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1 Introduction

Modern communication networks are able to respond to randomly fluc-
tuating demands and failures by adapting rates, by rerouting traffic and
by reallocating resources. They are able to do this so well that, in many
respects, large-scale networks appear as coherent, self-regulating sys-
tems. The design and control of such networks present challenges of
a mathematical, engineering and economic nature. This paper outlines
how mathematical models are being used to address one current set of
issues concerning the stability and fairness of rate control algorithms for
the Internet.

In the current Internet, the rate at which a source sends packets
is controlled by TCP, the transmission control protocol of the Internet
[15], implemented as software on the computers that are the source and
destination of the data. The general approach is as follows. When a re-
source within the network becomes overloaded, one or more packets are
lost; loss of a packet is taken as an indication of congestion, the desti-
nation informs the source, and the source slows down. The TCP then
gradually increases its sending rate until it again receives an indication
of congestion. This cycle of increase and decrease serves to discover and
utilize whatever bandwidth is available, and to share it between flows.
In the future, resources may also have the ability to indicate congestion
by marking packets, using an Explicit Congestion Notification mecha-
nism [9], and current questions concern how packets might be marked
and how TCP might be adapted to react to marked packets.

Just how the available bandwidth within a network should be shared
raises interesting issues of stability and fairness. Traditionally stability
has been considered an engineering issue, requiring an analysis of ran-
domness and feedback operating on fast time-scales, while fairness has
been considered an economic issue, involving static comparisons of util-
ity. In future networks the intelligence embedded in end-systems, acting
rapidly on behalf of human users, is likely to lessen this distinction.

In Section 2 and 3 we describe a tractable mathematical model of a
network and use it to analyse the stability and fairness of a simple rate
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control algorithm, following closely the development in [19]. Stability
is established by showing that, with an appropriate formulation of an
overall optimization problem, the network’s implicit objective function
provides a Lyapunov function for the dynamical system defined by the
rate control algorithm. The optimum is characterized by a proportional
fairness criterion. The work reviewed in Section 2 forms part of a growing
body of research on the global optimization of networks, with important
related approaches described by Golestani and Bhattacharyya [12] and
Low and Lapsley [25].

In Section 4 we describe a dynamical system which represents more
closely the TCP algorithm, in particular the generalization MulTCP
proposed by Crowcroft and Oechslin [4], and discuss its stability and
fairness. Several authors have described network models of TCP based
on systems of differential equations, and the results of Section 4 are
close variants on the work reported in [12], [13], [14], [20], [21], and [23].
The stability results of Sections 2 and 4 are a consequence of negative
feedback, assumed in these early sections to be instantaneous. Later in
the paper we use a retarded functional differential equation to explore
the potentially destabilizing effects of delayed feedback.

The dynamical system representations of Sections 2 and 4 model
only gross characteristics of the flows through a network. And yet these
flows evolve as a consequence of the fine detail of software operating
at the packet level. In later Sections of the paper we briefly outline,
following [13], some of the statistical approaches used to relate these
macroscopic and microscopic levels of description, and some of the in-
sights provided by the global model into how packets should be marked
at resources and how TCP might react.

There are clear analogies between the approach to large-scale systems
employed in this paper and that familiar from early work on statistical
physics. The behaviour of a gas can be described at the microscopic
level in terms of the position and velocity of each molecule. At this
level of detail a molecule’s velocity appears as a random process, with a
stationary distribution as found by Maxwell [27]!. Consistent with this
detailed microscopic description of the system is macroscopic behaviour
best described by quantities such as temperature and pressure. Similarly
the behaviour of electrons in an electrical network can be described in
terms of random walks, and yet this simple description at the microscopic
level leads to rather sophisticated behaviour at the macroscopic level:
the pattern of potentials in a network of resistors is just such that it
minimizes heat dissipation for a given level of current flow (Thomson
and Tait [32]). Thus the local, random behaviour of the electrons causes
the network as a whole to solve a large-scale optimization problem, an
analogy that is discussed further in [17].

Such physical analogies are immensely provocative, but of course the
mathematics of large-scale communication networks, such as the global

! It is interesting to note the substantial influence this paper had upon Erlang,
the early pioneer of research on telephone traffic [7].
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telephone network or the Internet, differs from that of physical models in
several respects. Most notably we generally know the microscopic rules
(they are coded in our software) but not their macroscopic consequences;
and we can choose the microscopic rules, an ability that makes it all the
more important to learn how to predict consequences.

Finally, a note on the title of this paper. The topic discussed here
is just one of many that might have been covered in a paper with this
title, and no attempt is made here to survey all the important models
that arise in the study of communication networks. Some indication of
the huge scope for mathematical modelling may be found in the col-
lection [28], in the critical commentaries by Ephremides and Hajek [6]
and Willinger and Paxson [35], and in current issues of the IEEE/ACM
Transactions on Networking.

