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Abstract

This paper presents a personal view of work to date on effective band-
widths, emphasising the unifying role of the concept: as a summary of the
statistical characteristics of sources over different time and space scales;
in bounds, limits and approximations for various models of multiplexing
under quality of service constraints; and as the basis for simple and robust
tariffing and connection acceptance control mechanisms for poorly charac-
terized traffic. The framework assumes only stationarity of sources, and
illustrative examples include periodic streams, fractional Brownian input,
policed and shaped sources, and deterministic multiplexing.

1 Introduction

Within a broadband network, the usage of a network resource may not be well
assessed by a simple count of the number of bits carried. For example, to provide
an acceptable performance to bursty sources with tight delay and loss require-
ments it may be necessary to keep the average utilization of a link below 10%,
while for constant rate sources or sources able to accommodate substantial delays
it may be possible to push the average utilization well above 90%.

This paper attempts a unified perspective on effective bandwidth, a concept
that has been developed by several authors over recent years to provide a measure
of resource usage which adequately represents the trade-off between sources of
different types, taking proper account of their varying statistical characteristics
and quality of service requirements. The concept has attracted much atten-
tion and some criticism, but in the author’s view there is emerging an elegant
and powerful mathematical theory with important technological applications. It
seems appropriate to describe the paper as a personal view, since there is not
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yet a generally accepted definition of an effective bandwidth, and since other
frameworks for the interpretation of the material are certainly possible.

In Section 2 we present our definition of the effective bandwidth of a source,
describe some of its simpler properties, and present a variety of examples. The
effective bandwidth of a source depends upon two free parameters, representing
a space and time scaling respectively, and, as Gibbens (1996) demonstrates,
this dependence provides a convenient tool for the description and analysis of
real sources. The appropriate choice of space and time scale will depend upon
characteristics of the resource such as its capacity, buffer size, traffic mix and
scheduling policy.

In Section 3 we compare and contrast several multiplexing models, and de-
scribe how the effective bandwidth provides a measure associated with a source
such that a resource can deliver a performance guarantee expressed in terms of
loss or delay by limiting the sources served so that their effective bandwidths
sum to less than a threshold. Under different models this result may be ex-
pressed as a conservative global bound, or as an asymptotic local limit, or as an
approximation capable of successive refinements; but the ubiquity of the single
functional form, described in Section 2, is striking.

The effective bandwidth of a source depends sensitively upon the statistical
properties of the source, yet these properties may not be known with certainty,
either to the user responsible for the source or to the network. It is sometimes
thought that this limits the applicability of the concept. On the contrary, the
concept is central to any understanding of just how well described a source needs
to be, and to the discussion, in Section 4, of tariffing and connection acceptance
control mechanisms for sources that may be poorly characterized.

Whitt (1993) and de Veciana and Walrand (1995) provide valuable reviews of
earlier work on effective bandwidths. The term itself was first used by Gibbens
and Hunt (1991) and Kelly (1991) in their investigation of linear acceptance re-
gions for certain buffered resources, although the essential concept for unbuffered
resources had been described earlier in the seminal paper of Hui (1988), and a
closely related notion was described by Guérin et al. (1991).

2 Effective bandwidths

In this Section we define the effective bandwidth associated with a stationary
source, describe some of its simpler properties, and illustrate the definition with
several contrasting examples.

2.1 Definition

Let X0, ] be the amount of work that arrives from a source in the interval [0, ¢].
Assume that X [0, t] has stationary increments. Define the effective bandwidth of
the source to be

1
a(s,t) = o logIE[eSX[O’t]] 0< s,t < o0. (2.1)
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2.2 Properties

(i) If X[0,¢] has independent increments, then «(s,t) does not depend upon
t.

(ii) If there exists a random variable X such that X[0,¢] = Xt for ¢t > 0, then
a(s,t) = a(st,1), and so «a(s,t) depends on s,t only through the product
st. Otherwise a(s/t,t) is strictly decreasing in t.

(iii) If X[0,%] = >, X;[0,1], where (X; [O,t])i are independent, then

ofs,t) = Zai(s,t). (2.2)

(iv) For any fixed value of ¢, a(s,t) is increasing in s, and lies between the mean
and peak of the arrival rate measured over an interval of length ¢: that is

EXI0,1] < afs.1) < X0,
—_ ) —_ t

(2.3)
where X0, is the (possibly infinite) essential supremum
X0,t] = sup{x : P{X[0,t] >z} > 0}.

