between any
two successive pivotal edges, there exists aclosed path lying entirely in
R(A). Therearethree pivotal edges f; inthisillustration, and the dashed
lines are the closed connections of R(1) joining successive fj.

above v, are unaffected by the conditioning. That is, for given A, ¥, the
states of the edgesin T (A, ) are governed by product measure. What is
the distance from f1 = (X1, y1) to the next pivotal edge fo = (X2, y2)? No
pivotal edge in encountered on the way, and therefore there exists a closed
path of T (A, ¥) from y; to xo. Sincel— p < % the L displacement of
such a path is no larger in distribution than a random variable D satisfying
(5.36). Having reached f,, we iterate the argument until we attain the top
of S,. The vertical displacement between two consecutive pivotal edges
is (conditional on the construction prior to the earlier such edge) bounded
abovein distribution by D + 1, wherethe extra 1 takes care of the length of
an edge.

By (5.39) and the stochastic inequality,
(5.40) Pp(N=k+1|I) > IP(Z<n/2), k=0,
where D’ = 14+ min{D, n/2} and ¥y = D} + D, +--- + Dy. Cf. (5.13).
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There are at least two ways to continue. Thefirst isto deduce that
2Pp(N > k+ 1| ) > 1—P(D{ > n/(2k) for somel <i <k)
> 1—kg(n/(2k) — 1).

Wechoosehereto useinstead therenewal theoremasintheproof of Theorem
5.1. Sum (5.40) over k to obtain asin (5.14) that

(541) Ep(N | T) = 3E(K),

where K = min{k : Xx > n/2}. By Wald's equation,
3n < E(Zk) = E(K)E(D"),

so that

(5.42) E(K) > V2 _ /2

E(D) — y 2 gy

Inequality (5.38) follows from (5.41)—(5.42) and (5.35)—(5.36).°
We prove next that
(5.43) Pp(TT) = Pp(Hn)Pp(Vn).

Suppose V, occurs, with A = A, and let W, be the event that there exists
e € A such that: its dual edge eg = (u, v) has an endpoint connected to
theright side of R, by an open primal path of edges of R()). The states of
edges of R(\) are governed by product measure, so that

Po(W | A = A) > Pp(Hn).
Therefore,

IEDp(Hn)Pp(Vn) = Z]P’p(\M | A= )L)Pp(A =A)= Pp(n)~
|

Since Pp(Hn) = 1 — Pp(Vy), by (5.38) and Russo’s formula (Theorem
4.79),

d e
apPP(Hn) 2 Ep(N) = cn*Pp(Hn)[1 —Pp(H)]. P2 3

The resulting differential inequality

[ L + ! ]EP(H)>c’no‘
Pp(Hn)  1—Pp(Hn) |dp P =

SReaders are invited to complete the details of the above argument.
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\__/\/

Figure5.14. The boxeswith aspect ratio 2 are arranged in such away
that, if all but finitely many aretraversed in the long direction, then there
must exist an infinite cluster.

may be integrated over the interval [%, p] to obtain® via (5.37) that
l / o
1—Pp(Hn) < ” exp{—c(p — $)n“}.

This may be used to prove exponential decay in two dimensions (as in
Theorems 5.1 and 5.3), but here we use only the (lesser) consequence that

(5.44) 2[1 — Pp(Hn)] < oo, p>

n=1

Nl

We now use a block argument that was published in [63].” Let p > %

Consider the nested rectangles
Ba_1=1[0,2"] x[0,2% Y], By =[0,2¥] x [0, 2% 1], r>1,

illustrated in Figure 5.14. Let Ky _1 (respectively, Ko ) be the event that
Bor—1 (respectively, Byy) is traversed from left to right (respectively, top
to bottom) by an open path, so that Pp(Kk) = Pp(Hx-1). By (5.44) and
the Borel—Cantelli lemma, all but finitely many of the Ky occur, Pp-almost
surely. By Figure 5.14 again, this entails the existence of an infinite open
cluster, whence 6 (p) > 0, and hence pe < % d

5.7 Cardy’sformula

Thereisarich physical theory of phasetransitionsintheoretical physics,and
critical percolation isat the heart of thistheory. The case of two dimensions

6The same point may be reached using the theory of influence, as in Exercise 5.4.
7An alternative block argument may be found in Section 5.8.
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isvery special, in that methods of conformality and complex analysis, bol-
stered by predictionsof conformal field theory, have given riseto abeautiful
and universal vision for the nature of such singularities. Thisvisionisboth
analytical and geometrical. Its proof has been one of the principal targets of
probability theory and theoretical physics over recent decades. The ‘road
map’ to the proof is now widely accepted, and many key ingredients have
become clear. There remain some significant problems.

The principa ingredient of the mathematical theory is the SLE process
introduced in Section 2.5. In aclassical theorem of Lowner [177], we see
that agrowing path y in R2 may be encoded viaconformal maps g; in terms
of a so-called ‘driving function’ b : [0, c0) — R. Oded Schramm [215]
predicted that avariety of scaling limits of stochastic processesin R? may be
formulated thus, with b chosen as a Brownian motion with an appropriately
chosen variance parameter «. He gave a partial proof that LERW on L2,
suitably re-scaled, haslimit SLE,, and heindicated that UST haslimit SLEg
and percolation SLEg.

These observationsdid not come out of the blue. Therewas considerable
earlier speculation around the idea of conformality, and we highlight the
statement by John Cardy of hisformula[59], and the discussions of Michael
Aizenman and others concerning possibleinvariance under conformal maps
(see, for example, [4, 5, 158]).

Much hasbeen achieved since Schramm’ spaper [215]. Stanislav Smirnov
[222, 223] has proved that critical site percolation on the triangular lattice
satisfiesCardy’sformula, and hisrouteto ‘ complete conformality’ and SLEg
has been verified, see[56, 57] and [236]. Many of the critical exponentsfor
the model have now been calculated rigorously, namely

(5.45) p=S y=8 =4 =%

together with the ‘two-arm’ exponent 2, see[163, 226]. On the other hand,
it has not yet been possible to extend such results to other principal perco-
lation models such as bond or site percolation on the sguare | attice (some
extensions have proved possible, see [66] for example).

On arelated front, Smirnov [224, 225] has proved convergence of the
re-scaled cluster boundaries of the critical Ising model (respectively, the
associated random-cluster model) on 1.2 to SLE3 (respectively, SLE1¢/3).
Thiswill be extended in [67] to the Ising model on any so-called isoradial
graph, that is, a graph embeddablein R? in such away that the vertices of
any face lie on the circumference of some circle of givenradiusr.

The theory of SLE will soon constitute a book in its own right8, and

8See[160, 235).
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similarly for the theory of the several scaling limits that have now been
proved. These general topics are beyond the scope of the current work. We
restrict ourselves here to the statement and proof of Cardy’s formula for
critical site percolation on the triangular lattice, and we make use of the
accountsto be found in [236, 237]. See dlso [27, 48, 205].

We consider site percolation on the triangular lattice T, with density
p = % of open (or ‘black’) vertices. It may be proved very much as in
Theorem 5.33 that p. = % for this process (see also Section 5.8), but this
fact does not appear to be directly relevant to the material that follows. It
is, rather, the ‘ self-duality’ or ‘self-matching’ property that counts.

Let D (# C) be an open simply connected domain in R?; for simplicity
we shall assume that its boundary aD is a Jordan curve. Let a, b, c be
distinct points of 3 D, taken in anticlockwise order around 3 D. Thereexists
a conforma map ¢ from D to the interior of the equilateral triangle T of
C with vertices A = 0, B = 1, C = €"'/3, and such ¢ can be extended
to the boundary a D in such away that it becomes a homeomorphism from
DuUaD (respectively, d D) totheclosedtriangle T (respectively, dT). There
exists a unique such ¢ that maps a, b, c to A, B, C, respectively. With ¢
chosen accordingly, the image X = ¢(x) of afourth point x € 9D, taken
for exampleonthearcfrombtoc, liesonthearc BC of T (seeFigure5.15).

C=eB=(1 B

¢ T xX

Figure5.15. Theconformal map ¢ isabijection from D to theinterior
of T, and extends uniquely to the boundaries.

Thetriangular lattice T isre-scaled to have mesh-size §, and we ask about
the probability Ps(ac <> bx in D) of an open path joining the arc ac to the
arc bx, in an approximation to the intersection (§T) N D of the re-scaled
lattice with D. It is a standard application of the RSW method of the last
section to show that Ps(ac <> bx in D) is uniformly bounded away from
Oand 1asé§ — 0. It thus seems reasonable that this probability should
convergeas § — 0, and Cardy’s formula (together with conformality) tells
usthe value of the limit.
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5.46 Theorem (Cardy’s formula) [59, 222, 223]. In the notation intro-
duced above,

(5.47) Ps(ac <> bxin D) — |BX| asé — 0.

Some history: In [59], Cardy stated the limit of Ps(ac <> bx in D) in
terms of a hypergeometric function of a certain cross-ratio. His derivation
was based on arguments from conformal field theory. Lennart Carleson
recognized the hypergeometric functionin terms of the conf ormal map from
arectangleto atriangle, and wasled to conjecturethe simpleform of (5.47).
The limit was proved in 2001 by Stanislav Smirnov [222, 223]. The proof
utilizes the three-way symmetry of the triangular lattice in a somewhat
mysterious way.

Cardy’s formula is, in a sense, only the beginning of the story of the
scaling limit of critical two-dimensional percolation. It leads naturally to
afull picture of the scaling limits of open paths, within the context of the
Schramm—Lowner evolution SLEg. While explicit application is towards
the calculation of critical exponents[163, 226], SLEg presentsamuch fuller
picture than this. Further details may be found in [57, 58, 223, 236]. The
principal open problem at the time of writing is to extend the scaling limit
beyond the site triangular model to either the bond or site model on another
major lattice.

We prove Theorem 5.46 in the remainder of this section. This will be
donefirst with D = T, the unit equilateral triangle, followed by the general
case. Assumethenthat D = T with T given as above. The verticesof T
aeA=0,B=1C=¢e"/3 Wetakes = 1/n, and shall later letn — oo.
Consider site percolation on Ty, = (n~1T) N T. We may draw either T, or
itsdual graph H,, which comprises hexagonswith centres at the vertices of
Ty, illustrated in Figure 1.5. Each vertex of T\, (or equivalently, each face
of Hy,) is declared black with probability % and white otherwise. For ease
of notation later, wewrite A= Ay, B = A;, C = A2, where

T =3
For verticesV, W of T wewrite VW for the arc of the boundary of T from
VioW.

Let z be the centre of a face of Ty, (or equivaently, z € V (H,), the
vertex-set of the dual graph Hy). The events to be studied are as follows.
Let E7(2) be the event that there exists a self-avoiding black path from
A1A; to A1 A2 that separates z from A; A 2. Let EN(2), E?z(z) be given
similarly after rotating thetriangle clockwise by = and t2, respectively. The
event E7'(2) isillustrated in Figure 5.16. We write

H'(2 =P(E(2), j=117°
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C=Ag

A=A B=A,

Figure5.16. Anillustration of theevent E7(2), that z is separated from
Ac A2 by ablack path joining Aj A; and AjA™.

5.48 Lemma. The functions Hj”, j = 1, t, 72 are uniformly Holder on
V (Hy), in that there exist absolute constants ¢ € (0, o), € € (0, 1) such
that

(549  |H'@ - H'@)| <clz—- 7", z,Z € V(Hp),
(5.50) 1- Hj”(z) <clz— Al ze V(Hy),
where A; isinterpreted as the complex number at the vertex A;.

The domain of the Hjn may be extended as follows: the set V (H) may
be viewed as the vertex-set of a triangulation of a region slightly smaller
than T, on each triangle of which Hjn may be defined by linear interpolation
between its values at the three vertices. Finaly, the Hj” may be extended
up to the boundary of T in such away that the resulting functions satisfy
(5.49)foral z,Z € T,and

(5.51) HM'(A) =1, =11 1%

Proof. It sufficesto prove (5.49) for small |z — Z'|. Supposethat |z— 7| <
Wlo’ say, and let F bethe event that there exist both ablack and awhitecycle
of theentirere-scaled triangular lattice T/ n, each of diameter smaller that 2,
and each having both z and Z' in the bounded component of its complement.
If F occurs, then either both or neither of the events Ej“(z), Ej”(z/) occur,
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whence
IHj"(Z) - H,-”(Z')I <1-P(F).

When zand 7' area‘reasonable’ distance from A;, the white cycle prevents
the occurrence of one of these events without the other. The black cycleis
needed when z, 7' are closeto A;.

Thereexists C > 0 such that we may find log(C/|z— Z|) vertex-dioint
annuli, each containing z, Z in their central ‘hol€e’, and each within distance
% of both z and Z (the definition of annulus precedes Theorem 5.31). By
Theorem 5.31, the chance that no such annulus contains a black (respec-
tively, white) cycle is no greater than

—log(1—o)
(1 — 0)/09C/ 127D _ (|Z—z’|> g(l—o
C b

whencel—P(F) < c|z—Z|€ for suitablec and €. Inequality (5.50) follows
similarly with ' = A;. O

It is convenient to work in the space of uniformly Holder functions on
the closed triangle T satisfying (5.49)—(5.50). By the Arzela—Ascoli the-
orem (see, for example, [73, Sect. 2.4]), this space is relatively compact.
Therefore, the sequence of triples (H[', H;', H!) possesses subsequential
limits in the sense of uniform convergence, and we shall see that any such
limit is of the form (H1, H;, H.2), where the H; are harmonic with certain
boundary conditions, and satisfy (5.49)—(5.50). The boundary conditions
guarantee the uniqueness of the Hj, and it will follow that H' — H; as
n — oo.

We shall seein particular that
H.2(2) 2 [Im(2)]
72 == s
V3

the re-scaled imaginary part of z. The values of Hy and H, are found by
rotation. The claim of the theorem will follow by letting z— X € BC.

Let (H1, He, H,2) be a subsequential limit as above. That the H; are
harmonic will follow from the fact that the functions

(5.52) Gi=Hi+H, +Ha2 Gp=Hi+1H, +1%Ho,

are analytic, and this analyticity will be implied by Morera's theorem on
checking that the contour integrals of G1, G2 around triangles of a certain
form are zero. The integration step amounts to summing the Hj(z) over
certain zand using acancellation property that followsfrom the next lemma.
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C=Ag

A=A B=A,

Figure5.17. Anillustration of the event Ef(z1) \ E}(2). Thepath |y
iswhite, and I, 13 are black.

Let z be the centre of a face of Ty, with vertices labelled s1, S, s3 in
anticlockwise order. Let z3, 22, z3 be the centres of the neighbouring faces,
labelled relative to the s asin Figure 5.17.

5.53 Lemma. We have that
P[E](z1) \ Ef (2] = P[E](22) \ E{ ()] = P[E]2(z3) \ EL»(2)].

Before proving this, we introduce the exploration process illustrated
in Figure 5.18. Suppose that all vertices ‘just outside’ the arc AjA,2
(respectively, A; A2) of Ty, areblack (respectively, white). The exploration
path is defined to be the unique path n, on the edges of the dual (hexago-
nal) graph, beginning immediately above A2 and descendingto A; A; such
that: aswetraverse n, fromtop to bottom, the verteximmediately to our left
(respectively, right), looking along the path from A 2, iswhite (respectively,
black). When traversing i, thus, thereisawhite path on theleft and ablack
path on the right.

Proof. The event E}(z1) \ E}(2) occursif and only if there exist disjoint
pathsly, I2, I3 of Ty such that:

(i) 11 iswhiteandjoinss; to A; A2,
(ii) 12 isblack and joinss; to A1 A, 2,
(iii) Iz isblack andjoinssz to Az A..
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A=A1 B=Ar

Figure5.18. The exploration path nn started at the top vertex A_» and
stopped when it hits the bottom side A; A; of the triangle.

See Figure 5.17 for an explanation of the notation. On this event, the
exploration path n, of Figure 5.18 passes through z and arrives at z along
the edge (z3, z) of H,. Furthermore, up to thetime at which it hits z, it lies
in the region of Hy, between|, and|4. Indeed, we may takel, (respectively,
[1) to be the black path (respectively, white path) of T, lying on the right
side (respectively, left side) of n, up to this point.

Conditional on the event above, and with 11 and |, given in terms of 5y,
accordingly, the states of vertices of Ty, lying below 1 U I areindependent
Bernoulli variables. Thus, the conditional probability of a black path I3
satisfying (iii) is the same as that of a white path. We make this measure-
preserving change, and then we interchange the colours white/black to con-
cludethat: E7(z) \ E](2) has the same probability as the event that there
exist digoint pathsly, 12, 13 of T, such that:

(i) 11 isblack and joinss; to A A2,
(i) 12 iswhiteand joinssp to A1 A2,
(iii) Iz isblack andjoins sz to Az A;.
Thisisprecisely theevent E!(z2) \ El'(2), and thelemmaisproved. O

We use Morera’s theorem in order to show the required analyti city. This
theorem states that: if f : R — C is continuous on the open region R, and
fy f dz= 0forall closed curvesy in R, then f isanalytic. It is standard
(see[210, p. 208]) that it sufficesto consider triangles y in R. We may in
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fact restrict ourselves to equilateral triangles with one side parallel to the
x-axis. This may be seen either by an approximation argument, or by an
argument based on the threefold Cauchy—Riemann eguations

of 1af 1 af
901  tat  129t%
where 3/3j meansthe derivativein the direction of the complex number j.

(5.54)

5.55 Lemma. LetI" bean equilateral triangle contained in theinterior of
T with sides parallel to those of T. Then

?g Hl' (2 dz= f[HT”(z)/r] dz+0O(n™ )
r r

= yg[H{‘z(Z)/rZ] dz+O(n~),
r
where e isgivenin Lemma 5.48.

Proof. Every triangular facet of T, (that is, a triangular union of faces)
points either upwards (in that its horizontal side is at its bottom) or down-
wards. Let I be an equilateral triangle contained in the interior of T with
sides parallel to those of T, and assume that T" points upwards (the same
argument works for downward-pointing triangles). Let I'" be the subgraph
of Ty lying within T, so that 'y is atriangular facet of T,. Let D" be the
set of downward-pointing faces of I'". Let 5 be avector of R? such that: if
z is the centre of aface of Dy, then z + 5 is the centre of a neighbouring
face, thatisn € {i, i, i72}/(nv/3). Write
h(z, m) =PIE](z+ n) \ E(@)].
By Lemma5.53,
H{'(z+n) — H'(2) = h](z, n) —h](@z+n, —n)
= h(z, nt) — h}(z+ 7, —n7).
Now,
H(z+ nt) — H)(2) = h)(z, nt) — h}(z+ nT, —n7),
and so thereis a cancellationin
(656) 1= > [Hl(z+n —H{@]— Y [HMz+ y7) — H](2]
zepP" zepP"
of all terms except those of theform hf(z', —n ) for certain Z' lyingin faces
of Ty that abut 9T'". Thereare O(n) such Z, and therefore, by Lemma5.48,

(5.57) 171 < O(n*~*).
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Consider the sum
1 2
"= ﬁ(Iin + 7l + 7710,

where | j” is an abbreviation for the Ij”/n A of (5.56). Theterms of the form
Hj”(z) in (5.56) contribute 0 to J", since each is multiplied by

A+74+Hn"t=0.

The remaining terms of the form Hj”(z +1), Hj”(z + nt) mostly disappear
also, and we are left only with terms Hj”(z/) for certain Z' at the centre of
upwards-pointing faces of T" abutting aI'". For example, the contribution
from Z if itsface s at the bottom (but not the corner) of I'" is

1 J / 1 / /

ﬁ[(r +HHNZ) - L+ HND)] = —H[H{‘(z) — HMNZ)/7).
When Z' is at the right (respectively, left) edge of I'", we obtain the same
term multiplied by t (respectively, t2). Therefore,

(5.58) ?ﬁ [H]'(2) — HM(2)/r]dz= —J3" + O(n~€) = O(n™°),
rn
by (5.57), wherethefirst O(n—¢) term coversthefact that the zin (5.58) isa

continuous rather than discrete variable. Since I" and I'" differ only around
their boundaries, and the Hjn are uniformly Holder,

(5.59) 7§[H1”(z) — Hl(2)/t]dz=O(n™)

and, by asimilar armeent,

(5.60) f[Hl”(z) — HY%(2)/7%] dz=0O(n"°).

Thelemmais provgd. O

Asremarked after the proof of Lemmas5.48, the sequence (H{', H7', H',)
possesses subsequential limits, and it suffices for convergence to show that
all such limits are equal. Let (H1, H;, H,2) be such a subsequential limit.
By Lemma 5.55, the contour integrals of Hy, H. /7, H,2/7t? around any I’
areequal. Therefore, the contour integrals of the G; in (5.52) around any I’
equal zero. By Morera's theorem [2, 210], G1 and G» are analytic on the
interior of T, and furthermore they may be extended by continuity to the
boundary of T. In particular, G; is analytic and real-valued, whence G1 is
aconstant. By (5.50), G1(z) — lasz — 0, whence

Gi=Hi+H;+H2=1 onT.
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Therefore, thereal part of G, satisfies

(5.61) Re(Gz) = Hi — 3(H; + H2) = 3(3H1 — 1),
and similarly
(5.62) 2Re(Gy/t) =3H,; —1, 2Re(Gy/t%) =3H,2— 1.

Since the H; are the real parts of analytic functions, they are harmonic. It
remainsto verify the relevant boundary conditions, and we will concentrate
on the function H.2. There are two ways of doing this, of which the first
specifies certain derivatives of the Hj along the boundary of T.

By continuity, H,2(C) = 1 and H,2 = 0 on AB. We claim that the
horizontal derivative, 9H,2/31, is0 on AC U BC. Once thisis proved, it
follows that H.2(2) is the unique harmonic function on T satisfying these
boundary conditions, namely the function 2|Im(z)|/+/3. The remaining
claim is proved as follows. Since G2 is analytic, it satisfies the threefold
Cauchy—Riemann equations (5.54). By (5.61)—(5.62),

oH_2 2 104G 2 10G; oH1
5.63 " = _Rel 55— )==zRe| 55— | = —.
(563 0l 3 (‘(2 81) 3 <t3 ot ) ot

Now, H; = 0 on BC, and BC has gradient =, whence the right side of
(5.63)° equals 0 on BC. The same argument holdson AC with H; replaced
by H;.

The dternativeisslightly simpler, see[27]. For z € T, G2(2) isaconvex
combination of 1, 7, 2, and thus maps T to the complex triangle T’ with
these three vertices. Furthermore, G, maps dT t0 dT', and G2(Aj) = |
for j = 1, 7, 72 Since Gy isanalytic on theinterior of T, it is conformal,
and there is a unique such conformal map with this boundary behaviour,
namely that composed of a suitable dilation, rotation, and translation of T.
Thisidentifies G2 uniquely, and the functions H; aso by (5.61)5.62).

This concludes the proof of Cardy’s formula when the domain D is an
equilateral triangle. The proof for general D is essentially the same, on
noting that a conformal image of a harmonic function is harmonic. First,
we approximate to the boundary of D by a cycle of the triangular lattice
with mesh §. That G1 (= 1) and G, are analytic is proved as before, and
hence the corresponding limit functions Hq, H;, H.2 are each harmonic
with appropriate boundary conditions. We now apply conformal invariance.
By the Riemann mapping theorem, there exists a conforma map ¢ from
the inside of D to the inside of T that may be extended uniquely to their

9We need also that G, may be continued analytically beyond the boundary of T, see
[237].
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boundaries, and that maps a (respectively, b, ¢) to A (respectively, B, C).
Thetriple (Hio¢™, Hy 0971, H,2041) solvesthe corresponding problem
on T. We have seen that thereisaunique such tripleon T, given as above,
and equation (5.47) is proved.

5.8 Thecritical probability via the sharp-threshold theorem
We use the sharp-threshold Theorem 4.81 to prove the following.

5.64 Theorem [238]. The critical probability of site percolation on the
triangular |attice satisfies pc = 3. Furthermore, 6(3) = 0.

This may be proved in very much the same manner as Theorem 5.33,
but we choose here to use the sharp-threshold theorem. This theorem pro-
vides a convenient ‘ package’ for obtaining the steepness of a box-crossing
probability, viewed as a function of p. Other means, more elementary and
discovered earlier, may be used instead. These include: Kesten's original
proof [151] for bond percolation on the squarelattice, Russo’s ' approximate
zero—onelaw’ [213], and, most recently, the proof of Smirnov presented in
Section 5.6. Sharp-thresholdswerefirst used in [46] in the current context,
and later in[47, 100, 101]. The present proof may appear somewhat shorter
than that of [47].

Proof. Let 6(p) denote the percolation probability on the triangular lattice
T. We have that 9(%) = 0, just asin the proof of the corresponding lower
bound for the critical probability pc(L?) in Theorem 5.33, and we say no
more about this. Therefore, pc > 3.

Two steps remain. First, we shall use the sharp-threshold theorem to
deducethat, when p > % long rectanglesaretraversed with high probability
in the long direction. Then we shall use that fact, within ablock argument,
to show that 6(p) > O.

Each vertex is declared black (or open) with probability p, and white
otherwise. In the notation introduced just prior to Lemma 5.28, let H,, =
Hien.nva be the event that the rectangle Ry = Ryq, , /3 is traversed by a
black path in the long direction. By Lemmas 5.28-5.30, there existst > 0
such that

(5.65) P%(Hn) > T, n>1

Let x be avertex of Ry, and write I p(x) for the influence of x on the
event Hp, under the measure IPp, see (4.27). Now, X is pivotal for Hy, if and
only if:

(i) theleft and right sides of R, are connected by a black path when x is
black,
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Figure5.19. The vertex x is pivotal for Hy if and only if: thereis
left—right black crossing of R, when x is black, and a top—bottom white
crossing when x iswhite.

(i) thetop and bottom sides of Ry, are connected by a white path when x
iswhite.

Thiseventisillustrated in Figure 5.19.