2 Rate control of elastic traffic

Consider a network with a set J of resources. Let a route r be a non-
empty subset of J, and write R for the set of possible routes. Associate a
route 7 with a user, and suppose that if a rate z, > 0 is allocated to user
r then this has wtility U,.(z,) to the user. Assume that the utility U, (x,)
is an increasing, strictly concave function of x, over the range x, > 0
(following Shenker [30], we call traffic that leads to such a utility function
elastic traffic). To simplify the statement of results, assume further that
U, (z,) is continuously differentiable, with U (z,) — oo as z, | 0 and
Ul(z,) = 0 as z, T co. Suppose that as a resource becomes more heavily
loaded the network incurs an increasing cost, perhaps expressed in terms
of delay or loss, or in terms of additional resources the network must
allocate to assure guarantees on delay and loss: let C;(y) be the rate
at which cost is incurred at resource j when the load through it is y.
Suppose that C;(y) is differentiable, with

Ci0) =30, W

where the function p;(y) is assumed throughout to be a positive, contin-
uous, strictly increasing function of y bounded above by unity, for j € J.
Thus C;(y) is a strictly convex function.

Next consider the system of differential equations

& a(t) = my [ wn(0) — ()Y ) 2)
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for r € R, where
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for j € J. We interpret the relations (2)—(3) as follows. We suppose that
resource j marks a proportion p;(y) of packets with a feedback signal
when the total flow through resource j is y; and that user r views each
feedback signal as a congestion indication requiring some reduction in
the flow z,. Then equation (2) corresponds to a rate control algorithm
for user r that comprises two components: a steady increase at rate
proportional to w,(t), and a steady decrease at rate proportional to the
stream of congestion indication signals received.

Initially we shall suppose that the weights w are fixed. The following
theorem is taken from [19].

Theorem 1. If w,(t) = w, > 0 for r € R then the function

L{(m):Zwrloga:T—ZC’j sz (4)

reR jeJ s:j€Es

is a Lyapunov function for the system of differential equations (1)-(3).
The unique value x mazimizing U(x) is a stable point of the system, to
which all trajectories converge.

Proof. The assumptions on w,,r € R, and p;,j € J, ensure that U (z) is
strictly concave on the positive orthant with an interior maximum; the
maximizing value of z is thus unique. Observe that

s tl(a) =2 =Sy (Y )

r JEr s:jEs

setting these derivatives to zero identifies the maximum. Further

d ou d
FUe0) = X 5 ol
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establishing that ¢/(x(t)) is strictly increasing with ¢, unless z(t) = =,
the unique x maximizing U(z). The function U(x) is thus a Lyapunov
function for the system (1)—(3), and the theorem follows.

At the stable point
w,

Ejer Hj -

This equation has a simple interpretation in terms of a charge per unit
flow: the variable p; is the shadow price per unit of flow through resource

VE

()

T, =

Next suppose that each user r is able to vary its own weight w, =
wy-(t), but is required to pay the network at the rate w,(t) per unit time.
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The parameter w,(t) can be viewed as the willingness to pay of user r;
Songhurst [31] provides a discussion of related charging and accounting
mechanisms, and of their implementation. Alternatively, in a network of
of co-operative users, w,(t) may be viewed as a time-varying weight cho-
sen by user r with resource, but no monetary, implications. We suppose
that user r is able to monitor its rate x,(t) continuously, and chooses to
vary smoothly the parameter w,(t) so as to satisfy

wi(t) = 2, (OUL (0 (1)), (6)

This choice corresponds to a user who deduces from observation of the
network that its current charge per unit flow is A, = w,(¢t)/z.(t), and
sets w,(t) to track the solution to the optimization problem

.. Wy
maximize U, | — ) — w,
Ar

over wy > 0.

Thus the user does not anticipate the impact of its own choice of w;.(t)
on the system?.

In [19] a similar proof to that of Theorem 1 is used to establish the
following result.

Theorem 2. The strictly concave function

U) =Y Unle,) =D Ci [ Y w|. (7)

reR jeJ s:jEs

is a Lyapunov function for the system of differential equations (1)-(3),
(6), and hence the unique value & mazimizing U(x) is a stable point of
the system, to which all trajectories converge.

Thus if each user r is able to choose its own weight, or willingness to
pay, w,, and does this so as to optimize its own utility less payment, then
the overall system will converge to the rate allocation z maximizing the
aggregate utility (7). At the optimum the relation (5) will again hold,
but where now the weights w have been chosen by users themselves.

3 Fairness

The expression (7) may be viewed as an aggregate utility, provided we
assume that utilities and costs are additive. In this Section we consider
what can be done without this assumption.