The form of a(s,t) near s = 0 is determined by the mean, variance and
higher moments of X [0, ¢], while the form of a(s, t) near s = co is primarily
influenced by the distribution of X [0, ¢] near its maximum: if «(s, t) is finite
for some s > 0 then for given ¢

a(s,t) = %IEX[O,t] + %VarX[O,t] +o(s) ass—0 (2.4)

while if a(s,t) is bounded above as s — oo then for given ¢

a(s,t) = @-{—é log P{X[0,t] = X[0,t]} +o0 (%) as s — oo. (2.5)

Write «(0,t) and a(co,t) for the lower and upper bounds respectively of the
range (2.3); note that the mean rate «(0,t) does not depend on ¢, since X|[0, ?]
has stationary increments.

The definition (2.1) may be motivated in several ways. The logarithmic mo-
ment generating function is naturally associated with the additive property (iii),
while the scalings with ¢ and s beget properties (i) and (iv) respectively. Prop-
erties (i)—(iv) are straightforward consequences of convexity and of results on
moment generating functions — see Chang (1994) for several relevant observa-
tions, as well as a discussion of the case, not considered here, when the increments
of X|[0,t] may be non-stationary. Although (a(s,t),0 < s,t < co) does not in
general determine the distribution of (X[0,?],0 < ¢t < o0), it follows from the
analyticity of the moment generating function (Billingsley 1986, Exercise 26.7)
that if «(s,t) is finite for s = € > 0 then (a(s,t),0 < s < ¢) determines the
distribution of X [0, ] and, further, a(s,t) is infinitely differentiable with respect
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Fic. 1. Effective bandwidth of a periodic source. The source produces a single
unit of workload at the end of every unit interval, but the phase of the source
is random. Note the growth of the effective bandwidth over intervals shorter
than the period of the source.

to s on the interior of the interval on which «(s,t) is finite.

Courcoubetis et al. (1995) and Duffield et al. (1995) have explored the
estimation of a(s, t) for large values of ¢, and its relation to the tail behaviour of
queues. In contrast, Sriram and Whitt (1986) have emphasised the importance of
identifying the relevant time scale for queueing phenomena: from relation (2.4)

a(s,t) = a(0,t) (1 + gI[O,t] + 0(5)) ass — 0

where I]0,t] = Var X|[0,¢]/EX]O0, t] is their index of dispersion for counts.

2.3 Examples
2.3.1 Periodic sources

For a source which produces b units of workload at times {Ud+nd,n =0,1,...},
where U is uniformly distributed on the interval [0, 1],

os,t) = g m + i log [1 + (2 - EJ) (e — 1)] . (2.6)

Observe that
eb —1

ds '’
the growth of the effective bandwidth as ¢ decreases is apparent in Fig. 1, which
plots the function (2.6) with parameters b = d = 1. The model has been used to
describe the packet streams arising from constant rate information sources: for
a review see Roberts (1992, Section 6). We shall consider the model further in
Sections 3.5 and 3.6.1.

%1_1)1(1) a(s,t) =
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Fig. 2. Effective bandwidth of an on-off fluid source, with parameters A =
1,4 = 9,h = 10. The effective bandwidth «(s,t) approaches the mean rate
Ah/(A + p) as either s or t approaches zero.

2.3.2 Fluid sources

Consider a stationary fluid source described by a two-state Markov chain. The
transition rate from state 2 to state 1 is A and the transition rate from state 1
to state 2 is u. While the Markov chain is in state 1 workload is produced at a
constant rate h; while it is in state 2 no workload is produced. Then

! A o —p+hs p 1
o= o () o [0 504 ()
and

t—oo

1 2
lim a(s,t) = % (hs—u—)\—!— ((hs—u+/\)2+4/\u) ),

a central expression of Gibbens and Hunt (1991) and Guérin et al. (1991), and
there obtained from the seminal work on stochastic fluid models of Anick et al.
(1982). The function a(s,t) is illustrated in Fig. 2.

More generally, consider a stationary source described by a finite Markov
chain with stationary distribution 7 and g-matrix (), where workload is produced
at rate h; while the chain is in state . Then from the backward equations for
the Markov chain one can deduce (Kesidis et al. 1993, p.427) that

a(s,t) = i log{m exp[(Q + hs)t]1} (2.7)

where h = diag(h;);, and
1
lim a(s,t) = — ¢(s)
t— o0 S

where ¢(s) is the largest real eigenvalue of the matrix @) +hs (Elwalid and Mitra
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Fia. 3. Effective bandwidth of a Gaussian source. This example has Hurst
parameter H = 0.75: long range order is indicated by the continued growth
of the effective bandwidth with large ¢.

