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Abstract

We describe ways in which the transmission control protocol of the
Internet may evolve to support heterogeneous applications. We show
that by appropriately marking packets at overloaded resources and by
charging a fixed small amount for each mark received, end-nodes are
provided with the necessary information and the correct incentive to
use the network efficiently.
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1 Introduction

In the current Internet, the rate at which a source sends packets is controlled
by TCP, the transmission control protocol of the Internet [12], implemented
as software on the computers that are the source and destination of the data.
The general approach is as follows [3]. When a resource within the network
becomes overloaded, one or more packets are lost; loss of a packet is taken
as an indication of congestion, the destination informs the source, and the
source slows down. The TCP then gradually increases its sending rate until it
again receives an indication of congestion. This cycle of increase and decrease
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serves to discover and utilize whatever bandwidth is available, and to share
it between flows.

The approach has worked well in the past, when most flows have imple-
mented reasonable versions of TCP, producing broadly similar bandwidth
allocations for flows sharing similar resources. But the approach is breaking
down, for two related reasons. First, there is an incentive to modify the TCP
algorithm so that it strives more aggressively for a larger share of available
bandwidth, or even to avoid using any form of congestion control. Secondly,
applications are becoming more heterogeneous, with widely differing, and
constantly evolving, statistical characteristics and sensitivities to delay.

Floyd and Fall [7] note that an increasing deployment of traffic lacking
end-to-end congestion control may cause congested links to occupy them-
selves sending packets that will only be dropped later in the network, and
they describe how this could lead to congestion collapse in the Internet.
They observe [7] that it is no longer possible to rely on end-nodes to use
end-to-end congestion control, or on developers to incorporate end-to-end
congestion control in their applications. This observation, together with the
heterogeneity of applications, has motivated work (reviewed in [3, 7, 11])
on various measurement and scheduling mechanisms that might be imple-
mented within the network itself to restrict the bandwidth of flows and to
discriminate between the services that are provided to different users.

The aim of this paper is to explore a different approach. Our premise
is that if the resource implications of their actions can be made known to
end-nodes, then the end-nodes themselves are best placed to determine what
should be their demands upon the resources of the network. The issue at
stake here is important in both theory and practice. The optimal alloca-
tion of resources depends upon the utilities the various users attach to their
several flows through the network, as well as upon the properties of the re-
sources within the network. It is possible that it is easier to achieve an
efficient allocation by conveying information on congestion from the network
to intelligent end-nodes rather than by requiring users to classify their flows
into predefined categories and conveying this information from users to the
network. Certainly the development of ATM traffic classes [29] illustrates
some of the drawbacks of an approach that requires the definition of a set
of service categories before the applications that might use these categories
have been developed or have become widespread.

Previous work [16] has shown that, if users’ utilities are concave func-
tions of their attained throughput, then their aggregate utility is maximized
by the network allocating scarce network resources according to a weighted
proportional fairness criterion: loosely, the network shares resources in pro-
portion to how much the users choose to pay. It has also been shown [17]
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that a weighted proportionally fair allocation could be achieved by simple
rate control algorithms, using increase and decrease rules similar to those
described by Chiu and Jain [2] and Jacobson [12] and implemented in TCP.
Crowcroft and Oechslin [5] have proposed ways of setting parameters of the
TCP protocol to achieve weighted proportional fairness, and have presented
results from simulations and prototypes. This work has demonstrated the
possibility of a charge-aware TCP, with congestion control parameters alter-
able by end-nodes in an incentive-compatible manner. In this paper we take a
step further: we investigate the possibility that end-nodes or developers may
be allowed uninhibited access to the algorithms used for congestion control
while still maintaining incentive-compatibility.

MacKie-Mason and Varian [19] have described a smart market approach
to allocating resources in a network, where a price is set for each packet de-
pending upon the level of demand. In this paper we show that the benefits
of a smart market, in terms of efficient allocation of scarce resources, may
be achieved by very simple network mechanisms, of the form proposed by
Ramakrishnan and Jain [24] and Floyd [6], involving the setting of just a
single bit to mark some packets. Essentially we show that the intelligence
necessary to run a smart market may be decentralized to users’ rate control
algorithms, where it may take the form of variants of existing TCP algo-
rithms. For a network with cooperative end-nodes, the marks provide the
information the end-nodes need to make efficient use of the network. For a
network with potentially uncooperative end-nodes, a fixed small charge for
each mark ensures that end-nodes have the correct incentive, as well as the
necessary information, to use the network efficiently.

Odlyzko[22] has described an approach to Internet pricing, called Paris
Metro Pricing , whereby logically separate networks each charge a fixed price
per packet: the networks differ only in the price paid, and each user decides
for each packet which price to pay. The approach described here, termed
proportionally fair pricing , is intended to be similarly simple, with a fixed
price per marked packet, but where the price distinction between packets is
made by the network not the user.

Axelrod [1], in his famous study of the iterated prisoner’s dilemma, de-
scribed a computer tournament where players could submit strategies which
then played against each other: see Ridley [25] for a readable review of later
work in this area, and of its relevance for theories of evolutionary biology. In
some respects a network operating with the mechanisms described in this pa-
per resembles Axelrod’s tournament: for example, the performance of a rate
control algorithm will depend upon the current population of rate control
algorithms, and the interaction and evolution of different sub-populations
is of great interest. The numerical results reported in this paper have been

3



obtained from a computational environment implemented in the Java object-
orientated programming language 1, and we expect competitions using such
environments to provide an important stimulus to further theoretical work
in this area.

The organization of the paper is as follows. In the next Section we use a
simple slotted model of a resource to illustrate how network shadow prices
may be identified, at least statistically, on the sample path describing load
on the resource: the relevant material from [17] is reviewed in an Appendix.
In Section 3 we study how these sample path shadow prices may be used
to transfer information and incentives to end-nodes, and we investigate the
behaviour of a system comprising a resource and end-nodes equipped with
various transmission control algorithms designed to achieve different user
objectives.

The marking mechanism associated with the slotted model of Sections
2 and 3 is very simple; essentially a resource marks every packet arriving
to an overloaded slot. In Section 4 we define sample path shadow prices
for a more realistic queueing model of a resource. For a queue the critical
congestion interval lies between the start of a busy period and a packet loss
within the same busy period; these intervals correspond to the overloaded
slots in the slotted model, and packets arriving during these intervals should,
ideally, be marked. But for a queue it is, unfortunately, often not possible
to be sure whether or not a packet should be marked until some time after
the packet has left the resource. In Section 4 we describe several marking
mechanisms which attempt to approximate the ideal behaviour, and describe
further investigations with various sub-populations of transmission control
algorithms. In Section 5 we compare and contrast the mechanisms defined in
this paper with those of the current Internet. In Section 6 we describe briefly
some analytical models which complement those of [17], before concluding in
Section 7.

2 Sample path shadow prices

In this section we explore a very simple resource model, in order to motivate
the experiments of the next section. The aim of our discussion is to show
that the shadow price of a resource, the key variable of the model of the
Appendix, is straightforward to identify, at least statistically, on the sample
path describing the load on the resource.

1For a period the environment is accessible at
http://www.statslab.cam.ac.uk/∼richard/research/topics/evolution .