% This is a reasonable assumption if there are a large number of users. If the
assumption is relaxed, interesting game-theoretic issues arise [13], [20].
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The vector

Up(z,),r € R; —ZC]'(Z ms) (8)

jedJ s:jEs

lists the utilities of the various users and the cost of the network. A rate
allocation x is Pareto efficient if any alteration that strictly increases at
least one of the components of the vector (8) must simultaneously strictly
decrease at least one other component [33]. By the strict monotonicity of
the components of the vector (8), every allocation z is Pareto efficient.
Say that an allocation x is achievable by weights w if £ maximizes the
function (4), and hence is a stable point of the system (1)—(3). From
the strict concavity of the components of the vector (8), together with
the supporting hyperplane theorem, it follows that every allocation z is
achievable by some choice of weights w.

Pareto efficiency becomes more interesting when routing choices are
allowed. If a user’s utility is a function of the sum of its flows over several
routes, then it is quite possible to construct flow patterns which are not
Pareto efficient, and we shall see an example in Section 6. The flow
patterns which emerge as stable points of the routing generalization [19]
of the system (1)—(3) are, however, just those that are Pareto efficient.

Thus many, or even all, rate allocations = are Pareto efficient. Is
there a rationale for choosing any particular one? This question is often
couched in terms of fairness, and the following construction is familiar
in contexts as diverse as political philosophy [29] and data networks [2].
Say that the allocation z is maz—min fair if for any other vector z* that
leaves the final component of (8) constant and for which there exists r
such that ) > x,, there also exists s such that = < s < x,. The max-
min fairness criterion gives an absolute priority to the smaller flows, in
the sense that if 3 < z, then no increase in z,, no matter how large,
can compensate for any decrease in rg, no matter how small. A max—
min fair allocation is necessarily Pareto efficient, and thus achievable by
some choice of the weights w.

It is possible to describe the stable point of the system (1)—(3) in the
language of fairness. Say that the allocation x is proportionally fair for
the weight vector w if for any other vector z* that leaves the final com-
ponent of (8) unaltered, the aggregate of weighted proportional changes
is zero or negative:

*
r, —I
> w, =" <0.
T
reR r

This criterion favours smaller flows, but less emphatically than max—min
fairness. The allocation (5) is proportionally fair for the weight vector
w.
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4 Network models of TCP

The differential equations (1)-(3) represent a system that shares sev-
eral characteristics with Jacobson’s TCP algorithm [15] operating in the
current, Internet, but also has several differences, which we now discuss.

A flow through the Internet will receive congestion indication signals,
whether from dropped or marked packets, at a rate roughly proportional
to the size of the flow; and the response of Jacobson’s congestion avoid-
ance algorithm to a congestion indication signal is to halve the size of
the flow. Thus there are two multiplicative effects: both the number of
congestion indication signals received and the response to each signal
scale with the size of the flow. A further important feature of Jacobson’s
algorithm [15] is that it is self-clocking: the sender uses an acknowledge-
ment from the receiver to prompt a step forward and this produces a
dependence on the round-trip time T of the connection.

In more detail,> TCP maintains a window of transmitted but not
yet acknowledged packets; the rate x and the window size cwnd satisfy
the approximate relation cwnd = z7'. Each positive acknowledgement
increases the window size cwnd by 1/cwnd; each congestion indication
halves the window size. Crowcroft and Oechslin [4] have proposed that
users be allowed to set a parameter m, which would inter alia multiply
by m the rate of additive increase and make 1 — 1/2m the multiplica-
tive decrease factor in Jacobson’s algorithm. The resulting algorithm,
MulTCP, would behave in many respects as a collection of m single
TCP connections; the smoother behaviour for larger values of m is more
plausibly modelled by a system of differential equations.

For MulTCP the expected change in the congestion window cwnd per
update step is approximately

m cwnd

(1-p)— 5 P 9)

cwnd

where p is the probability of congestion indication at the update step.
Since the time between update steps is about T'/cwnd, the expected
change in the rate z per unit time is approximately

(e 1-P)=SHP)/T _m (m  2°
T /cund T2 " om ) P
Motivated by this calculation, we model MulTCP by the system of
differential equations

arl0 =7 = (75 + 55 ) (10)

% Even our detailed description of TCP is simplified, omitting discussion of
timeouts or of reactions to multiple congestion indication signals received
within a single round-trip time. We note also that MulTCP is a research
protocol, and just one of many proposed variants of TCP.
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where

pr(t) = Zp‘j(t)> (11)

JjET

wi(t) is again given by equation (3), and T, is the round-trip time for
the connection of user r. We again view p;(y) as the probability a packet
produces a congestion indication signal at resource 7, but we do not now
insist that p;(y) satisfies relation (1). Note that if congestion indication
is provided by dropping a packet, then equation (11) approximates the
probability of a packet drop along a route by the sum of the packet drop
probabilities at each of the resources along the route. To hold z(t) to
the positive orthant, augment equation (10) with the interpretation that
its left-hand side is set to zero if ,.(t) is zero and its right-hand side is
negative.