Let 3 < p < 3, say. By (ii),

(1— p)ln,p(X) <P1_p(rad(Cx) > n),

where
rad(Cy) = max{|y — X| : X <y}

is the radius of the cluster at x. (Here, |z| denotes the graph-theoretic
distance from z to the origin.) Since p > 3,

P1_p(rad(Cx) > n) < nn,
where

(5.66) M = P%(rad(co) >n)—0 asn— oo,

by the fact that 6(3) = O.
By (5.65) and Theorem 4.81, for large n,

Ph(Hn) = ct(1—Pp(Hn)) logll/@m)l,  pel3 3],
which may be integrated to give

(5.67) 1—-Pp(Hn) < (1- T)[Snn]CT(p_%)’ pe [%, %]
Let p > 3. By (5.66)—(5.67),
(5.68) Pp(Hn) — 1 asn — oo.
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Figure 5.20. Each block is red with probability pn. There is an
infinite cluster of red blocks with strictly positive probability, and any
such cluster contains an infinite open cluster of the original lattice.

Weturnto therequired block argument, which differsfromthat of Section
5.6 in that we shall use no explicit estimate of Pp(Hp). Roughly speaking,
copies of the rectangle R, are distributed about T in such away that each
copy corresponds to an edge of a re-scaled copy of T. The detailed con-
struction of this ‘renormalized block lattice’ is omitted from these notes,
and we shall rely on Figure 5.20 for explanation. The ‘blocks’ (that is, the
copies of R,) are in one—one correspondence with the edges of T, and thus
we may label the blocks as Be, e € Er. Each block intersects just ten other
blocks.

Next we define a *block event’, that is, a certain event defined on the
configuration within a block. The first requirement for this event is that
the block be traversed by an open path in the long direction. We shall
require some further pathsin order that the union of two intersecting blocks
contains a single component that traverses each block in its long direction.
In specific, we require open pathstraversing the block in the short direction,
within each of the two extremal 3n x n+/3 regions of the block. A block is
coloured red if the above paths exist within it. See Figure 5.21. If two red
blocks, Be and B¢ say, aresuchthat eand f shareavertex, then their union
possesses a single open component containing paths traversing each of Be
and Bs.
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Figure5.21. A block is declared ‘red’ if it contains open paths that:
(i) traverseitinthelong direction, and (i) traverseit in the short direction
withinthe3nxn+/3regionat eachend of theblock. Theshorter crossings
exist if the inclined blocks are traversed in the long direction.

If the block R, fails to be red, then one or more of the blocks in Figure
5.21 is not traversed by an open path in the long direction. Therefore,
pn = Pp(Ry isred) satisfies

by (5.69).

The states of different blocks are dependent random variables, but any
collection of digoint blocks have independent states. We shall count paths
in the dual, as in (3.8), to obtain that there exists, with strictly positive
probability, an infinite path in T comprising edges e such that every such Be
isred. Thisimplies the existence of an infinite open cluster in the original
lattice.

If the red cluster at the origin of the block lattice is finite, there exists a
path in the dual lattice (a copy of the hexagonal lattice) that crosses only
non-red blocks (as in Figure 3.1). Within any dual path of length m, there
exists a set of |[m/12| or more edges such that the corresponding blocks
are pairwise digoint. Therefore, the probability that the origin of the block
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lattice liesin afinite cluster only of red blocksis no greater than

o0
>3~ p)tmE

m=6

By (5.69), thismay be made smaller than % by choosing n sufficiently large.
Therefore, 6(p) > Ofor p > % and the theorem is proved. d

5.9 Exercises

5.1 [35] Consider bond percolation on L2 with p = % and define the radius
of the open cluster C at the origin by rad(C) = max{n : 0 < 3[—n, n]?}. Use
the BK inequality to show that

1
P%(rad(C) >n) > PN

5.2 Let Dy be the largest diameter (in the sense of graph theory) of the open
clusters of bond percolation on Z9 that intersect the box [—n, n]9. Show when
p < pcthat Dp/logn — «(p) amost surely, for some a(p) € (0, o).

5.3 Consider bond percolation on L2 with density p. Let Tn bethebox [0, ]2
with periodic boundary conditions, that is, we identify any pair (u, v), (X,Y)
satisfying: eitheru=0,x =n,v=y,0rv =0,y =n,u = X. Forgivenm < n,
let A be the event that there exists some translate of [0, m]2 in Tp that is crossed
by an open path either from top to bottom, or from left to right. Using the theory
of influence or otherwise, show that

1 -1
1 Pp(A) < [P DVm? ] s

5.4 Consider site percolation on the triangular lattice T, and let A(n) be the
ball of radius n centred at the origin. Use the RSW theorem to show that

P1(0 < dA(N)) >cn™ ¢, n>1,
3

for constants ¢, « > 0.
Using the coupling of Section 3.3 or otherwise, deducethat 8(p) < ¢/(p— %)ﬂ
for p > 3 and constants ¢/, > 0.
5.5 By adapting the arguments of Section 5.5 or otherwise, develop an RSW
theory for bond percolation on Z2.

5.6 Let D be an open simply connected domain in R2 whose boundary 9D
isaJordan curve. Let a, b, x, ¢ be distinct points on dD taken in anticlockwise
order. Let Pg(ac <> bx) bethe probability that, in site percolation on there-scaled
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triangular lattice 8T with density % there exists an open path within D U 9D
from some point on the arc ac to some point on bx. Show that Ps(ac < bx) is
uniformly bounded away from0and 1 asé — O.

57 Let f : D — C, where D is an open simply connected region of the
complex plane. If f is C?! and satisfies the threefold Cauchy—Riemann equations
(5.54), show that f isanalytic.

5.8 Ergodicity of product measure. A trandation t of L9 inducesatranslation
of @ = {0, 1}IEGI givenby t(w)(e) = o(z~L(e)). Let r beatrandation other than
the identity, and suppose that X : @ — R isinvariant under t. Show that X is
Pp-almost-surely constant.
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Contact process

The contact process is a model for the spread of disease about the
vertices of a graph. It has a property of duality that arises through
the reversal of time. For a vertex-transitive graph such as the d-
dimensional lattice, there is a multiplicity of invariant measures if
and only if there is a strictly positive probability of an unbounded
path of infection in space-time from agiven vertex. Thisobservation
permits the use of methodology developed for the study of oriented
percolation. When the underlying graph is a tree, the model has
three distinct phases, termed extinction, weak survival, and strong
survival. The continuous-time percolation model differs from the
contact processin that the time axisis undirected.

6.1 Stochastic epidemics

One of the simplest stochastic models for the spread of an epidemic is as
follows. Consider a population of constant size N + 1 that is suffering
from an infectious disease. We can model the spread of the disease as a
Markov process. Let X (t) be the number of healthy individuals at time t
and supposethat X(0) = N. We assumethat, if X(t) = n, the probability
of anew infection during a short time-interval (t,t + h) is proportional to
the number of possible encounters between ill folk and healthy folk. That
is,

P(X(t+h)=n—1|X(t) =n)=an(N+1-nmh+o(h) ash|O0.

Inthesimplest situation, we assumethat nobody recovers. Itiseasy to show
that

N
G(s. 1) = E(s*V) = > "s"P(X(t) = n)

n=0
satisfies )
G 0G -G
e W P N
ot s 9s2
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with G(s,0) = sN. There is no simple way of solving this equation,
athough alot of information is available about approximate solutions.

This epidemic model is over-simplistic through the assumptions that:

— the processis Markovian,

— there are only two states and no recovery,

— thereistotal mixing, inthat therate of spreadisproporti onal to the product
of the numbers of infectives and susceptibles.

In ‘practice’ (computer viruses apart), an individual infects only othersin

its immediate (bounded) vicinity. The introduction of spatial relationships

into such a model adds a major complication, and leads to the so-called

‘contact model’ of Harris [136]. In the contact model, the members of the

population inhabit the vertex-set of a given graph. Infection takes place

between neighbours, and recovery is permitted.

Let G = (V, E) be a (finite or infinite) graph with bounded vertex-
degrees. The contact model on G is a continuous-time Markov process
on the state space = = {0,1}V. A state is therefore a 0/1 vector £ =
(E(X) : x € V), whereOrepresentsthehealthy stateand 1 theill state. There
are two parameters: an infection rate A and a recovery rate §. Transition-
rates are given informally as follows. Suppose that the state at time t is
e X, andletx e V. Then

P(t+n(x) = 0] & = &) = sh + o(h), if&x) =1,
PGEn(x) =11 & =) =AN:(0Oh+o(h),  if§(x) =0,

where Ng (x) is the number of neighbours of x that are infected in &,

N: () = [{y e V:1y~x, &(y) =1}.

Thus, each ill vertex recovers at rate §, and in the meantime infects any
given neighbour at rate 1.

Care is needed when specifying a Markov process through its transition
rates, especially when G isinfinite, sincethen X isuncountable. Weshall see
inthe next section that the contact model can be constructed viaa countably
infinite collection of Poisson processes. More general approaches to the
construction of interacting particle processes are described in [167] and
summarized in Section 10.1.

6.2 Coupling and duality

The contact model can be constructed in terms of families of Poisson pro-
cesses. Thisrepresentation is both informative and useful for what follows.
Foreachx € V,wedraw a‘'time-line [0, co). Onthetime-line{x} x[0, co)
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Figure 6.1. The so-called ‘graphical representation’ of the contact
process on the line .. The horizontal line represents ‘ space’, and the
vertical line above a point x is the time-line at x. The marks o are the
points of cure, and the arrows are the arrows of infection. Suppose we
are told that, at time O, the origin is the unique infected point. In this
picture, the initial infectiveis marked 0, and the bold lines indicate the
portions of space-time that are infected.

we place a Poisson point process Dy with intensity §. For each ordered
pair x, y € V of neighbours, we let By y be a Poisson point process with
intensity A. These processes are taken to be independent of each other, and
we can assume without loss of generality that the times occurring in the
processes are distinct. Points in each Dy are caled ‘points of cure’, and
pointsin By y are called ‘arrows of infection’ from x to y. The appropriate
probability measure is denoted by P 5.

The situationisillustrated in Figure 6.1 with G = L. Let (X, ), (Y, 1) €
V x [0, oo) wheres < t. We definea (directed) path from (x, s) to (y, t) to
be a sequence (X, S) = (Xo, to), (X0, t1), (X1, t1), (X1, 12), . .., (Xn, thy1) =
(y,t)y withtg <t3 < -+ < thy1, suchthat:

(i) eachinterval {x;} x [ti, tj+-1] contains no points of Dy,
(i) i € By_,x fori =21,2,...,n.
We write (X, s) — (Y, t) if there exists such a directed path.

We think of a point (x, u) of cure as meaning that an infection at x just
prior to time u is cured at time u. An arrow of infection from x to y at time
u meansthat aninfection at x just prior to u ispassed at timeu to y. Thus,
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(X, s) — (y,t) meansthat y isinfected at time't if x isinfected at time s.

Leté € ¥ = {0,1}V, and define & € =, t € [0, 00), by &(y) = 1if
and only if there exists x € V suchthat £&g(x) = 1 and (x, 0) — (y,t). It
isclear that (& : t € [0, 00)) isacontact model with parameters A and 5.

The above ‘graphical representation’ has several uses. First, it is ageo-
metrical picture of the spread of infection providing a coupling of contact
modelswith al possibleinitial configurations&g. Secondly, it providescou-
plings of contact models with different A and §, asfollows. Let A1 < A2
and 81 > J2, and consider the above representation with (1, §) = (A2, 81).
If we remove each point of cure with probability §2/81 (respectively, each
arrow of infection with probability A1/A2), we obtain a representation of a
contact model with parameters (12, 82) (respectively, parameters (11, 81)).
We obtain thusthat the passage of infection is non-increasing in § and non-
decreasingin A.

Thereisanatural one-one correspondence between ¥ and the power set
2V of the vertex-set, givenby £ < 1z = {x € V : £(x) = 1}. We shall
frequently regard vectors £ assets l¢. For £ € ¥ and A € V, we write stA
for the value of the contact model at timet starting at time O from the set A
of infectives. It isimmediate by the rules of the above coupling that:

(@) the coupling is monotonein that £ € £B if A C B,

(b) moreover, the coupling is additive in that £V = A U £8.
6.1 Theorem (Duality relation). For A, B C V,
(6.2) Pis(ENB#£2) =P sEENA£02).

Equation (6.2) can be written in the form
PLs(& =00nB) =PP (& =00nA),

wherethe superscriptsindicatetheinitial states. Thismay betermed ‘weak’
duality, in that it involves probabilities. There is aso a ‘strong’ dual-
ity involving configurations of the graphical representation, that may be
expressed informally as follows. Suppose we reverse the direction of time
in the ‘primary’ graphical representation, and also the directions of the
arrows. The law of the resulting processis the same as that of the original.

Furthermore, any path of infection in the primary process, after reversal,
becomes a path of infection in the reversed process.

Proof. Theevent ontheleft sideof (6.2) istheunionovera € Aandb € B
of the event that (a, 0) — (b, t). If we reverse the direction of time and
the directions of the arrows of infection, the probability of this event is
unchanged and it corresponds now to the event on theright side of (6.2). [
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6.3 Invariant measuresand percolation

Inthisand the next section, we consider the contact processé = (&; : t > 0)
on the d-dimensional cubic lattice LY with d > 1. Thus, £ is a Markov
process on the state space ¥ = {0, 1}Zd. Let £ be the set of invariant
measures of &, that is, the set of probability measures « on X such that
nS = u, where S = (§ : t > 0) is the transition semigroup of the
process.! It is elementary that £ isaconvex set of measures: if ¢1, ¢ € 4,
then g1 + (1 — a)¢p2 € 4 fora € [0, 1]. Therefore, 4 is determined by
knowledge of the set {e of extremal invariant measures.

The partial order on X induces a partial order on probability measures
on X in the usual way, and we denote this by <g. It turns out that
possesses a ‘minimal’ and ‘maximal’ element, with respect to <. The
minimal measure (or ‘lower invariant measure’) is the measure, denoted
84, that places probability 1 on the empty set. It iscalled ‘lower’ because
8z <g m for al measures u on X.

The maximal measure (or ‘upper invariant measure’) is constructed as
the weak limit of the contact model beginning with the set &g = 79. Let pus
denotethe law of £2°. Since £Z° ¢ 79,

H0Ss = s <gt HO-
By the monotonicity of the coupling,

Hstt = 0SS = UsS <g noS = ut,

whence the limit
lim pe(f)
t—>oo

exists for any bounded increasing function f : ¥ — R. Itisagenera
result of measuretheory that the space of probability measureson acompact
sample spaceis relatively compact (see[39, Sect. 1.6] and [73, Sect. 9.3]).
The space (X, ) isindeed compact, whence the weak limit
v = lim Mt
t—o0

exists. Since v isalimiting measure for the Markov process, it isinvariant,
and it is called the upper invariant measure. It is clear by the method of its
construction that 7 is invariant under the action of any translation of LY.

6.3 Proposition. We havethat §5 <g v <g 7V for everyv € J.

1A discussion of thetransition semigroup and its rel ationship to invariant measurescan
be found in Section 10.1. The semigroup Sis Feller, see the footnote on page 191.
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Proof. Letv € 4. Thefirstinequality istrivial. Clearly, v <g o, Since o
isconcentrated onthe maximal set Z9. By the monotonicity of the coupling,
V=1v§ <g¢ H0S = it, t>0.

Lett — ootoobtainthat v <g v. O

By Proposition 6.3, there exists a unique invariant measure if and only if
vV = 8. Inordertounderstand when thisisso, wedeviatebriefly to consider
a percolation-type question. Suppose we begin the process at a singleton,

the origin say, and ask whether the probability of survival for all time is
strictly positive. That is, we work with the percolation-type probability

(6.4) 0(r,8) =P 552 # oforalt > 0),

where f»;to = st{O}. By are-scaling of time, (A, 8) = 6(r/8, 1), and we

assume henceforth in his section that § = 1, and wewrite P, = Py 1.

6.5 Proposition. The density of ill verticesunder v equalsf(1). Thatis,
00) =v({o € T :ox =1)), x e 79.

Proof. Theevent {¢9 N Z4 = @} isnon-increasing in T, whence

00 = lim P2 N7z9 £ 2).

T—>o0
By Proposition 6.1,
d
PAEPNZY # 2) =PuEf (0) =D,
and by weak convergence,
P62 (0 =1) > ({0 € T : 0p = 1y).
The claim follows by the tranglation-invariance of v. d
We define the critical value of the process by

Ac = Ac(d) = sup{r : 6(1) = O}

The function 6(1) is non-decreasing, so that

=0 ifi <A
6(A) .
>0 ifA>Ac

By Proposition 6.5,

[ =68y IfA<Ag

v{ #68g IfA>Ac
Thecase A = A¢ isdelicate, especially whend > 2, and it has been shown
in[36], using a slab argument related to that of the proof of Theorem 5.17,
that 6(Ac) = Oford > 1. We arrive at the following characterization of
uniqueness of extremal invariant measures.
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6.6 Theorem [36]. Consider the contact model on L9 withd > 1. The set
4 of invariant measures comprises a singleton if and only if A < A¢. That
is, 4 = {§p}ifandonlyif A < Ac.

There are further consequences of the arguments of [36] of which we
mention one. The geometrical constructions of [36] enable a proof of the
equivalent for the contact model of the ‘dlab’ percolation Theorem 5.17.
Thisinturn completesthe proof, initiated in [ 76, 80], that the set of extremal
invariant measures of the contact model on L9 is exactly e = {8, V}. See
[78] dso.

6.4 Thecritical value

This section is devoted to the following theorem.?2 Recall that the rate of
cureistakenasé$ = 1.

6.7 Theorem [136]. For d > 1, we havethat (2d) ! < A¢(d) < oo.

The lower bound is easily improved to A¢(d) > (2d — 1)~1. The upper
bound may be refined to Ac(d) < d~1Ac(1) < oo, asindicated in Exercise
6.2. See the accounts of the contact model in the two volumes [167, 169]
by Tom Liggett.

Proof. The lower bound is obtained by a random walk argument that is
sketched here. Theinteger-valued process Ny = |£0| decreasesby 1 at rate
N;. Itincreasesby 1atrate A T, where T; isthenumber of edgesof Ld exactly
one of whose endvertices x satisfiesgto(x) = 1. Now, Ty < 2dN;, and so
thejump-chain of N; isbounded aboveby anearest-neighbour randomwalk
R=(R,:n>0)on{0,1,2,...}, with absorption at 0, and that movesto
the right with probability
2dA

P=1120x

at each step. It is elementary that
P(R,=0forsomen>0)=1 if p<3,
and it follows that
1
o) =0 if r<—.
*) i =54

2There are physical reasons to suppose that Ac(1) = 1.6494. . ., see the discussion of
the so-called reggeon spin model in [102, 167].
3The details are left as an exercise.
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Figure6.2. The points (m, nA) are marked for even values of m + n.
A pointis‘open’ if there are arrows of infection immediately following,
and no point of curejust prior. The open points form a site percolation
process on the rotated positive quadrant of the square | attice.

Just as in the case of percolation (Theorem 3.2) the upper bound on A¢
requires more work. Since L may be viewed as a subgraph of L9, it is
elementary that Ac(d) < Ac(1). We show by a discretization argument that
Ac(l) < o0o. Let A > 0,andlet m, n € Z be suchthat m + n iseven. We
shall define independent random variables X, » taking the values O and 1.
We declare Xm.n = 1, and call (m, n) open, if and only if, in the graphical
representation of the contact model, the following two events occur:

(a) thereisno point of cureintheinterval {m} x ((n - DA, (n+ 1)A],
(b) thereexist left and right pointing arrows of infection from the interval
{m} x (nA, (n+ DA].
(SeeFigure 6.2.) It isimmediate that the Xy n are independent, and

p=pA) =P, (Xmn=1) =e 221 —e )2
We choose A to maximize p(A), whichisto say that

e M i
1+ A7
and
)\2
© P= T A
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Figure6.3. Part of the binary tree To.

Consider the Xm n as giving rise to a directed site percolation model on
the first quadrant of a rotated copy of 2. It can be seen that sr?A D By,
where By, isthe set of verticesof theform (m, n) that are reached from (0, 0)
along open paths of the percolation process. Now,

Py(|Bal = 1fordln>0) >0 if p> pse

where pg is the critical probability of the percolation model. By (6.8),

; A2 =site
Since* St < 1, thefinal inequality isvalid for sufficiently large A, and we
deducethat Ac(1) < oo. O

6.5 The contact model on atree

Letd > 2 and let Tq be the homogeneous (infinite) labelled tree in which
every vertex has degree d + 1, illustrated in Figure 6.3. We identify a
distinguished vertex, called the origin and denoted 0. Let & = (& : t > 0)
be acontact model on Ty withinfectionrate A andinitial state &y = {0}, and
takes = 1.

With
0(0) = Py (& # @ fordl t),

4Exercise.
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the processis said to die out if 6(1) = 0, and to survive if (1) > 0. Itis
said to survive strongly if

P».(&(0) = 1 for unbounded timest) > 0,

andto surviveweaklyif it survivesbut it doesnot survivestrongly. A process
that survivesweakly hasthe property that (with strictly positive probability)
the illness exists for all time, but that (almost surely) there is a final time
at which any given vertex is infected. It can be shown that weak survival
never occurs on a lattice L9, see [169]. The picture is quite different on a
tree.

Thepropertiesof survival and strong survival areevidently non-decreasing
in A, whence there exist values Ac, Ass Satisfying Ac < Ass Such that the
process

diesout if A <A,

survivesweakly if Ac < A < Ags,

survivesstrongly  if A > Ass.
When is it the case that A¢ < Ass? The next theorem indicates that this
occurson Tq if d > 6. It was further proved in [196] that strict inequality
holds whenever d > 3, and this was extended in [168] to d > 2. See[169,
Chap. 1.4] and the references therein. Since Ty contains a copy of L, we
havethat A5 < 00.
6.9 Theorem [196]. For the contact model on thetree Tq withd > 2,

1 1 1

_— <A< —— — <A .
d+1~-"°"d-1" 2/d =0

Proof. The lower bound for A¢ is proved asin Theorem 6.7, and we turn
to the upper bound. Let p € (0, 1), and v, (A) = p!Al for any finite subset
A of the vertex-set V of Tq. We shall observe the process v, (&). Let
gA(t) = EXv,(&)). Itisan easy calculation that

(610)  ghm = ALt [%f\)} + ANat[pvp(A)]

+ (1— At — ANat) v, (A) + o(t),

ast | 0, where
Na=[{(x,y):xeA y¢A}

is the number of edges of Ty with exactly one endvertex in A. Now,
(6.11) Na > (d+ DAl — 2(]A] - D),
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since there are no more than |A| — 1 edges having both endverticesin A.
By (6.10),

~ A
=@ p) (= = Na)up(A

A
= - P, (A) [%(1— Ap(d— 1)) - zx]

< —2A(1— p)up(A) <0,

d a
(6.12) at? (t)

t=0

whenever

(6.13) Ap(d—1) > 1.

Assume that (6.13) holds. By (6.12) and the Markov property,
d an_wal9d s

(6.14) gp9 W =E (ag ® t=0> <0,

implying that g”(u) is non-increasing in u.
With A = {0}, we havethat g(0) = p < 1, and therefore

lim g(t) < p.
t—o0

Ontheother hand, if the processdies out, then (almost surely) & = @ for all
large t, so that, by the bounded convergence theorm, g(t) — last — oc.
From this contradiction, we deducethat the process surviveswhenever there
exists p € (0, 1) such that (6.13) holds. Therefore, (d — D)Ac < 1.
Turning to the lower bound, let p € (0, 1) once again. We draw the tree
inthe manner of Figure 6.4, and welet | (x) be the generation number of the
vertex x relative to 0 in this representation. For afinite subset A of V, let

wp(A) =Y p'™,
xXeA
with the convention that an empty summation equals 0.
Asin (6.12), hAt) = EfNw, (&)) satisfies

=Z(—p'(x)+k )3 pl(y))

d A
(6.15) FURU)

t=0

XeA yeV: y~x,
yEA
<—w,(A+1Y_ p'Pldo+p71]
XeA
= (do+ 1ot = Dw,(A).
Let
1 1
6.16 =, rA<—,
(6.16) P NG Wi
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Figure6.4. Thebinary tree T, ‘suspended’ from agiven doubly infinite
path, with the generation numbers as marked.

so that Adp + A1p~1 — 1 < 0. By (6.15) and time-homogeneity, w, (&) isa
positive supermartingale. By the martingal e convergencetheorem, the limit

(6.17) M = lim w, (&),

exists P2-almost surely. See[121, Sect. 12.3] for an account of the conver-
gence of martingales.

Ontheevent | = {£(0) = 1 for unbounded timest}, the process w, (&)
changesits value (almost surely) by p° = 1 on an unbounded set of times
t, in contradiction of (6.17). Therefore, Pf(l) = 0, and the process does
not survive strongly under (6.16). The theorem is proved. d

6.6 Space-time percolation

The percolation models of Chapters 2 and 5 are discrete in that they inhabit
adiscrete graph G = (V, E). There are avariety of continuum models of
interest (see [110] for a summary) of which we distinguish the continuum
model onV x R. We can consider this asthe contact model with undirected
time. We will encounter the related continuum random-cluster model in
Chapter 9, together with its application to the quantum Ising model.

Let G = (V, E) beafinite graph. The percolation model of this section
inhabitsthe spaceV x R, which werefer to as space-time, and we consider
V x R asobtained by attachinga‘time-line’ (—oo, co) toeachvertexx € V.
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Let 4,8 € (0,00). The continuum percolation model on V x R is
constructed viaprocessesof ‘ cuts’ and ‘ bridges’ asfollows. Foreachx € V,
we select a Poisson process Dy of pointsin {x} x R with intensity §; the
processes{Dy : X € V}areindependent, andthe pointsinthe Dy aretermed
‘cuts’. Foreache = (X, y) € E, weselect aPoisson process Be of pointsin
{e} x R withintensity ; the processes{Be : e € E} areindependent of each
other and of the Dy. Let P, s denote the probability measure associated
with the family of such Poisson processesindexed by V U E.

Foreache = (x,y) € E and (e, t) € Be, wethink of (e, t) as an edge
joiningtheendpoints(x, t) and (y, t), and werefer tothisedgeasa'bridge'.
For (x,s), (y,t) € V x R, wewrite (X, S) < (Y, 1) if there exists apath =
with endpoints (x, s), (Y, t) suchthat: 7 isaunion of cut-free sub-intervals
of V x R andbridges. For A, A CV x R, wewrite A < A if there exist
ac Aandb e A suchthata < b.