4



Suppose that time is slotted, and that a resource has capacity per slot to
cope with N equally sized packets, with any excess lost. Let the load upon the
resource per slot, Y , be generated by adding together a number of indepen-
dent Poisson random variables X1, X2, . . . , Xm, with means x1, x2, . . . , xm

respectively. Then Y has a Poisson distribution with mean y =
∑m

1
xr. Let

the cost to the system be the number of packets lost. Then the expected cost
per slot C(y), is given by

C(y) = E(Y − N)+

=
∑

n≥N

(n − N)e−y yn

n!

and a simple differentiation establishes that p(y), defined by p(y) = C ′(y),
satisfies

p(y) =
∑

n≥N

e−y yn

n!

= P{Y ≥ N}.

We interpret p(y) as the shadow price of the resource: it is the marginal
increment in expected cost at the resource for a marginal increment in load.

Suppose next that whenever the number of packets arriving in a slot ex-
ceeds N , a mark is placed on each of these packets. (We shall not distinguish
between packets which are lost and those which are merely marked: we treat
them all as marked packets.) Conditional on the event Y = n, Xr has a bi-
nomial distribution with parameters n and xr/y. Thus the expected number
of marks per unit time placed on packets from the rth flow is

E(XrI{Y > N}) =
∑

n>N

E(Xr | Y = n)P{Y = n}

=
∑

n>N

xr

y
ne−y yn

n!

= xr

∑

n≥N

e−y yn

n!

= xrp(y).

Thus, for Poisson statistics, the marking of every packet when a resource is
overloaded produces an expected charge per unit of flow, p(y), precisely equal
to the shadow price at the resource, and the expected charge per unit time
to flow r, xrp(y), is precisely the fair charge to this flow under the model of
the Appendix.
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Now for statistics more general than Poisson, we cannot expect such pre-
cise identities. In particular, under more general flow statistics, the resource
implications of additional flow may not be easily summarized by variation
of a single real number, such as the rate of a Poisson process. Yet we can
show that the key relationship, between the expected increase in system cost
caused by a given load increment, and the expected charge to that load
increment, is more fundamental.

Suppose that the load Y on the resource is a positive random variable,
and that we wish to assess the impact of an additional load, X, where X is
a non-negative random variable, not necessarily independent of Y . Then the
increase in the number of packets lost is

[X + Y − N ]+ − [Y − N ]+ = XI{X + Y > N} − (N − Y )I{X + Y > N > Y }.
Thus

E[X + Y − N ]+ − E[Y − N ]+ ≤ E(XI{X + Y > N}). (1)

Further, if N , Y and X are integral, and if the additional load is a small
increment, satisfying P{X = 0 or 1} = 1, then the event {X + Y > N > Y }
is impossible, and we have that

E[X + Y − N ]+ − E[Y − N ]+ = E(XI{X + Y > N}). (2)

Thus, for small increments, we have our desired identity between the ex-
pected increase in system cost caused by the additional load and the expected
charge to the additional load. It is worth emphasizing that the inequality (1),
and the consequent equation (2) for small increments, do not require any dis-
tributional assumption on the increment X, not even independence of the
load Y .

Note that expression (2) is the charge attached to the additional load X:
the user responsible for X may also face an increased charge for any other
load, already included within Y , due to that user (we shall discuss this point
further in Section 6.2).

It is natural to define the sample path shadow price of a packet to be
one if the packet’s deletion from the sample path describing arrivals at the
resource would result in one less packet drop at the resource; by marking all
packets arriving in overloaded slots we ensure that a packet is marked if and
only if its sample path shadow price is one.

3 Experiments with the slotted model

Our first experiments concern the simple slotted model described in the previ-
ous section, where the resource has capacity per slot to cope with N packets,
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with any excess lost. Again suppose the load upon the resource, Y , in a
given slot, is generated by adding together the loads generated in that slot,
X1, X2, . . . , Xm, by m users,

Y =
m∑

1

Xi,

and let the number of marks fed back to source i at the end of the slot be

XiI{Y > N}.

Later, in Section 5, we shall discuss the mechanism by which this feedback
may be delivered. Note that the feedback delay, between the generation of
packet and the receipt of feedback concerning that packet, is just one slot:
we shall also discuss more general feedback delays in Section 5.

The loads produced in successive slots by a user may depend upon the
earlier feedback of marks by the network as well as upon characteristics of the
user. In this section we describe some simple models of a user and examine
the interaction between users and a resource.

Elastic-user(w)

Elastic-user(w) transmits

X(t) = bx(t) + z(t)c+

packets in the slot (t, t + 1), where x(t) and z(t) are internal state variables
updated as follows:

z(t + 1) = x(t) + z(t) − X(t)

x(t + 1) = x(t) + κ (w − f(t)) . (3)

Here f(t) is the number of marks received at the end of slot (t, t + 1) and κ
is a small positive constant. We interpret x(t) as the rate of the user, and
z(t) as a fraction of a packet held over until the next slot. The recursion (3)
attempts to stabilize the rate x(t) around a value where the expected charge
per slot is w: observe that

w − 1

T

T−1∑

t=0

f(t) =
x(T ) − x(0)

κT
,

an expression that will generally become negligible as T increases.
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Figure 1: Scenario 1. Twenty users share a single slotted resource. The first
panel describes the throughput achieved, and the second panel the charges
incurred, by each of the users: the numbers on the right of each panel label
users according to their choice of the parameter w.

Scenario 1

In our first scenario we simulated a resource with a capacity to serve N = 10
packets per slot, handling 20 users. The ith user, i = 1, 2, . . . , 20, behaved
as Elastic-user(wi), where wi = i × 0.01 and κ = 0.1.

Figure 1 shows the throughput achieved and the charges incurred by the
20 users. The second panel shows that the users’ algorithms managed to
fulfil their respective aims of a charge per unit time of wi, i = 1, 2, . . . , 20.
The first panel shows that by varying its parameter w a user can influence its
throughput. In general the throughput achieved by a user will depend on the
level of aggregate demand from other users as well as the choice of w by the
user; but given the level of aggregate demand, we see that the throughput of
a single user is highly responsive to that user’s choice of w.

It is interesting to note from Figure 1 that the user with w = 0.2 achieves
a throughput of approximately one packet per slot, while a throughput of 0.5

8



packets per slot requires a choice of approximately w = 0.13. The latter user
is more difficult per packet for the resource to multiplex, and consequently
pays more per packet. To develop this point further, suppose the load due
to a user is X ∈ {0, 1}, and Y is the total load due to all users. Then the
expected charge to the user responsible for X is

E(XI[Y > N ]) = P{X = 1, Y > N} = P{Y > N | X = 1}P{X = 1},

and so the expected charge per packet to the user responsible for X is P{Y >
N | X = 1}. This conditional probability is somewhat lower for the user
who submits a regular stream of packets, one per slot, than for the user who
submits packets intermittently.

No initial conditions for Elastic-user(w) have been specified: Figure 1 was
constructed from a stationary realization of the process.