1993). If hy > hy,4 # 1, then relation (2.5) becomes
1

1 1
a(s,t)zhl——(ul—;10g7r1)+0(—> as s — oo
s s
where gy is the transition rate out of the state with peak rate. Chang and
Thomas (1995, p.1097) discuss this expansion in the case t = oo: for a fluid

source, the relevant limits in s and ¢ commute.
2.3.3 Gaussian sources

Suppose that
X|[0,t] = At + Z(t)

where Z(t) is normally distributed with zero mean; as usual, the facility of
calculation under Gaussian assumptions outweighs any problem of interpretation
for negative increments. Then

a(s,t) = A+ %Var Z(t),

and so a(s, t) is determined, for all s and ¢, by the first two terms of the expansion
(2.4).

The case Var Z(t) = 0%t commonly arises from heavy traffic models (Harrison
1985). The more general case Var Z(t) = o2t>H arises when the process Z is
fractional Brownian motion, with Hurst parameter H € (0,1). Then

o?s
Oé(S,t) = A —+ T tzH_l, (28)
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Fi1G. 4. Effective bandwidth of an on-off periodic source. Note the increase of
the effective bandwidth as ¢ either decreases below the period of the source,
or increases towards the interval over which the source remains ‘on’ or ‘off’.

and the behaviour of a(s,t) as t — oo depends upon whether H < %, H = %
or H > % Respectively lim;_,~ a(s, t) is finite and does not depend upon s, as
in example (i); or the limit depends upon s, as in example (ii); or «(s,t) grows
as a fractional power of ¢. The third case exhibits long range order (Norros
1994; Willinger 1995), and has been proposed as a model for Ethernet traffic
data (Willinger et al. 1995). Fig. 3 illustrates the form (2.8) with parameters
H =0.75, A =1 and ¢2 = 0.25.

Courcoubetis and Weber (1995), Weber (1994) discuss the approximation of
the effective bandwidth of an arbitrary stationary source by a Gaussian source
with general autocovariance structure, using the first two terms of the expan-
sion (2.4).

We shall consider Gaussian models further in Sections 3.1.3, 3.2.2, 3.3.1, 3.5,
3.6.1 and 3.6.2.

2.3.4 General on-off sources

Suppose next that a source alternates between long periods in an ‘on’ state,
where it behaves as a source with effective bandwidth a4 (s, t), and long periods
in an ‘off’ state, where it produces no workload. Let p be the proportion of time
spent in the ‘on’ state. Then for values of ¢ small compared with periods spent
in an ‘on’ or ‘off’ state,

a(s,t) = i log [1 —}—p(exp(stoq (s,t)) — 1)] (2.9)

Fig. 4 illustrates this function when p = 0.05 and «;(s,t) is given by expression
(2.6) with b=20,d = 1.

The above example shares similarities with examples 2.3.1, 2.3.3 or 2.3.2,
over short, intermediate or long time scales respectively. Observe that the con-
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struction can be endlessly repeated: the ‘on’ period of a fluid source may at a
finer time scale appear as a periodic source, whose bursts may themselves have
structure on a still finer time scale, and so on. By variations of this hierarchical
construction it is possible to define sources whose effective bandwidth a(s,t)
may resemble any or all of Figures 1, 2, 3 and 4, depending on the range of s
and t values plotted.

2.4 Lévy processes

A process X0, t] with stationary independent increments is called a Lévy process;
as noted in property (i), for such a process a(s,t) does not depend upon t. We
have seen one example: the Gaussian source of Section 2.3.3 with Var Z(t) = o?t.
A compound Poisson source will provide another example, and these two cases
essentially exhaust the forms that a(s,t) = a(s), say, may take.

2.4.1 Compound Poisson sources

If
N(t)
X[o,t=> ¥,
n=1
where Y7,Y5, ... are independent identically distributed random variables with

distribution function F, and N(t) is an independent Poisson process of rate v,
then

1
a(s) = - /(esz — 1)vdF(z).
S
For example, if Y7,Y5, ... are exponentially distributed with parameter p, then
v
=— £ . 2.10
a(s) pr or s < it (2.10)

2.4.2 Infinitely divisible sources

If X[0,%] has stationary independent increments, then X[0,1] is infinitely di-
visible. Hence, by the Lévy—Khinchin representation of any infinitely divisible
random variable as the limit of a mixture of compound Poisson random variables
(Feller 1971, Chapter XVII),

o%s 1 [T
a(s) =+ T + E/ (e’® — 1)dv(x) (2.11)