For (X,s) € V x R, let Cx s be the set of al points (y, t) such that
(X,S) <> (Yy,1). The clusters Cyx s have been studied in [37], where the
case G = 79 was considered in some detail. Let O denote the origin
(0,0) € Z9 x R, and let C = Cp denote the cluster at the origin. Noting
that C isaunion of line-segments, we write |C| for its Lebesgue measure.
Theradiusrad(C) of C isgiven by

rad(C) = sup{lIx|l + It| : (x,t) € C},

where
d
IXI| =sup[xil, X = (X1, Xz, ..., %) € Z,
I

is the supremum norm on Z9.
The critical point of the processis defined by

Ac(8) = supfA : 6(2, 6) = O},

where
O(A, 8) =Py 5(|C| = 00).

It is immediate by re-scaling time that (%, §) = 6(1/8, 1), and we shall
use the abbreviations Ac = A¢(1) and (1) = 0(A, 1).

6.18 Theorem [37]. Let G = L9 whered > 1, and consider continuum
percolationon LY x R.
(@) LetA,d € (0,00). Thereexist y, v satisfying y, v > Ofor A/8 < Ac¢
such that

Prs(ICl =k <e 7% k>0,
P,s(rad(C) > k) <e™k k> 0.
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(b) Whend =1, Ac =1and (1) = 0.

Thereisanatural duality in 141 dimensions(that is, when theunderlying
graphistheline L), and it iseasily seenin this case that the processis self-
dua when & = §. Part (b) identifies this self-dual point as the critical
point. For general d > 1, the continuum percolation model on LY x R has
exponential decay of connectivity when A/8 < Ac. The proof, which is
omitted, uses an adaptation to the continuum of the methods used for LI+1,
Theorem 6.18 will be useful for the study of the quantum Ising model in
Section 9.4.

There has been considerable interest in the behaviour of the continuum
percolation model on a graph G when the environment is itself chosen at
random, that is, wetakethe A = A¢, § = 8¢ to be random variables. More
precisely, suppose that the Poisson process of cuts at avertex X € V has
some intensity 8y, and that of bridges parallel to theedgee = (X, y) € E
has someintensity Ae. Suppose further that the §x, x € V, areindependent,
identically distributed random variables, and the Ae, € € E aso. Write A
and A for independent random variabl eshaving the respectivedistributions,
and P for the probability measure governing the environment. [As before,
PP, s denotesthe measure associated with the percolation model in the given
environment. The above use of the letters A, A to denote random variables
is temporary only.] The problem of understanding the behaviour of the
system is now much harder, because of the fluctuationsin intensities about
G.

If thereexist 1/, 8’ € (0, oo) such that A'/8" < A¢ and
P(A<A)=P(A>§)=1,

then the process is almost surely dominated by the subcritical percolation
process with parameters A, §’, whence there is (almost surely) exponential
decay in the sense of Theorem 6.18(i). Thiscan fail in aninteresting way if
there is no such almost-sure domination, in that (under certain conditions)
we can prove exponential decay in the space-direction but only a weaker
decay in the time-direction. The problem arises since there will generally
be regions of space that are favourable to the existence of large clusters,
and other regionsthat are unfavourable. In afavourable region, there may
be unnaturally long connections between two points with similar valuesfor
their time-coordinates.

For (x,s), (y,t) € Z9 x Rand q > 1, we define

8q(x, sy, t) = max{[x — y||, [log(1 + |s — t])]}.
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6.19 Theorem [154, 155]. Let G = L9, whered > 1. Suppose that
K = max[P([log(1+ A)P). P(llog(1 + A’l)]ﬁ)] < 00,

for somep > 2d?(1++/1+ d~14(2d)~1). ThereexistsQ = Q(d, B) > 1
such that the following holds. For g € [1, Q) and m > O, there exists
e=¢(d,B,K,mq) >0andn =n(d, B,q) > 0suchthat: if

P([log(1+ (A/A))]’S> <e

there exist identically distributed random variables Dy € L7(P), x € Z4,
such that

Prs((X, ) < (v, 1) < exp[—mdq(X, S; y. )] if 8q(x,s;y,t) > Dy,
for (x, s), (y,t) € Z9 x R.

This version of the theorem of Klein can be found with explanation in
[118]. It is proved by a so-called multiscale analysis.

The contact process also may inhabit a random environment in which
theinfection rates Ay y and curerates §x are independent random variables.
Very much the same questions may be posed as for disordered percolation.
Thereisin addition a variety of models of physics and applied probability
for which the natural random environment is exactly of the above type. A
brief survey of directed models with long-range dependence may be found
with referencesin [111].

6.7 Exercises

6.1 Finda < 1 such that the critical probability of oriented site percol ation on
1.2 satisfies p3*€ < a.
6.2 Letd > 2, and let IT : z9 — 7 be given by

d
TI(X1, X2, ... Xd) = D Xi.
i=1

Let (At : t > 0) denote a contact process on z9 with parameter A and starting
at the origin. Show that A may be coupled with a contact process C on Z with
parameter A.d and starting at the origin, in such away that IT(A¢) 2 C; for al t.

Deduce that the critical point A¢(d) of the contact model on L9 satisfies
he(d) < d~tac(D).

6.3 [37] Consider unoriented space-time percolation on Z x R, with bridges
at rate A and cuts at rate §. By adapting the corresponding argument for bond
percolation on L2, or otherwise, show that the percolation probability 6(x, §)
satisfiesf(x, 1) = 0for A > 0.
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Gibbs states

Brook’s theorem states that a positive probability measure on afinite
product may be decomposed into factorsindexed by the cliques of its
dependency graph. Closely related to thisisthe well known fact that
apositive measure isa spatial Markov field on agraph G if and only
if itisa Gibbs state. The Ising and Potts models are introduced, and
the n-vector model is mentioned.

7.1 Dependency graphs

Let X = (Xg, Xg,..., Xp) be afamily of random variables on a given
probability space. Fori, j e V = {1,2,...,n}withi # j,wewritei L j
if: Xj and Xj are independent conditional on (X : k # i, j). Therelation
L isthus symmetric, and it givesrise to a graph G with vertex set V and
edge-set E = {(i, j) :i £ j}, caled the dependency graph of X (or of its
law). We shall see that the law of X may be expressed as a product over
terms corresponding to complete subgraphs of G. A compl ete subgraph of
G iscdled a clique, and we write X for the set of al cliques of G. For
notational simplicity later, we designate the empty subset of V tobeaclique,
andthus @ € K. A cliqueis maximal if no strict superset is a clique, and
we write M for the set of maximal cliques of G.

Weassumefor simplicity that the X; take valuesin some countable subset
Sof therealsR. Thelaw of X givesrise to a probability mass function
on S" given by

w7 (X) =P(Xj =X fori e V), X = (X1, X2, ..., %n) € S".
It is easily seen by the definition of independencethati L j if and only if
7 may be factorized in the form
7(X) = g(xi, Uh(xj, U), xe S,
for some functions g and h, whereU = (xx : k #1i, ). For K € X and
x € S, wewritexx = (Xj :i € K). Wecall = positiveif = (x) > 0for all
x e Sh.
In the following, each function fx acts on the domain SK.
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7.1 Theorem [54]. Let & be a positive probability mass function on S".
There exist functions fx : SK — [0, o), K € M, such that
(7.2) )= ] fkxx). xe S
KeM
In the simplest non-trivial example, let usassumethati 1 j whenever
li —j| > 2. The maximal cliques are the pairs {i, i + 1}, and the mass
function r may be expressed in the form

n7
7)) =[] fii.xip0.  xes,

so that X isaMarkov chain, whatever the direction of time.
Proof. We shall show that = may be expressed in the form

(7.3) T(X) = ]_[ fr (XK), xe S,
KeX
for suitable fk . Representation (7.2) followsfrom (7.3) by associating each
fx with some maximal clique K’ containing K as a subset.
A representation of 7z in the form

) =[] fr
r

issaid to separatei and j if every f, isaconstant function of either x; or
Xj, that is, no f, depends non-trivially on both x; and x;. Let

(7.4) () =[] faxa)
AcA

be afactorization of = for some family 4 of subsetsof V, and suppose that
i, ] satisfies; i L j,buti and j arenot separatedin (7.4). We shall construct
from (7.4) afactorization that separates every pair r, s that is separated in
(7.4), and in addition separatesi, j. Continuing by iteration, we obtain a
factorization that separates every pair i, j satisfyingi L j, and thishasthe
required form (7.3).

Sincei L j, w may be expressed in the form
(7.5) m(X) = g(xi, U)h(xj, U)
for some g, h, whereU = (x¢ : k # i, ). Fixs,t € S, and write h|S
(respectively, h\t) for the function h(x) evaluated with x; = s (respectively,
Xj =t). Thus, h| t requiresboth xi =sandxj =t. By (7.4),

(7.6) 7(X) —vr(X)\t m— )| <]_[ fa(x A)|) ”(();)|
t

AcA
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By (7.5), theratio
T(X) h(xj, U)

7)), ht, V)
isindependent of x;, so that

7(X) faxa)lg

7, ak fAGA)[g,

By (7.6),
fa(xa)l
m(X) = ( fa(xa)| )( 75)
EA t AI;IA, fA(XA)’s,t
is the required representation, and the claim is proved. O

7.2 Markov and Gibbs random fields

Let G = (V, E) be afinite graph, taken for simplicity without loops or
multiple edges. Within statistics and statistical mechanics, there has been
a great deal of interest in probability measures having a type of ‘spatial
Markov property’ given in terms of the neighbour relation of G. We shall
restrict ourselves here to measures on the sample space © = {0, 1}V, while
noting that the foll owing results may be extended without material difficulty
to alarger product SV, where Sis finite or countably infinite.

The vector o € ¥ may be placed in one-one correspondence with the
subsetn(o) = {v e V : o, = 1} of V, and weshall usethiscorrespondence
freely. For any W C V, we define the external boundary

AW={veV:iv¢gW, v~ wforsomew e W}.

Fors= (s, : v € V) € &, wewrite sy for the sub-vector (s, : w € W).
We refer to the configuration of verticesin W asthe ‘state’ of W.

7.7 Definition. A probability measure 7 on X is said to be positive if
(o) > Oforall o € X. Itiscaled aMarkov (random) field if it is positive
and: forall W C V, conditional onthestateof V \ W, thelaw of the state of
W dependsonly on the state of AW. That is, = satisfies the global Markov
property

(78)  m(ow =sw]|oviw =sv\w) = 7(ow = Sw | caw = Saw).
foralse ¥,andW C V.

The key result about such measuresis their representation in terms of a
‘potential function’ ¢, in aform known as a Gibbs random field (or some-
times ‘Gibbs state’). Recall the set X of cliques of the graph G, and write
2V for the set of all subsets (or ‘ power set’) of V.
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7.9 Definition. A probability measure r on ¥ is called a Gibbs (random)
field if there exists a* potential’ function ¢ : 2V — R, satisfying ¢c = 0if

C ¢ X, such that
(7.10) 7(B) = exp( > ¢K), BcCV.
KcB

We allow the empty set in the above summation, so that log 7 (@) = ¢y.

Condition (7.10) has been chosen for combinatorial simplicity. It is
not the physicists' preferred definition of a Gibbs state. Let us define a
Gibbs state as a probability measure 7 on ¥ such that there exist functions
fk : {0, 1)K > R, K € X, with

(7.12) (o) = exp< Z fK(oK)>, o EX.

KeX
It may be checked that 7 satisfies (7.10) for some ¢ whenever it satisfies
(7.11). The converse holds also, and is|eft for Exercise 7.1.

Gibbs fields are thus named after Josiah Willard Gibbs, whose volume
[95] made available the foundations of statistical mechanics. A simplistic
motivation for the form of (7.10) is as follows. Suppose that each state o
has an energy E,, and aprobability 7 (). We constrain the average energy
E =), Esn (o) to befixed, and we maximize the entropy

n(r)=—> m(o)logn (o).
oEX
With the aid of a Lagrange multiplier 8, we find that
n(o)(xe*ﬂE“, o€ X.
The theory of thermodynamics leads to the expression 8 = 1/(kT) where
k is Boltzmann's constant and T is (absolute) temperature. Formula (7.10)

arises when the energy E, may be expressed as the sum of the energies of
the sub-systemsindexed by cliques.

7.12 Theorem. Apositiveprobability measuresr on X isaMarkovrandom
field if and only if it is a Gibbs random field. The potential function ¢
corresponding to the Markov field 7 is given by

¢k = Y (=D'"\logm(L), KeX.
LCK

A positive probability measure r issaid to havethelocal Markov property
if it satisfiesthe global property (7.8) for al singleton setsW and all s € X.
Theglobal property evidently impliesthelocal property, and it turnsout that
the two properties are equivalent. For notational convenience, we denote a
singleton set {w} asw.
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7.13 Proposition. Let 7= be a positive probability measure on . The
following three statements are equivalent:

() 7 satisfiesthe global Markov property,

(b) = satisfiesthe local Markov property,

(c) forall AC V andanypairu,v € Vwithu ¢ A,ve Aandu ~ v,

T (AU U) _ T(AUU\ v)

(7.14) =
7 (A) T (A\v)

Proof. It istrivia that (a) implies (b). Assume (b) holds, and let u ¢ A,
ve A andu ~ v. Applying (7.8) with W = {u} and, for w #£ u, s, = 1if
andonly if w € A, we find that
(7.15)
x(AUU)

A T AU 7(oy | oviu )
=na(oy=1]oay=ANAU)
=m(oy=1|ov\u=A\v) sincev ¢ Au
B 7(AUU\ v)
T m(A\v) +7(AUU\ V)’
Equation (7.15) is equivalent to (7.14), and thus (c) holds. Conversely, the
preceding calculation shows that (c) implies (b).

It remains to show that the local property implies the global property.
The proof requires a short calculation, and may be done either by Theorem
7.1 or within the proof of Theorem 7.12. We follow the first route here.
Assume that 7 is positive and satisfies the local Markov property. Then
uLlvforalu,veV withu ~ v. By Theorem 7.1, there exist functions
fk, K € M, such that

(7.16) (A =[] fk(ANK), ACV.
KeM

Let W C V. By (7.16),for ACWandC C V \ W,
HKEM fk (AUC)NK)
Y ew [ken fK(BUC)NK)'

Any cligue K with K N W = @ makes the same contribution fx (C N K)
to both numerator and denominator, and may be cancelled. The remaining
cliques are subsetsof W = W U AW, so that

Mk ear. kew fR(AUC) NK)
Y sew [ken kew fK(BUC)NK)’

mlow = Aloy\w =C) =

m(ow =Aloyw =C) =
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The right side does not depend on o, whence

VAW’
w(ow = A|(7V\W=C)=T[(Gw= Al oaw =CNAW)
asrequired for the global Markov property. d

Proof of Theorem 7.12. Assumefirst that = isa positive Markov field, and
let

(7.17) ¢c =Y (-1 ogr(L), CcV.
LcC
By the inclusion—exclusion principle,
logm(B)= > ¢c. BCV,
ccB

and we need only show that ¢c = Ofor C ¢ K. Supposeu,v € C and
u~ v. By (7.17),

_ _ \IC\L| m(LUuUv) [ a(LUv)
po= 2, (D IOg( 7(LUu) PONA

LSC\{u,v}

which equals zero by the local Markov property and Proposition 7.13.
Therefore, 7 isa Gibbsfield with potential function ¢.

Conversely, suppose that 7 is a Gibbs field with potential function ¢.
Evidently, 7 is positive. Let AC V,andu ¢ A, v € Awithu = v. By
(7.10),

7 (AU U) B
°g< (A )‘ 2

KCAUuU, uekK
KeX

= Z dk  sinceu ~vandK € X

KCAUu\v, ueK
KeX

T(AUuU\ v)
= — .
Og( 7(A\0) >
The claim follows by Proposition 7.13. O

We close this section with some notes on the history of the equivalence
of Markov and Gibbs random fields. This may be derived from Brook’s
theorem, Theorem 7.1, but it is perhaps moreinformativeto proveit directly
as above via the inclusion—exclusion principle. It is normally attributed
to Hammerdley and Clifford, and an account was circulated (with a more
complicated formulation and proof) in an unpublished note of 1971, [129]
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(see dso [68]). Versions of Theorem 7.12 may be found in the |ater work
of several authors, and the above proof is taken essentially from [103].
The assumption of positivity isimportant, and complications arise for non-
positive measures, see [191] and Exercise 7.2.

For applications of the Gibbs/Markov equivalence in statistics, see, for
example, [159].

7.3 Ising and Potts models

In a famous experiment, a piece of iron is exposed to a magnetic field.
The field is increased from zero to a maximum, and then diminished to
zero. If the temperature is sufficiently low, the iron retains some residual
magnetization, otherwiseit doesnot. Thereisacritical temperaturefor this
phenomenon, often named the Curie point after Pierre Curie, who reported
this discovery in his 1895 thesis. The famous (Lenz—)Ising model for such
ferromagnetism, [142], may be summarized as follows. Let particles be
positioned at the points of some lattice in Euclidean space. Each particle
may be in either of two states, representing the physical states of ‘ spin-up’
and ‘spin-down’. Spin-values are chosen at random according to a Gibbs
state governed by interactions between neighbouring particles, and givenin
the following way.

Let G = (V, E) be afinite graph representing part of the lattice. Each
vertex X € V is considered as being occupied by a particle that has a
random spin. Spins are assumed to come in two basic types (‘up’ and
‘down’), and thus we take the set ¥ = {—1, +1}V as the sample space.
The appropriate probability massfunction A4, 3 1 on = hasthree parameters
satisfying 8, J € [0, o0) and h € R, and is given by

1
(7.18) Ag.an(o) = ?e—ﬁH“’), oex,
|

where the ‘Hamiltonian’ H : ¥ — R and the ‘partition function’ Z, are
given by

(719 HE)=-J3 Y oxwoy—hY ox. Z =) et

e=(X,y)eE xeV oceX

The physical interpretation of 8 is asthe reciprocal 1/ T of absolute tem-
perature, of J as the strength of interaction between neighbours, and of
h as the external magnetic field. We shall consider here only the case of
zero external-field, and we assume henceforth that h = 0. Since J isas-
sumed non-negative, the measure A g_j.o islarger for smaller H (o). Thus, it
places greater weight on configurations having many neighbour-pairs with
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like spins, and for this reason it is called ‘ferromagnetic’. The *antiferro-
magnetic’ case J < 0 isnot considered here.

Each edge has equal interaction strength J in the above formulation.
Since g and J occur only asaproduct 8J, themeasure A g3 o haseffectively
only asingleparameter 8 J. Inamorecomplicated measure not studied here,
different edges e are permitted to have different interaction strengths Je. In
the meantimewe shall set J = 1, and write A = Ag.1.0

Whereas the |sing model permits only two possible spin-values at each
vertex, the so-called (Domb-)Pottsmodel [202] hasageneral numberq > 2,
and is governed by the following probability measure.

Let q be an integer satisfying q > 2, and take as sample space the set
of vectors T = {1, 2, ..., q}V. Thuseach vertex of G may bein any of q
states. For an edge e = (X, y) and aconfigurationo = (ox : X € V) € X,
we write e(o) = Soy.0ys where & j is the Kronecker delta. The relevant
probability measureis given by

1 /
(7.20) 7gq(0) = Z—eiﬂH @), o€eX,
P

where Zp = Zp(8, q) is the appropriate partition function (or normalizing
constant) and the Hamiltonian H’ is given by

(7.21) H@)=- Y o).

e=(x,y)eE
In the special caseq = 2,
(7.22) 81,0, = 3(1+ 0102), 01,02 € (=1, +1},

It iseasy to seein this case that the ensuing Potts model is simply the Ising
mode! with an adjusted value of g, inthat 74 > isthe measure obtained from
A2 by re-labelling the local states.

We mention onefurther generalization of the Ising model, namely the so-
called n-vector or O(n) model. Letn € {1, 2, ...} andlet S"~1 bethe set of
vectorsof R" with unit length, that is, the (n — 1)-sphere. A ‘model’ is said
to have O(n) symmetry if its Hamiltonian is invariant under the operation
on S"~1 of n x n orthonormal matrices. One such model is the n-vector
model on G = (V, E), with Hamiltonian

Hi®=- Y scs.  s=(s:veV)e(S™hY,
e=(x,y)eE

where s, - sy denotes the scalar product. When n = 1, thisis simply the
Ising modédl. It iscalled the X/Y model when n = 2, and the Heisenberg
model whenn = 3.
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The Ising and Potts models have very rich theories, and are amongst the
most intensively studied of models of statistical mechanics. In ‘classical’
work, they are studied via cluster expansions and correlation inequalities.
The so-called ‘ random-cluster model’, developed by Fortuin and Kasteleyn
around 1960, provides a single framework incorporating the percolation,
Ising, and Potts models, as well as electrical networks, uniform spanning
trees, and forests. It enables a representation of the two-point correlation
function of a Potts model as a connection probability of an appropriate
model of stochastic geometry, and thisin turn allows the use of geometrical
techniques aready refined in the case of percolation. The random-cluster
model is defined and described in Chapter 8, see also [109].

Theq = 2 Pottsmodel isessentially thelsing model, and special features
of the number 2 allow a special analysis for the Ising model not yet repli-
cated for general Potts models. This method istermed the ‘ random-current
representation’, and it has been especially fruitful in the study of the phase
transition of the Ising model on 1LY, See[3, 7, 10] and [109, Chap. 9.

7.4 Exercises

7.1 Let G = (V, E) be afinite graph, and let = be a probability measure on
the power set & = {0, 1}V. A configuration o € ¥ is identified with the subset
of V onwhich it takesthe value 1, that is, withthe set (o) = {v € V : 0, = 1}.

Show that
7(B) = exp( > ¢K), BCV,
KCB

for some function ¢ acting on the set X of cliques of G, if and only if

fr(o)=e><p<z fK(GK)), oex,
KeX

for some functions fx : {0, 1} — R, with K ranging over X. Recal the
notation ox = (oy : v € K).

7.2 [191] Investigate the Gibbs/Markov equivalence for probability measures
that have zeroes. It may be useful to consider the example illustrated in Figure
7.1. Thegraph G = (V, E) isa4-cycle, and the local state spaceis {0, 1}. Each
of the eight configurations of the figure has probability %, and the other eight
configurations have probability 0. Show that this measure p satisfies the local
Markov property, but cannot be written in the form

uB =[] f(K), Bcv,
KcB

for some f satisfying f(K) = 1if K ¢ X, the set of cliques.
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]| B

SDE

Figure7.1. Eachvertex of the 4-cyclemay bein either of the two states
0 and 1. The marked vertices have state 1, and the unmarked vertices
have state 0. Each of the above eight configurations has probability %,
and the other eight configurations have probability O.

7.3 lIsing model with external field. Let G = (V, E) be afinite graph, and let
A be the probability measureon = = {—1, +1}V satisfying

A(a)cxexp(hZ(rv-i-ﬂ Z auav), o€Ex,

veV e=(u,v)

where 8 > 0. Thinking of ¥ asapartialy ordered set (where o < o if and only
if oy < o, foral v e V), show that:
(a) A satisfiesthe FKG lattice condition, and hence is positively associated,
(b) forve V,A( | oy =—1) <g A <g A(- | oy = +1).

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



8

Random-cluster model

Thebasic propertiesof themodel are summarized, anditsrelationship
to the Ising and Potts models described. The phase transition is
defined in terms of the infinite-volume measures. After an account
of anumber of areasmeritorious of further research, therei sasection
devoted to planar duality and the conjectured value of thecritical point
on the square lattice. The random-cluster model is linked in more
than one way to the study of arandom even subgraph of a graph.

8.1 Therandom-cluster and I sing/Potts models

Let G = (V, E) be afinite graph, and write Q = {0, 1}E. For w € Q, we
write n(w) = {e € E : w(e) = 1} for the set of open edges, and k(w) for
the number of connected componentst, or ‘ open clusters’, of the subgraph
(V, n(w)). Therandom-cluster measure on €2, with parameters p < [0, 1],
g € (0, 0o) isthe probability measure given by

1
(8.1) ¢p,q(a)) = Z {1_[ pw(e)(l _ p)l—w(e)}qk(w)’ weQ,
ecE

where Z = Zg, p q isthe normalizing constant.

This measure was introduced by Fortuin and Kasteleyn in a series of
papers dated around 1970. They sought a unification of the theory of elec-
trical networks, percolation, 1sing, and Potts models, and were motivated by
the observation that each of these systems satisfies a certain series/parallel
law. Percolation is evidently retrieved by setting g = 1, and it turns out
that electrical networks arise viathe UST limit obtained on taking the limit
p,q — 0insuch away that q/p — 0. The relationship to Ising/Potts
models is more complex in that it involves a transformation of measures
described next. In brief, connection probabilities for the random-cluster
measure correspond to correlations for ferromagnetic I1sing/Potts models,
and this allows a geometrical interpretation of their correlation structure.

11t isimportant to include isolated vertices in this count.
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A fuller account of the random-cluster model and its history and associ-
ations may be found in [109]. When the emphasisis upon its connection
to Ising/Potts models, the random-cluster model is often called the ‘FK
representation’.

Inthe remainder of this section, we summarizetherelationship between a
Pottsmodel on G = (V, E) with aninteger number g of local states, and the
random-cluster measure ¢p . As configuration space for the Potts model,
wetake ¥ = {1,2,...,q}V. Let F be the subset of the product space
3 x Q containing al pairs (o, w) such that: for every edgee = (x, y) € E,
if w(e) =1, thenoy = oy. Thatis, F containsall pairs (o, w) such that o
is constant on each cluster of w.

Let ¢p = ¢p,1 be product measure on 2 with density p, and let 1. be the
probability measureon X x 2 given by

(8.2 (o, w) < ¢pp(@)1F (o, w), (o,w) € T x Q,

where 1 isthe indicator function of F.

Four calculationsare now required, in order to determinethetwo marginal
measures of u and the two conditional measures. It turns out that the two
marginals are exactly the g-state Potts measure on T (with suitable pair-
interaction) and the random-cluster measure ¢p q.

Marginal on . Whenwe sum u (o, o) over w € Q, we have afree choice
except in that w(e) = 0 whenever ox # oy. Thatis, if ox = oy, thereisno
constraint on the local state w(e) of the edge e = (x, y); the sum for this
edgeissimply p + (1 — p) = 1. We are left with edges e with oy # oy,
and therefore

(83) u(o, <) = Z (o, w) x 1_[(1 — p)tt@),

weR ecE

where §¢(0) isthe Kronecker delta
(8.9) 8e(0) = 8oy, 0y e=(x,y)eE.
Otherwise expressed,

no, ) exp{ﬂZsew)}, Tez,
ecE

where
(8.5) p=1-e?.