We have seen that Elastic-user(w) may be viewed as representing a user
who chooses to pay an amount w per unit time for a share of the resources
of the network. A more general Elastic-user(U(·)) could be defined, as in
the Appendix, in terms of a general utility function U(·): such a user might
behave as Elastic-user(w) but with a time-varying w = w(t) given by equa-
tion (13). Courcoubetis et al. [4] describe a framework within which the
relevant information about the utility function U(·) may be inferred from
the choices made by an application or a human user.

The Appendix formalizes the result that if each user makes an individually
rational choice of its parameter w, perhaps varying w in accord with its
experience of the network and its own requirements, then the system as a
whole operates efficiently; here efficiency is defined in the economic sense that
the share of resources allocated to each user and the overall level of resource
utilization are such as to maximize the aggregate utility of the entire system.

For our simple model of a single resource, with feedback received at the
end of each slot, the choice of the gain parameter κ is relatively unproblem-
atic: a higher value of κ will result in a higher variance at equilibrium, but
will allow a more rapid convergence to equilibrium. In a more complex net-
work the variance and speed of convergence depend upon the delays between
resources and end-nodes [17], and care will be needed if time-lags are large
and uncertain. We return to this point in Section 5.

Scenario 1 describes a rather static environment: next we consider the
effect of fluctuations in demand for the resource.

Intermittent-user(w)

Intermittent-user(w) is active and behaves as Elastic-user(w) for a random
period with mean 1000, and then sleeps (that is, transmits no packets) for
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a random period with mean 4000. Successive periods are independent and
geometrically distributed. Following the end of each sleep period, the internal
state (x(t), z(t)) is reset to its value at the end of the last active period.

Scenario 2

Our second scenario explored the behaviour of the system with intermittent
users. Again we simulated a resource with capacity to serve N = 10 packets
per slot but now handling 100 users. There were five independent copies of
Intermittent-user(wi), for each of the twenty values of wi used in Scenario 1.

Figure 2 shows various aspects of the stationary behaviour of the system.
The first panel shows the demand W , defined as the sum of the w’s over those
users not sleeping. Observe that this panel shows the demand fluctuating
between about half and twice its mean value, of about 2, over the period
illustrated. The average number of packets transmitted per slot, shown in
the second panel, is much less variable. The third panel shows the the number
of marked packets per slot, calculated as a moving average over 50 slots. The
third panel is thus a moving average of the shadow price at the resource; note
that the average shadow price tracks the demand W shown in the first panel.

The set of users who are active fluctuates, but given those users who
are active, their relative throughputs and marking rates are much as illus-
trated in Figure 1. We conclude from this experiment that as the demand
on the resource fluctuates users manage to share the resource between them,
keeping the total throughput approximately constant despite relatively large
variations in the demand.

The percentage of packets lost, shown in the fourth panel, fluctuates in
step with, but at lower levels than, the percentage of packets marked. A
larger capacity than 10 packets per slot would lead to a lower packet loss
probability and a lower ratio of lost to marked packets. In Section 4 we
shall study a queueing model roughly comparable to a slotted model with
a capacity of about 100 packets per slot: the queueing model will achieve a
much lower packet loss probability.

Next we define a user with a rather different behaviour.

File-transfer(F, W )

This user has a file of size F to transfer, an amount W to spend, and wants
to transfer the file as soon as possible. We shall describe a simple algorithm
which attempts to satisfy the requirements of such a user. The algorithm
tries to pay a price W/F per packet on average. If the average shadow
price is currently higher than this, the algorithm waits until the shadow
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Figure 2: Scenario 2. One hundred users share a single slotted resource.
Each user alternates randomly between active and sleep periods, and this
produces the fluctuating demand W for the resource shown in the first panel.
The second panel shows a moving average, calculated over 50 slots, of the
number of packets transmitted per slot. The third panel shows the number
of marked packets per slot, and the final panel the percentage of packets lost,
again calculated as moving averages over 50 slots.
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price decreases, otherwise the algorithm increases its rate. We shall see that
File-transfer(F,W ) generates a form of bistable behaviour, in contrast to the
smoother behaviour of Elastic-user(w).

More precisely, the algorithm is based on that of Elastic-user(w), but
with an adaptive choice of w. At time t, let F (t) be the size of the file
remaining to be transferred, and let W (t) be W less the number of marks so
far received. The algorithm maintains two further state variables x(t), z(t),
both initially set to zero. It calculates a parameter w(t) according to the
following equation:

w(t + 1) = max{x(t)W (t)/F (t), wmin} (4)

and updates x(t), z(t) and the number of packets transmitted X(t) just as
Elastic-user(w), but with w in equation (3) replaced by w(t).

We can motivate equation (4) as follows. At a rate x(t) the remainder
of the file would be transferred in a time F (t)/x(t): at this rate the user
could afford to pay an amount w(t + 1) = W (t)x(t)/F (t) per unit time.
This would produce an increase or a decrease in the rate x(t) according as
the amount the user has to pay per packet, W (t)/F (t), is greater than or
less than the currently perceived shadow price per packet, w(t)/x(t). Thus
the algorithm attempts to vary its rate x(t) so as to achieve a price per
packet of about W (t)/F (t). The lower limit, wmin, in equation (4), allows
the algorithm to occasionally retest the network following periods when it
appears too expensive to transfer the file.

Scenario 3

Our third scenario reran the set of 100 users from scenario 2, but with an
additional population of 10 users making file transfers. Specifically, the 10
additional users were File-transfer(F,Wj), for j = 1, 2, . . . , 10, where F =
1000 and Wj = 200 + 20j, all starting at slot 0.

The first panel of Figure 3 shows the progress of the file transfers. Those
with the higher values of Wj tend to complete sooner, although there is not
a strict order. The second panel shows the shadow price at the resource, and
should be compared with the third panel of Figure 2: the additional popula-
tion in scenario 3 increases the shadow price at the resource at times when file
transfers are particularly active. The amounts spent by the eight completed
file transfers were equal or less than their respective budgets (although the
algorithm does not guarantee this).

The file transfers labelled 280 and 320 were caught by sudden surges
in demand caused by other file transfers (observable in the first panel of
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Figure 3: Scenario 3. In addition to the 100 users whose demand is summa-
rized in the first panel of Figure 2, there are 10 users attempting file transfers
starting at slot 0. The first panel shows the progress of the ten file transfers,
labelled by the amounts the users are prepared to pay. The second panel
shows a moving average, calculated over 50 slots, of the number of packets
marked per slot.

Figure 3) and the more gradual variation in demand caused by intermittent
users (observable in the first panel of Figure 2): the delayed file transfers
sensed that they could no longer afford the increased shadow price, and were
forced to wait until later to complete.

The lower limit, wmin, in equation (4), was set equal to 0.01, the lowest
value of w used in the first scenario. This forces users to spend at least 0.01
per unit time, on average. In consequence, File-transfer(F,W ) will eventually
complete the file transfer, no matter how small the value of W , at a cost that
may exceed W . If each time the lower limit were crossed the value of the lower
limit were halved, then the resulting algorithm would produce exponentially
growing backoff intervals following periods when it appeared too expensive
to transfer the file.

