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The performance of measurement-based admission control depends upon statisticalinterac-
tions between several time-scales, ranging from the very short time scales associated with cell
or packet queueing, through burst time-scales, to the time-scales associated with admission de-
cisions and the holding times of connections. In this paper we continue the development of
a modelling approach which attempts to integrate these several time-scales, and illustrate its
application to the analysis of a family of simple and robust measurement-based admission con-
trols. A subsidiary aim of the paper is to shed light on the relationship between the admission
control proposed for ATM networks by Gibbenset al [9] and that proposed for controlled-load
Internet services by Floyd [7]. We shall see that their common origin in Chernoff bounds al-
lows the definition of a simple and general family of admission controls, capableof tailoring
for several implementation scenarios.

1. Introduction

There is by now a fairly good understanding of the behaviour of a queue whose arrival pro-
cess is the superposition of many independent stationary streams. Results, generally based on
large deviations theory, have shed considerable light on how a resource in a multiservice broad-
band network can statistically multiplex a given collection of well-characterized sources. There
arise, however, several difficulties in the extension of this work to understand the behaviour
of measurement-based admission control for multiservice networks where sources may not be
well characterized. One major difficulty is that buffer overflow in sucha network is generally a
consequence of the combined effects of both extreme measurement errors that allow too many
sources admissionandthe subsequent extreme behaviour of admitted sources. The first effect is
naturally analysed on the time scales associated with admission decisions and the holding times
of connections, while any analysis of the second effect requires an understanding of the statisti-
cal characteristics of sources over time scales comparable to the typical busy period preceding
a buffer overflow.

In [9] an attempt was made to study this interaction between time scaleswith a simple Markov
chain model. In this paper we continue the development of this modelling approach, and illus-
trate its application to the analysis of a simple and general family of admission controls.

Some of the theoretical background to the admission control of this paper is described in
the Appendices; this background has motivated our choice of the acceptance regions for our
admission controls, but stops well short of providing a full understanding of the interaction�This author wishes to acknowledge the support of the Royal Society through a University Research Fellowship
and both authors the EPSRC (Grant GR/J31896) for computing equipment.



between time scales, and there remains much work to be done. Jamin and Shenker [11] have
conducted a simulation-based comparison of several measurement-based admission control al-
gorithms, including [7] and [9]. We view the approach of this paper to be complementary to
the simulation approach: each has its strengths and weaknesses, and a fuller understanding of
measurement-based admission control will require contributions from theory, modelling, simu-
lation and experiment. For several other approaches to admission control, see [5,15,18].

2. The basic model

The description of our basic model is self-contained, but for further background see [9].LetS(t) = JXj=1 Sj(t); Sj(t) = nj(t)Xi=1 Xji(t) (1)

whereXji(t), for distinct values ofi, j andt, are independent random variables withPfXji(t) = hjg = mjhj ; PfXji(t) = 0g = 1� mjhj : (2)

We interpretXji(t) as the load produced by a connection of classj at timet. There arenj con-
nections of classj each with peak ratehj and mean ratemj. The rate of load lost at a resource of
capacityC is thenM(n) = E (S �C)+ wheren = (n1; n2; : : : ; nJ). Let connections of classj
arrive in a Poisson stream of rate�j, let the holding times of accepted connections be indepen-
dent and exponentially distributed with parameter�j. Let S(t) = (S1(t); S2(t); : : : ; SJ(t))
and letA(n) be a subset ofNJ . Suppose that a connection arriving at timet is accepted
if S(t) 2 A(n) and is rejected otherwise; suppose also that if a connection is rejected no other
arriving connection is considered for acceptance untilafter a connection currently in progress
has ended. Call the period between the rejection of a connection and the time when the first
connection then in progress ends thebackoff period[1,2,9]. Letd(t) = 1 or 0 according as at
time t the system is in a backoff period or not. Then(n(t); d(t)) is a Markov chain, with the
following off-diagonal transition rates(n; 0) �! 8><>:(n + ej; 0) at rate�ja(n)(n� ej; 0) at rate�jnj(n; 1) at rate

Pj �j(1� a(n)) (3)(n; 1) �! (n� ej; 0) at rate�jnj : (4)

Hereej is a vector with a1 in thejth component and zeros otherwise anda(n) is the acceptance
probabilitya(n) = P fS(t) 2 A(n)g.