This is the Potts measure g q of (7.20). Notethat 8 > 0, which isto say
that the model is ferromagnetic.
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Marginal on . For given w, the constraint on o is that it be constant on
open clusters. There are g*(® such spin configurations, and (o, ) is
constant on this set. Therefore,

pi )=y ulo, o) « {1_[ P~ p)l‘“e’}qk(‘“)
ecE

oceX
X ¢p’q(6()), w e Q.

Thisis the random-cluster measure of (8.1).

The conditional measures. It is aroutine exercise to verify the following.
Given w, the conditional measure on X is obtained by putting (uniformly)
random spins on entire clusters of w, constant on given clusters, and
independent between clusters. Given o, the conditional measure on Q2 is
obtained by setting w(e) = 0if de(0) = 0, and otherwise w(e) = 1 with
probability p (independently of other edges).

The ‘two-point correlation function’ of the Potts measure g q on G =
(V, E) isthefunction g q given by

1
T'B’q(x, y):ﬂﬁq(axzay)—a, X,yEV

The *two-point connectivity function’ of the random-cluster measure ¢p g
isthe probability ¢p q(X < y) of an open path from x to y. It turns out that
these ‘two-point functions' are (except for a constant factor) the same.

8.6 Theorem[148]. Forqe {2,3,...},>0,andp=1—e#,
59X, ¥) = (1= q Hgpq(x < y).
Proof. We work with the conditional measure i (o | w) thus:

76,406 Y) = Y _[Loy=oy1(0) — g (0. )

= ¢pa@) Y10 | ©)[Ljgy=ay) (@) — a7 "]

= ¢pa@[(1 =0 Doy (@) + 0 Lixpy) ()]

=(1—q Hepgx < y),

and the claim is proved. O
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8.2 Basic properties

We list some of the fundamental properties of random-cluster measuresin
this section.

8.7 Theorem. The measure ¢ q satisfies the FKG lattice condition if
g > 1, andisthus positively associated.

Proof. If p = 0, 1, the conclusion is obvious. Assume0 < p < 1, and
check the FK G lattice condition (4.12), which amountsto the assertion that

k(ow Vo) + k(o A @) > kiw) + ko), w, 0 €Q.
Thisis left as a graph-theoretic exercise for the reader. d
8.8 Theorem (Comparison inequalities) [89]. We have that
(89 ¢pq <ssppg ifp=pd=>0q09=1

. p’ p
8.10 /ol > if >
©10) dyar = bpa g =57 = qa—p)

,q>0q,q >1

Proof. This follows by the Holley inequality, Theorem 4.4, on checking
condition (4.5). O

In the next theorem, the role of the graph G is emphasized in the use of
the notation ¢, p.q. The graph G\e (respectively, G.e) is obtained from G
by deleting (respectively, contracting) the edge e.

8.11 Theorem [89]. Letee E.
(@) Conditional onw(e) = 0, themeasureobtainedfromeg, p,qiSdc\e, p,q-
(b) Conditional onw(e) = 1, themeasureobtainedfromeg p qiS¢c.e p,q-

Proof. Thisisan elementary calculation of conditional probabilities. [

In the mgjority of the theory of random-cluster measures, we assumethat
g > 1, since then we may use positive correlations and comparisons. The
case g < lisdightly mysterious. It is easy to check that random-cluster
measures do not generally satisfy the FKG lattice condition when q < 1,
and indeed that they are not positively associated (see Exercise 8.2). It is
considered possible, even likely, that ¢p q satisfies a property of negative
association when q < 1, and we return to thisin Section 8.4.

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



156 Random-cluster model

8.3 Infinite-volume limits and phase transition

Recall the cubic lattice L9 = (79, EY). We cannot define a random-cluster
measure directly on LY, sinceit is infinite. There are two possible ways to
proceed. Assumeq > 1.

Letd > 2,and Q = {0, l}Ed. The appropriate o -field of  isthe o -field
F generated by thefinite-dimensional sets. Let A beafinitebox in Z9. For
b € {0, 1}, define

QR ={weQ:wE =bfore¢E,},

where E 4 isthe set of edges of L9 joining pairs of vertices belonging to A.
Each of the two values of b corresponds to a certain ‘boundary condition’

on A, and we shall be interested in the effect of these boundary conditions
in the infinite-volume limit.

On Q) , we define a random-cluster measure ¢ , . as follows. For
pe[0,1]andq € (0, 00), let
(8.12)

1 —
¢R»D,q(w) = Zb { H p?@ 1 — p)l-e@ 1 gk@n) e Qb
A,p.q ecEp

where k(w, A) is the number of clusters of (Z9, n(w)) that intersect A.
Here, as before, n(w) = {e € EY : w(e) = 1} isthe set of open edges. The
boundary condition b = O (respectively, b = 1) is sometimes termed ‘ free’
(respectively, ‘wired').

8.13 Theorem [104]. Let q > 1. The weak limits
T b _
¢P~q_A“_>n%d¢A’p’q’ b=0,1,
exist, and are translation-invariant and ergodic.
Theinfinite-volumelimit is called the ‘ thermodynamic limit’ in physics.

Proof. Let A be an increasing cylinder event defined in terms of the edges
lying in some finiteset S. If A € A’ and A includes the ‘base’ S of the
cylinder A,

¢11\,p,q(A) = ¢11\”p’q(A| all edgasin EA/\A are Open) > ¢1l\’,p,q(A)’

where we have used Theorem 8.11 and the FK G inequality. Therefore, the
limit lim, _, ;4 ¢>11\, p.q(A exists by monotonicity. Since F is generated by
such events A, the weak limit ¢>F1J,q exists. A similar argument isvalid with
the inequality reversed when b = 0.
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The trandlation-invariance of the qbb p.q holdsin very much the same way
as in the proof of Theorem 2.11. The proof of ergodicity is deferred to
Exercises 8.10-8.11. d

The measures ¢ , and ¢3 , are called ‘random-cluster measures’ on ¢
with parameters p and g, and they are extremal in the following sense. We
may generate ostensibly larger families of infinite-volume random-cluster
measures by either of two routes. In thefirst, we consider measures ¢i\ .
on E, with more general boundary conditions &, in order to construct a
set ‘Wp q of ‘weak-limit random-cluster measures. The second construc-
tion uses atype of Dobrushin-Lanford—Ruelle(DLR) formalism rather than
weak limits (see [104] and [109, Chap. 4]). That is, we consider measures
1 on (2, ) whose measure on any box A, conditional on the state £ off
A, is the conditional random-cluster measure ¢A P . Such apu iscaled
a'DLR random-cluster measure’, and we write sz q for the set of DLR
measures. Therelationship between Wy, q and R g isnot fully understood,
and we make one remark about this. Any element v of the closed con-
vex hull of ‘Wp g with the so-called * 0/ 1-infinite-cluster property’ (that is,
w(l €{0,1}) =1, wherel isthe number of infinite open clusters) belongs
t0 Rp,q. See[109, Sect. 4.4]. The standard way of showingthe0/1-infinite-
cluster property is via the Burton—Keane argument used in the proof of
Theorem 5.22. We may show, in particular, that ¢ . ¢35 4 € Rp.q-

It is not difficult to see that the measures ¢ , and ¢5 , are extremal in
the sense that

(8.14) bpq <t bpq <s$pq.  Ppq € WpqURpa.

whencethere exists aunique random-cluster measure (in either of the above
senses) if and only if qbg,q = qb%, . It is ageneral fact that such extremal
measures are invariably ergodic, see[94, 109].

Turning to the question of phasetransition, and remembering percolation,
we define the percolation probabilities

(8.15) 0°(p,q) = ¢h 40 <> 00),  b=0,1,

that is, the probability that O belongsto an infinite open cluster. The corre-
sponding critical values are given by

(8.16) p2(q) = supf{p: 6°(p,@) =0}, b=0,1.

Faced possibly with two (or more) distinct critical values, we present the
following result.
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8.17 Theorem [9, 104]. Letd > 2and q > 1. We have that:
@ ¢pq=pqif01(p.q =0,
(b) there exists a countable subset Dq.q of [0, 1], possibly empty, such
that ¢ , = ¢ o if and only if p ¢ Dq q.

It may be shown? that
(8.18) oM (p.a) = lim ¢} ,4(0 < dA).
Apzd P

It is not known when the corresponding statement with b = 0 holds.
Sketch proof. The argument for (@) isas follows. Clearly,

(8.19) 60X (p.a) = lim ¢35 ,(0 < dA).
Atzd T

Supposed1(p, q) = 0, and consider alarge box A with Qinitsinterior. On
building the clusters that intersect the boundary 9 A, with high probability
wedo not reach 0. That is, with high probability, there existsa* cut-surface’
S between 0 and 9 A comprising only closed edges. By taking S to be
as large as possible, the position of S may be taken to be measurable on
its exterior, whence the conditional measure on the interior of Sis afree
random-cluster measure. Passing to the limit as A 1 Z4, we find that the
free and wired measures are equal .

Theargument for (b) isbased on aclassical method of statistical mechan-
ics using convexity. Let Zg p g be the partition function of the random-
cluster model on agraph G = (V, E), and set

Yopq=1-p FZgpe= > en@ligk®,
we{0,1}E

where 7 = log[p/(1 — p)]. Itiseasily seen that logYg p q is a convex
function of 7. By a standard method based on the negligibility of the
boundary of alarge box A compared with its volume, the limit ‘ pressure
function’
M(z,q) = lim {i IogYS }
TU anza [[Bp T AP

exists and is independent of the boundary configuration £ € Q. Since Il
isthe limit of convex functions of r, it is convex, and hence differentiable
except on some countable set D of values of 7. Furthermore, for = ¢ D,
the derivative of [E,|~1log Yf\qp,q converges to that of I1. The former
derivativemay beinterpretedin terms of the edge-densitiesof the measures,

2Exercise 8.8.

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



8.3 Infinite-volume limits and phase transition 159

and therefore the limits of the last are independent of & for any = at which
[1(r, q) is differentiable. Uniqueness of random-cluster measures follows
by (8.14) and stochastic ordering: if w1, uo are probability measures on
(2, F) with u1 <4 w2 and satisfying
ui(eisopen) = ua(eisopen), eck,
then u1 = ,u2.3 O
By Theorem 8.17, 6%(p, @) = 6(p, q) for p ¢ Dy q, whence p2(q) =

p%(q). Henceforth we refer to the critical valueas p; = pe(q). Itisabasic
fact that pe(q) is non-trivial.

8.20 Theorem [9]. Ifd > 2andq > 1,then 0 < pc(q) < 1.

It is an open problem to find a satisfactory definition of pc(q) forg < 1,
although it may be shown by the comparison inequalities (Theorem 8.8)
that there is no infinite cluster for q € (0, 1) and small p, and conversely
thereis an infinite cluster for q € (0, 1) and large p.

Proof. Letq > 1. By Theorem 8.8, ¢>é/’l <g ¢>%qq <g ¢p,1, Where
r_ p
P+q(l—p)’

We apply thisinequality to theincreasing event {0 <> dA}, and let A 1 29
to obtain via (8.18) that

p

qpc(D
8.21 1)< < > 1,
(8.21) Pe(1) = Pe(@) = 17 @-Dpd q
where0 < pe(1) < 1 by Theorem 3.2. O

The following is an important conjecture.

8.22 Conjecture. Thereexists Q = Q(d) such that:
(@ ifq < Q(d), then 61 (pe, q) = 0and Dy q = 2,
(b) ifq > Q(d), then61(pc, 0) > 0 and Dy q = {pc}-

Inthephysical vernacular, thereisconjectured acritical valueof qbeneath
which the phase transition is continuous (‘ second order’) and above which
it is discontinuous (‘first order’). Following work of Roman Kotecky and
Senya Shlosman [156], it was proved in [157] that there is a first-order
transition for large g, see[109, Sects 6.4, 7.5]. It is expected® that

L ifd=2,
Q()_{z if d > 6.

SExercise. Recall Strassen’s Theorem 4.2.
4See [25, 138, 242] for discussions of the two-dimensional case.
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This may be contrasted with the best current estimate in two dimensions,
namely Q(2) < 25.72, see[109, Sect. 6.4].

Finally, we review the relationship between the random-cluster and Potts
phase transitions. The ‘order parameter’ of the Potts model is the ‘ magne-
tization’ given by

. 1
M(B,q) = A“_)”Z‘d{”/l\,ﬂ(aoz - a},

where 7} s Is the Potts measure on A “with boundary condition 1'. We
may think of M (8, q) as a measure of the degree to which the boundary
condition ‘1’ is noticed at the origin after taking the infinite-volume limit.
By an application of Theorem 8.6 to a suitable graph obtained from A,

1
a0 =1 = ¢ = L= a9} g0 < DN,

where p = 1— e #. By (8.18),
M@B.a)=1—-qg™h lim ¢x ;40 < A)
A—7d

= (1-q~He'(p. ).
That is, M(8, q) and 61(p, q) differ by thefactor 1 — q—1.

8.4 Open problems

Many questions remain at least partly unanswered for the random-cluster
model, and we list a few of these here. Further details may be found in
[109].

I. Thecaseq < 1. Lessisknownwhenq < 1 owing to the failure of the
FKG ineguality. A possibly optimistic conjecture is that some version of
negative association holds when g < 1, and this might imply the existence
of infinite-volume limits. Possibly the weakest conjecture is that

¢pq(eand f areopen) < ¢p q(eisopen)gp q(f isopen),

for distinct edges e and f. It has not been ruled out that ¢p, ¢ satisfies the
stronger BK inequality when g < 1. Weak limits of ¢p q asq | 0 have
a specia combinatorial structure, but even here the full picture has yet to
emerge. More specifically, it is not hard to see that

ucs if p=3,
UF ifp=aq,
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where the acronymsare the uniform connected subgraph, uniformspanning
tree, and uniform forest measures encountered in Sections 2.1 and 2.4. See
Theorem 2.1 and Conjecture 2.14.

We may use comparison arguments to study infinite-volume random-
cluster measures for sufficiently small or large p, but there is no proof of
the existence of a unique point of phase transition.

The caseq < 1isof more mathematical than physical interest, although
the various limits as g — 0 are relevant to the theory of agorithms and
complexity.

Henceforth, we assume q > 1.

[1. Exponential decay. Prove that
$p.q(0 < 3[-n,n]) < e ", n>1,

for some o = a(p, q) satisfying ¢ > Owhen p < pc(q). This has been
proved for sufficiently small valuesof p, but no proof is known (for general
g and any givend > 2) right up to the critical point.

The case g = 2 is special, since this corresponds to the Ising model,
for which the random-current representation has allowed a rich theory, see
[109, Sect. 9.3]. Exponential decay is proved to hold for general d, when
g = 2, and aso for sufficiently large q (see IV below).

[11. Uniqueness of random-cluster measures. Prove all or part of Conjec-
ture 8.22. That is, show that ¢ , = ¢ o for p # pe(q); and, furthermore,
that uniqueness holdswhen p = p¢(q) if and only if g is sufficiently small.

These statements are trivial when g = 1, and uniquenessis proved when
g = 2and p # pc(2) using the theory of the Ising model alluded to above.
The situation is curiouswhen g = 2 and p = pc(2), in that uniquenessis
proved so long asd # 3, see[109, Sect. 9.4].

When q is sufficiently large, it is known as in IV below that there is a
unique random-cluster measure when p # pc(q) and amultiplicity of such
measures when p = pe(Q).

IV. First/second-order phasetransition. Muchinterestin Pottsand random-
cluster measures is focussed on the fact that nature of the phase transition

dependsonwhether gissmall or large, seefor example Conjecture 8.22. For

small g, the singularity is expected to be continuous and of power type. For

large q, there is adiscontinuity in the order parameter 61(-, ¢), and a‘ mass
gap’ at the critical point (that is, when p = pc(q), the ¢>g’q-probability of a
long path decays exponentially, whil etheq&il),q-probabi lity isbounded away

from 0).
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Of the possible questions, we ask for a proof of the existence of avalue
Q = Q(d) separating the second- from the first-order transition.

V. Sabcritical point. Itwasimportant for supercritical percolationinthree
and more dimensions to show that percolation in L9 implies percolation in
asufficiently fat ‘dlab’, see Theorem 5.17. A version of the corresponding
problem for the random-cluster model isasfollows. Let q > 1andd > 3,
and write S(L, n) for the ‘dab’

S(L,n)=[0, L — 1] x [—n, n]9-1.

Let ¥ npq = #L n.p.q PEthe random-cluster measure on S(L, n) with
parameters p, g, and free boundary conditions. Let IT(p, L) denote the
property that®

Ilnrn)@f xelsr(]I,n){wL’n’ p.q(0 < x)} > 0.
It is not hard® to seethat TT(p, L) = I(p/, L) if p< p’andL < L', and
it isthus natural to define

(8.23) Pc(q, L) =inf{p: M(p, L) occurs}, ﬁc(q)=Lleooﬁc(q, L).

Clearly, pc(q) < Pc(q) < 1. It is believed that equality holds in that
Pc(@) = pe(q), and it is a major open problem to prove this. A positive
resolution would have implications for the exponential decay of truncated
cluster-sizes, and for the existence of a Wulff crystal for all p > pc(q) and
g > 1. SeeFigure 5.3 and [60, 61, 62].

VI. Roughening transition. While it is believed that there is a unique
random-cluster measure except possibly at the critical point, there can exist
a multitude of random-cluster-type measures with the striking property of
non-translation-invariance. Take abox A, = [—n,n]9 ind > 3 dimen-
sions (the following construction fails in 2 dimensions). We may think of
d Ap as comprising a northern and southern hemisphere, with the ‘ equator’
{X € 0An : Xg = 0} asinterface. Let En’ n.q be the random-cluster mea-
sure on A, with awired boundary condition on the northern and southern
hemispheresindividually and conditioned on the event Dy, that no open path
joins a point of the northern to a point of the southern hemisphere. By the
compactness of 2, the sequence (En’ p.g - N > 1) possesses weak limits.
Let ¢y, 4 be such aweak limit.

It isageometrical fact that, in any configuration w € Dy, there exists an
interface | (w) separating the pointsjoined to the northern hemispherefrom

5This corrects an error in [109].
6Exercise 8.9.
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those joined to the southern hemisphere. This interface passes around the
equator, anditsclosest point to the originisat somedistance Hy, say. It may
beshownthat, for g > 1 andsufficiently large p, thelawsof the H,, aretight,
whence the weak limit Ep,q is not trandation-invariant. Such measures are
termed ‘ Dobrushin measures' after their discovery for the Ising model in
[70].

Thereremain two important questions. Firstly, ford > 3andq > 1, does
there exist avalue p(q) such that Dobrushin measures exist for p > p(q)
and not for p < P(q)? Secondly, for what dimensions d do Dobrushin
measures exist for al p > pe(q)? A fuller account may be found in [109,
Chap. 7].

VII. Intwo dimensions. There remain some intriguing conjectures in the
playground of the square lattice 1.2, and some of these are described in the
next section.

8.5 In two dimensions

Consider the special case of the squarelattice 2. Random-cluster measures
on L2 have a property of self-duality that generalizes that of bond percola-
tion. (We recall the discussion of duality after equation (3.7).) The most
provocative conjectureisthat the critical point equal sthe so-called self-dual
point.

8.24 Conjecture. Ford =2andq > 1,

Va
1+

Thisformulaisproved rigorously when g = 1 (percolation), whenq = 2
(Ising model), and for sufficiently large values of q (namely, g > 25.72).7
Physicists have ‘known’ for some time that the self-dual point marks a
discontinuous phase transition when q > 4.

Theconjectureismotivated asfollows. Let G = (V, E) beafiniteplanar
graph, and Gq = (Vg, Egq) its dual graph. To each w € Q = {0, 1}F, there
corresponds the dual configuration® wq € Q4 = {0, 1}E, given by

(8.25) Pc(q) =

wd(eg) =1—w(e), ecE.

7Addedin reprint: Theabove conjecture hasbeen proved by Vincent Beffaraand Hugo
Duminil-Copin [28].

8Note that this definition of the dual configuration differs from that used in Chapter 3
for percolation.
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By drawingapicture, wemay convinceourselvesthat every faceof (V, n(w))
containsaunique component of (Vy, 1(wq)), and thereforethenumber f (w)
of faces (including the infinite face) of (V, n(w)) satisfies

(8.26) f (w) = k(wg).
The random-cluster measure on G satisfies
p ()] K@)
#G,p,q(w) x (Tp) q.
Using (8.26), Euler’s formula,
(8.27) k(w) = V| = [n(w)| + f(0) -1,
and the fact that |n(w)| + |n(wq)| = |E|, we have that

1— o)\ n@ol
$6.p.q(0) (Q( . p)) qk@d
whichisto say that
(8.28) G, p.q(®) = ¢G4, pe.q(@d), weQ,
where
(8.29) Pa__ 9qd-— IO).
1-pg p

The unique fixed point of the mapping p — pqisgivenby p = «g, where
k isthe ‘self-dual point’
Va

Turning to the square lattice, let G = A = [0, n]?, with dual graph Gq =
Aq obtained from the box [—1, n]2 + (%, %) by identifying all boundary
vertices. By (8.28),

(8.30) $R.p.q(@) = PRy poq(@d)

for configurations w on A (and with asmall ‘fix’ on the boundary of Ag).
Letting n — oo, we obtain that

(8:31) $p.q(A) = P, q(Ad)
for al cylinder events A, where Aq = {wq : @ € A}

The duality relation (8.31) is useful, especidly if p = pg = «q. In
particular, the proof that 9(%) = O for percolation (see Theorem 5.33) may
be adapted to obtain

(8.32) 0%(kq, @) = 0,
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whence
VA
14+ ﬁ’

In order to obtain the formula of Conjecture 8.24, it would be enough to
show that

(8.33) Pc(a) > q=>1

A
$9.q(0 < 9[—n.n]?) < ~ n>1,

where A = A(p, q) < oo for p < «q. See[100, 109].

The case q = 2 isvery special, becauseit is related to the Ising model,
for which there is arich and exact theory going back to Onsager [193]. As
anillustration of this connection in action, weinclude aproof that the wired
random-cluster measure has no infinite cluster at the self-dual point. The
corresponding conclusionin believed to hold if and only if q < 4, but afull
proof is elusive.

8.34 Theorem. Ford = 2, 01(x2, 2) = 0.

Proof. Of the severa proofs of this statement, we outline the recent simple
proof of Werner [237]. Let q = 2, and write ¢° = ‘l’gsd(q),q'

Let o € Q be a configuration of the random-cluster model sampled
according to ¢°. To each open cluster of w, we alocate the spin 41 with
probability % and —1 otherwise. Thus, spins are constant within clusters,
andindependent between clusters. Let o betheresulting spin configuration,
and let 10 beits law. We do the same with » sampled from ¢, with the
difference that any infinite cluster is allocated the spin +1. It isnot hard to
see that the resulting measure i ! is the infinite-volume Ising measure with
boundary condition +1.° The spin-space & = {—1, +1}ZZ is a partially
ordered set, and it may be checked using the Holley inequality!®, Theorem
4.4, and passing to an infinite-volume limit that

(839 O <g ut.

We shall be interested in two notions of connectivity in Z?2, the first of
which isthe usual one, denoted «~. If we add both diagonalsto each face
of Z2, we obtain anew graph with so-called s-connectivity relation denoted
«~~,. A cyclein thisnew graphis called a x-cycle.

Eachspin-vector o € ¥ amountsto apartition of Z2into maximal clusters
with constant spin. A cluster labelled +1 (respectively, —1) is called a

9Thisisformalized in [109, Sect. 4.6]; see also Exercise 8.16.
105ee Exercise 7.3.
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(+)-cluster (respectively, (—)-cluster). Let N* (o) (respectively, N~ (o))

be the number of infinite (+)-clusters (respectively, infinite (—)-clusters).
By (8.32), $°(0 <> oo) = 0, whence, by Exercise 8.16, 10 is ergodic.

We may apply the Burton—K eane argument of Section 5.3 to deduce that

either WONt =1 =1 or Nt =0 =1

We may now use Zhang's argument (asin the proof of (8.32) and Theorem
5.33), and the fact that N™ and N~ have the same law, to deduce that

(8.36) pONT =0 =u%N"=0)=1.

Let A be an increasing cylinder event of X defined in terms of states
of vertices in some box A. By (8.36), there are (u%-as) no infinite
(—)-clustersintersecting A, so that A lies in the interior of some x-cycle
labelled +1. Let Ay, = [—n, n]2 with n large, and let Dy, be the event that
Ay contains a x-cycle labelled +1 with A in its interior. By the above,
u%(Dp) — lasn — oco. The event Dy is an increasing subset of %,
whence, by (8.35),

/Ll(Dn)—>1 asn — oo.

On the event Dy, we find the ‘outermost’ x-cycle H of A, labelled
+1; this cycle may be constructed explicitly via the boundaries of the
(—)-clustersintersecting d Ap. Since H is outermost, the conditional mea-
sure of 1 (given Dy), restricted to A, is stochastically smaller than .°. On
letting n — oo, we obtain u1(A) < u°(A), whichisto say that ut <4 u°.
By (8.35), u° = ul.

By (8.36), ul(N* = 0) = 1, so that 81 (k», 2) = 0 as claimed. O

Last, but definitely not least, we turn towards SLE, random-cluster, and
Ising models. Stanislav Smirnov has recently proved the convergence of
re-scaled boundaries of large clusters of the critical random-cluster model
onlL?to SLE;e/3. The corresponding critical 1sing model has spin-cluster
boundaries converging to SLE3. These results are having a major impact
on our understanding of the Ising model.

This section ends with an open problem concerning the Ising model on
the triangular lattice. Each Ising spin-configuration o € {—1, +1}Y on a
graph G = (V, E) givesriseto asubgraph G° = (V, E?) of G, where

(8.37) E° ={e=(u,v) € E:oy =o0,}.

If G isplanar, the boundary of any connected component of G° corresponds
toacycleinthedual graph G4, andthe union of all such cyclesisa(random)
even subgraph of Gy (see the next section).
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We shall consider the Ising model on the square and triangular lattices,
with inverse-temperature 8 satisfying 0 < 8 < B¢, where §¢ is the critical
value. By (8.5),

e e =1 pe(2).