Of course the shadow price may fluctuate over the time taken to transfer
the file. One might, for example, multiply the right hand side of equation (4)
by a factor less than one, to protect against the possibility that the shadow
price will drift upwards during the course of the file transfer. With this al-
teration, file transfers are slower to start, but less likely to be interrupted. It
may also be in the interest of the user (as well as the network) for the algo-
rithm to place an upper limit on w(t) to protect the user from paying more
than necessary, since if w(t) becomes too large the user is simply competing
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against itself (we return to this point in Section 6.2).
These and many other alterations to the algorithms Elastic-user(w) and

File-transfer(F,W ) are of course possible. Our aim in this paper is not
to suggest that these algorithms are optimal, but rather to argue that the
feedback of marks allows an algorithm to take into account its knock-on
effects on other users, and thus provides an environment which encourages
the evolution of efficient algorithms.

4 The queueing model and experiments

In this Section we extend the simple model described in Section 2 to allow
a queue with finite buffer. Let Yt−1 be the number of packets that arrive at
the resource in the interval (t − 1, t], and let Qt be the queue size at time t.
Then the recursion

Qt = min {M,Qt−1 − I{Qt−1 > 0} + Yt−1}

describes a queue with a buffer capacity of M that is able to serve a single
packet per unit time; the number of packets lost at time t is

[Qt−1 − I{Qt−1 > 0} + Yt−1 − M ]+.

We shall define a busy period to end at time t if Qt−1 = 1, and a busy period
to begin at time t if Qt−1 ≤ 1 and Qt ≥ 1. Thus two consecutive busy periods
may abut, in our discrete time model.

The impact of an additional packet upon the total number of packets
lost is relatively easy to describe. Consider the behaviour of the queue with
the additional packet included in the description of the queue’s sample path.
Then the additional packet increases the number of packets lost by one if
and only if the time of arrival of the additional packet lies within a critical
congestion interval , defined as a period between the start of a busy period
and the loss, within the same busy period, of a packet; otherwise the addi-
tional packet does not affect the number of packets lost. Critical congestion
intervals correspond to the overloaded slots of the slotted model, and packets
arriving during these intervals should, ideally, be marked. Unfortunately it
will often be difficult to determine the shadow price of a packet while the
packet is passing through the queue; it will, in general, be unclear whether
or not the current busy period will end before a packet is lost.

But it is possible to develop marking mechanisms which approximate the
ideal behaviour. The first mechanism we describe marks all the packets in
the queue at the time of a packet loss, and then marks a sufficient number
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of immediately subsequent packets to ensure that, in total, the correct num-
ber of packets are marked. By this means the mechanism ensures that the
proportion of packets marked at a resource is equal to the probability that
the removal of a randomly chosen packet would reduce by one the number
of packets lost at the resource. This is the mechanism we used to construct
Scenario 4, below.

A slight variant on the above mechanism is to mark every packet leaving
the queue from the time of a packet loss until the queue becomes empty. This
variant does not require the queue to keep a counter of how many subsequent
packets it needs to mark, and produces numerical results which are almost
identical to those described below. (For insight into why this might be so, we
note that if the queue size were a reversible stochastic process, and if a busy
period were to contain packet losses, then over this busy period the number
of packets arriving at the queue prior to the last packet loss would have the
same distribution as the number of packets departing the queue subsequent
to the first packet loss, [14].)

We repeated the earlier experiments with a queueing resource which has
a buffer capacity of M = 10. If a packet is marked then the mark is fed
back to the source 100 time units after the packet was transmitted by the
source: this is intended to model transmission delay as well as queueing
delay. Note that for the queue it takes ten time units, rather than one slot,
to serve ten packets: to maintain rough comparability the earlier parameters
wi were reduced by a factor of 10 and the mean active and sleep periods were
increased by a factor of 10; to cope with the larger feedback lag (100 time
units, rather than one slot), the parameter κ was reduced by a factor of 100.
The results were broadly similar to those reported in Figures 1–3: a lower
proportion of packets were lost. We conclude that our earlier discussion of
simple user types and their interaction extends to the case where the resource
is a queue. There are, however, several new issues that need to be explored
concerning the marking mechanism at the resource.

First we introduce a new user type.

Unresponsive-user(g)

While active this user transmits a packet in each slot with probability g,
independently from slot to slot; while sleeping, this user transmits no pack-
ets. Successive active and sleep periods are independent and geometrically
distributed with mean 1000.
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Figure 4: Sample path shadow prices for a queue. This figure shows part
of the queue length sample path in Scenario 4. The ticks at the top of the
diagram indicate time units when loss occurred. The sample path shadow
price of a packet is one or zero according to whether or not the packet lies
between the start of a busy period and a packet loss within the same busy
period. Thus packets arriving during the critical congestion interval between
times A(=141906) and B(=142099) have a sample path shadow price of one,
while those arriving between times B and C(=142168) have a sample path
shadow price of zero. It is not clear from the sample path up to the end
of the section shown whether the packets arriving after time C will cause a
packet loss or not, and hence their sample path shadow price is not (yet)
determined.
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Scenario 4

This scenario had three sub-populations of users.
(i) Intermittent-users. There were two independent copies of Intermittent-

user(wi), where κ = 0.001 and wi = i × 0.001, for i = 1, 2, . . . , 20. Active
periods had mean 10000, while sleep periods had mean 40000.

(ii) Intermittent-file-transfers. Such a user behaves as File-transfer(F,Wj)
while a file transfer is in progress, and then sleeps for a random period with
mean 40000. Sleep periods are independent and geometrically distributed.
There were ten intermittent-file-transfers, with F = 1000, wmin = 0.001 and
Wj = 150 + 20j, for j = 1, 2, . . . , 10.

(iii)Unresponsive-users. There were ten such users, namely Unresponsive-
user(gk) for k = 1, 2, . . . , 10, where gk = 0.01k.

Figures 4 and 5 were constructed from the fourth scenario. The pro-
portion of packets marked was approximately 0.18, while the proportion of
packets lost was about 0.014. The utilization of the resource was about 0.84.
For busy periods containing a loss, the median length of time between the
start of the busy period and the last loss within that busy period was about
120 time units.

In Scenario 4, Unresponsive-users accounted for about 32% of the pack-
ets transmitted. At this level, they did not significantly disrupt the perfor-
mance of the system, since there was ample responsive traffic to cope with
the various fluctuations in load. The behaviour of Intermittent-file-transfers
(accounting for about 14% of the packets transmitted) is well illustrated by
Figure 5: those that are willing to pay more achieve faster and more fre-
quent file transfers. Similarly we observed that the throughput achieved by
Intermittent-users is highly responsive to their choice of their parameters wi.

In Scenario 4 the ratio of packets marked to packets delivered, and the
ratio of packets lost to packets marked, are both small. This we expect
to hold much more generally. In Scenario 4 the critical congestion interval
at the queue (median length about 120 time units) and the feedback delay
(100 time units) are comparable in length: more generally we might expect
connections over a wide area network to have a relatively longer feedback
delay, while local connections might have a relatively shorter feedback delay.