Theorem 3. The function

Uw) =" @mr arctan ( zrly ) - Z/OZS:jesmspj(y)dy (12)

r
rER r V2m, jeJ

is a Lyapunov function for the system of differential equations (10), (11),
(8). The unique value x mazimizing U(x) is a stable point of the system,
to which all trajectories converge.

Proof. The function U (z) is strictly concave on the positive orthant, with

9 (me @\
awrl/{(m):%<%+2i%> —ij(st).

jer s:jEs
Thus
d ou d
B m, z(H)2\ " [ d 2
-2 (F %) (Fe0)
reR

establishing that U(x(t)) is strictly increasing with ¢, unless z(t) = «z,
the unique x maximizing U (z). The function U(x) is thus a Lyapunov
function for the system, and the theorem follows.

Comparing the form (12) with the aggregate utility function (7), we
see that MulTCP can be viewed as acting as if the utility function of

user r is
\/imr < mrTr )
arctan | —— 13
Tr 2mr ( )

U (z,) =

and as if the network’s cost is the final term of the form (12).
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The system (10) has stable point

g <M>/ 14)

T, br

(interpreted as zero if p, > 1). If we were to omit the factor (1 — p) in
the first term of expression (9) then the implicit utility function for user
r would be

2
2m;;

Unlar) = T2z
r T

and the stable point of the system would be

r /2
Ty = M —, (15)

recovering the inverse dependence on round trip time and the inverse
square root dependence on packet loss familiar from the literature on
TCP [26]*.

If the additive increase in window size is multiplied by a factor ¢T??,
a change discussed in [10], then the dependence on round-trip time is
removed. We shall see later, however, that this change may have a desta-
bilizing effect when feedback delays are taken into account.

The distinction between the solutions (14) and (15) is significant only
when the probability (11) is sizable. In this circumstance we may be less
willing to approximate the probability of a packet drop along a route
by the sum of the packet drop probabilities at the resources along the
route. Suppose we replace equation (11) by the relation

INOESE | (R0 (16)
jer
corresponding to an approximation that packet drops at different re-
sources are independent. Then we can can readily establish the following
result.

Theorem 4. The form (7) is a Lyapunov function for the system of
differential equations (10), (16), (3), under the choices

Ci(y) = — /Oy log (1 — p;(2)) dz,

2 r rTr
ria= Y (52,
r my

* The constant of proportionality, v/2, is sensitive to the difference between
MulTCP and m single TCP connections, as well as other features of TCP
implementations discussed in [26]. With m single TCP connections the con-
nection affected by a congestion indication signal is more likely to be one
with a larger congestion window. This bias towards the larger of the m con-
nections increases the final term of the expectation (9) and decreases the
constant of proportionality.
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where

x Z2
1’2
= 2arct —zlog ——.
arctan x X log 1—|—[132

The unique value x mazimizing the form (7) is a stable point of the
system, to which all trajectories converge.

The precise functional forms arising in this result are less interesting
than the tractability of the model, and the observation that yet again
the system is implicitly acting as if users have certain utilities and the
network has a certain cost.

5 Fairness between algorithms

The rate control algorithm of Section 2 may also be implemented at the
packet level by a self-clocking mechanism, as we now describe. Suppose
that the window size cwnd is incremented by

Ao - 1) (17)

cwnd

per acknowledgement, where f = 1 or 0 according as the packet acknowl-
edged is marked or not. Since the time between update steps is about
T'/cund, the expected change in the rate « per unit time is approximately

R’(cgrjld _p) /T _
T/cund o

K (w —ap), (18)

where k = /T, w = w/T and p is the probability of a mark. Note that
the decrement & in expression (17) becomes a decrease proportional to
the flow z in expression (18). The expression (18) corresponds with the
form of linear increase and multiplicative decrease described by equa-
tion (2), where the probability a packet is marked somewhere along its
route is approximated by the sum of the marking probabilities at the
separate resources along that route.

Next suppose that the set of routes R is partitioned into two sub-
sets, Ry, Ry, with users in the different subsets implementing different
rate control algorithms. Suppose that flows on routes r € R; satisfy
equation (2) with w,(t) = w,, while flows on routes r € R, satisfy equa-
tion (10), where wu;(t) is given by equation (3). Then the system has a
Lyapunov function of the form (12), but with the implicit utility func-
tion (13) replaced by w, log z, for routes r € R;. At the stable point the
flow z, is given by expression (5) or expression (14) according as r € R;
or r € R,. This allows us to explore the relative fairness of the two
algorithms, when used on similar routes. Such calculations are impor-
tant to ensure that any new algorithm introduced into a network is not
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overly aggressive in comparison with existing algorithms. For example
we can deduce that the packet level algorithm described in this Section
will achieve a higher flow than the TCP algorithm described in Section
4 if and only if

(%)2 > 2p(1 —p).

Further comparisons of the algorithms are developed by Key et al. [20],
[21].