The proportion of load lost isL = E M(n)EPJj=1 njmj ; (5)

where the expectation is taken over the staten of the Markov chain.



The time parametert appearing in the above model describes the time-scale associated with
admission decisions and the holding times of connections. However the measurements of load,
that provide the random variablesSj(t), are taken over a time period� that is typically very
much shorter and comparable with the length of the typical busy period preceding an overflow
from a cell or packet buffer. The step between the queueing model, describing important cor-
relation effects on the short time scale, and the above bufferless model,describing admission
decisions on the longer time scale, is outlined in Appendix B.

Note that we donot allow the admission decision to depend upon the peak rate of the current
connection request, since this will produce an implicit bias towards connections with low peak
rates: for the above scheme blocking probabilities are constant across connectionclasses. In
Section 5 we extend the admission mechanism to give explicit priority to certain connections
when the resource is near capacity.

3. Admission control schemes

How should the regionA(n) be chosen? In this paper we investigate some choices, each mo-
tivated by a particular choice of Chernoff bound. The choices correspond to different tangents
to the effective bandwidth function, and are described in more detail in AppendixA.

Tangent at peak: letAI(n) = (S : Xj �hj �1� e�shj�nj + e�shjSj� � C) : (6)

Tangent at arbitrary location: letAII(n) = (S : Xj ( hjeshj(hj +mj (eshj � 1))2)�m2j �eshj � 1�nj + hjSj� � C) (7)

wheremj 2 (0; hj) are constants, which might be interpreted as predicted mean rates.
Tangent of slope one:Our next choice of acceptance regionA(n) is that suggested by the

Hoeffding bound, a bound whose use for admission control has been carefully discussed by
Floyd [7]. LetAIII(n) = (S : Xj Sj + s4Xj h2jnj � C) : (8)

Tangent at origin: letAIV (n) = (S : Xj eshjSj � C) : (9)

Note that the various acceptance regions may have different implications for implementa-
tions. For example, the acceptance regionAIII(n) does not depend upon the entire vectorS,
but only upon the aggregate measurement

Pj Sj. In contrast, the acceptance regionAIV (n)
depends upon the vectorS, but not upon the vectorn: this is referred to as theload onlycase
in [9].
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Figure 1. The left panel shows how the utilization decreases and the cell loss ratio improves, as
the control parameters increases. The right hand panel concerns the third scheme for a fixed
values = 0:2; note that the posterior distribution tails off rapidly as bothn1 andn2 increase.

4. Numerical investigations

4.1. Trading off cell loss ratio against utilization
Any connection admission control must address the trade-off between cell loss and utiliza-

tion (or, equivalently, connection blocking). In our schemes the parameters controls this
trade-off, which is illustrated in the left panel of Figure 1, under the following traffic condi-
tions(�1; h1; m1; �1) = (15; 1; 0:5; 1), (�2; h2; m2; �2) = (5; 4; 0:1; 1), where�j = �jmj is the
offered loadfor a connection of typej andC = 50. Note that the first and third schemes behave
similarly, as do the second and fourth schemes; no substantial difference isobserved between
the schemes.

The right panel of Figure 1 shows contours of the posterior distribution for the vectorn, given
that a cell loss has just occurred:�(njcell loss) = �(n)M(n)=Pn0 �(n0)M(n0), where�(n) is
the stationary distribution of the Markov chainn. These results used the third scheme with the
values = 0:2.

4.2. Sensitivity to traffic mix
Next we consider the sensitivity of the third scheme to traffic mix. (In [9, Table 1, p 1112] a

similar investigation was considered for the fourth scheme.) Suppose that the capacityC = 50
and there are three (J = 3) traffic types with parameters given by(h1; m1; �1) = (1; 0:5; 1),(h2; m2; �2) = (2; 0:5; 1) and(h3; m3; �3) = (4; 0:5; 1).

Table 1 show the results for the cell loss ratio, utilization and connection blocking probability
for the third scheme under a range of traffic patterns. In this investigation thecontrol parameters
is fixed throughout ats = 0:75, a value which ensures a satisfactory cell loss ratio over the entire
range of traffic mixes considered.