Next we discuss the marking mechanism at a queueing resource. The
mechanism used to construct Scenario 4 ensures that the correct proportion
of packets are marked by the resource, but the marks are not always allocated
in accord with the exact sample path shadow price of a packet. Thus a packet
that arrives early in a busy period, before any loss has occurred, may well
escape without a mark, while a packet that arrives towards the end of a busy
period, whose sample path shadow price is zero, may receive a mark. If the
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Figure 5: Scenario 4. The first panel shows the progress of two of the in-
termittent file transfers. The higher curve shows an algorithm prepared to
pay 350 per file transfer: it transfers 5 files in the period shown. The lower
curve shows an algorithm prepared to pay 170 per file transfer: it transfers
almost 3 files in the period shown, despite rather short sleep periods (the
horizontal sections of the curve). The second panel shows a histogram of the
frequencies of queue sizes formed from a queue length sample path similar
to that illustrated in Figure 4, but extending over two million time units.
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critical congestion interval is short in comparison with the the feedback delay,
then the inaccuracy in marking the exact sample path shadow price may
matter less, since closed-loop control of the queue size will not be feasible.
But if some feedback delays are relatively short, or if it is desired to achieve
a very low packet loss ratio, then it will be appropriate for the resource to
anticipate the possible overflow of its buffer, and to mark packets somewhat
earlier within busy periods. There are several ways in which this might
be achieved: we discuss two potential mechanisms, the first based on Floyd
and Jacobson’s proposals for Random Early Discard and Explicit Congestion
Notification [6, 8], and the second a variation of the mechanism described
earlier in this Section.

The resource may not have foreknowledge of its future, but it may nonethe-
less be able to estimate the probability that a given packet’s sample path
shadow price will be one. The resource might then mark packets randomly
as they leave the queue, with the probability of marking a given packet cal-
culated as the conditional probability, given the entire history at the resource
up to the moment that packet departs, that a later packet will be lost before
the end of the current busy period. As a possible approximation to this,
suppose that the resource marks a packet with a probability that increases
with the average queue size, where the average queue size is calculated from
an exponentially weighted average of the recent past; for example, the proba-
bility of marking might increase linearly between a minimum threshold and a
maximum threshold, with every packet marked above the maximum thresh-
old [6, 8]. Floyd and Jacobson [8] provide inter alia a detailed discussion
of the choice of the time constant of the average queue calculation, and of
the two thresholds. We simply note that their proposals are entirely fea-
sible as a mechanism for the probabilistic marking of sample path shadow
prices. The thresholds and time constant could be occasionally reset or dy-
namically controlled so that approximately the correct marking probabilities
are maintained, and interesting questions concern the extent to which such
a mechanism could improve the performance of the overall system.

Next we describe how the marking mechanism used earlier in this Section
may be amended to anticipate possible overflow. Suppose that the resource
keeps track of a virtual queue, which has exactly the same arrival process of
packets as the real queue, but has a service rate and a buffer capacity which
are both scaled down by the same factor (for example 0.9). The marking
mechanism then operates as follows: when the virtual queue loses a packet,
the real queue starts to mark every packet leaving it, and continues to do
so until the virtual queue becomes empty. To illustrate the behaviour of
such a system, we reran Scenario 4, with a real queue having a service rate
of 1.1 packets per unit time and a buffer capacity of 11, and with a virtual
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queue with a service rate of 1 packet per unit time and a buffer capacity of
10 (thus the virtual queue has a service rate and a buffer capacity which are
both scaled down by the factor 10/11, and is identical with the ‘real’ queue
discussed earlier). The proportion of packets marked, about 0.18, remained
the same, but now the proportion of packets lost was reduced to about 0.003.
Note that a mark is now interpreted as a shadow price for the virtual queue.
The real queue may be viewed as having an additional margin of capacity
“unseen” by the marking mechanism, and the choice of this margin may be
influenced by considerations of, for example, robustness to sudden overload
or failure.

The marking mechanisms we have described will generally produce bursts
of marked packets, separated by longer periods when no packets are marked.
An end-node’s response to such fluctuations will be smoothed by, for example,
any gain parameter κ used by the end-node. It seems advantageous to con-
duct such smoothing at end-nodes rather than at resources: each end-node
will have the ability and the incentive to relate its own smoothing behaviour
to its own feedback delay, a point to which we return in Section 5.

We end this Section with a brief comment on the theoretical framework
suitable for a network with infinite buffers and no packet loss. The impact
of a single packet on other packets passing through a resource must now
be assessed in terms of added delay rather than additional loss. Indeed the
sample path shadow price of a given packet is simply the number of packets
that leave the resource between the given packet’s departure and the end
of the current busy period, since each of these packets spends exactly one
extra unit of time in the queue as a consequence of the existence of the
given packet. The sample path shadow price of a packet is not known at the
time the packet leaves the queue, but if, for example, the packet is marked
with the length of time since the start of the busy period, then the expected
charge at the resource is equal to the expected sample path shadow price,
for a randomly chosen packet. We have not pursued this framework here;
it seems much less straightforward to interpret in terms of existing Internet
mechanisms.

5 Comparison with the current Internet

Currently resources in the Internet provide congestion indication signals by
dropping packets, and the response of the end-nodes is (often) defined by
the slow-start and congestion avoidance algorithms of Jacobson [12]. In this
Section we compare these mechanisms with those of the model described in
this paper.
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Dropping packets is an extreme mechanism for providing congestion in-
dication signals, and one should expect better performance in a network
than can mark packets without dropping them. But a subtler point concerns
the rate at which feedback signals are generated at a resource, and how this
scales with the size of the resource and the statistical characteristics of traffic
through the resource.

Consider, for example, the simple slotted model of Section 2, where the
resource has capacity per slot to cope with N packets, and suppose the load
upon the resource is Poisson with mean y. Then the expected number of
dropped packets per unit of flow is C(y)/y, while the expected number of
marks per unit flow is p(y), the shadow price. To illustrate the divergence
between these these two quantities, consider the case of a heavily loaded re-
source with y = N . Then the proportion of packets dropped is approximately
(2πN)−1/2, while the shadow price is approximately 1/2. The ratio of these
two quantities thus decreases with the size of the resource as measured by N
in the slotted model or by the number of packets served per critical conges-
tion interval in the queueing model. If dropped packets at resources of widely
varying sizes are viewed as equivalent congestion indication signals, then the
number of dropped packets per unit flow at larger resources will significantly
underestimate the true congestion costs at these larger resources.

Next we consider the response of the end-nodes to congestion indication
signals. The steady state behaviour of Jacobson’s transmission control pro-
tocol has been analysed extensively. In equilibrium the rate allocated to a
user is approximately

x ' c

T
√

p
, (5)

where T is the round-trip time of the connection, p is the packet loss proba-
bility over the connection, and c is a known constant [7, 21]. The origin of the
square root dependence is interesting. A flow through the current Internet
will receive congestion indication signals at a rate roughly proportional to
the size of the flow. The response of Jacobson’s congestion avoidance algo-
rithm to a congestion indication signal is to halve the size of the flow. Thus
there are two multiplicative effects: both the number of congestion indica-
tion signals received and the response to each signal scale with the size of
the flow. The square root dependence on p was essentially observed in [12,
footnote 6 on pages 4 and 5], where it is noted that a trivial modification of
the algorithm can make the relationship linear.