Many variations are capable of similar analyses. For example, suppose
that the window size cwnd is incremented by

A (o= f) - 1)

cwnd

per acknowledgement, rather than by expression (17): this is a natural
variation, making the algorithm less aggressive when packet marking
probabilities are high. Then the implicit utility function on a route r
using this algorithm becomes w, log(w, + z,), and the algorithm will
achieve a higher flow than the TCP algorithm described in Section 4 if
and only if

2 2p

(%) Za=p)

and so only for small enough values of the packet marking probability p.

6 Braess’ paradox

In Sections 4 we did not presume that the function p;(y) is defined
by relation (1); indeed p;(y) could not in general satisfy this relation
if congestion can only be signalled by dropping packets. Nevertheless
the stable point identified in Section 4 is necessarily Pareto efficient.
The same conclusion cannot be reached when users or the network have
routing choices, and choose routes generating fewer congestion indication
signals.
For example, suppose that

ps() = (Ni)B , (19)

a form that would arise if resource j were modelled as an M /M /1 queue
with service rate IN; packets per unit time at which a packet is marked
with a congestion indication signal if it arrives at the queue to find at
least B; packets already present. Suppose the network suffers unit loss
for each such arriving packet, so that C;(y) = yp;(y): then

B;
S =64 () (20)

J
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and so the packet marking probability (19) underestimates the shadow
price (20) by a factor B; + 1. This discrepancy is enough to allow the
construction of examples exhibiting Braess’ paradoz, where the addition
of capacity to a network, followed by routing adaptation to the extra
capacity, leads to a new stable point at which every user is worse off.
Such a stable point is certainly not Pareto efficient.

We end this section with such an example. Consider the network illus-
trated in Figure 1, where TCP connections send packets from node a to
node d, with some connections routed via node b and others via node c.
Suppose congestion indication signals are generated at the various queues
at rates (19), and returned to the sources at node a via other routes not
explicitly modelled. Suppose that there are 2000 connections in total,
that all round-trip times are 1000 time units, and that throughputs are
determined by relation (15). Suppose that connections are routed so as
to equalize the rate at which congestion indication signals are gener-
ated along different routes. Then approximately 1000 connections will
be routed along each of the two possible routes, and, with the parameter
choices (N1, By, Na, B2) = (10,50,20,5), p1 = 0.006 for the horizontal
links, while po = 0.019 for the vertical links. Next suppose a short high
capacity link, at which no congestion indication signals are generated, is
introduced between nodes b and c. This allows some connections to be
routed along a third route, from a to b to ¢ to d. At the new equilibrium,
the load on the horizontal links becomes about 1044 connections and the
load on the vertical links about 956 connections, with p; = p» = 0.013,
and the throughput of each connection drops by nearly 3 per cent.

If the function (19) is used to give packet marking probabilities then
the system implicitly minimizes a function which includes the final term
of expression (12). The paradox arises since this term is not a measure
of total loss. If instead the shadow price (20) is used to give packet
marking probabilities, then the system implicitly minimizes a function
which includes the final term of expression (7), and this is enough to
ensure Pareto efficiency.

Braess’ paradox was originally obtained for a road traffic model [3],
and there are several close parallels between network flow models in
transportation and communication [17]. In particular, Wardrop [34] de-
veloped the distinction between a traffic equilibrium generated by users’
choices and a system optimum, and Beckmann et al. [1] first established
the connection between a traffic equilibrium and the solution to an ex-
tremal problem.

7 Packet marking strategies

We have briefly indicated in Sections 4 and 5 how software on users’ com-
puters can perform operations, at the packet level, that implement the
end-system behaviour modelled in the differential equations (2) and (10).
In this Section we consider how the behaviour required of resources may
be implemented at the packet level. We have argued that the rate of
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Fig. 1. Braess’ paradox for a network. Initially packets flow from node a to
node d via either node b or node c. The text describes an example where
adding a link between nodes b and ¢, followed by routing adaptation to the
extra capacity, reduces the throughput of all connections.



14 Frank Kelly

packet marking at resource j should signal its shadow price, defined as
the derivative (1), and we next describe how this can be done in a simple
robust manner, at the packet level.

For simplicity of exposition let us suppose that packets are all of equal
length. A model describing a queue with a finite buffer is as follows. Let
Y;_1 be the number of packets that arrive at the resource in the interval
(t —1,t], and let @+ be the queue size at time ¢. Then the recursion

Q: =min{B, Q-1 — I[{Qt—1 >0} +Y; 1}

describes a queue with a buffer capacity of B that is able to serve a single
packet per unit time; the number of packets lost at time ¢ is

[Qi—1 — I{Q¢—1 > 0} + Y,y — B]".

Define a busy period to end at time ¢ if (Q;—1 = 1, and a busy period to
begin at time ¢ if Q;—1 <1 and Q; > 1.