Webeginwiththesquarelattice L2, for which pe(2) = v/2/(14++/2). When
B = 0, the model amounts to site percolation with density % Since this
percolation process has critical point satisfying p3t® > % each spin-cluster
of the 8 = 0lsing model issubcritical, andin particular hasan exponentially
decaying tail. More specifically, write x & y if there exists a path of 1.2
from x to y with constant spin-value, and let

sz{er:xéy}

bethe spin-cluster at x, and S = &. By the above, there existsa > 0 such
that

(8.38) (S| =n+1) <e @, n>1,

where 14 denotes the infinite-volume Ising measure. It is standard (and
follows from Theorem 8.17(a)) that there is a unique Gibbs state for the
Ising model when 8 < B¢ (see[113, 237] for example).

The exponential decay of (8.38) extendsthroughout the subcritical phase
inthe following sense. Yasunari Higuchi [137] has proved that

(8.39) Ag(ISI>=n+1) <e™@" n=>1,

wherea = a(B) satisfiesae > Owhen 8 < B¢. Thereisamore recent proof
of this (and more) by Rob van den Berg [34, Thm 2.4], using the sharp-
threshold theorem, Theorem 4.81. Notethat (8.39) impliesthe weaker (and
known) statement that the volumes of clusters of the q = 2 random-cluster
model on L2 have an exponentially decaying tail.

Inequality (8.39) fails in an interesting manner when the square lattice
is replaced by the triangular lattice T. Since pgte(’]l‘) = % theg =0
Ising model is critical. In particular, the tail of |S| is of power-type and,
by Smirnov’s theorem for percolation, the scaling limit of the spin-cluster
boundariesis SLEg. Furthermore, the process is, in the following sense,
critical for al 8 € [0, Bc]. Sincethereis aunique Gibbs state for 8 < S,
Ag isinvariant under the interchange of spin-values —1 <> +1. Let Ry bea
rhombus of thelattice with side-lengths n and axes parallel to the horizontal
and one of the diagonal lattice directions, and let A, bethe event that R, is
traversed from left to right by a 4 path (that is, apath v satisfyingoy = +1
forall y € v). Itiseasly seenthat thecomplement of A, istheeventthat R,
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iscrossed from top to bottom by a — path (see Figure 5.12 for anillustration
of the analogous case of bond percolation on the square lattice). Therefore,

(8.40) (A =3 0=<8<8§e
Let S be the spin-cluster containing x as before, and define
rad(Sy) = max{3(x, 2) : z € S,

where § denotes graph-theoretic distance. By (8.40), there exists avertex x
such that Ag(rad(Sy) > n) > (2n)~L. By the translation-invariance of A,

Jp(rad(S) = n) > % 0<p < fe.

In conclusion, the tail of rad(S) is of power-typefor al g € [0, Bc).

It is believed that the SLEg cluster-boundary limit ‘propagates’ from
B =0toall values g < Bc. Further evidencefor thismay befoundin [23].
When 8 = B¢, the corresponding limit is the same as that for the square
lattice, namely SLE3, see[67].

8.6 Random even graphs

A subset F of the edge-set of G = (V, E) is called even if each vertex
v € V isincident to an even number of elements of F, and we write & for
the set of even subsets F. The subgraph (V, F) of G iseven if F iseven.
It is standard that every even set F may be decomposed as an edge-disjoint
union of cycles. Let p € [0,1). The random even subgraph of G with
parameter p isthat with law

(8.4) wF) = - pFla-pEF Feg,
e

where

Ze=) pfla-pEF.
Feé

When p = 3, we talk of auniform random even subgraph.
We may express np in the following way. Let ¢p = ¢p 1 be product
measure with density p on Q@ = {0, 1}E. For w € Q, let dw denote the set

of verticesv € V that areincident to an odd number of w-open edges. Then

¢p(wF)
np(F) = oI =2)’
where w is the edge-configuration whose open set is F. In other words,
¢p describesthe random subgraph of G obtained by randomly and indepen-
dently deleting each edge with probability 1 — p, and 5 is the law of this
random subgraph conditioned on being even.

F eég,
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Let A g bethelsing measureonagraph H withinversetemperature 8 > 0,
presented in the form
(8.42)

)»ﬁ(O‘)I%GXP(ﬂ Z crua,,), oc=(o,:veV)eX,

! e=(U,v)eE

with = = {—1, +1}V. See(7.18) and (7.20). A spin configuration o' gives
riseto asubgraph G° = (V, E?) of G with E? givenin (8.37) asthe set of
edges whose endpoints have like spin. When G is planar, the boundary of
any connected component of G corresponds to a cycle of the dual graph
Gy, and the union of all such cyclesisa (random) even subgraph of Gg4. A
glance at (8.3) informs us that the law of this even graphis n;, where

r
— =%

1—r
Notethatr < % Thus, one way of generating a random even subgraph of
aplanar graph G = (V, E) with parameterr € [0, %] is to take the dual of
the graph G? with o is chosen with law (8.42), and with 8 = B(r) chosen
suitably.

The aboverecipe may be cast in termsof the random-cluster model onthe
planar graph G. First, we sample w according to the random-cluster measure
¢pqWithp=1— e2# and q = 2. To each open cluster of » we allocate
a random spin taken uniformly from {—1, +1}. These spins are constant
on clusters and independent between clusters. By the discussion of Section
8.1, the resulting spin-configuration o has law 1g. The boundaries of the
spin-clusters may be constructed asfollowsfrom w. Let Cq, Cp, ..., Cc be
the external boundaries of the open clusters of w, viewed as cycles of the
dual graph, andlet&1, &2, . . ., & beindependent Bernoulli random variables
with parameter % Thesum )", & C;, with additioninterpreted assymmetric
difference, haslaw n;.

It turns out that we can generate a random even subgraph of a graph G
from the random-cluster model on G, for an arbitrary, possibly non-planar,
graph G. We consider first the uniform case of np with p = %

We identify the family of all spanning subgraphsof G = (V, E) with the
family of all subsetsof E (theword* spanning’ indicatesthat these subgraphs
have the original vertex-set V). This family can further be identified with
Q = {0, 1}F = zE, and isthus a vector space over Zy; the operation + of
addition is component-wise addition modulo 2, which translatesinto taking
the symmetric difference of edge-sets: F1+ Fo = F1 A Fofor F1, F» C E.

The family & of even subgraphs of G forms a subspace of the vector
Space ZZE, since F1 A Fyisevenif F1 and F, are even. In particular, the
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number of even subgraphs of G equals 2°(®), where ¢(G) = dim(&). The
quantity c(G) isthusthe number of independent cyclesin G, and is known
as the cyclomatic number or co-rank of G. Asiswell known,

(8.43) c(G) = |E| — V]| + k(G).

Cf. (8.27).

8.44 Theorem [113]. Let Cyq, Cy, ..., C; beamaximal set of independent
cyclesin G. Let &1, &, .. ., & be independent Bernoulli random variables

with parameter % Then }~; & C; isauniformrandom even subgraph of G.

Proof. Since every linear combination ) ; i Ci, ¥ € {0, 1}°, iseven, and
since every even graph may be expressed uniquely in thisform, the uniform
measure on {0, 1}° generates the uniform measure on &. O

One standard way of choosing such a set Cq, Cp, ..., C;, when G is
planar, is given as above by the external boundaries of the finite faces.
Anotherisasfollows. Let (V, F) beaspanning subforest of G, that is, the
union of a spanning tree from each component of G. It iswell known, and
easy to check, that each edge g € E \ F can be completed by edgesin F
to form a unique cycle Cj. These cyclesform a basis of &. By Theorem
8.44, we may therefore find arandom uniform subset of the Cj by choosing
arandom uniform subset of E \ F.

We show next how to couple the g = 2 random-cluster model and the
randomeven subgraphof G. Let p € [0, %], and let w bearealization of the
random-cluster model on G with parameters2pandq = 2. Let R = (V, y)
be a uniform random even subgraph of (V, n(w)).

8.45 Theorem [113]. Thegraph R = (V, y) is a random even subgraph
of G with parameter p.

This recipe for random even subgraphs provides a neat method for their
simulation, provided p < % We may samplefrom the random-cluster mea-
sure by the method of coupling from the past (see [203]), and then sample
auniform random even subgraph from the outcome, as above. If G isitself
even, we can further samplefrom np, for p > % by first sampling asubgraph
(V, F) from n1_, and then taking the complement (V, E \ F), which has
the distribution 7. We may adapt this argument to obtain a method for
sampling from np for p > % and general G (see[113] and Exercise 8.18).
When G isplanar, thisamountsto sampling from an antiferromagnetic I sing
model onits dual graph.

There is a converse to Theorem 8.45. Take a random even subgraph

(V, F) of G = (V, E) with parameter p < 3. Toeache ¢ F, weassign

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



8.7 Exercises 171

an independent random colour, blue with probability p/(1 — p) and red
otherwise. Let B be obtained from F by adding in al blue edges. It isleft
as an exercise to show that the graph (V, B) haslaw ¢2p 2.
Proof of Theorem 8.45. Let g C E beeven, and let w be asample configu-
ration of the random-cluster model on G. By the above,

27¢@) if g € n(w),

]P) = = -
r=gle) { 0 otherwise,

wherec(w) = c(V, n(w)) isthenumber of independent cyclesinthe w-open
subgraph. Therefore,

Py=g)= y 2% gyps).

®:9<n(w)
By (8.43),
P(y = g) x Z @p)n@l1 — 2p)\E\n(w)\zk(w)(%)\ﬂ(w)\—lvl+k(w)
»:g<n(w)
o S ph@l—2p)Ewe
®:g<n(w)
=[p+(1-2p)]F\9pld
The claim follows. g

The above account of even subgraphswould be gravely incompl ete with-
out areminder of the so-called ‘ random-current representation’ of thelsing
model. Thisis arepresentation of the Ising measure in terms of a random
field of loops and lines, and it has enabled a rigorous analysis of the Ising
model. See[3, 7, 10] and [109, Chap. 9]. The random-current representa-
tionisclosely related to the study of random even subgraphs.

8.7 Exercises

8.1 [119] Let ¢p,q be arandom-cluster measure on afinite graph G = (V, E)
with parameters p and q. Prove that

9p.q(M1a) = dp.q(Mgp.q(A) }

L ppaa = ———{
dp P pa— p)

for any event A, where M = |n(w)| isthe number of open edges of aconfiguration
w, and 1, istheindicator function of the event A.
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8.2 Show that ¢p, q ispositively associated whenq > 1, inthat ¢p (AN B) >
®p,q(A)pp,q(B) for increasing events A, B, but does not generally have this
property whenq < 1.

8.3 For anedgeeof agraph G, wewrite G\ efor the graph obtained by deleting
e, and G.e for the graph obtained by contracting e and identifying its endpoints.
Show that the conditional random-cluster measure on G given that the edge e is
closed (respectively, open) isthat of ¢G\e, p,q (respectively, ¢ e, p,q)-

8.4 Show that random-cluster measures ¢p q do not generally satisfy the BK
inequality if g > 1. That s, find afinite graph G and increasing events A, B such
that ¢p,q(Ao B) > ¢p q(A)dp,q(B).

8.5 (Important research problem, hard if true) Prove or disprove that random-
cluster measures satisfy the BK inequality if g < 1.

8.6 Let ¢p q bethe random-cluster measure on afinite connected graph G =
(V, E). Show, in the limit as p,q — 0 in such way that q/p — 0, that ¢p q
converges weakly to the uniform spanning tree measure UST on G. Identify the
corresponding limitas p, g — Owith p = q. Explaintherelevanceof theselimits
to the previous exercise.

8.7 [89] Comparison inequalities. Use the Holley inequality to prove the fol-
lowing ‘comparison inequalities’ for a random-cluster measure ¢p g on a finite
graph:

bp.q <st¢pg ifd' >q .9 =1 p <p,

/

s i > P .
gdl-p) " ald-p

bp.q Zst¢pg ifqd >q 9 >1

8.8 [9] Show that the wired percolation probability 61(p, q) on LY equals the
limit of the finite-volume probabilities, in that, for q > 1,

1 T 1
0-(p,q) = A“¢n£d A, p.q0 < IA).

89 Letq> 1L > 1 andd > 3, and consider the random-cluster measure
VL ,n,p,qgOnthesab S(L, n) = [0, L] x[—n, n]9-1 with freeboundary conditions.
Let IT(p, L) denote the property that:

liminf xeisr(]{,n){w"’”‘ p.qg(0<x)} >0.
Show that TT(p, L) = I(p/, L) if p< p andL < L.
8.10 [109, 180] Mixing. A translation  of L9 induces a translation of Q@ =
{0, 1}IEd given by t(w)(€) = w(r~1(e)). Let t be atransation other than the
identity, and let A and B be cylinder events of 2. Show, forq > 1landb =0, 1,

that
¢p.q(ANT"B) — ¢b 4 (A)gh 4(B)  asn — co.

Thefollowing may help when b = 0, with asimilar argument when b = 1.
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a Assume Aisincreasing. Let A bedefined onthebox A, and let A bealarger
box with "B defined on A \ A. Use positive association to show that

$2 pq(ANT"B) = 62 | (AR pq(t"B).
b. Let A 1 29, and thenn — oo and A 1 Z9, to obtain
liminf ¢3 q(ANT"B) = ¢ 4 (AP (B)-

By applying this to the complement B also, deduce that qbg’q(A Nt"B) —
$9 q(A)¢8 4 (B).
8.11 Ergodicity. Deduce from the result of the previous exercise that the d)BQ
are ergodic.
8.12 Usethe comparison inequalitiesto provethat the critical point pc(q) of the
random-cluster model on 1.9 satisfies

- - gpc(1) -
Pe(D) = Pe@ = T " oo a-Dpem 97 L
Inparticular, 0 < pc(q) < 1ifg> landd > 2.

8.13 Let u bethe‘usual’ coupling of the Potts measure and the random-cluster
measureon afinitegraph G. Derivethe conditional measuresof thefirst component
given the second, and of the second given the first.

814 Letq € {2,3,...},and let G = (V, E) be afinite graph. Let W C V,
and let o1, 07 € {1, 2, ..., q}'V. Starting from the random-cluster measure ¢,
on G with members of W identified as a single point, explain how to couple the
two associated Potts measures 7 (- | ow = 0j), i = 1, 2, in such away that: any
vertex x not joined to W in the random-cluster configuration has the same spinin
each of the two Potts configurations.

LetBC{L2,..., q}Y, whereY € V \ W. Show that

[7(B | ow =01) — (B | ow = 02)| < dpig(W < Y).
p.q

8.15 Infinite-volume coupling. Let¢5 ; bearandom-cluster measureon L9 with
be{0,1}andqg e {2,3,...}. If b= 0, weassign auniformly random element of
Q={1,2,...,q} toeach open cluster, constant within clusters and independent
between. We do similarly if b = 1 with the difference that any infinite cluster
receives spin 1. Show that the ensuing spin-measures =P are the infinite-volume
Potts measures with free and 1 boundary conditions, respectively.

8.16 Ising mixing and ergodicity. Using the results of the previous two ex-
ercises, or otherwise, show that the Potts measures z°, b = 0, 1, are mixing
(in that they satisfy the first equation of Exercise 8.10), and hence ergodic, if
¢B’q(0 <« 00) =0.
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8.17 [104] Show for the random-cluster model on L2 that pe(q) > Kkq, Where
kq = /0/(1+ /Q) isthe self-dual point.

8.18 [113] Make aproposal for generating arandom even subgraph of the graph
G = (V, E) with parameter p satisfying p > 1.

You may findit useful to provethefollowingfirst. Let u, v bedistinct vertices
in the same component of G, and let = be a path from u to v. Let # be the set of
even subsets of E, and FU-V the set of subsets F such that degg (x) isevenif and
only if X # u, v. [Here, degg (x) isthe number of elements of F incident to x.]
Then F and Y-V are put in one-one correspondenceby F < F A 7.

8.19 [113] Let (V, F) be a random even subgraph of G = (V, E) with law
np, wWhere p < % Each e ¢ F is coloured blue with probability p/(1 — p),
independently of all other edges. Let B be the union of F with the blue edges.
Show that (V, B) haslaw ¢2p 2.
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Quantum Ising model

Thequantum |sing model on afinite graph G may betransformed into
acontinuum random-cluster model on the set obtained by attaching a
copy of thereal lineto each vertex of G. The ensuing representation
of the Gibbs operator is susceptible to probabilistic analysis. One
application isto an estimate of entanglement in the one-dimensional
system.

9.1 The mode

The quantum Ising model was introduced in [166]. Its formal definition
requires a certain amount of superficially alien notation, and proceeds as
followson thefinitegraph G = (V, E). To eachvertex x € V isassociated
a quantum spi n-% with local Hilbert space C2. The configuration space #
for the system is the tensor product® # = &, C?. Asbasisfor the copy
of C? labelled by v € V, we take the two eigenvectors, denoted as

|+>v=<é>’ |_>v=<2>,
@®_(1 O
(5 )

at the site v, with corresponding eigenvalues +1. The other two Pauli
matrices with respect to this basis are;

01 0 —i
051):(1 0)’ “52):<i 0)'

In the following, |¢) denotes a vector and (¢| its adjoint (or conjugate
transpose).2

of the Pauli matrix

IThetensor product U ® V of two vector spacesover F isthe dual space of the set of
bilinear functionalson U x V. See[99, 127].
2Wwith apol ogiesto mathematicians who dislike the bra-ket notation.
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Let D betheset of 21! basisvectors|n) for # of theform ) = &, |£),-
There is anatural one—one correspondence between D and the space

T =3y ={-1+1".

We may speak of members of ¥ as basis vectors, and of ¢ as the Hilbert
space generated by .

Let A,8 € [0, o0). The Hamiltonian of the quantum Ising model with
transversefield is the matrix (or ‘ operator’)

9.1 H= —%)L Z 063)053) -4 Zaél),

e=(u,v)eE veV

Here, X is the spin-coupling and § is the transverse-field intensity. The
matrix H operates on vectors (elements of #¢) through the operation of
each o, on the component of the vector at v.

Let 8 € [0, co) be the parameter known as ‘inverse temperature’. The
Hamiltonian H generates the matrix e~#H, and we are concerned with the
operation of this matrix on elements of #. The right way to normalize a
matrix A isby itstrace

tr(A) =Y (nlAln).

nex
Thus, we define the so-called ‘ density matrix’ by

1
9.2 =-———ePH
(9.2 ve(B) ZG(ﬁ)e
where

(9.3) Zg(B) =tr(e™ ™).

It turns out that the matrix elements of vg(8) may be expressed in terms
of atype of ‘path integral” with respect to the continuum random-cluster
model on V x [0, 8] with parameters A, 8, and g = 2. We explain thisin
the following two sections.

The Hamiltonian H has a unique pure ground state g ) defined at zero-
temperature (that is, in the limit as 8 — o0) asthe eigenvector correspond-
ing to the lowest eigenvalue of H.

9.2 Continuum random-cluster model

The finite graph G = (V, E) may be used as a base for a family of proba-
bilistic modelsthat live not on the vertex-set V but onthe‘ continuum’ space
V x R. Thesimplest of these modelsis continuum percolation, see Section
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9.2 Continuum random-cluster model 177

6.6. We consider here arelated model called the continuum random-cluster
model. Let 8 € (0, c0), and let A bethe ‘box’ A = V x [0, 8]. Inthe
notation of Section 6.6, et P ;s denotethe probability measure associated
with the Poisson processes Dy, X € V, and Be, € = (X, ¥) € E. Assample
space, we take the set 2, comprising al finite sets of cuts and bridgesin
A, and we may assume without loss of generality that no cut isthe endpoint
of any bridge. For w € 2, wewrite B(w) and D (w) for the sets of bridges
and cuts, respectively, of w. The appropriate o-field F is that generated
by the open sets in the associated Skorohod topology, see[37, 83].

For agiven configuration w € Q4, let k(w) be the number of its clusters
under theconnectionrelation <». Letq € (0, co), and definethe’ continuum
random-cluster’ measure ¢, ;. s,q by

1
94 doa.isql@) = qu(“))dPA,A,a(a)), w € Qp,

for an appropriate normalizing constant Z = Z, (1,4, q) cdled the
‘partition function’. The continuum random-cluster model may be studied
in much the same way as the random-cluster model on a (discrete) graph,
see Chapter 8.

The space 2, isapartially ordered space with order relation given by:
w1 < wy if B(w1) € B(wy) and D(w1) 2 D(w2). A random variable
X : Qp — Riscaledincreasing if X(w) < X(«') whenever o < o’. A
non-empty event A € ¥, iscalled increasing if its indicator function 1
isincreasing. Given two probability measures 11, w2 on the measurable
pair (24, Fa), we write u1 <g w2 if n1(X) < u2(X) for al bounded
increasing continuous random variables X : Q4 — R.

The measures ¢, 5,5, have certain properties of stochastic ordering as
the parameters vary. In rough terms, the ¢, ;. 5,q inherit the properties of
stochastic ordering and positive association enjoyed by their counterparts
on discrete graphs. This will be assumed here, and the reader is referred
to [40] for further details. Of value in the forthcoming Section 9.5 is the
stochastic inequality

(9.5 Oan5.q <st Pars q>1

The underlying graph G = (V, E) has so far been finite. Singularities
emergeonly intheinfinite-volume (or ‘ thermodynamic’) limit, and thismay
be taken in much the same manner asfor the discrete random-cl uster model,
whenever g > 1, and for certain boundary conditions t. Henceforth, we
assume that V is a finite connected subgraph of the lattice G = L9, and
we assign to the box A = V x [0, B8] a suitable boundary condition. As
describedin [109] for thediscrete case, if theboundary condition z ischosen
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insuch away that the measures ¢}, , ; , aremonotonicasV 1 79, thenthe
weak limit

0 = lim ¢}
rap = e Pas

exists. We may similarly allow the limit as 8 — oo to obtain the ‘ground
state’ measure

T T T
o0 = JIM ¢isa5-

We shall generally work with the measure ¢; 5 q with free boundary condi-
tion 7, written simply as ¢, s,q, and we notethat it is sometimes appropriate
totake 8 < oo.

The percolation probability is given by

0(%,8,a) = ¢1.,5,q(IC| = 00),

where C isthecluster at theorigin (0, 0),and |C| denotesthe aggregate (one-
dimensional) Lebesgue measure of the time intervals comprising C. By
re-scaling the continuum R, we see that the percolation probability depends
only ontheratio p = 1/§, and wewrite 6(p, q) = 6(%, 8, Q). Thecritical
point is defined by

pe(LY, ) = sup{p : 6(p, @) = O}.

In the specia case d = 1, the random-cluster model has a property of
self-duality that leads to the following conjecture.

9.6 Conjecture. The continuum random-cluster model on . x R with
cluster-weighting factor satisfying g > 1 hascritical value p¢(L, q) = g.

It may be proved by standard means that pc(IL, q) > g. See (8.33) and
[109, Sect. 6.2] for the corresponding result on the discrete lattice L2. The
casesq = 1, 2 are specia. The statement pc(LL, 1) = 1 is part of Theorem
6.18(b). When q = 2, the method of so-called ‘random currents’ may
be adapted to the quantum model with several consequences, of which we
highlight the fact that pc(LL, 2) = 2; see[41].

The continuum Potts model on V x R is given as follows. Let g be an
integer satisfying q > 2. To each cluster of the random-cluster model with
cluster-weighting factor q is assigned a uniformly chosen ‘spin’ from the
space X = {1, 2,...,q}, different clusters receiving independent spins.
The outcomeisafunctions : V x R — X, and thisis the spin-vector of
a‘continuum g-state Potts model’ with parameters A and 6. When q = 2,
we refer to the model as a continuum Ising model.
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It is not hard to see® that the law P of the continuous Ising model on
A =V x [0, ] isgiven by

dP(o) = %e“(") dPa.s(Dy),

where D, istheset of (X, s) € V x [0, B] suchthat o (X, s—) # o (X, S+),
PA.s isthe law of afamily of independent Poisson processes on the time-
lines {x} x [0, B8], x € V, with intensity §, and

8
Lo)y= Y /Olmx,u):a(y,u)}du

(X,y)eBy

is the aggregate L ebesgue measure of those subsets of pairs of adjacent
time-lines on which the spins are equal. As usual, Z is the appropriate
normalizing constant.

9.3 Quantum Ising via random-cluster

In this section, we describe the relationship between the quantum Ising
model on a finite graph G = (V, E) and the continuum random-cluster
model on G x [0, 8] withq = 2. We shall seethat the density matrix v (8)
may be expressed in terms of ratios of probabilities. The basis of the fol-
lowing argument liesin thework of Jean Ginibre[97], and it was devel oped
further by Campanino, von Dreyfus, Klein, and Perez. Thereader isreferred
to [13] for more recent account. Similar geometrical transf ormations exist
for certain other quantum models, see [14, 192].

Let A =V x [0, 8], and let Q5 be the configuration space of the con-
tinuum random-cluster model on A. For given A, §, and q = 2, let ¢ g
denote the corresponding continuum random-cluster measure on 2, (with
free boundary conditions). Thus, for economy of notation we suppress
referenceto A and .

We next introduce a coupling of edge and spin configurations asin Sec-
tion 8.1. For w € Q,, let S(w) denote the (finite) space of al functions
s:V x [0, 8] = {—1, +1} that are constant on the clusters of w, and let S
be the union of the S(w) over w € Q. Given w, we may pick an element
of S(w) uniformly at random, and we denote this random element as o.
We shall abuse notation by using ¢g, g to denote the ensuing probability
measure on the coupled space 2, x S. Fors € Sand W C V, we write
Sw,o0 (respectively, sw,g) for the vector (s(x,0) : x € W) (respectively,
(s(x, B) : x € W)). We abbreviate sy o and sy, g to sp and sg, respectively.

3Thisis Exercise9.3.
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9.7 Theorem [13]. The elements of the density matrix vg (8) satisfy

©8)  (epip = 2L =008 =1) s
¢G,p(00 = 0p)

Readers familiar with quantum theory may recognize this as a type of
Feynman—K ac representation.

Proof. We use the notation of Section 9.1. By (9.1) withy = % Z<X)y> Al
and I the identity matrix®,

(9.9) e BHY) _ g BUHY),

where
U==38) o', V=-3 > i0Poy® D).

xeV e=(x,y)eE

Although these two matrices do not commute, we may use the so-called
Lie-Trotter formula (see, for example, [219]) to express e AV +V) interms
of single-site and two-site contributions due to U and V, respectively. By
the Lie-Trotter formula,

e~ (U+VIAL _ o-UAtg=VAt | oAt2) asAt | 0,
so that

e BU+Y) _ |im (e—UAte—VAt)ﬂ/At.
At—0

Now expand the exponential, neglecting terms of order o(At), to obtain

(9.10)
e_ﬁ(H +y) —

B/t
; 1 3
AI:TOG:[[(l—SAt)]I—kSAtPX] I [(1—)»At)]I+AAtPX’y]> :

e=(x,y)

where P} = ol +Tand P3, = 3(ox”0y> +DD.