Equations (3) and (10) describe algorithms in which the response to a con-
gestion indication signal is a simple reduction in flow, by a constant amount:
call this an additive, as opposed to a multiplicative, reduction. The marking
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mechanisms employed at resources will naturally produce congestion indica-
tion signals at a rate proportional to the size of a flow, and this, together
with an additive reduction by the user, is enough to ensure that the overall
decrease in rate is multiplicative, and that the equilibrium rate allocated to a
user has the inverse linear dependence on p =

∑
j∈r µj given by equation (12).

Alternatively, a multiplicative reduction in flow could be combined with algo-
rithmic features that mitigate the proportional dependence of the number of
congestion indication signals received on the size of the flow. For example, if
an end-system reacts to at most one congestion indication signal per round-
trip time (as suggested in [6]), or if it requires at least a certain proportion
of packets within a window to be marked (as in the DECbit scheme [24]),
then a more nearly linear relationship may be achieved.

The algorithms of File-transfer and of Elastic-user share several features
of the Slow-Start and Congestion Avoidance algorithms respectively of Ja-
cobson [12]: File-transfer and Slow-Start both allow an exponential growth
from a low initial rate; Elastic-user and Congestion Avoidance both involve
additive increase, but use respectively an additive or multiplicative decrease.
It is an interesting question whether a new connection in the current Internet
should grow from a low initial rate, or whether it could immediately begin
transmitting at a higher rate that might depend upon earlier experiences of
the network. Of course the point of the marking mechanisms described in
this paper is that the end-nodes can decide for themselves: they have the
information and the incentives from the network to make reasonable choices.

It is possible that the square root dependence (5) of a user’s rate on p
may be a reasonable choice for a user: for example, if the user were to have
the implicit utility function

U(x) = constant − c2

T 2x

then the solution to the user’s optimization problem (14) would produce
precisely the rate (5), with an associated cost

c
√

p

T
(6)

per unit time. The problem is that the user has no means to influence these
outcomes. Crowcroft and Oechslin [5] have proposed that users be allowed
to set a parameter m, which would inter alia multiply by m the rate of
additive increase and make 1 − 1/2m the multiplicative decrease factor in
Jacobson’s algorithm. The resulting algorithm, MulTCP, would behave in
many respects as m single TCP connections; in particular, it would have a
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rate and charge given by m times expressions (5) and (6) respectively. Thus
MulTCP could provide a natural incremental path by which TCPs used by
applications might evolve.

An important feature of Jacobson’s algorithm [12] is that it is self-clocking :
the sender uses an acknowledgement from the receiver to prompt a step for-
ward, and this explains the inverse dependence on the round-trip time T in
relation (5). In more detail, TCP maintains a window of transmitted but
not yet acknowledged packets; the rate x and the window size cwnd satisfy
the approximate relation cwnd = xT . During Slow-Start each acknowledge-
ment increments cwnd by one; in the absence of congestion indication this
produces a doubling in window size per round-trip time T . Similarly File-
transfer produces an exponentially growing rate; for the doubling time to be
proportional to T , a sensible scaling requirement for stability, it is necessary
for κ to be inversely proportional to T .

A self-clocking form of Elastic-user(w) can be constructed by increment-
ing cwnd by

κ̄
( w̄

cwnd
− f

)

per acknowledgement, where f = 1 or 0 according as the packet acknowledged
was marked or not. Since the time between update steps is about T/cwnd,
the expected change in the rate x per unit time is approximately

κ̄
(

w̄
cwnd

− p
)
/T

T/cwnd

=
κ̄

T

(w̄

T
− px

)
,

corresponding to a linear increase and multiplicative decrease of the form (10),
with κ = κ̄/T and w = w̄/T . Thus κ̄ and w̄ are respectively the gain and
charge per round-trip time rather than per unit time. Self-clocking may well
be chosen as a sensible strategy for routes with uncertain round-trip times:
it certainly simplifies the choice of the gain parameter κ, which might oth-
erwise be expected to depend upon an estimate or bound on the round-trip
time of a connection.

Just as different end-nodes may choose w or w̄ to suit their needs, they
may have different requirements for the gain parameter: higher values of κ
or κ̄ will result in a higher variance for x in equilibrium, but will allow a
more rapid convergence to equilibrium [17]. Similarly, different applications
may choose more or less sophisticated methods to deliver feedback informa-
tion. For example, several acknowledgements might be grouped together into
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a single packet to be returned from the receiver to the sender, or acknowl-
edgements might wait to be piggybacked onto other packets due to be sent
between end-nodes. By these means the number of reverse packets, each
themselves vulnerable to marking, may be reduced, at the cost of slower
feedback.

In our simulations we have not distinguished between packets which are
lost and those which are merely marked: we have treated them all as marked
packets. The distinction is important for the retransmission behaviour of
a protocol, but is less important for congestion avoidance behaviour. If a
nominally marked packet is in fact dropped then a missing sequence number
could provide the congestion information that would have been carried by the
mark, as well as the packet identification necessary for any retransmission.
The absence of a charge for that packet corresponds very approximately to
the actual loss of the packet to that connection, and seems unlikely to influ-
ence incentives since, in general, congestion will cause many more packets to
be marked than to be dropped. At a subtler level, end-nodes may attempt
to learn network characteristics from the ratio of dropped to marked packets.
For example, if a connection includes a noisy radio link at which packets are
dropped for reasons other than congestion, then end-systems could deduce,
from a preponderance of dropped to marked packets, that it is in their inter-
est (and is not damaging to others) to make generous use of forward error
correction.

In a network it is logically possible that a packet may be marked multiple
times, and the shadow prices of the Appendix are certainly additive; but if
the proportion of packets marked is small it will be enough to have a single
bit record whether or not a packet has been marked at any resource. Note
that if a packet on a certain route were to be marked twice during its progress
through the network, then the existence of that packet would have increased
by two the number of packets lost by the network: one might expect such
events to be unlikely except under implausibly high levels of loading and of
expected cost for a route.

In earlier Sections we have assumed that all packets are of the same size.
In an environment with packets of different sizes there are several approaches
compatible with our framework. If the load on resources is proportional to
the length of a packet, then a marked packet could be charged a fixed amount
per byte of the packet. Alternatively, if there is a maximum packet size, then
a packet passing through a resource at a time of congestion could be marked
with a probability proportional to its length. Either approach makes the
expected charge proportional to the length of the packet; the latter approach
has the advantage that it could be used in a network where at some resources
the load is proportional to the length of a packet, while at other resources it
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is not.

6 Analytical models

In this Section we briefly outline some analytical models which complement
those of [17], shedding light on other aspects of the interaction between users
and the network.

6.1 User queues

The algorithm File-transfer(F,W ) attempts to pay a price W/F per packet
on average. If the average shadow price is currently higher than this, then
the algorithm waits until the shadow price decreases. How long might the
algorithm have to wait? In this sub-section we use a simple queueing model
to cast some light on this issue.