—0o0

is the most general form possible for a(s), where v(-) is a measure on (—o0, c0).
If, in addition, the increments of X|[0,%] are non-negative, then the most
general form possible for a(s) is

a(s) = A+ = /0 (e — 1)dv(a)

S

where v(-) is a measure on (0, 00): it follows that a(s) is convex, and indeed that
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all derivatives are positive. For example, if A = 0 and dv(z) = 2~ le~%dz, then
1
a(s) = —3 log(1 — s)

and X|0,t] is a gamma process, with increments distributed as gamma random
variables (Kingman 1993, Chapter 8,9). If [ dv(z) = oo, as for the gamma
process, then jumps of X[0,¢] are everywhere dense. Jumps of height greater
than & form a Poisson process of rate [, dv(z).

2.5 Policing and shaping

Say that a stationary source is policed by parameters (p, 3) if
X[0,f] <pt+B 0<t<oo, (2.12)

or, equivalently,

MmﬁSp+§

0<t<oo.

The parameters p and (8 — 1)/p are the peak cell rate and cell delay variation
tolerance of ITU Recommendation 1371 (1994). For example, the periodic source
described in Section 2.3.1 is policed by parameters (p, 8) provided p > % and
B > b. A fluid source, as described in Section 2.3.2, is policed by parameters
(p, B) provided p > max;{h;}.

Sources which do not satisfy constraint (2.12) may be shaped to do so, by
either delaying or discarding some of the arriving workload. In general, shaping
will alter the effective bandwidth of a source for larger values of s, and on short,
intermediate and long time scales, as we next illustrate.

Suppose that a source is shaped to conform with parameters (p, 8) by passage
through a device that delays or discards some of the workload. Let X,[0,%],¢ >
0, describe the stationary departure stream from the device, the shaped process,
and let ap(s,t) be its effective bandwidth. Since 0 < X,4[0,t] < pt+(, a simple
upper bound is

1 tasn(0,8) (ot
< = ZZsh ) os(pt+B) _
asp(s,t) < o log [1 + ot (e 1)

where a;p,(0,t) is the mean rate of the shaped process. Example 2.3.1 illustrates
that this bound may become tight as ¢ approaches zero.

To explore the impact of shaping at intermediate time scales we describe a
simple example. Consider a Lévy process, shaped by passage through a queue
with service rate C. The queue size is a Markov process: assume further that
it may be represented by a stationary Markov chain with ¢g-matrix @, for exam-
ple the g-matrix of an M/M/1 queue for the arrival process leading to expres-
sion (2.10). Then the shaped process can be described as a fluid source, possibly
with infinite state space. Indeed the shaped process is just an alternating renewal
process, taking the level C' for a busy period and the level 0 for an exponentially
distributed idle period. If agp(s,t) is the effective bandwidth of the departure
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stream from the queue, then a,h(s,t) may be calculated from expression (2.7),
where h; takes values 0 or C.

De Veciana et al. (1994) have extensively explored the impact of shaping on
the limiting form of the effective bandwidth as ¢ — oo. An example of their
results is that a Gaussian source, with effective bandwidth a(s,t) = A + 02s/2,
shaped by passage through a queue with service rate C', has

2
-
asp(s,00) = A+ % s < 002 (2.13)
(C—X)? .
= C-— “og7s otherwise. (2.14)

More generally, de Veciana et al. (1994) consider a wide class of arrival processes
for which a(s, 00) < oo for some s, and show that ap (s, 00) = a(s, 00) for values
of s less than a critical level, while above this level the impact of the peak rate
C is felt and agp(s, 00) = C — k/s, where the constant k may be calculated. See
de Veciana and Walrand (1995) for further discussion of shaping.

3 Multiplexing models

In this Section we suppose the arrival process is

J nj
X[0,4]=Y" Y X;[0,4] (3.1)

j=1 i=1

where (X;;[0,t]);; are independent processes with stationary increments whose
distributions may depend upon j but not upon ¢, and that there is a resource that
has to cope with the aggregate arriving stream of work. We interpret n; as the
number of sources of type j, and shall write o;(s,t) for the effective bandwidth
of a source of type j. Thus

J
a(s,t) = anaj(s,t). (3.2)
j=1

We shall explore several multiplexing models, and shall be interested in the
relationship between constraints of the form

J
anaj(s*,t*) <c* (3.3)

Jj=1

for one or several choices of (s*,t*, C*) and the acceptance region, defined as the
set of vectors (n1,ns,...,ny) for which a given performance, described in terms
of queueing delay or buffer overflow, can be guaranteed.