As noted earlier, & = {—1, +1}V may be considered as a basis for #.
The product (9.10) contains a collection of operators acting on sites x and
on neighbouring pairs (x, y). We partition the time interval [0, 8] into N
time-segmentslabelled Aty, Ato, ..., Atyn, each of length At = 8/N. On
neglecting terms of order o(At), we may see that each given time-segment

arising in (9.10) contains exactly one of: the identity matrix I, a matrix of

“Note that (n/|e?+%|n) = eS(n/|e?|n), so the introduction of y into the exponent is
harmless.
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theform PZ, amatrix of theform P)E y- Each such matrix occurswithin the
given time-segment with a certain weight.
Let us consider the actions of these matrices on the states |n) for each

timeinterval Atj,i € {1, 2,..., N}. Thematrix elements of the single-site
operator at x are given by
(9.12) oY +1m) = 1.

This is easily checked by exhaustion. When this matrix occurs in some
time-segment At;, we place amark in the interval {x} x At;, and we call
this mark a cut. Such acut has a corresponding weight At + o(At).

The matrix element involving the neighbouring pair (X, y) yields, as
above,

1 ifgx=ny =mn=ny,

9.12 1,3 (3)+]I ={
(012 20 lox” oy ) 0 otherwise.

When this occursin sometime-segment At;, we place abridge between the
intervals {x} x Atj and {y} x At;. Such abridge hasacorresponding weight
LAt 4+ 0(Al).

Inthelimit At — O, the spin operators generate thus a Poisson process
with intensity § of cutsin each time-line {x} x [0, 8], and a Poisson process
withintensity A of bridgesbetweeneach pair {x} x[0, 8], {y} x[0, 8] of time-
lines, for neighbouring x and y. These Poisson processes are independent
of one another. We write Dy for the set of cuts at the site x, and Bg for
the set of bridges corresponding to an edge e = (X, y). The configuration
spaceistheset Q4 containing all finite sets of cutsand bridges, and we may
assume without loss of generality that no cut is the endpoint of any bridge.

For two points (x, s), (y,t) € A, we write as before (x,s) < (y,t)
if there exists a cut-free path from the first to the second that traverses
time-lines and bridges. A cluster is a maximal subset C of A such that
(X,8) < (y,t) for al (x,s), (y,t) € C. Thus the connection relation
< generates a continuum percolation process on A, and we write Py ; s
for the probability measure corresponding to the weight function on the
configuration space 2. That is, P ;s iSthe measure governing afamily
of independent Poisson processes of cuts (with intensity §) and of bridges
(withintensity 1). The ensuing percolation process has appeared in Section
6.6.

Equations (9.11)—(9.12) are to be interpreted in the following way. In
calculating the operator e #(H+7) we average over contributions from
realizations of the Poisson processes, on the basis that the quantum spins
are constant on every cluster of the corresponding percolation process, and
each such spin-function is equiprobable.
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More explicitly,
(9.13)

e—ﬂ<H+y>=/d]P>AM(w)<T [T Peo ] Pjy(t/))’

(x,H)eD (x.y),theB

where 7~ denotes the time-ordering of the termsin the products, and B (re-
spectively, D) istheset of all bridges (respectively, cuts) of theconfiguration
w € Q4.

Let w € Q4. Let pu, be the counting measure on the space S(w) of
functionss : V x [0, 8] — {—1, +1} that are constant on the clusters of
. Let K(w) be the time-ordered product of operatorsin (9.13). We may
evaluate the matrix elements of K (w) by inserting the ‘resolution of the
identity’

(9.14) D Innl =T

nex

between any two factors in the product, obtaining by (9.11)—(9.12) that

(9.15) K@ = Y Lg=nlg=y. 0.7 €.
seS(w)

This is the number of spin-allocationsto the clusters of w with given spin-
vectorsat times0 and 8.

The matrix elements of v (B) are therefore given by
1
(9.16)  ('lvc(B)In) = Zop / Yso=n) Liss=ry) Atter(S) APA 3 5(w),

forn, n’ € T, where
(9.17) Zgp = tr(e PH+)),

Forn,n" € %, let 1, ,» be the indicator function of the event (in Q,) that,
foral x,y eV,

|f (X, O) <> (y, O), then Nx = T]y,
if (x, B) < (v, B), then n} = ny,
if (x,0) < (y, B), then nx = 1.

This is the event that the pair (», ") of initial and fina spin-vectors is
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! > b9
o o
Commmt ! : : o : I
o0 o ¢ o o
Lo o :
e 5 s
i O o i
b l o

Figure9.1. An example of a space-time configuration contributing to
the Poisson integral (9.18). The cutsare shown ascirclesand the distinct
connected clusters are indicated with different line-types.

‘compatible’ with the random-cluster configuration. We have that

1
(918) (oo () ) = 5— / dPrs 5@ Y Lisgmn Lissmr)
G.p seS(w)

1 / R
=—— [ 2K dPA ; s(w)
ZG,/S n.n A A8

1
= Z—¢G,ﬂ(00 =n, og=17). n.n €X,
G’ﬁ

where k(w) is the number of clusters of « containing no point of the form
(v,0) or (v, B), for v € V. See Figure 9.1 for an illustration of the space—
time configurations contributing to the Poisson integral (9.18).

On setting n = n’ in (9.18) and summing over n € X, we find that

(9.19) Zg,p = ¢c,p(00 = 0p),
asrequired. O

Thissection closeswith an alternative expressionfor thetraceformulafor
Zg g = tr(e”PH+1)). We consider ‘periodic’ boundary conditions on A
obtained by, for each x € V, identifying the pair (x, 0) and (x, 8) of points.
Let kP (w) be the number of open clusters of w with periodic boundary
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conditions, and ¢g‘ffﬁ be the corresponding random-cluster measure. By
setting n’ = 5 in (9.18) and summing,

1 7 e\ T
020 1= Y e = 5~ [ Fozr @ ap, ),
nex ’

whence Zg g equals the normalizing constant for the periodic random-
cluster measure ¢(‘§'ﬁ.

9.4 Long-range order

The density matrix has been expressed in terms of the continuous random-
cluster model. This representation incorporates a relationship between the
phase transitions of the two models. The so-called ‘order parameter’ of
the random-cluster model is of course its percolation probability 6, and the
phase transition takes place at the point of singularity of 6. Another way of
expressing thisis to say that the two-point connectivity function

60 Y) = dag(x,0 < (¥,0), X, yeV,

is a natural measure of long-range order in the random-cluster model. It
isless clear how best to summarize the concept of long-range order in the
quantum Ising model, and, for reasons that are about to become clear, we
use the quantity

tr(vG(ﬂ)of)o;?’)), X,y eV.

9.21 Theorem [13]. Let G = (V, E) be afinite graph, and 8 > 0. We
have that

6.4(X. y) =tr(va(B)odoy), X,y € V.
Proof. The argument leading to (9.18) is easily adapted to obtain
1 K w
tr(va(B) - 3(0\ V0> + 1)) = - /2'“ >< > |,,,,7) dPa 5 5(@).

G.A N Nx=ny

NO\N, er X
kP (@) —K() if (x,0) < (y,0),

Z In’nzi kP (w)—K(@)—1
n:nx=ny 2 @) —Ke) if (x,0) <> (y,0),
whence, by the remark at the end of the last section,
tr(vg(B) - 3(0x V0P + 1) = 16,5(X, y) + 3(1 — 16, (X, ).
and the claim follows. O
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Theinfinite-volumelimits of the quantum Ising model on G are obtained
in the ‘ground state’ as 8 — oo, and in the spatial limit as|V| — oco. The
paraphernalia of the discrete random-cluster model may be adapted to the
current continuous setting in order to understand the issues of existenceand
uniqueness of these limits. Thisis not investigated here. Instead, we point
out that the behaviour of the two-point connectivity function, after taking
the limits 8 — o0, |V| — o0, depends pivotally on the existence or not
of an unbounded cluster in the infinite-volume random-cluster model. Let
¢x..5.2 bethe infinite-volume measure, and let

O(x, 8) = ¢,.5.2(Co is unbounded)

be the percolation probability. Then 1) s(X,y) — 0as|x — y| — oo,
when 6 (A, §) = 0. On the other hand, by the FK G inequality and the (a.s.)
uniqueness of the unbounded cluster,

T.5(X, y) = 0(%, 8)2,

implying that 7, s(X,y) is bounded uniformly away from O when
0(Ar,8) > 0. Thus the critical point of the random-cluster model is also
apoint of phase transition for the quantum model.

A more detailed investigation of the infinite-volume limits and their
implicationsfor the quantum Ising model may befoundin[13]. Aspointed
out there, the situation is moreinteresting in the * disordered’ setting, when
the A¢ and 8y are themselves random variables.

A principal technique for the study of the classical Ising model is the
so-called random-current method. Thismay be adapted to a‘ random-parity
representation’ for the continuum Ising model correspondi ngto the continu-
ous random-cluster model of Section 9.3, see[41, 69]. Many resultsfollow
for the quantum Ising model in a general number of dimensions, see [41].

9.5 Entanglement in one dimension

It is shown next how the random-cluster analysis of the last section enables
progress with the problem of so-called ‘quantum entanglement’ in one
dimension. The principle reference for the work of this sectionis [118].

Let G = (V, E) beafinite graph, and let W C V. A considerable effort
has been spent on understanding the so-called ‘entanglement’ of the spins
in W relativeto those of V \ W, in the (ground state) limitas 8 — oo. This
isalready ahard problem when G is afinite subgraph of thelineLL. Various
methods have been used in this case, and avariety of results, somerigorous,
obtained.

The first step in the definition of entanglement is to define the reduced
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density matrix
g (B) = trviw (VG (B)).

where the trace is taken over the Hilbert space #v\w = Qyxev\w C? of
spinsof verticesof V \ W. Ananalysis(omitted here) exactly paralldl to that
leading to Theorem 9.7 allows the following representation of the matrix
dementsof vl (B).

9.22 Theorem [118]. The elements of the reduced density matrix v (8)
satisfy
(9.23)

_ ¢cplowo=1n,owpg=1n"|F)

. W — i i / D) i
n'lvg (B)In) 66,500 =05 | F) n,1m € Xw

where F isthe event that ov\w,0 = ov\w,g.

Let Dw be the set of 2WI vectors |n) of the form |n) = @, cw 1£)w:
and write #\ for the Hilbert space generated by Dy. Just as before, there
is a natural one-one correspondence between Dy and the space yw =
{—1, +1}W, and we shall thusregard F\y asthe Hilbert space generated by
2w

We may write

vg = lim vg(B) = [¥c) (¥l
B—o0
for the density matrix corresponding to the ground state of the system, and
similarly
(9.24) vg = trv\w(lve) (el = 5”_)moo vg (B).-
The entanglement of the spinsin W may be defined as follows.

9.25 Definition. The entanglement of the spins of W relative to its com-
plement V \ W is the entropy

(9.26) = —trwd log, v).

The behaviour of S‘G’" , for general G and W, isnot understood at present.
We specialize hereto the case of afinite subset of the one-dimensional | attice
L. Leem,L >0andtakeV =[-m,m+ L] and W = [0, L], viewed as
subsets of Z. We obtain the graph G from V by adding edges between
each pair X, y € V with |[x — y| = 1. We write vyn(8) for vg(8), and Srl.ﬁ
(respectively, v\ for S (respectively, v). A key stepin the study of Sk
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for large mis abound on the norm of the difference v}, — v . The operator
norm of aHermitian matrix® A is given by

IAIl= sup [(¥|Al¥)
hwl=1

)

where the supremum is over all vectors y with L2-norm 1.

9.27 Theorem [41, 118]. Let 1,8 € (0, co) and write p = A/8. There
exist constants C, «, y depending on p and satisfying y > Owhenp < 2
such that

(9.28) [lvi, — v | < min{2, CL*e ™}, 2<m<n<oo, L>1

Thiswas provedin [118] for p < 1, and the stronger result follows from
the identification of the critical point pc = 2 of [41]. The constant y is,
apart from a constant factor, the reciprocal of the correlation length of the
associated random-cluster model.

Inequality (9.28) is proved by the following route. Consider the con-
tinuum random-cluster model with g = 2 on the space-time graph A =
V x [0, B] with ‘partia periodic top/bottom boundary conditions’; that is,
for each x € V \ W, we identify the two points (x, 0) and (x, 8). Let ¢rr1)mﬂ
denote the associated random-cluster measure on 2. To each cluster of
o € QA weassign arandom spin from {—1, +1} in the usual manner, and
we abuse notation by using ¢rFr)1, p to denote the measure governing both the
random-cluster configuration and the spin configuration. Let

am,p = d’r?],ﬂ(UW,O = UW,ﬂ),

noting that
am,g = ¢mp(oo =0p | F)

asin (9.23).
By Theorem 9.22,
(9.29) (Y[v(B) — v (BIY)
_ PhsClowoclows)  ¢f 5(Cow0Clowp)
am.p an,g
wherec: {-1, +1}W — C and

¥ =) cne Hw.

nE€Xw

5A matrix is called Hermitian if it equalsits conjugate transpose.
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The property of ratio weak-mixing (for a random-cluster measure ¢) is
used in the derivation of (9.28) from (9.29). This may be stated roughly as
follows. Let Aand B beeventsin the continuum random-cluster model that
are defined on regions Ra and Rg of space, respectively. What can be said
about the difference ¢ (AN B) — ¢ (A)¢ (B) when the distance d(Ra, Rg)
between Ra and Rg islarge? It is not hard to show that this differenceis
exponentially small in the distance, so long as the random-cluster model
has exponentially decaying connectivities, and such a property is called
‘weak mixing'. It is harder to show a similar bound for the difference
¢ (A | B)—¢(A),andsuchaboundistermed ‘ratio weak-mixing'. Theratio
weak-mixing property of random-cluster measures has been investigated in
[19, 20] for the discrete case and in [118] for the continuum model.

At thefinal step of the proof of Theorem 9.27, the random-cluster model
is compared via (9.5) with the continuum percolation model of Section
6.6, and the exponential decay of Theorem 9.27 follows by Theorem 6.18.
A logarithmic bound on the entanglement entropy follows for sufficiently
small 1/8.

9.30 Theorem [118]. Let &, 8 € (0, co) and write p = A/8. There exists
0o € (0, 2] suchthat: for p < po, thereexists K = K(p) < oo such that

Sk <Klog,L, m=>0,L>2

Hereistheideaof the proof. Theorem 9.27 implies, by aclassic theorem
of Weyl, that the spectra (and hence the entropies) of vt and v} are close
to one another. It isan easy calculation that Sk < clogL form < ¢’loglL,
and the conclusion follows.

A stronger result is known to physicists, namely that the entanglement
Srlﬁ is bounded above, uniformly in L, whenever p is sufficiently small, and
perhaps for al p < pc, where pc = 2 is the critical point. It is not clear
whether thisis provable by the methods of this chapter. See Conjecture 9.6
above, and the referencesin [118].

There is no rigorous picture known of the behaviour of Srlﬁ for large p,
or of the corresponding quantity in dimensions d > 2, although Theorem
9.27 has a counterpart in these settings. Theorem 9.30 may be extended to
the disordered system in which theintensities A, § areindependent random
variablesindexed by the vertices and edges of the underlying graph, subject
to certain conditions on these variables (cf. Theorem 6.19 and the preceding
discussion).
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9.6 Exercises

9.1 Explain in what manner the continuum random-cluster measure ¢;, s.q on
L x Ris‘self-dual’ when p = 1/§ satisfiesp = q.

9.2 (continuation) Show that the critical value of p satisfies pc > ¢ when
g=>1

9.3 Let ¢y s q bethe continuum random-cluster measureon G x [0, ], where
Gisafinitegraph, 8 < oco,andq € {2, 3, ...}. Toeach cluster isassigned aspin
chosen uniformly at random fromthe set {1, 2, . . ., q}, these spins being constant
within clusters and independent between them. Find an expression for the law of
the ensuing (Potts) spin-processon V x [0, 8].
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I nteracting particle systems

The contact, voter, and exclusion models are Markov processes in
continuous time with state space {0, 13V for some countable set V.
In the voter model, each element of V may bein either of two states,
anditsstateflips at aratethat isaweighted average of the statesof the
other elements. Its analysis hinges on the recurrence or transience
of an associated Markov chain. When V = Z2 and the model is
generated by symmetric random walk, the only invariant measures
are the two point masses on the (two) states representing unanimity.
The picture is more complicated when d > 3. In the exclusion
model, a set of particles moves about V according to a‘ symmetric’
Markov chain, subject to exclusion. WhenV = 79 and the Markov
chain is trand ation-invariant, the product measures are i nvariant for
this process, and furthermore these are exactly the extremal invariant
measures. The chapter closes with a brief account of the stochastic
Ising model.

10.1 Introductory remarks

Therearemany beautiful problemsof physical typethat may be modelled as
Markov processes on the compact state space = = {0, 1}V for some count-
ableset V. Amongst the most studied to date by probabilistsare the contact,
voter, and exclusion models, and the stochastic I sing model. Thissignificant
branch of modern probability theory had its nascence around 1970 in the
work of Roland Dobrushin, Frank Spitzer, and others, and has been brought
to maturity through the work of Thomas Liggett and colleagues. The basic
references are Liggett's two volumes [167, 169], see also [170].

The general theory of Markov processes, with its intrinsic complexities,
isavoided here. Thefirst three processes of this chapter may be constructed
via'‘graphical representations’ involving independent randomwalks. There
isageneral approach to suchimportant mattersasthe existence of processes,
for an account of whichthereader isreferredto [167]. Thetwo observations
of note arethat the state space X is compact, and that the Markov processes
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(nt : t > 0) of this section are Feller processes, which is to say that the
transition measures are weakly continuous functions of the initial state.!

For a given Markov process, the two main questions are to identify the
set of invariant measures, and to identify the ‘basin of attraction’ of agiven
invariant measure. The processes of this chapter will possess a non-empty
set 4 of invariant measures, although it is not always possible to describe all
membersof thisset explicitly. Since £ isaconvex set of measures, it suffices
todescribeitsextremal elements. Weshall seethat, in certain circumstances,
|4] = 1, and this may be interpreted as the absence of long-range order.

SinceV isinfinite, X isuncountable. We normally specify the transition
operators of a Markov chain on such X by specifying its generator. This
is an operator £ acting on an appropriate dense subset of C(X), the space
of continuous functions on X endowed with the product topology and the
supremum norm. Itisdetermined by itsvalueson thespace C(X) of cylinder
functions, being the set of functions that depend on only finitely many
coordinatesin X. For f € C(X), wewrite /£ f intheform

(10.1) LEm =Y co.Mfm)—fml, nex,
nex

for some function ¢ sometimes called the ‘ speed (or rate) function’. For
n # n’, wethink of c(n, n") as being the rate at which the process, whenin
state 57, jJumpsto state .

The processes ny possesses atransition semigroup (S : t > 0) acting on
C(Z) and given by

(10.2) S () =E"(f (), nex,

where E" denotes expectation under the assumption ng = n. Under certain
conditionsonthe process, thetransition semigroupisrelated to the generator
by the formula

(10.3) S = exp(tL),

suitably interpreted according to the Hille-Yosida theorem, see [167, Sect.
[.2]. The semigroup acts on probability measures by

(10.4) HS(A) = fz Pl e A du(n).

1L et C(T) denote the space of continuous functions on ¥ endowed with the product
topology and the supremum norm. The process # is called Feller if, for f € C(Z),
ft(n) = E7(f (nt)) definesafunction belongingto C(X). Here, E7 denotes expectation
with initial state 5.
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A probability measure ;1 on X is called invariant for the process n; if
nS = w fordl t. Under suitable conditions, w isinvariant if and only if

(10.5) /xf du=0 fordl f e (D).

In the remainder of this chapter, we shall encounter certain construc-
tions of Markov processeson %, and all such constructions will satisfy the
conditions alluded to above.

10.2 Contact process

Let G = (V, E) be a connected graph with bounded vertex-degrees. The
statespaceis ¥ = {0, 1}V, wherethelocal state 1 (respectively, 0) represents
‘ill” (respectively, ‘healthy’). [l vertices recover at rate §, and healthy
vertices becomeill at a rate that is linear in the number of ill neighbours.
See Chapter 6.

We proceed more formally as follows. For n € ¥ and x € V, let nx
denote the state obtained from » by flipping the local state of x. That is,

(106) ) = { i(;)n(X) chﬂ:/er_vv:(se
We let the function c of (10.1) be given by
ciruno = o) =1
My ~x:in(y) =1} ifn(x) =0,

where A and § are strictly positive constants. If ' = nx fornox € V, and
n' #n, wesetc(n, n') = 0.

We saw in Chapter 6 that the point mass on the empty set, v = 84, isthe
minimal invariant measure of the process, and that there exists a maximal
invariant measure v obtained as the weak limit of the process with initial
state V. As remarked at the end of Section 6.3, when G = L9, the set
of extremal invariant measuresis exactly e = {§5, v}, and 6 = v if and
only if thereisno percolationin the associated oriented percolation model in
continuoustime. Of especial usein proving these facts was the coupling of
contact modelsin terms of Poisson processes of cuts and (directed) bridges.

We revisit duality briefly, see Theorem 6.1. Forn € X and AC V, let

{ 1 ifp(x) =0foralxe A,

(10.7) H@ A =[]L-ne0] = 0 otherwise.

XeA

The conclusion of Theorem 6.1 may be expressed more generally as

EA(H (A, B)) = EB(H(A, BY),
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where A; (respectively, Bi) denotes the contact model with initial state
Ao = A (respectively, Bp = B). This may seem a strange way to express
the duality relation, but its significance may become clearer soon.

10.3 Voter model

Let V beacountable set, and let P = (px,y : X, ¥y € V) be the transition
matrix of a Markov chain on V. The associated voter model is given by
choosing

(10.8) c(n, nx) = Z Px,y
yin(Y)#n(x)

in (10.1). The meaning of this is as follows. Each member of V is an
individual in a population, and may have either of two opinionsat any given
time. Letx € V. Attimesof arate-1 Poisson process, X selectsarandom y
according to the measure py.y, and adoptsthe opinion of y. It turns out that
the behaviour of thismodel is closely related to the transience/recurrence of
the chain with transition matrix matrix P, and of properties of its harmonic
functions.

The voter model has two absorbing states, namely all 0 and al 1, and
we denote by 8o and 81 the point masses on these states. Any convex
combination of §g and §; is invariant also, and thus we ask for conditions
under which every invariant measureis of thisform. A duality relation will
enable us to answer this question.

It is helpful to draw the graphical representation of the process. With
each x € V is associated a ‘time-line’ [0, co), and on each such time-
line is marked the set of epochs of a Poisson process Poy with intensity
1. Different time-lines possess independent Poisson processes. Associated
with each epoch of the Poisson process at x isavertex y chosen at random
according to the transition matrix P. The choice of y hasthe interpretation
given above.

Consider the state of vertex x at timet. We imagine a particle that is at
position x attimet, and wewrite X« (0) = x. Whenwefollow thetime-line
X x [0, t] backwardsin time, that is, from the point (x, t) towards the point
(x, 0), we encounter a first point (first in this reversed ordering of time)
belonging to Poy. At thistime, the particle jumps to the selected neighbour
of x. Continuing likewise, the particle performs a symmetric random walk
about V. Writing Xx(t) for its position at time 0, the (voter) state of x at
timet is precisely that of Xy (t) at timeO.

Suppose we proceed likewise starting from two vertices x and y at time
t. Tracing the states of x and y backwards, each follows a Markov chain
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with transition matrix P, denoted Xy and Xy respectively. Thesechainsare
independent until the first time (if ever) they meet. When they meet, they
‘coalesce’: if they ever occupy the same vertex at any given time, then they
follow the same trgjectory subsequently.

We state this as follows. The presentation here is somewhat informal,
and may be made more complete asin [167]. We write (n; : t > 0) for the
voter process, and 4§ for the set of finite subsetsof V.

10.9 Theorem. Let A € 8, n € ¥, andlet (A; : t > 0) be a system of
coalescing random walks beginning on the set Ag = A. Then,

P'(ir =1on A) =PA(n=1o0n A, t>0.
This may be expressed in the form
E"(H (ne, A) = EA(H (1, A)),

with
Hm, A =[] n0.

XeA

Proof. Each side of the equation is the measure of the complement of the
eventthat, in the graphical representation, thereisapath from (x, 0) to (a, t)
for some x with n(x) = 0O and somea € A. O

For simplicity, we restrict ourselves henceforth to a case of special inter-
est, namely with V the vertex-set 9 of the d-dimensional lattice L9 with
d > 1, and with py y = p(x — y) for some function p. In the special case
of symmetric random walk, where

1
(10.10) p(2) = 2q° z aneighbour of O,

we havethat n(x) flips at a rate equal to the proportion of neighbours of x
whose states disagree with the current value (x). The case of general P is
treated in [167].

Let X; and Y; beindependent randomwalkson 7Z9withrate-1 exponential
holding times, and jump distribution pxy = p(y — x). The difference
Xt — Yy isaMarkov chainalso. If X; —Y; isrecurrent, we say that wearein
the recurrent case, otherwise the transient case. The analysis of the voter
model isfairly simplein the recurrent case.
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10.11 Theorem. Assumewe arein the recurrent case.
(@ Je = {d0, 81}.
(b) If u is a probability measure on £ with u(n(x) = 1) = « for all
x €79, then uS = (1 — a)do + 1 ast — oo.

The situation is quite different in the transient case. We may construct a
family of distinct invariant measures v, indexed by « € [0, 1], and we do
thisasfollows. Let ¢, be product measure on ~ with density «. We shall
show the existence of the weak limits v, = limi_ « ¢o &, and it turns out
that the v, are exactly the extremal invariant measures. A partial proof of
the next theorem is provided below.

10.12 Theorem. Assume we arein the transient case.
(@ Theweak limits vy, = limi— 5 o S eXist.
(b) Thev, aretranslation-invariant and ergodic?, with density

Ve(p(X) = 1) = a, x e 79,
(©) Je={vy : €[0,1]}.