Suppose that arrivals of users at a single resource of unit capacity form
a Poisson process, and that each user has a volume of packets to transfer
through the resource which is exponentially distributed with unit mean and
independent from user to user. Suppose that user r is prepared to pay αr per
unit volume transferred, and has a rate control algorithm able to effect this
choice. Assume that the values αr, r = 1, 2, . . . , associated with successively
arriving users are independent and identically distributed, and independent
of users’ volumes: let

ρ(z) =

∫ ∞

z

f(α)dα

be the arrival rate of the Poisson stream of users with values of α greater
than z.

Under the above assumptions the stream of users with values of α greater
than z will effectively be served by an M/M/1 queue with traffic intensity
ρ(z). The mean sojourn at the resource experienced by this stream of users
will thus be (1 − ρ(z))−1. This relationship holds for each value of z, and
hence the mean sojourn at the resource experienced by a user with a given
value of α, D(α), satisfies

f(α)D(α) = − d

dα

(
ρ(α)

1 − ρ(α)

)
,

and thus

D(α) =
1

(1 − ρ(α))2
if ρ(α) < 1.
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If the parameter α associated with a user is such that ρ(α) > 1, then, in our
stationary model, that user does not receive service at the resource.

Other queueing models are, of course, possible. For example suppose that
each user has a volume of packets to transfer through the resource which is
arbitrarily distributed and independent from user to user, and a value of α
that is inversely related to the volume: thus each user has the same amount
to spend in total. Then the system operates as a priority queue in which the
server concentrates attention on the user with the smallest volume to transfer:
see [13] for general results on priority queues, and [20] for a discussion in the
context of congestion control algorithms.

Treating the network as a single resource of unit capacity has allowed sev-
eral insights from queueing theory, but clearly oversimplifies the dynamical
behaviour of the underlying rate control algorithms. Tan [28] has developed
the model of [17] to include the arrival and departure of various types of user,
and has applied the resulting diffusion model to study the combined stability
of rates and user numbers in a network comprising many resources.

6.2 Nash equilibria

The optimization model of the Appendix, and in particular the user opti-
mization problem (14), assumes that a user does not anticipate the effect of
its own actions on prices. This may be a reasonable assumption for a user
who occupies at most a small fraction of any single resource of the network,
but as a user occupies more and more of a resource, eventually the user will
have an impact on prices. Thus if an Elastic-user(w) is providing only a
small fraction of the total load on each resource along its route, and most
other congestion control algorithms are similar to Elastic-user, then doubling
w will nearly, but not quite, double the user’s received rate. But the larger
the fraction of a resource occupied by the user, the greater the disincentive
for that user to further increase its choice of w. The magnitude of the effect
depends upon the strategies used by other users: even a moderately sized
user may not affect prices in a network where most other congestion control
algorithms, for example File-transfer(F,W ), attempt to pay a given price per
packet on average.

In this sub-section we use some simple game-theoretic models to explore
how users might behave if they can anticipate their own effect on prices.

Suppose that the utility of user r takes the form

Ur(xr) = αrxr, (7)

and suppose the unit capacity of the resource is shared out over users in
proportion to the w’s the users choose. If user r assumes that it has no effect
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on the price of the resource, then it will flip between choosing wr very large
or very small, according as the current charge per unit flow appears greater
or less than αr. But if the user realises that its own choice of wr affects the
flow per unit charge (a realisation that if not explicit may be an implicit
consequence of its control algorithm), then the user may be motivated to
choose wr to maximize

Ur

(
wr

Wr + wr

)
− wr,

where Wr is the sum of the w’s chosen by the other users. Then a simple
analysis gives that the collection of individually maximizing choices for the
various users (the Nash equilibrium) is given by

ŵr = Ŵ

[
1 − Ŵ

αr

]+

where Ŵ is the unique value satisfying

1 =
∑

r

[
1 − Ŵ

αr

]+

.

Thus Ŵ is a threshold: users with values of αr smaller than Ŵ will choose
wr = 0. If r = 1, 2, . . . , n label the users for which αr > Ŵ then the total
amount paid per unit time to the resource is

Ŵ =

(
1 − 1

n

) (
1

n

n∑

r=1

α−1
r

)−1

,

slightly less than the harmonic mean of α1, α2, . . . , αn.
We can illustrate some consequences most easily in the symmetric case

when αr = α, for all r. Then the total amount charged per unit time when
n > 0 users are present is

Ŵ = α

(
1 − 1

n

)
,

a quantity that increases to an asymptote at α, the aggregate utility of the
link over all users present. Thus when users can anticipate their own effect
on prices, they pay less. This is an example of a familiar result from auction
theory: users shade their bids if they have market power.
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Next suppose that arrivals of users form a Poisson process, with successive
file sizes that are independent identically distributed random variables. Then
the stationary number of users present, n, has a geometric distribution with
parameter ρ, the traffic intensity. If each user’s control algorithm is effectively
able to track n then the expected amount charged per unit time will be

∞∑

n=1

(1 − ρ)ρnα

(
1 − 1

n

)
= α[ρ + (1 − ρ) log(1 − ρ)].

This expression may be compared with αρ, the expected aggregate utility
per unit time.

Nash equilibria depend sensitively upon the space of strategies allowed
for players: in our context a strategy may correspond to the choice of a
parameter in an algorithm, or more generally the choice of the algorithm
itself. Thus the above analysis essentially models users able to choose the
parameter w of the algorithm Elastic-user(w), while other algorithms may
have different Nash equilibria.

Given the linear utility function (7) a more appropriate algorithm for
user r may be File-transfer(F, πF ). Let us suppose, then, that user r has an
algorithm that essentially allows user r to choose the amount it pays, πr, per
packet, for each r ∈ R. The resource will then allocate its entire capacity
to the user or users choosing the highest price. This is essentially a simple
auction [31], and the Nash equilibrium provides the entire capacity to the
user prepared to pay the highest price, that is the user s with the highest
value of αs: this user chooses πs to be slightly higher than the second highest
value in the set (αr, r ∈ R).

Another interesting class of algorithms has users essentially choose a rate.
Under a naive formulation any vector (xr, r ∈ R) with non-negative compo-
nents summing to the capacity of the link will be a Nash equilibrium: a
more appropriate model must explore the behaviour of the resource when it
is slightly overloaded. Let us suppose, then, that user r chooses rate xr to
optimize

Ur(xr) − xrp

(
∑

s

xs

)

where p is differentiable, increasing and convex and Ur is the linear utility
function (7). Then the Nash equilibrium now has

xr =

[
αr − p(y)

p′(y)

]+
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where y is the unique value satisfying

y =
∑

r

[
αr − p(y)

p′(y)

]+

.

Thus the Nash equilibrium has the form xr = [cαr − d]+ where c, d depend
upon the parameters (αr, r ∈ R) of the set of users and the characteristics p
of the resource.

Our last model explores the interaction between users of different types.
We can illustrate the main point by assuming just three users sharing a
resource of unit capacity: the first user has a utility function U1(x) =
w log(K1x), where K1 is large, and uses an algorithm, like Elastic-user, that
allows the user to choose the amount it pays per unit time, w1; the second user
has a utility function U2(x) = αx and uses an algorithm, like File-transfer,
that allows the user to choose the amount it pays per packet, α2; the third
user has a utility function U3(x) = K3I{x > q}, where K3 is large, and uses
an algorithm, like Unresponsive-user, that allows the user to choose its rate,
q3. Then a simple analysis of the Nash equilibrium shows that, provided
α(1 − q) > w and K is large enough, the three users choose, respectively,
w1 = w, α2 = ((wα/(1 − q))0.5 and q3 = q. Observe that only the second
user, the price setter, anticipates the effects of its own actions on prices.