The impact of an additional packet upon the total number of packets
lost, its sample path shadow price, is relatively easy to describe. Consider
the behaviour of the queue with the additional packet included in the
description of the queue’s sample path. Then the additional packet in-
creases the number of packets lost by one if and only if the time of arrival
of the additional packet lies within a critical congestion interval, defined
as a period between the start of a busy period and the loss, within the
same busy period, of a packet; otherwise the additional packet does not
affect the number of packets lost (see Figure 2). Packets arriving during
critical congestion intervals should, ideally, be marked.

It will often be difficult to determine the sample path shadow price of
a packet while the packet is passing through the queue; it will, in general,
be unclear whether or not the current busy period will end before a
packet is lost. Nevertheless the above ideal behaviour gives considerable
insight into the form of sensible marking strategies [11], and suggests
simple robust strategies which result in a rate of packet marking at a
resource which is equal to its shadow price [13].

The above discussion shows that the network shadow prices, the vari-
ables p1(t) appearing in equation (3), may be identified, at least statis-
tically, on the sample path describing load at resource j. This identi-
fication provides the required linkage between microscopic packet-level
marking strategies, often of an apparently crude and statistical nature,
and sophisticated macroscopic behaviour.

8 Delayed feedback

The stability of the models (2), (3), (10) is essentially a consequence of
negative feedback, assumed in these models to be instantaneous. Next
we consider the impact of delayed feedback on stability, for a very sim-
ple example. Our example comprises a single congested resource, in a
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. critical congestion interval
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Fig. 2. Sample path shadow prices for a queue. The queue length sample path
shown is from a scenario described in detail in [13]. The ticks at the top of the
diagram indicate time units when loss occurred, from a buffer of capacity 10.
The sample path shadow price of a packet is one or zero according to whether
or not the packet’s arrival time lies between the start of a busy period and
a packet loss within the same busy period. Thus packets arriving during the
critical congestion interval between times a and b have a sample path shadow
price of one, while those arriving between times b and ¢ have a sample path
shadow price of zero. It is not clear from the sample path up to the end of the
section shown whether the packets arriving after time ¢ will cause a packet
loss or not, and hence their sample path shadow price is not (yet) determined.
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network where queueing delay at the resource is a negligible part of the
total round-trip time.

Consider then a collection of flows all using a single resource, and
suppose flows share the same gain parameter . Let z(t) = >, z,(t)
be the total flow through the resource, let w = ) w,, and suppose
a congestion indication signal generated at the resource is returned to
a source after a fixed and common round-trip time 7. Then, summing
equations (2) and taking the time-lag into account, we have

%m(t) =k(w—z(t—-T)p(z(t—-T))). (21)

The unique equilibrium point of this system does not depend on the
round-trip time T', but its stability does. To explore this issue, we first
recall some facts about the linear delay equation

% u(t) = —au(t —T), (22)
where « > 0. Solutions to equation (22) converge to zero as ¢ increases
if oT < m/2, and the convergence is non-oscillatory if oT < 1/e [5].

Let = be the equilibrium point of the system (21), let z(t) = z+u(t),
and write p, p' for the values of the functions p(.), p'(.) at x. Then,
linearizing the system (21) about x, we obtain equation (22) with o =
k(p + zp'). Hence the equilibrium point of the differential equation (21)
is stable, and the local convergence is non-oscillatory, if

KT (p+xp') <e ' (23)

stability alone is assured if condition (23) is satisfied with e™! replaced
by /2.

As an illustration, if p(.) is given by either (19) or (20), then condi-
tion (23) becomes

kT(1+ B)p<e .

Note that as the threshold level B increases, the greater the possibili-
ties for lag-induced oscillatory behaviour. The reason is straightforward:
increasing B causes p' to increase. This increased sensitivity of the re-
source’s load response may compromise stability, unless there is a cor-
responding decrease in kT, the sensitivity of response of end-systems to
marks. (Recall that for the self-clocking window control algorithm de-
scribed earlier in Section 5, kT = K is the window size decrement made
by an end-system in response to a marked packet.) The magnitudes of
k, p’ also affect the variance about the equilibrium point in the presence
of noise, and speed of convergence [19]: broadly, smaller values of x or
larger values of p' lessen the random fluctuations of rates at equilibrium,
while larger values of k or larger values of p’ increase the speed with
which changes in parameters such as w may be tracked.
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Next we explore the corresponding delayed version of equation (10).
Let M be the number of flows using the single resource, suppose that
m, = 1 for each r, and consider the evolution of the total flow x when
all individual flows are identical, so that z,.(t) = z(t)/M. Then from
equation (10), after aggregating flows and taking time lags into account,

d _ Max(t-T)

x(t)x(t —T)
"= T

(1= plat - ) - T

px(t = T)). (24)
Let z be the equilibrium point of the system (24), and again let z(t) =
x + u(t). Linearizing about z, we obtain the equation

d My Tp
g () =~ u(t = ) = Jru(t) (25)