Wereturn briefly to the voter model corresponding to symmetric random
walk on1L9, see(10.10). Itisan elementary consequenceof Polya stheorem,
Theorem 1.32, that we are in the recurrent case if andonly d < 2.

Proof of Theorem 10.11. By assumption, we are in the recurrent case. Let
x, y € Z9. By dudlity and recurrence,

(10.13)  P(ne(x) # me(Y)) < P(Xx(u) # Xy(u) for0 <u <t)
-0 ast — oo.
For Ae 8, A# o,
P(n; is non-constant on A) < PA(|A| > 1),
and, by (10.13),
(10.14) PA(Al > 1) = D P(Xx(U) # Xy(u) for0 <u <t)

X,yeA
-0 ast — oo.
It follows that, for any invariant measure u, the p-measure of the set of

constant configurations is 1. Only the convex combinations of §p and &1
have this property.

2 probability measure w on X isergodic if any shift-invariant event has 1.-probability

either O or 1. It is standard that the ergodic measures are extremal within the class of
tranglation-invariant measures, see [94] for example.
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Let 1 be aprobability measure with density «, asin the statement of the
theorem, and let A € 8, A # @. By Theorem 10.9,

uS((n:n=1lonA) = /P”(m — 1on A) u(d)
=fPA(nzlon A) u(d)
=/IP’A(nE Lon A |A] > 1) u(dn)

+ Y PAAC= (yhr((y) = 1),
yezd
whence
[uS(fn :n=1on A} —af < 2PA(A] > D).

By (10.14), uS = (1 — «)do + «é1 asclaimed. O
Partial proof of Theorem10.12. For A € 4§, A # @, by Theorem 10.9,

(1015  ¢uS(n=1onA) = / B, = 1.0n A) ga(dn)

_ / PA(n = 10on Ao ¢a(dn)
— EA (@A),

The quantity | A¢| is hon-increasing in t, whence the last expectation con-
verges ast — oo, by the monotone convergence theorem. Using the
inclusion—exclusion principle (asin Exercises 2.2-2.3), we deduce that the
uS-measure of any cylinder event has alimit, and therefore the weak limit
Ve EXists (see the discussion of weak convergence in Section 2.3). Since
the initial state ¢, is trandation-invariant, so is v,. We omit the proof of
ergodicity, which may be found in [167, 170]. By (10.15) with A = {x},
PaS(n(X) =1) =« foralt,sothat v,(n(X) =1) = a.

It may be shown that the set 4 of invariant measuresis exactly the convex
hull of the set {vy, : o € [0, 1]}. The proof of this is omitted, and may be
found in [167, 170]. Since the v, are ergodic, they are extremal within the
class of tranglation-invariant measures, whence fe = {vy : @ € [0, 1]}. O

10.4 Exclusion mode

In this model for a lattice gas, particles jump around the countable set V,
subject to the excluded-volume constraint that no more than one particle may
occupy any given vertex at any giventime. The state spaceis = = {0, 1}V,
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wherethelocal state 1 representsoccupancy by aparticle. Thedynamicsare
assumedto proceed asfollows. Let P = (py,y : X, y € V) bethetransition
matrix of a Markov chain on V. In order to guarantee the existence of the
corresponding exclusion process, we shall assume that

sup Y pxy < oo
YEV xev
If the current state is n € X, and n(x) = 1, the particle at x waits
an exponentially distributed time, parameter 1, before it attempts to jump.
At the end of this holding time, it chooses a vertex y according to the
probabilities py y. If, at thisinstant, y is empty, then this particle jumpsto
y. If y isoccupied, the jump is suppressed, and the particle remains at x.
Particles are deemed to be indistinguishable.
The generator £ of the Markov processis given by

Lfm= Y pxylflxy — fl,
X,yeV:
n(x)=1,n(y)=0
for cylinder functions f, where 5y y is the state obtained from » by inter-
changing the local states of x and y, that is,

nx) ifz=y,
(10.16) nxy(@ =1 n(y) ifz=x,
n(z) otherwise.

We may construct the processviaagraphical representation, asin Section
10.3. For each x € V, welet Poy be aPoisson processwith rate 1; these are
the times at which a particle at x (if, indeed, x is occupied at the relevant
time) attempts to move away from x. With each ‘time’ T € Poy, we
associate avertex Y chosen according to the mass function py.y, y € V. If
X is occupied by a particle at time T, this particle attempts to jump at this
instant of time to the new position Y. The jump is successful if Y isempty
at time T, otherwise the moveis suppressed.

It isimmediate that the two Dirac measures §g and 81 are invariant. We
shall seebelow that thefamily of invariant measuresisgenerally much richer
thanthis. Thetheory issubstantially simpler in the symmetric case, and thus
we assume henceforth that

(1017) px’y = py’x, X, y € V.

See[167, Chap. VII1] and [170] for bibliographiesfor the asymmetric case.
If V isthevertex-set of agraph G = (V, E), and P isthe transition matrix
of symmetric random walk on G, then (10.17) amounts to the assumption
that G be regular.
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Mention is made of the totally asymmetric simple exclusion process
(TASEP), namely the exclusion process on the line L. in which particles
may moveonly inagivendirection, say to theright. Thisapparently simple
model has attracted a great deal of attention, and the reader is referred to
[86] and the references therein.

We shall see that the exclusion process is self-dual, in the sense of the
following Theorem 10.18. Note first that the graphical representation of a
symmetric model may be expressed in a dlightly simplified manner. For
each unordered pair X, y € V, let Poy y be aPoisson process with intensity
Px,y [= Pyx]. Foreach T e Poyy, we interchange the states of x and
y atime T. That is, any particle at X movesto y, and vice versa. It is
easily seen that the corresponding particle system is the exclusion model.
For every x € V, aparticleat x at time 0 would pursue atrajectory through
V that is determined by the graphical representation, and we denote this
trajectory by Ry(t),t > 0, noting that Rx(0) = X. The processes Ry (),
X € V, are of course dependent.

The family (R¢(+) : x € V) istime-reversible in the following ‘ strong’
sense. Lett > O begiven. For each y € V, we may trace the trajec-
tory arriving at (y, t) backwardsin time, and we denote the resulting path
by Byt(s), 0 < s < t, with By¢(0) = y. Itis clear by the properties
of a Poisson process that the families (Ry(u) : u € [0,t], x € V) and
(By,t(s) : s€[0,t], y € V) have the same laws.

Let (i : t > 0) denote the exclusion model. We distinguish the general
model from one possessing only finitely many particles. Let 8 be the set
of finite subsets of V, and write (A; : t > 0) for an exclusion process with
initial state Ag € $. Wethink of n; asarandom 0/1-vector, and of A; asa
random subset of the vertex-set V.

10.18 Theorem. Consider a symmetric exclusion model on V. For every
neXandAc 4,

(10.19) P'(n = 1on A) = PA(n = 1on Ay, t>0.

Proof. The left side of (10.19) equals the probability that, in the graphical
representation: for every y € A, there exists x € V with n(x) = 1 such
that Ry(t) = y. By the remarks above, this equals the probability that
n(Ry(t)) =1foreveryy € A. O

10.20 Corollary. Consider a symmetric exclusion model on V. For each
a € [0, 1], the product measure ¢, On X isinvariant.

Proof. Let n be sampled from X according to the product measure ¢,. We
have that
PA(p =1on Ay) = E@!A) = oA,
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10.4 Exclusion model 199

since | At| = |A|. By Theorem 10.18, if 5o haslaw ¢, then so does n; for
alt. Thatis, ¢, isaninvariant measure. O

The question thus arises of determining the circumstances under which
the set of invariant extremal measuresis exactly the set of product measures.
Assume for simplicity that
(i) V=129,
(i) the transition probabilities are symmetric and trandl ation-invariant in
that
Px,y = Py,x = PY — X), X,ye Zd,
for some function p, and
(iii) the Markov chainwith transition matrix P = (px.y) isirreducible.
It can be shown in this case (see [167, 170]) that e = {¢¢ : @ € [0, 1]},
and that
1S = oo ast — oo,
for any trandation-invariant and spatially ergodic probability measure
with u(n(0) = 1) = .
In the more general symmetric non-translation-invariant case on an arbi-
trary countable set V, the constants« are replaced by the set #¢ of functions
a 'V — [0, 1] satisfying

(10.21) a() =Y prya(y). XeV,

yeV
that is, the bounded harmonic functions, re-scaled if necessary to take values
in[0, 1].2 Let 11, bethe product measureon  with 1, (7(X) = 1) = a(X).
It turns out that the weak limit

Ve = JiM uqS
t—oo

exists, and that Je = {vy : a € #}. It may be shown that: v, isaproduct
measure if and only if « isaconstant function. See[167, 170].

We may find examplesin which the set # islarge. Let P = (pyx y) be
the transition matrix of symmetric random walk onabinary tree T (each of
whose vertices has degree 3, see Figure 6.3). Let 0 be agiven vertex of the
tree, and think of 0 astheroot of three digjoint sub-treesof T. Any solution
(an : n > 0) to the difference equation

(10.22) 2api1—3an+ap_1=0 n>1,

3Anirreducible symmetric translation-invariant Markov chain on Z9 hasonly constant
bounded harmonic functions. Exercise: Provethis statement. It isan easy consequenceof
the optional stopping theorem for bounded martingales, whenever the chain is recurrent.
See[167, pp. 67—70] for adiscussion of the general case.
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defines a harmonic function « on a given such sub-tree, by a(x) = apn,
where n isthe distance between 0 and x. The general solutionto (10.22) is
an = A+B@E",
where A and B are arbitrary constants. Thethree pairs (A, B), correspond-
ing to the three sub-treesat 0, may be chosenin an arbitrary manner, subject
to the conditionthat ag = A+ B isconstant across sub-trees. Furthermore,
the composite harmonic function on T takes valuesin [0, 1] if and only
if each pair (A, B) sdtisfies A, A+ B € [0, 1]. There exists, therefore, a
continuum of admissible non-constant solutions to (10.21), and therefore
a continuum of extremal invariant measures of the associated exclusion
model.

10.5 Stochastic Ising model

The Ising model is designed as a model of the ‘local’ interactions of a
ferromagnet: each neighbouring pair x, y of verticeshave spinscontributing
—oxoy totheenergy of the spin-configurationo. Themodel isstaticintime.
Physical systems tend to evolve as time passes, and we are thus led to the
study of stochastic processeshaving thelsing model asinvariant measure. It
isnormal to consider M arkovian modelsfor time-evolution, and this section
containsavery brief summary of some of these. Thetheory of thedynamics
of spinmodelsisvery rich, and thereader isreferred to [167] and [179, 185,
214] for further introductory accounts.

Let G = (V, E) be afinite connected graph (infinite graphs are not
considered here). As explained in Section 10.1, a Markov chainon ¥ =
{—1, 1}V isspecified by way of its generator .£, acting on suitable functions
f by

(10.23) Lf(@)= ) c,0)fc)—f)], oe%,

o'ex
for some function ¢ sometimes called the ‘rate (or speed) function’. For
o # o', wethink of c(o, 6’) as being the rate at which the process jumps
to state o’ when currently in state o. Equation (10.23) requires nothing of
the diagonal terms c(o, o), and we choose these such that

ZC(U,O'/)ZO, o€ X.
o’ex
The state space X is finite, and thus there is a minimum of technical

complications. The probability measure u isinvariant for the processif and
only if u£ = 0, whichisto say that
(10.24) Z u(o)c(o,o’) =0, o' ex.

oEX
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10.5 Sochastic Ising model 201
Theprocessisreversiblewith respect to w if and only if the* detailed balance
equations
(10.25) w(o)c(o, o) = u(o)eld’, o), 0,0 € I,

hold, in which case u is automatically invariant.
Let 7w be the Ising measure on the spin-space ¥ satisfying

(10.26) n(o) o e PH@), cEY,
where 8 > 0,
H(o) = —h ZO’X — Zaxay,
xeV X~y

and the second summation is over unordered pairs of neighbours. We shall
consider Markov processeshaving  asreversibleinvariant measure. Many
possible choices for the speed function ¢ are possible in (10.25), of which
we mention four here.

First, some notation: for o € ¥ and x, y € V, the configuration oy is
obtained from o by replacing the state of x by —o (x) (see (10.6)), and oy y
is obtained by swapping the states of x and y (see (10.16)). The processis
said to proceed by: spin-flipsif c(o, 0”) = 0 except possibly for pairso, o’
that differ on at most one vertex; it proceeds by spin-swapsif (for o # o)
C(o, 0’) = 0O except when o’ = oy y for somex, y € V.

Here arefour rate functionsthat have attracted much attention, presented
inamanner that emphasizesapplicability to other Gibbssystems. Itiseasily
checked that each is reversible with respect to .4

1. Metropolis dynamics. Spin-flip processwith

c(o, ox) = min {1, exp(—B[H (ox) — H(0)])}.
2. Heat-bath dynamics/Gibbs sampler. Spin-flip process with

c(o, ox) = [1+ exp(B[H (ox) — H(o)])] .

This arises as follows. At times of arate-1 Poisson process, the state
at x is replaced by a state chosen at random with the conditional law

giveno (y),y # X.
3. Smple spin-flip dynamics. Spin-flip process with

c(a, 05) = exp(—3B[H (o) — H(@)]).
4. Kawasaki dynamics. Spin-swap processwith speed function satisfying
c(o, 0xy) =&xp(—3B[H(oxy) = H(@)]),  x~y.

4Thisis Exercise 10.3.
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The first three have much in common. In the fourth, Kawasaki dynamics,
the ‘total magnetization' M = >, o(x) is conserved. This conservation
law causes complicationsin the analysis.

Examples 1-3 are of so-called Glauber-type, after Glauber’swork on the
one-dimensional Ising model, [98]. The term *Glauber dynamics' is used
in several ways in the literature, but may be taken to be a spin-flip process
with positive, trand ation-invariant, finite-range rate function satisfying the
detailed balance condition (10.25).

Theabovedynamicsare‘loca’ inthat atransition affectsthe states of sin-
gletons or neighbouring pairs. Thereis another process called ‘ Swendsen—
Wang dynamics', [228], in which transitions are more extensive. Let 7
denote the Ising measure (10.26) with h = 0. The random-cluster model
corresponding to the Ising model with h = 0 has state space = {0, 1}F
and parameters p = 1 — e 2%, q = 1. Each step of the Swendsen-Wang
evolution comprises two steps. sampling a random-cluster state, followed
by resampling a spin configuration. Thisis made more explicit as follows.
Suppose that, at time n, we have obtained a configuration o, € . We
construct op4-1 asfollows.

I. Letwn € Q2 begivenby: foral e= (x,y) € E,

if on(X) # on(y), letwn(e) =0,
1 with probability p,

if on(X) = on(y), letwn(e) = { 0 otherwise,

different edges receiving independent states. The edge-configuration
wn is carried forward to the next stage.

Il. To each cluster C of the graph (V, n(wn)) we assign an integer cho-
sen uniformly at random from the set {1, 2, .. ., q}, different clusters
receiving independent labels. Let on41(X) be the value thus assigned
to the cluster containing the vertex x.

It may be shown that the unique invariant measure of the Markov chain
(on : n > 1) isindeed the Ising measure w. See [109, Sect. 8.5]. Transi-
tions of the Swendsen—Wang algorithm move from a configuration o to a
configuration o’ which is usually very different from o. Thus, in general,
we expect the Swendsen—Wang process to converge faster to equilibrium
than the local dynamics given above.

The basic questionsfor stochastic |sing models concern therate at which
a process convergesto its invariant measure, and the manner in which this
depends on: (i) the size and topology of G, (ii) any boundary condition
that is imposed, and (iii) the values of the external field h and the inverse
temperature 8. Two ways of quantifying the rate of convergenceis viathe
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so-called ‘mixing time’ and ‘relaxation time’ of the process. Thefollowing
discussion is based in part on [18, 165].

Consider a continuous-time Markov process with unique invariant mea-
sure u. Themixing timeis given as

= inf{t Dosup drv (P PR < e_l},
01,02€%

where

drv(p1, u2) = 3 Y |na(o) — pa(o)

oeX

isthe total variation distance between two probability measureson X, and
Py denotesthe law of the process at timet having started in state o at time
0.

Write the eigenvalues of the negative generator —.L as

3

O=AM=<i2=<-- <N

The relaxation time 2 of the process is defined as the reciprocal of the
‘spectral gap’ Ao. Itisagenera result that

<11 (l+ Iogl/[n’(ljinu(a)]) ,

sothat t2 < 71 < O(|E|) 12 for the stochastic Ising model on the connected
graph G = (V, E). Therefore, mixing and relaxation times have equivalent
orders of magnitude, up to the factor O(|E|).

No attempt is made here to summarize the very substantial literature
on the convergence of Ising modelsto their equilibria, for which the reader
is directed to [185, 214] and more recent works including [179].
A phenomenon of current interest is termed ‘cut-off’. It has been
observed for certain families of Markov chain that thetotal variationd(t) =
drv (P, ) has athreshold behaviour: there is a sharp threshold between
values of t for which d(t) ~ 1, and values for which d(t) ~ 0. There-
lationship between mixing/relaxation times and the cut-off phenomenon is
not yet fully understood, but has been studied successfully by Lubetzky and
Sy [178] for Glauber dynamics of the high-temperature Ising model in all
dimensions.

10.6 Exercises

10.1 [239] Biased voter model. Each point of the square lattice is occupied,
at each time t, by either a benign or a malignant cell. Benign cells invade their
neighbours, each neighbour being invaded at rate 8, and similarly malignant cells
invade their neighbours at rate . Suppose there is exactly one malignant cell
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attimeO, and let « = u/B > 1. Show that the malignant cells die out with
probability k1.
More generally, what happens on L9 withd > 2?

10.2 Exchangeability. A probability measure 1 on {0, 1}% is called exchange-
ableif the quantity «({n : n = 1 on A}), as A ranges over the set of finite subsets
of Z, dependsonly on the cardinality of A. Show that every exchangeable measure
1 isinvariant for asymmetric exclusion model on Z.

10.3 Sochasticlsingmodel. Let S = {—1, +-1}" bethestate space of aMarkov
process on the finite graph G = (V, E) which proceeds by spin-flips. The state at
X € V changes value at rate c(X, o) when the state overall is o. Show that each
of therate functions

c1(X, 0) = min{l, exp<—2ﬁ > axay) }

yeax
Co(X, o) !
2(X,0) = s
1+exp(2p Zyeax oxoy)
C3(X,0) = exp(—ﬂ Z Uxﬂy),
yeoax

gives rise to reversible dynamics with respect to the Ising measure with zero
external-field. Here, dx denotes the set of neighbours of the vertex x.
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Random graphs

In the Erd6s-Rényi random graph Gn, p, each pair of verticesis con-
nected by an edge with probability p. We describe the emergence of
the giant component when pn = 1, and identify the density of this
component asthe survival probability of aPoisson branching process.
The Hoeffding inequality may be used to show that, for constant p,
the chromatic number of Gp, p is asymptotic to %n /109, n, where
7 =1/1-p.

11.1 Erdés-Rényi graphs

LetV ={1,2,...,n},andlet (Xjj : 1 <i < j < n) beindependent
Bernoulli random variables with parameter p. For each pairi < j, we
place an edge (i, j) between verticesi and j if and only if Xj j = 1. The
resulting random graph is named after Erdés and Rényi [82]1, and it is
commonly denoted G, p. The density p of edges may vary with n, for
example, p = A/n with » € (0, co), and one commonly considers the
structure of G p inthelimitasn — oo.

The original motivation for studying Gn, p was to understand the proper-
tiesof ‘typical’ graphs. Thisisin contrast to the study of ‘extremal’ graphs,
although it may be noted that random graphs have on occasion manifested
properties more extreme than graphs obtained by more constructive means.

Random graphshave proved animportant tool inthe study of the‘typical’
runtime of algorithms. Consider a computational problem associated with
graphs, such as the travelling salesman problem. In assessing the speed
of an algorithm for this problem, we may find that, in the worst situation,
the algorithm is very slow. On the other hand, the typical runtime may
be much less than the worst-case runtime. The measurement of ‘typical’
runtime requiresaprobability measure onthe spaceof graphs, anditisinthis
regard that Gy, p has risen to prominence within this subfield of theoretical
computer science. While G, ; is, in asense, the obvious candidate for such

1Seealsn [96].
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aprobability measure, it suffers from the weakness that the * mother graph’
Ky, has alarge automorphism group; it is a poor candidate in situationsin
which pairs of vertices may have differing relationships to one another.

Therandomgraph Gn, p hasreceived avery great deal of attention, largely
within the community working on probabilistic combinatorics. The theory
is based on a mix of combinatorial and probabilistic techniques, and has
become very refined.

We may think of G, p asapercolation model on the complete graph Kp,.
The parallel with percolation isweak in the sense that the theory of G, p is
largely combinatorial rather than geometrical. There is however asensein
which random graph theory has enriched percolation. The mgjor difficulty
in the study of physical systemsarises out of the geometry of RY; pointsare
related to one another in waysthat depend greatly on their relative positions
in RY. In a so-called ‘mean-field theory’, the geometrical component is
removed through the assumption that points interact with al other points
equally. Mean-field theory leads to an approximate picture of the model
in question, and this approximation improvesin the limit asd — oo. The
Erdés—Rényi random graph may be seen as a mean-field approximation to
percolation. Mean-field models based on G p have proved of value for
Ising and Potts models also, see [45, 242].

This chapter contains brief introductions to two areas of random-graph
theory, each of which uses probability theory in a special way. The first
is an analysis of the emergence of the so-called giant component in Gp, p
with p = A/n, as the parameter A passes through the value A = 1. Of
the several possible ways of doing this, we emphasize here the relevance
of arguments from branching processes. The second area considered here
is a study of the chromatic number of G p, asn — oo with constant p.
Thisclassical problem was solved by BélaBollobas[42] using Hoeffding's
inequality for the tail of amartingale, Theorem 4.21.

The two principal references for the theory of G are the earlier book
[44] by Bollobés, and the more recent work [144] of Janson, tuzcak and
Rucihski. We say nothing here about recent developmentsin random-graph
theory involving modelsfor the so-called small world. See[79] for example.

11.2 Giant component

Consider the random graph Gp ;/n, Where A € (0, oo) is a constant. We
build thecomponent at agivenvertex v asfollows. Thevertex visadjacentto
acertainnumber N of vertices, where N hasthebin(n—1, A /n) distribution.
Each of these verticesisjoined to arandom number of vertices, distributed
approximately as N, and such that, with probability 1 — o(1), these new
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vertex-sets are digoint. Since the bin(n — 1, »/n) distribution is ‘nearly’
Poisson Po(1), thecomponent at v growsvery much likeabranching process
with family-size distribution Po()). The branching-process approximation
becomes less good as the component grows, and in particular when its size
becomes of order n. The mean family-size equals A, and thus the process
with A < lisvery different from that with A > 1.

Supposethat A < 1. Inthiscase, the branching processis (almost surely)
extinct, and possesses afinite number of vertices. With high probability, the
size of thegrowing cluster at v is sufficiently small to be well approximated
by a Po(A) branching-process. Having built the component at v, we pick
another vertex w and act similarly. By iteration, we obtain that Gy p is
the union of clusters each with exponentially decaying tail. The largest
component has order log n.

When 1 > 1, the branching process grows beyond limits with strictly
positive probability. This corresponds to the existence in Gy, p of a com-
ponent of size having order n. We make this more formal as follows. Let
Xn be the number of vertices in a largest component of G p. We write
Zn = 0p(Yn) if Zn/yn — 0in probability asn — co. Anevent A, is said
to occur asymptotically almost surely (abbreviated asa.as.) if P(Ay) — 1
asn— oo.

11.1 Theorem [82]. We have that

Exn _ { op(1) ifa <1,

n a(M)(A+o0p1) ifa>1,
where (1) isthe survival probability of a branching process with a single
progenitor and family-size distribution Po(}).

Itisstandard (see[121, Sect. 5.4], for example) that the extinction prob-
ability n(A) = 1 — a()) of such a branching process is the smallest non-
negative root of the equation s = G(s), where G(s) = e~V Itisleftas
an exercise? to check that

0 k1
_ - —AyK
n() = . E R (re )"

k=1

2Here is one way that resonates with random graphs. Let py be the probability that
vertex 1 liesin a component that is atree of size k. By enumerating the possibilities,

k
B n—1 K2 (&)kil < B &> k(nfk)+(2)—k+1
Pe= (k - 1) . n -5 ‘

Simplify and sum over k.
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Proof. By acoupling argument, the distribution of X, isnon-decreasingin
A. Since a(1) = O, it suffices to consider the case A > 1, and we assume
this henceforth. We follow [144, Sect. 5.2], and use a branching-process
argument. (See also [21].) Choose a vertex v. At the first step, we find
al neighbours of v, say v1, v, ..., vy, and we mark v as dead. At the
second step, we generateall neighboursof v1 inV \ {v, v1, v2, ..., v}, and
we mark vy as dead. This processisiterated until the entire component of
Gn,p containing v has been generated. Any vertex thus discovered in the
component of v, but not yet dead, is said to be live. Stepi is said to be
complete when there are exactly i dead vertices. The process terminates
when there are no live vertices remaining.

Conditional on the history of the processup to and including the (i — 1)th
step, thenumber N; of verticesadded at stepi isdistributed asbin(n—m, p),
where m is the number of vertices already generated.

Let

A 2/3
:mlogn, k. =n?/3.

Inthissection, al logarithmsare natural. Consider the above processstarted
a v, and let A, be the event that: either the process terminates after fewer
than k_ steps, or, for every k satisfying k- < k < k;, there are at least
%(A — Dk live vertices after step k. If A, does not occur, there exists
k € [k_, ky] such that: step k takes place and, after its completion, fewer
than

m=k+ 30— Dk=2(x + Dk

vertices have been discovered in al. For simplicity of notation, we assume
that 3(1 + Dk isan integer.
On the event A,,, and with such a choicefor k,
(N1, N2, ..., Ni) =& (Y1, Y2, ..., Yi),
where the Y; are independent random variables with the binomial distribu-
tion® bin(n — 3(x + 1k, p). Therefore,

Ky
1-P(A) < ) m,
k=k_
where
k
(11.2) Tk :]P’(ZYi < %(Hl)k).
i=1

SHere and |ater, we occasionally use fractions where integers are required.
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Now, Y1+ Yo+ - -+ Yi hasthebin(k(n— 3 (1 +1)k), p) distribution. By the
Chernoff bound for the tail of the binomial distribution, for k_ < k < k;.
and large n,

A — 1)2k2 AL —1)2
oo (452

=O(n~1/9),
Therefore, 1 — P(A,) < kyO(n~16/9) = o(n—1), and this provesthat

P(ﬂ Av> >1-> [1-PA))>1 asn— oc.
veV veV

In particular, a.a.s., no component of Gy, 5 /n has size between k_ and k..