Our general conclusion from this brief exploration of Nash equilibria is
that if a user accounts for a major component of the load on the network,
then rational behaviour by that user’s rate control algorithm will be to back
off slightly, relative to a more naive algorithm that does not anticipate the
effect of its own actions on prices.

7 Concluding remarks

We have seen that, by appropriately marking packets at overloaded resources,
end-nodes are provided with the necessary information to make efficient use
of the network. This may be enough in a network with cooperative end-
nodes: otherwise a fixed small charge for each mark ensures that end-nodes
also the correct incentive to use the network efficiently. Thus the marks we
have described provide a rational basis for a usage-related charging scheme.
If usage-related costs are not a large proportion of network costs, then one
might expect that these usage-related charges would be small in comparison
with non-usage-related charges such as connection and subscription charges.
Nonetheless even small usage-related charges should influence developers to
incorporate end-to-end congestion control in their applications, and thus lead
to a substantial improvement in the efficiency of network operation.
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The approach of this paper has not explicitly considered the market struc-
ture within which the network operates. (See [10] for an analysis of Odlyzko’s
Paris Metro Pricing proposal [22] within an economic model of competition.)
The model of [17] allows routing choices by users, and this provides some
insight into how a geographically structured competitive environment might
operate. An oft-expressed concern about congestion related pricing is that a
monopolist might deliberately allow congestion in order to increase revenue.
This is really a concern about monopoly rather than congestion pricing: we
simply note that even an unregulated monopolist would have an incentive
to balance charges between, for example, connection, subscription and usage
components so as to maximize the efficiency of the network. The key point
here is familiar from economic theory [30]: if a monopolist has sufficient
freedom over pricing then it can maximize net benefit and appropriate this
benefit for itself.

Shenker et al. [27] provide a valuable discussion of architectural issues
of pricing IP networks, and in particular the topics of multicast and receiver
charging. We note that the marks carrying shadow prices can be distributed
to the receivers of a multicast quite naturally. Consider a point in the net-
work where a packet is replicated to produce, say, k daughter packets. If
the packet to be replicated carries a mark, then assign this mark to just one
of the daughter packets, randomly selected from amongst the k possibilities.
(The random distribution may be uniform or weighted in accordance with
any other information available concerning, for example, subsequent repli-
cations.) The shadow price of each scarce resource is thus shared over the
users benefiting, and end-nodes have incentives to join multicasts rather than
to use inefficient unicasts. An interesting open question concerns how the
scheme would operate for layered multicasts: here we simply note that the
mark received by a user would be informative only about the layer currently
subscribed to by the user. A related architectural issue concerns how users
might be given some measure of control over the routing of packets: for ex-
ample a user may be happy to accept a higher marking rate on a route with
lower transmission delay. Routing algorithms based on shadow prices are
described in [9, 15, 23], but for networks where the user has little influence
on routing decisions.

The work described in this paper provides a rich area for further research.
Besides further refinements to the analysis and the numerical exploration of
more complex networks there is much scope to make improvement to the
flow control strategies themselves. Currently work is in progress on open
competitions to elicit strategies for given user objectives. A particularly
simple and attractive implementation of this work is possible as classes in
the Java object-orientated programming language. Further work currently
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under way [18] envisages the creation of a network server accepting load
from clients and feeding back their marks accordingly. The intention here
is to allow multiple players to interact, under conditions of uncertainty, on
common and scarce resources.
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A Rate control of elastic traffic

In this Appendix we review some of the results of [17].
Consider a network with a set J of resources . Let a route r be a non-empty

subset of J , and write R for the set of possible routes. Associate a route r with
a user, and suppose that if a rate xr is allocated to user r then this has utility
Ur(xr) to the user. Assume that the utility Ur(xr) is an increasing, strictly
concave function of xr over the range xr ≥ 0 (following Shenker [26], we call
traffic that leads to such a utility function elastic traffic). To simplify the
statement of results assume further that Ur(xr) is continuously differentiable,
with U ′

r(xr) → ∞ as xr ↓ 0 and U ′
r(xr) → 0 as xr ↑ ∞. Suppose that when

a resource is heavily loaded the network incurs some cost, perhaps expressed
in terms of delay or loss: specifically, suppose that Cj(y) is the rate at which
cost is incurred at resource j when the load through it is y. Assume further
that utilities and costs are additive, so that the aggregate utility of rates
x = (xr, r ∈ R) is

U(x) =
∑

r∈R

Ur(xr) −
∑

j∈J

Cj

(
∑

s:j∈s

xs

)
. (8)

Suppose that Cj(y) is differentiable, with

d

dy
Cj(y) = pj(y), (9)

where, for j ∈ J , the function pj(y), y ≥ 0, is a non-negative, continuous,
increasing function of y, not identically zero. Thus Cj(y) is a convex function;
this and the conditions on the functions Ur ensure that U(x) achieves a unique
maximum in the region x ≥ 0.

Next consider the system of differential equations

d

dt
xr(t) = κr

(
wr(t) − xr(t)

∑

j∈r

µj(t)

)
(10)

for r ∈ R, where

µj(t) = pj

(
∑

r:j∈r

xr(t)

)
(11)

for j ∈ J . We interpret the relations (10)–(11) as follows. Suppose that
resource j generates a continuous stream of feedback signals at rate ypj(y)
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when the total flow through resource j is y; that resource j sends a propor-
tion xr/y of these feedback signals to a user r with a flow of rate xr through
resource j; and that user r views each feedback signal as a congestion indica-
tor requiring some reduction in the flow xr. Then equation (10) corresponds
to a response by user r that comprises two components: a steady increase at
rate proportional to wr(t), and a steady decrease at rate proportional to the
stream of feedback signals received.

It is shown in [17] that if wr(t) = wr for r ∈ R then the system of
differential equations (10)–(11) has a stable point, to which all trajectories
converge. The variable µj(t) is the shadow price per unit of flow through
resource j at time t, and at the stable point

xr =
wr∑
j∈r µj

. (12)

The rates x determined by equation (12) have an interpretation as a set of
rates that are proportionally fair per unit charge, as discussed in [16] and
[17].

Next suppose that user r is able to monitor its rate xr(t) continuously,
and to vary smoothly the parameter wr(t) so as to satisfy

wr(t) = xr(t)U
′
r(xr(t)) : (13)

this would correspond to a user who observes a charge per unit flow of λr =
wr(t)/xr(t), and chooses wr = wr(t) to solve the optimization problem

maximize Ur

(
wr

λr

)
− wr

over wr ≥ 0.
(14)

It is shown in [17] that the expression (8) is a Lyapunov function for the
system of differential equations (10)–(11), (13), and hence that the vector
x maximizing U(x) is a stable point of the system, to which all trajectories
converge. The impact of random effects and time lags on stability is also
considered in [17], and arrivals and departures of users are treated in [28].
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