Table 1
Cell loss ratio, utilization and connection blocking for the third scheme. Observe that the cell
loss ratio remains well controlled over a wide range of traffic mix.�1 �2 �3 Cell loss ratio,log10(L) Utilization Blocking

25.000 0.000 0.000 -11.01 23.66 0.054
12.500 12.500 0.000 -8.14 21.41 0.144
0.000 25.000 0.000 -12.38 13.47 0.461
0.000 12.500 12.500 -9.93 10.13 0.595
0.000 0.000 25.000 -10.23 7.18 0.713

12.500 0.000 12.500 -9.78 11.37 0.545
6.250 9.375 9.375 -9.57 12.08 0.517
6.250 6.250 12.500 -9.83 10.72 0.571
9.375 6.250 9.375 -9.53 12.48 0.501

12.500 6.250 6.250 -9.14 14.91 0.404
9.375 9.375 6.250 -9.20 14.35 0.426
6.250 12.500 6.250 -9.25 13.82 0.447
8.333 8.333 8.333 -9.44 12.90 0.484

5. Priorities

In this section we consider a model of two traffic classes with time-varying offered loads.
The backoff mechanism discussed earlier is amended so that explicit priorities can be assigned
to connections offered to the system. This is achieved by extending the state space with an
indicator taking values of0, 1 or 2. The precise description of the off-diagonal transition rates
for the Markov chain are as follows(n; 0) �! 8><>:(n + ej; 0) at rate�ja(n)(n� ej; 0) at rate�jnj(n; 2) at rate

Pj �j(1� a(n)) (10)

(n; 1) �! 8>>><>>>:(n� ej; 1) at rate�jnj(1� �)(n� ej; 0) at rate�jnj�(n + ej; 1) at rate�ja(n)p(n; 2) at rate
Pj �j(1� a(n)) (11)

(n; 2) �! (n� ej; 1) at rate�jnj : (12)

In this model a connection of any traffic class is a high priority connection withprobabilityp
or a low priority connection with probability1 � p, independent of the state of the Markov
chain. If the indicator is in state0 then both high and low priority connections are eligible
for admission. If the indicator is in state1 then only high priority connections are eligible



for admission. If a connection is rejected by the scheme while the indicator is in states0
or 1 (irrespective of the connection’s priority) the indicator switches to state2. In state2,
no connections are eligible for admission and the indicator remains in that stateuntil the first
connection clears down when it switches to state1. If a connection clears down while the
indicator is in state1 then the indicator switches to state0 with probability� and both high and
low priority connections become eligible for admission. The parameter� is a simple device to
manipulate the degree of priority given to the high priority traffic.

Figure 2 illustrates the operation of this modified form of backoff with the thirdscheme with
the parameter� = 0:1. The capacity isC = 50, the proportion of high priority connections
is p = 0:5 and the choices = 0:3 was selected. The parameters considered were(h1; m1; �1) =(1; 0:5; 1), and(h2; m2; �2) = (4; 0:1; 1). Thus there are essentially four types of connection,
since priority can be high or low for each possibility of(hj; mj; �j).
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Figure 2. The figure shows the variation over time of cell loss ratio, utilization and connection
blocking. Note that although the cell loss ratio is relatively constant, the utilization may vary
substantially as the traffic mix, and hence the potential multiplexing gain, varies over time.

A. Chernoff bounds

Let S = PKk=1Xk whereX1; X2; : : : ; XK are independent non-negative random variables.
ThenPfS � Cg � E [es(S�C) ], where here and throughouts � 0. HencelogPfS � Cg � s Xk �k(s)� C! (13)



where�k(s) = s�1 log E �esXk�. Specialize now to the case wherePfXk = hkg = mk=hk
andPfXk = 0g = 1 � mk=hk. Thusmk, hk are respectively the mean and peak of an on-off
source, and�k(s) = 1s log �1 + mkhk (eshk � 1)� : (14)

A.1. Tangent at the peak (AI(n))
Regard�k(s) as a function ofmk; it is a concave function ofmk, and hence bounded above

by its tangent at the pointmk = hk. Thus�k(s) � hk � (hk �mk)eshk � 1shkeshk : (15)

HencelogPfS � Cg � � is assured if there exists ans such thatXk �hk � (hk �mk)eshk � 1shkeshk �+ s � C : (16)

The value ofs minimizing the left-hand side of inequality (16) satisfiesXk (hk �mk)eshk � 1� shkhkeshk =  ; (17)

and, with this value ofs, inequality (16) becomesXk hk �Xk e�shk (hk �mk) � C : (18)