We show next that, a.a.s., there do not exist more than two components
with size exceeding k.. Assume that (1), A, occurs, and let v/, v” be
distinct vertices lying in components with size exceeding k... We run the
above process beginning at v’ for the first k; steps, and we finish with a
set L’ containing at least %(A — 1k, live vertices. We do the same for
the process from v”. Either the growing component at v” intersects the
current component v’ by step k., or not. If the latter, then we finish with a
set L”, containing at least 3(1 — 1)k, live vertices, and digjoint from L.
The chance (conditional on arriving at this stage) that there exists no edge
between L" and L” is bounded above by

(1— PEADKI < exp(—1a00 — 1%Y3) = o(n72).

Therefore, the probability that there exist two distinct vertices belonging to
distinct components of size exceeding k- is no greater than

1-— P(ﬂ Av) +n?o(n~?) = o(1).
veV
In summary, aas., every component is either ‘small’ (smaller than k_)
or ‘large’ (larger than k, ), and there can be no more than one large com-
ponent. In order to estimate the size of any such large component, we use
Chebyshev’sinequality to estimate the aggregatesi zes of small components.
Letv € V. Thechanceo = o (n, p) that v isin asmall component satisfies

(11.3) n-—ol) <o <ny,

wheren (respectively, n_) isthe extinction probability of abranching pro-
cess with family-size distribution bin(n — k_, p) (respectively, bin(n, p)),
and the o(1) term bounds the probability that the latter branching process
terminates after k_ or more steps. It is an easy exercise® to show that

4See Exercise 11.3.
5See Exercise 11.2.
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n—,ny — nasn — oo, wheren(i) = 1 — (1) isthe extinction probabil -
ity of aPo(A) branching process.
The number S of verticesin small components satisfies

E(S) =on= (14 0o(1))nn.
Furthermore, by an argument similar to that above,
E(S(S—1) < no[k- +no(n—k_, p)] = (1+ o(1)(ES)?,

whence, by Chebyshev’sinequality, Gn,p possesses (1 + 0p(1))n vertices
in small components. This leaves just n — (7 + 0p(1))N = (a + op(1))Nn
vertices remaining for the large component, and the theorem is proved. O

A further analysisyieldsthesize X, of thelargest subcritical component,
and the size Y,, of the second largest supercritical component.

11.4 Theorem.
(& Wheni < 1,
Xoy = (1+ 0p(1))—— 29"
n=(1+0p r—1—logi’
(b) When s > 1,
logn
Yh = (1+0p(1))m,

where )’ = A(1—a())).

If » > 1, andweremovethelargest component, weareleft with arandom
graphonn — X, ~ n(1 — a(})) vertices. The mean vertex-degree of this
subgraph is approximately

% Nl—a() =rl—a()) = V.

It may be checked that this is strictly smaller than 1, implying that the
remaining subgraph behaves as a subcritical random graph on n — X,
vertices. Theorem 11.4(b) now follows from part (a).

The pictureis moreinteresting when A = 1, for which thereis a detailed
combinatorial study of [143]. Rather than describing this here, we deviate
to the work of David Aldous [16], who has demonstrated a link, via the
multiplicative coalescent, to Brownian motion. We set

1 t
p= H + m,
wheret € R, and we write C(1) > C,(2) > --- for the component sizes
of Gp,p in decreasing order. We shall explore the weak limit (as n — o)
of the sequencen—%/3(CL (1), CL(2), ...).
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Let W = (W(s) : s > 0) be astandard Brownian motion, and
WH(s) = W(s) +ts — 352, s>0,
aBrownian motion with drift t — s at time's. Write
B(s) = Wi(s) — inf W)
0<g'<s
for areflecting inhomogenous Brownian motion with drift.
11.5 Theorem [16]. Asn — oo,
n-23(Cl (1), CL2),...) = (C'(D),C'2),...),
where C!(j) isthe length of the jth largest excursion of Bt.

We think of the sequences of Theorem 11.5 as being chosen at random
from the space of decreasing non-negative sequences X = (X1, X2, ...),

with metric
doy) = [y (i — w2

As t increases, two components of sizes xj, X ‘coalesce’ at a rate pro-
portional to the product x;x;. Theorem 11.5 identifies the scaling limit of
this process as that of the evolving excursion-lengths of W! reflected at
zero. This observation has contributed to the construction of the so-called
‘multiplicative coalescent’.

Insummary, thelargest component of the subcritical random graph (when
A < 1) has order logn, and of the supercritical graph (when A > 1) order
n. When A = 1, thelargest component has order n%/3, with amultiplicative
constant that is arandom variable. Thediscontinuity at A = 1issometimes
referred to as the * Erd6s-Rényi double jump’.

11.3 Independence and colouring

Our second random-graph study is concerned with the chromatic number of
G, p for constant p. The theory of graph-colouringsis asignificant part of
graphtheory. The chromatic number x (G) of agraph G istheleast number
of colours with the property that: there exists an allocation of colours to
vertices such that no two neighbours have the same colour. Let p € (0, 1),
and write xp, p for the chromatic number of Gy, .

A subset W of V is caled independent if no pair of verticesin W are
adjacent, that is, if Xjj = Oforali,j € W. Any colouring of Gy p
partitions V into independent sets each with a given colour, and therefore
the chromatic number is related to the size I, p of the largest independent
set of Gy p.

© G. R Grimmett 1/4/10, 17/11/10, 5/7/12



212 Random graphs

11.6 Theorem [116]. We have that
wherethe base r of thelogarithmisz = 1/(1— p).

The proof follows a standard route: the upper bound follows by an esti-
mate of an expectation, and the lower by an estimate of a second moment.
When performed with greater care, such calculationsyield much more accu-
rateestimatesof I, p than those presented here, see, for example, [44], [144,

Sect. 7.1], and [186, Sect. 2]. Specifically, there exists an integer-valued
functionr = r (n, p) such that

(11.7) Pr—1<lpp=<r)—1 asn — oo.

Proof. Let Ny be the number of independent subsets of V with cardinality
k. Then

(11.8) P(ln,p = k) =P(Ng = 1) < E(N).
Now,
(11.9) E(Ny) = (E)(l — p)(S),

Withe > 0, set k = 2(1 + €) log,, n, and use the fact that
k
n n K
(k) <@ S (ne/k)",
to obtain
log, E(Nk) < —(1+ o(1))ke log, n - —oco asn — oo.

By (11.8), P(In,p = k) = Oasn — oo. Thisisan example of the use of
the so-called *first-moment method'.

A lower bound for I, is obtained by the ‘second-moment method’ as
follows. By Chebyshev’sinequality,

var(Ng)
P(Nk = 0) < P(INk — ENg| = ENg) < ENOZ”
whence, since Nk takes values in the non-negativeintegers,
(11.10) P(Nk>1)>2-— w
E(Nk)2
Lete > Oandk = 2(1 — ¢€) log,, n. By (11.10), it suffices to show that
(1111 IE(NkZ) — asn — oo.
E(Nk)?
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By the Cauchy—Schwarz inequality, theleft sideisat least 1. By an elemen-
tary counting argument,

k .
E(Ng) = (E)(l —pOY (k) (E B !‘) 1-p®-O,
i—o \! — !
After a minor analysis using (11.9) and (11.11), we may conclude that

P(ln,p = k) = 1asn — oo. Thetheorem s proved. O

We turn now to the chromatic number xn p. Since the size of any set of
vertices of given colour is no larger than I, p, we have immediately that

n
11.12 > — =(1+o0,(1 .
( ) Xn,p |n,p ( p( ))Zlognn

The sharpness of this inequality was proved by Béla Bollobas [42], in a
striking application of Hoeffding's inequality for the tail of a martingale,
Theorem 4.21.

11.13 Theorem [42]. We have that

xn,p = (14 0p(1))

2log, n’
wherer = 1/(1— p).

Theterm op(1) may be estimated quite precisely by amore detailed anal -
ysisthanthat presented here, see[42, 187] and[144, Sect. 7.3]. Specifically,
we have, a.as., that

n

- 2log, n — 2log, log, n + Op(1)’

Xn,p

where Zp = Op(yn) meansP(|Zn/yn| > M) < g(M) - 0asM — oo.

Proof. The lower bound follows as in (11.12), and so we concentrate on

finding an upper bound for xn p. Let0 < € < %1, and write

k=12(1—-e€)log, nJ.

We claim that, with probability 1 — o(1), every subset of VV with cardinality
at least m = [n/(log, n)?] possesses an independent subset of size at least
k. The required bound on xn p follows from this claim, as follows. We
find an independent set of size k, and we colour its vertices with colour 1.
From the remaining set of n — k vertices, we find an independent set of size
k, and we colour it with colour 2. This process may be iterated until there
remainsaset S of size smaller than |n/(log, n)2]. We colour the vertices
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of S*greedily’, using | S| further colours. The total number of coloursused
in the above algorithm is no greater than

n N n
k  (log, n)2’

which, for large n, is smaller than %(1 + 2¢)n/ log, n. Therequired claim

is aconsequence of the following lemma.

11.14 Lemma. Withtheabove notation, the probability that Gm, p contains

no independent set of sizek islessthan exp(—n;‘2€+°(1)/ m?).

There are () (< 2") subsets of {1, 2, ..., n} with cardinaity m. The
probability that some such subset fails to contain an independent set of size
k is, by the lemma, no larger than

on exp(_n%72e+o(1)/m2) = o(1).

We turn to the proof of Lemma 11.14, for which we shall use the Hoeffding
inequality, Theorem 4.21.
For M > Kk, let

(11.15) F(M,K) = (':')(1— 0)®.

We shall require M to be such that F (M, k) growsin the manner of apower
of n, and to that end we set

(11.16) M = | (Ck/e)nt¢],

where
3

| -
°9:C =319

has been chosen in such away that
(11.17) F(M, k) = na—<+o@,

Let £(r) betheset of independent subsetsof {1, 2, .. ., r } withcardinality
k. We write Ny = |£(m)|, and N for the number of elements | of £(m)
with the property that || N1’| < 1forall I’ € £(m), " # |. Notethat

(11.18) Ni > Ny

We shall estimate P(Nx = 0) by applying Hoeffding's inequality to a
martingale constructed in a standard manner from the random variable Ny .
First, weorder as (g1, e, . . ., e(r;)) the edges of the complete graph on the
vertex-set {1, 2, ..., m}. Let ¥ be the o-field generated by the states of
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the edges er, e, ..., &, and let Ys = E(N; | Fs). Itis elementary that
the sequence (Ys, ¥s), 0 < s < (), is amartingale (see [121, Example
7.9.24]). The quantity N, has been defined in such a way that the addition
or removal of an edge causes its value to change by at most 1. Therefore,
the martingale differences satisfy |Ys1 — Ys| < 1. Since Yo = E(N) and
Ym = N/,

(2) k
(11.19) P(Nx =0) < P(Ny = 0)

=P(Ny — E(Np) < —E(Np))

con{-suet /(2
< exp(—E(Np?/m?),

by (11.18) and Theorem 4.21. We now require alower bound for E(Ny).

Let M beasin (11.16). Let Mg = |£(M)|, and let M be the number of
elements| € £(M) suchthat || N1’| < 1forall’ € 4(M), |’ # 1. Since
m> M,

(11.20) Ne > My,

and we shall bound E(M;) from below. Let K = {1,2,...,k}, and let A
be the event that K isan independent set. Let Z be the number of elements
of £(M), other than K, that intersect K in two or more vertices. Then

(11.21) E(M}) = <|\I:|>IP’(AO (Z =0}
— (':') P(AP(Z=0]| A)
— F(M,KP(Z =0 A).

WeboundP(Z =0 A) by

(1122) P(Z=0|A =1-PZ>1|A)
>1-E(ZI|A

k—1
K\ /M —k Ky ot
-y -0
. t=2<t)(k—t>(1 P

k—1
1-> F. say.
t=2
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Fort > 2,
(11.23)
M=%+ (k=21 2 laan—2)
Ft/F2 = (M — 2k +t)! '<(k—t)!> g
201 m—ta+n ]2
_|K¥a-p2®™ _
= M — 2k

For2 <t < 3k,
log, [(1— p)2¢Y] < Ik +2) < 1+ - e log, n,
0 (1— p)~ 20+ — oM2@-9), By (11.23),
> R=+o01)F..

2<t=3k

Similarly,

K\ /M — K\ (1 — p)3k+t-2k-t-1)
Ft/Fkl:(t)(k—t) Ko

< [kn(1 — p)2+t-2] L
For 1k <t < k — 1, we have as above that

1-p2* <@ - pik <n,

whence
Z Ft = (1+ 0o(1)) Fk—1.
lk<t<k-1
In summary,
k—1
(11.24) > Fe=(1+01)(F2+ Fi1).
t=2
By (11.15) and (11.17),
F F(M, k
2= 2a-pm—rz
_ n—;l,+e+0(1) = o(),
and similarly

Fror = kM — k(1 - p*t=o).
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By (11.24) and (11.21)«(11.22),
E(Mp) = (1+ 0(1))F (M, k) = ni=<+om,
Returning to the martingale bound (11.19), it follows by (11.20) that
P(Nk = 0) < exp(—n2~2+00 /2y

asrequired. O

11.4 Exercises

11.1 Letn(x) betheextinction probability of abranching processwhosefamily-
sizes have the Poisson distribution Po()). Show that

N 1 kk—lk_“(
no) =2 S GeTHt.
k=1

11.2 Consider a branching process whose family-sizes have the binomial dis-
tribution bin(n, A/n). Show that the extinction probability convergesto n(i) as
n — oo, where (1) is the extinction probability of a branching process with
family-sizes distributed as Po(%.).

11.3 Chernoff bounds. Let X have the binomial distribution bin(n, p), and let
A = np. Obtain exponentially decaying bounds for the probabilities of
upper and lower deviations of X from its mean A, such as those to be found in
[144, Sect. 2.1]:

2
P(X > A +1) < e /D sexp(—m>, t>0,

2
P(X <A—t) <e YD <exp (—;7) , t>0,

where

¢(X) =

{ AL+x)logl+x) —x ifx>-1,
o0 ifx < -1

11.4 [44] Show that the size of the largest independent set of Gp p is, aas,
eitherr — 1 orr, for some deterministic functionr =r(n, p).

11.5 Consider a branching process with a single progenitor and family-sizes
distributed as the random variable X. Let

T=minn>1: X1+ Xo+---+ Xpn=n-1},

wherethe X; areindependent copies of X. Show that T has the same distribution
asthetotal number of individualsin the branching process. (The minimum of the
empty set is defined to be co.)
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11.6 (continuation) Inthe random graph G, p with p = A/n, wherex € (0, 1),
show that the size My, of the largest cluster satisfies P(M, > alogn) — 0 as
n— ooforanya>x—1-—1logA.

11.7 (continuation) Prove the complementary fact that P(My < alogn) — 0O
asn — ocoforanya < i —1—loga.
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L orentz gas

A small particle is fired through an environment of large particles,
and is subjected to reflections on impact. Little is known about the
trgjectory of the small particle when the larger ones are distributed at
random. The notorious problem on the square | attice is summarized,
and open questions are posed for the case of a continuum of needle-
like mirrorsin the plane.

12.1 Lorentz model

In afamous sequence [176] of papers of 1906, Hendrik Lorentz introduced
aversion of the following problem. Large (heavy) particles are distributed
about R9. A small (light) particle is fired through RY, with a trajectory
comprising straight-line segments between the points of interaction with
the heavy particles. When the small particle hits a heavy particle, the small
particleisreflected at its surface, and the large particle remains motionless.
See Figure 12.1 for an illustration.

We may think of the heavy particles as objects bounded by reflecting sur-
faces, and the light particle as a photon. The problem is to say something
non-trivial about how the trajectory of the photon depends on the ‘envi-
ronment’ of heavy particles. Conditional on the environment, the photon
pursues a deterministic path about which the natural questionsinclude:

1. Isthe path unbounded?

2. How distant is the photon from its starting point after timet?

For simplicity, we assume henceforth that the large particles areidentical to
one another, and that the small particle has negligible volume.

Probability may beinjected naturally into thismodel through the assump-
tion that the heavy particles are distributed at random around RY according
to some probability measure 1. The questionsabove may be rephrased, and
made more precise, in the language of probability theory. Let X; denotethe
position of the photon at time t, assuming constant velocity. Under what
conditionson w:
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()

N

Figure12.1. Thetrajectory of the photon comprises straight-line seg-
ments between the points of reflection.

I. Istherestrictly positive probability that the function X; isunbounded?
I1. Does X; convergeto a Brownian motion, after suitable re-scaling?

For awide choice of measures 1, these questions are currently unanswered.

TheLorentz gasisvery chalenging to mathematicians, andlittleisknown
rigoroudly in reply to the questions above. The reason isthat, as the photon
moves around space, it gathersinformation about the random environment,
and it carries this information with it for ever more.

The Lorentz gas was developed by Paul Ehrenfest [81]. For the relevant
referencesin the mathematics and physicsjournals, the reader isreferred to
[106, 107]. Many references may be found in [229].

12.2 ThesquareLorentz gas

Probably the most provocative version of the Lorentz gas for probabilists
ariseswhen thelight ray is confined to the square lattice I.2. At each vertex
v of 1.2, we place a ‘reflector’ with probability p, and nothing otherwise
(the occupancies of different vertices are independent). Reflectors comein
two types: ‘“NW’ and ‘NE’. A NW reflector deflectsincoming rays heading
northwards (respectively, southwards) to the west (respectively, east) and
vice versa. NE reflectors behave similarly with east and west interchanged.
See Figure 12.2. We think of areflector as being a two-sided mirror placed
at 45° to the axes, so that an incoming light ray is reflected along an axis
perpendicular toits direction of arrival. Now, for each vertex v, with proba
bility p we place areflector at v, and otherwise we place nothing at v. This
is done independently for different v. If areflector is placed at v, then we
specify that it is equally likely to be NW as NE.

We shine a torch northwards from the origin. The light is reflected by
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Figure12.2. Anillustration of the effects of NW and NE reflectors on
thelight ray.

themirrors, and it is easy to seethat: either thelight ray is unbounded, or it
traverses a closed loop of 1.2 (generally with self-crossings). Let

n(p) = Pp(thelight ray returnsto the origin).

Very little is known about the function . It seems reasonableto conjecture
that n isnon-decreasing in p, but this has not been proved. If n(p) = 1, the
light follows (almost surely) a closed loop, and we ask: for which p does
n(p) = 1? Certainly, n(0) = 0, and it iswell known that (1) = 1.1

12.1 Theorem. We havethat (1) = 1.

We invite the reader to consider whether or not n(p) = 1 for some
p € (0,1). A variety of related conjectures, not entirely self-consistent,
may be found in the physics literature. There are almost ho mathematical
results about this process beyond Theorem 12.1. We mention the paper
[204], whereit is proved that the number N (p) of unbounded light rays on
72 is almost surely constant, and is equal to one of 0, 1, co. Furthermore,
if there exist unbounded light trajectories, then they self-intersect infinitely
often. If N(p) = oo, theposition X, of the photon at timen, whenfollowing
an unbounded trajectory, is superdiffusive in the sense that E(|Xn|2)/n is
unbounded as n — oo. The principal method of [204] is to observe the
environment of mirrors as viewed from the moving photon.

In avariant of the standard random walk termed the ‘ burn-your-bridges
random walk by Omer Angel, an edge is destroyed immediately after it is
traversed for thefirst time. Thereaderisinvited to reflect ontherelationship
between the burn-your-bridgesrandom walk and the square L orentz gaswith

1
p=3
1seethe historical remark in [105].
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Figure12.3. (&) The heavy lines form the lattice .£, and the central
point isthe origin of L2. (b) An open cyclein J£ constitutes a barrier of
mirrors through which no light may penetrate.

Proof. We construct an ancillary lattice .£ asfollows. Let
A={(m+3n+3:m+niseven}.

Let ~ betheadjacency relationon Agivenby(m+1, n+2) ~ (r+3,s+1)
if andonly if Im—r| = |n—s| = 1. Weobtainthusagraph .£ on Athatis
isomorphic to L2. See Figure 12.3.

We declare the edge of £ joining(m—3,n— Htom+3.n+1)to
be open if there is a NE mirror at (m, n); similarly, we declare the edge
joining (m— 3, n+3) to (m+ 3, n— 3) to be openif thereisaNW mirror
a (m, n). Edges that are not open are designated closed. This defines a
bond percolation process in which north-easterly and north-westerly edges
are open with probability 3. Since pe(L?) = 3, the processis critical, and
the percolation probability 6 wtisfieee(%) = 0. See Sections 5.5-5.6.

Let N bethe number of open cyclesin £ withtheoriginintheir interiors.
Sincethereis(a.s.) noinfinite cluster in the percolation process on the dual
lattice, we have that P(N > 1) = 1. Such an open cycle corresponds to a
barrier of mirrors surrounding the origin (see Figure 12.3), from which no
light can escape. Therefore n(1) = 1. d

The problem above may be stated for other lattices such as L9, see[105]
for example. It is much simplified if we allow the photon to flip its own
coin as it proceeds through the disordered medium of mirrors. Two such
models have been explored. In the first, there is a positive probability that
the photon will misbehave when it hits a mirror, see [234]. In the second,
there is allowed a small density of vertices at which the photon acts in the
manner of arandom walk, see [38, 117].
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12.3 Intheplane

Hereisacontinuum version of the Lorentz gas. Let IT be a Poisson process
in R? with intensity 1. For each x e TI, we place a needle (that is, a
closed rectilinear line-segment) of given length | with its centre at X. The
orientations of the needles are taken to be independent random variables
with acommon law u on [0, 7). We call i degenerateif it has support on
asingleton, that is, if all needles are (almost surely) parallel.

Each needleisinterpreted as a (two-sided) reflector of light. Needlesare
permitted to overlap. Light is projected from the origin northwards, and
deflected by the needles. Sincethelight strikesthe endpoint of someneedle
with probability 0, we shall overlook this possihility.

Inarelated problem, wemay study theunion M of the needles, viewed as
subsetsof R2, and ask whether either (or both) of thesets M, R2\ M contains
an unbounded component. This problem is known as ‘ needle percolation’,
and it has received some attention (see, for example, [188, Sect. 8.5], and
also [134]). Of concern to us in the present setting is the following. Let
A(1) = A, (1) bethe probability that there existsan unbounded path of R?\ M
with the origin 0 asendpoint. Itisclear that A(l) isnon-increasinginl. The
following is afairly straightforward exercise of percolation type.

12.2 Theorem [134]. Thereexistsl; = Ic(n) € (0, oo] such that
>0 ifl <lg,

=0 ifl >l

and furthermorel. < oo if and only if i is non-degenerate.

k(l){

The phase transition has been defined here in terms of the existence of
an unbounded ‘vacant path’ from the origin. When no such path exists,
the origin is almost surely surrounded by a cycle of pairwise-intersecting
needles. That is,

<1 ifl <lg,
=1 ifl >l

where E is the event that there exists a component C of needles such that
the origin of R? liesin a bounded component of R? \ C, and P,, | denotes
the probability measure governing the configuration of mirrors.

The needle percolation problemisatypeof continuum percol ation model,
cf. the space-time percolation process of Section 6.6. Continuum percola-
tion, and in particular the needle (or ‘stick’) model, has been summarized
in[188, Sect. 8.5].

We return to the above Lorentz problem. Suppose that the photon is
projected from the origin at angle 6 to the x-axis, for givend € [0, 2r). Let

(12.3) P, (E) {
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© bethe set of all 6 such that the trgjectory of the photon is unbounded. It
is clear from Theorem 12.2 that P, | (® = @) = 1if| > lc. The strength
of the following theorem of Matthew Harris lies in the converse statement.

12.4 Theorem [134]. Let x be non-degenerate, with support a subset of
the rational angles 7 Q.

@ Ifl >1l¢, thenP, (® =2)=1

(b) Ifl <, then

P, (® has Lebesgue measure 27) = 1 — P, | (E) > 0.

That isto say, aimost surely on the complement of E, the set © differs
from the entire interval [0, 27) by a null set. The proof uses a type of
dimension-reduction method, and utilizes a theorem concerning so-called
‘interval-exchangetransformations’ taken from ergodic theory, see[149]. It
isakey assumption for thisargument that 1 be supported within therational
angles.

Let n(I) = n, (1) be the probability that the light ray is bounded, hav-
ing started by heading northwards from the origin. As above, n,() = 1
when| > Ic(w). In contrast, it is not known for general i whether or not
n.(1) < 1 for sufficiently small positivel. It seems reasonable to conjec-
ture the following. For any probability measure p on [0, r), there exists
Iy € (O, I¢] such that 1, (1) < 1 whenever| < I;. This conjectureis open
even for the arguably most natural case when v isuniformon [0, 7).

12.5 Conjecture. Let 1 bethe uniform probability measureon |0, ), and
letl denotethecritical length for the associated needl e percolation problem
(asin Theorem 12.2).

(a) Thereexistsl; € (0, I¢] such that

(|){ <1 ifl <l
=1 i1,
(b) We havethat I, = I.
Asafirst step, weseek aproof that n (1) < 1for sufficiently small positive

values of |. Itistypica of such mirror problems that we lack even a proof
that () is monotonein|.

12.4 Exercises

12.1 There are two ways of putting in the barriers in the percolation proof of
Theorem 12.1, depending on whether one uses the odd or the even vertices. Use
thisfact to establish boundsfor thetail of the size of thetrajectory when the density
of mirrorsis 1.
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12.2 Inavariant of the square Lorentz lattice gas, NE mirrors occur with prob-
ability n € (0, 1) and NW mirrors otherwise. Show that the photon’s trajectory is
almost surely bounded.

12.3 Needles are dropped in the plane in the manner of a Poisson process with
intensity 1. They havelength |, and their angles to the horizontal are independent
random variables with law . Show that there exists ¢ = lc(t) € (0, oo] such
that: the probability that the origin lies in an unbounded path of R? intersecting
no needleis strictly positive when| < I¢, and equals zerowhen | > |c.

12.4 (continuation) Show that I¢ < oo if and only if « is non-degenerate.
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