Now the delay equation

4 u(t) = —au(t — T) — Bu(t),

dt

where a, 3 > 0, has a non-oscillatory stable equilibrium if o7 exp(1l +
BT) < 1 [5]. For equation (25) this condition, which ensures that the
equilibrium point of the differential equation (24) is stable and the local
convergence is non-oscillatory, can be written as

%>%exp (1+\/W)- (26)

If TCP’s additive increase in window size is multiplied by a factor
cT?, a suggestion briefly mentioned in Section 4, then the corresponding
condition becomes

1 i
T > > exp (1 + T+/2ep(1 —p)) . (27)

Observe that for fixed values of the other parameters appearing in con-
ditions (26), (27), the former becomes easier to satisfy, while the latter
becomes more difficult to satisfy, the larger the round-trip time 7'.

A more detailed investigation would consider multiple resources and
round-trip times, as well as stochastic and non-linear effects. But it is
interesting that such a simple model as that above is able to identify the
broad impact of the parameters M and 7T, and the importance of the
derivative p'.

9 Concluding remarks

In this paper we have studied in detail a caricature of Jacobson’s TCP
congestion avoidance algorithm. For this caricature we have seen that
an understanding of network behaviour may require qualitatively differ-
ent modelling techniques over different time-scales and at different levels
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of aggregation, and that microscopic packet-level processes, of an appar-
ently crude and statistical nature, may lead to sophisticated macroscopic
behaviour interpretable as the global optimization of a large-scale net-
work.

Of course the models we have used are dramatic simplifications of
the evolving Internet, and many questions arise concerning their range
of validity and implications. Here we list just a few.

The rate control algorithm of Sections 2 and 5 produces a simple
multiplicative decrease, rather than the doubly multiplicative decrease
of TCP. Might a simple multiplicative decrease be especially appropriate
for a network in which congestion is indicated by marked rather than
dropped packets? Is it reasonable to suppose that packet level stochastic
effects at queues within the network will be averaged out over round-trip
times? The discussion of queue lengths and parameter settings in [11] is
a good starting point for the interested reader.

In this paper we have discussed only the congestion avoidance part
of Jacobson’s TCP algorithm. The slow start part of the algorithm, used
by a source until it receives its first indication of congestion, is another
simple efficient mechanism with important consequences for the transient
behaviour of flows and for the macroscopic behaviour of networks with
many short connections. What are the important issues in modelling
slow start? Starting points here are the analysis of slow start in [24], and
the Bayesian framework described in [22] from which a generalization of
slow start emerges as a natural policy. The heroic modelling assumption
in [18], that flows in slow start appear as an uncontrolled and random
background load for flows in congestion avoidance, may merit scrutiny.

In Sections 2 and 3 the flow on a route, z.(t), is interpreted as a
real-valued function. Can the results of these Sections and of Section
7 be reformulated with z,(t) a stochastic process? A possible approach
to this question, via the theory of large deviations, is given in [36]. Are
there network generalizations of the insights of Section 8 on delay in-
duced instabilities? A precise conjecture, with promising early results,
is presented in [16], and an alternative modelling framework is provided
in [8].

Whether the particular issues discussed in this paper are of long-term
significance for the Internet remains to be seen. The pace of technological
advance has occasionally produced a gulf between the networking com-
munity, faced with urgent design problems, and theoreticians, searching
for fundamentals but sometimes missing them. What is clear is that the
complexity, heterogeneity and sheer scale of the evolving Internet are
presenting profound challenges across a variety of disciplines, with many
new and exciting opportunities for mathematicians.

References

1. M. Beckmann, C.B. McGuire and C.B. Winsten (1956) Studies in the Eco-
nomics of Transportation. Cowles Commission Monograph, Yale University



Mathematical modelling of the Internet 19

Press.

2. D. Bertsekas and R. Gallager (1987) Data Networks. Prentice-Hall.

3. D. Braess (1968) Uber ein Paradoxon aus der Verkehrsplanung. Un-
ternehmenforschung 12, 258-268.

4. J. Crowcroft and P. Oechslin (1998) Differentiated end-to-end Internet
services using a weighted proportionally fair sharing TCP. ACM Computer
Communications Review 28, 53—67.

5. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel and H.-O. Walther (1995)
Delay Equations: Functional-, Complez-, and Nonlinear Analysis, Springer-
Verlag, New York.

6. A. Ephremides and B. Hajek (1998) Information theory and communication
networks: an unconsummated union. IEEE Transactions on Information
Theory 44, 2384-2415.

7. AK. Erlang (1925) A proof of Maxwell’s law, the principal proposition
in the kinetic theory of gases. In E. Brockmeyer, H.L. Halstrom, H.L. and
A. Jensen, The Life and Works of A.K. Erlang, Copenhagen, Academy of
Technical Sciences, 1948. 222-226.