A.2. Tangent at arbitrary location (AII(n))
Regard�k(s) as a function ofmk: it is a concave function ofmk, and hence bounded above

by its tangentak(s;mk) + bk(s;mk)mk at an arbitrary pointmk 2 (0; hk). Thus�k(s) � ak(s;mk) + bk(s;mk)mk ; (19)

and sologPfS � Cg � � is assured if there exists ans such thatXk [ak(s;mk) + bk(s;mk)mk] + s � C : (20)

Using the minimizing choice ofs this inequality becomesXk � hkeshk(hk +mk (eshk � 1))2��m2k �eshk � 1�+ hkmk� � C : (21)

Information on good choices formk, k = 1; : : : ; K may come from a variety of sources, for
example users may provide information through their tariff choices [12,17], or the network may
have available long-term averages for traffic of different types.



A.3. Tangent of slope one (AIII(n))
Suppose that

Pkmk is known, but not individual values ofmk. Can we bound the right-hand
side of inequality (13)? One method leads to the Hoeffding bound [10], which we obtain as
follows.

Again regard�k(s) as a function ofmk; it is a concave function ofmk, with a tangent of unit
slope at the pointmk = s�1 � hk(eshk � 1)�1. Thus�k(s) � mk � 1s + hkeshk � 1 + 1s log eshk � 1shk � mk + sh2k8 ; (22)

see [10, pp. 106, 110] for the second inequality. Hence from inequality (13),logP fS � Cg �� is assured if there exists ans such thatXk �mk + sh2k8 � + s � C : (23)

The value ofs minimizing the left-hand side of inequality (23) iss = 2� 2Pk h2k�1=2, and with

this choice ofs inequality (23) can be written as eitherXk mk + s4Xk h2k � C or
Xk mk + 2 Xk h2k!1=2 � C ; (24)

the second inequality is familiar as the Hoeffding bound. The schemes considered inTable 1
and Figure 2 keeps, rather than, fixed as the traffic mix alters.

A.4. Tangent at the origin (AIV (n))
Regard�k(s) as a function ofmk: it is a concave function, and bounded above by its tangent

at the origin,mk = 0. Thus�k(s) � eshk � 1shk mk (25)

and sologPfS � Cg � � is assured if there exists ans such thatXk eshk � 1shk mk + s � C : (26)

Takes to be the value minimizing the left-hand side of inequality (26). Then a simple differen-
tiation establishes thatXk mkhk �eshk(shk � 1) + 1� =  : (27)

With this value ofs inequality (26) becomesXk eshkmk � C : (28)



B. Large deviation limits

Suppose that the amount of work arriving at a queue over the period[0; � ] isX[0; � ] = JXj=1 njXi=1 Xji[0; � ] (29)

where(Xji[0; � ])ji are independent processes with stationary increments whose distributions
may depend uponj but not uponi. LetL(C; b; n) be the proportion of workload lost, through
overflow of a buffer of sizeb > 0, when the server has rateC andn = (n1; n2; : : : ; nJ).
Then [3,6,16]limN!1 1N logL(cN; bN; nN) = sup� infs "s�Xj nj�j(s; �)� s(b + c�)# (30)

where�j(s; �) = 1s� log E �esXji[0;� ]� (31)

is theeffective bandwidth. A recent review of the effective bandwidth concept is given in [13];
in [8] the effective bandwidth function is obtained for traces of ethernet traffic and MPEG video
sources across a broad range of time and space scales. This motivates the large deviations
approximation for = � logL(c; b; n) of � � sup� infs "s�Xj nj�j(s; �)� s(b + c�)# : (32)

Henceforth lets, � be the extremizing pair in relation (32). Then the approximation (32)
aligns with the Chernoff bound (13) under the correspondenceXj = Xji[0; � ], C = b + c�
and ��j(s; �) = �j(s). The critical time scale� has a straightforward interpretation under
the large deviations limit as the time for which the server has been busy preceding a buffer
overflow [6].

Next suppose that a source of typej is policed by leaky buckets labelledk = 1; 2; : : : ; K, so
thatXji[0; T ] � �kj + �kjT , for all T > 0, and fork = 1; 2; : : : ; K. Then with probability one0 � Xji[0; � ] � hj = mink f�kj + �kj�g ; (33)

and so, ifmj = EXji [0; � ], then an upper bound for��j(s; �) is��j(s; �) � 1s log �1 + mjhj �eshj � 1�� ; (34)

corresponding with equation (14) under the identification��j(s; �) = �j(s).
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