8. K.W. Fendick and M.A. Rodrigues (1994) Asymptotic analysis of adaptive
rate control for diverse sources with delayed feedback. IEEE Transactions
on Information Theory 40, 2008-2025.

9. S. Floyd (1994) TCP and Explicit Congestion Notification, ACM Computer
Communication Review 24, 10-23. www.aciri.org/floyd/ecn.html

10. S. Floyd and V. Jacobson (1992) On traffic phase effects in packet-
switched gateways. Internetworking: Research and Ezperience 3, 115-156.
www.aciri.org/floyd/papers.html

11. S. Floyd and V. Jacobson (1993) Random Early Detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking 1, 397-413.
ftp:/ /ftp.ee.lbl.gov/papers/early.pdf

12. S.J. Golestani and S. Bhattacharyya (1998) A class of end-to-end con-
gestion control algorithms for the Internet. In Proc. Sizth International
Conference on Network Protocols. www.bell-labs.com/user/golestani/

13. R.J. Gibbens and F.P. Kelly (1999) Resource pricing and congestion con-
trol, Automatica 35, 1969-1985. www.statslab.cam.ac.uk/~frank/evol.html

14. P. Hurley, J. Y. Le Boudec and P. Thiran (1999) A note on the fairness of
additive increase and multiplicative decrease. In Proc. 16th International
Teletraffic Congress, Edinburgh, P. Key and D. Smith (eds). Elsevier, Am-
sterdam. 467-478.

15. V. Jacobson (1988) Congestion avoidance and control. In Proc. ACM SIG-
COMM ’88, 314-329. A revised version, joint with M.J. Karels, is available
via ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z.

16. R. Johari and D.K.H. Tan (2000) End-to-end congestion control for the
Internet: delays and stability.

17. F.P. Kelly (1991). Network routing. Phil. Trans. R. Soc. Lond. A337,
343-367. www.statslab.cam.ac.uk/~frank/

18. F.P. Kelly (2000). Models for a self-managed Internet. Phil. Trans. R. Soc.
Lond. A358.

19. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan (1998) Rate con-
trol in communication networks: shadow prices, proportional fairness
and stability. Journal of the Operational Research Society, 49, 237-252.
www.statslab.cam.ac.uk/~frank/rate.html.

20. P. Key and D. McAuley (1999) Differential QoS and pricing in networks:
where flow control meets game theory. IEE Proc Software 146, 39-43.



20 Frank Kelly

21. P. Key, D. McAuley, P. Barham, and K. Laevens. Congestion pric-
ing for congestion avoidance. Microsoft Research report MSR-TR-99-15.
http://research.microsoft.com/pubs/

22. P. Key and L. Massoulié (1999) User policies in a network implementing
congestion pricing. Workshop on Internet Service Quality Economics, MIT
1999. http://research.microsoft.com/research/network/disgame.htm

23. S. Kunniyar and R. Srikant. End-to-end congestion control schemes: utility
functions, random losses and ECN marks. Infocom 2000.

24. J. F. Kurose and K. W. Ross (2000) Computer Networking: a Top-Down
Approach Featuring the Internet. Addison-Wesley.

25. S. H. Low and D. E. Lapsley (1999) Optimization flow control, I: basic
algorithm and convergence. IEEE/ACM Transactions on Networking. 7,
861-874. www.ee.mu.oz.au/staff/slow/

26. M. Mathis, J. Semke, J. Mahdavi, and T. Ott (1997) The macroscopic
behaviour of the TCP congestion avoidance algorithm. Computer Commu-
nication Review 27, 67-82.

27. J.C. Maxwell (1860) Illustrations of the dynamical theory of gases. Philo-
sophical Magazine 20, 21-37.

28. D. Mitra (ed) (1995) Advances in the fundamentals of networking. IEEE
J. Selected Areas in Commun. 13, 933-1362.

29. J. Rawls (1971) A Theory of Justice, Harvard University Press.

30. S. Shenker (1995) Fundamental design issues for the future Internet. IEEE
J. Selected Areas in Commun. 13, 1176-1188.

31. D.J. Songhurst (ed) (1999) Charging Communication Networks: from The-
ory to Practice, Elsevier, Amsterdam.

32. W. Thomson and P.G. Tait (1879) Treatise on Natural Philosophy, Cam-
bridge.

33. H.R. Varian (1992). Microeconomic Analysis, third edition, Norton, New
York.

34. J.G. Wardrop (1952) Some theoretical aspects of road traffic research.
Proceedings of the Institution of Civil Engineers. 1, 325-378.

35. W. Willinger and V. Paxson (1998) Where Mathematics meets the
Internet. Notices of the American Mathematical Society, 45, 961-970.
www.ams.org/notices/

36. D. Wischik (1999) How to mark fairly. Workshop on Internet Service Qual-
ity Economics, MIT 1999.