In Section 3.1 we describe the result of Hui (1988, 1990) which establishes
inequality (3.3) as a conservative bound on the non-linear acceptance region for
a bufferless model. In Section 3.2, based on Kelly (1991), we see relation (3.3)
emerge as the linear limiting form of, and as a conservative bound on, the accep-
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tance region for a buffered model with Lévy input. A linear limiting form was
established for more general input processes, including the fluid sources studied
in detail by Gibbens and Hunt (1991) and Elwalid and Mitra (1993), by Ke-
sidis et al. (1993): we review this result in Section 3.3, together with its recent
generalization by Duffield and O’Connell (1996). In the models of Sections 3.1
and 3.3 time scales essentially degenerate: the time scale t* appearing in (3.3)
approaches zero or infinity. In Sections 3.4 and 3.5 we describe two tractable
models illustrating phenomena when time scales do not degenerate. In Sec-
tion 3.6 we discuss the important recent results of Botvitch and Duffield (1995),
Simonian and Guibert (1995) and Courcoubetis and Weber (1996) on an asymp-
totic regime where the form (3.3) emerges, for finite values of t*, as a tangent to
the limiting acceptance region. In Section 3.7 we briefly discuss priority models,
which provide further important examples where several constraints of the form
(3.3) may be needed to approximate the acceptance region.

3.1 Bufferless models
We look first at a simple model where

nj

X=> Y Xy

=1 i=1

and Xj; are independent random variables with scaled logarithmic moment gen-
erating functions

a;(s) = éloglE[eSXﬁ]. (3.4)

We might suppose that Xj; is the instantaneous arrival rate of work from a
source of type j at a bufferless resource of capacity C, corresponding to the choice
a;(s) =lim;_, aj(s/t,t). Alternatively we might suppose that X;;[0,t] = Xj;t,
so that a;(s/t,t) = a;(s) for all values of .

Chernoff’s bound gives

log P{X > C} <logE [es(X_C)] = s(a(s) = C) (3.5)

where a(s) = >, nja;(s). Thus the constraint log P{X > C} < —v will cer-
tainly be satisfied if the vector n = (n1,ns,...,n ) lies within the set

A= {n : 1rslf[s(2]: njo(s) — C)] < —fy} (3.6)
j=1

where throughout n > 0. The region A has a convex complement in IR_{_, since
this complement is defined as the intersection of [R_{_ with a family of half-spaces.
The half-space touching at a point n* on the boundary of the region A is

s*’

J
Y nja(s) <0 - L (3.7)
j=1
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where s* attains the infimum appearing in relation (3.6) with n replaced by n*.
Thus condition (3.7) is a conservative global bound, of the form (3.3), on the
acceptance region: if n satisfies this condition then the performance guarantee
log P{X > C} < —~ is assured.

Let A(v,C) be the subset of R such that n € A(y,C) implies log P{X >
C} < —~. Chernoff’s theorem (Billingsley 1986) gives that

J n;N J
A}i_r)noo % logP{'Z1 Zl X;i>CN} = igf [s (Zl nja;(s) — C’)] (3.8)
j=1 i= i=

Except in the trivial circumstances where the infimum is zero or minus infinity or
where a source type has zero mean rate, the infimum (3.8) is strictly increasing
in each component of n. It follows that

dim ST =, (3.9)

and in this sense the approximation leading to the region A becomes more ac-
curate as the number of sources increases, and the tail probability decreases.

The convergence statement (3.9) requires a comment on topology. Through-
out we shall use the Hausdorff distance (Csédskar 1978) to define a pseudo-metric
over the set of subsets of Ri. This induces a topology over the quotient space
formed by identifying subsets of Ri which share the same closure. Our notation
will use a subset of [R_{_ to represent its equivalence class; the intersection opera-
tor, as will appear in for example relation (3.25), is defined on equivalence classes
in the natural way using closed subsets of Ri as representatives. Thus limits such
as (3.9) are uninformative about the limiting behaviour of performance measures
at points on the boundary of the set A.

3.1.1 Stream based measures

The discussion leading to relation (3.9) concerned a resource-based congestion
measure, the probability of resource overload, rather than a stream-based con-
gestion measure, such as the proportion of work from an arriving stream that
is lost. To convert from resource-based measures to stream-based measures re-
quires two steps: relating the expected size of overloads to tail probabilities of
overloads; and dividing by stream rates.

From Chernoff’s bound the expected rate of load loss

E(XX —C)t

/ P{X >C +z}dx
0

IN

/000 exp [s (a(s) — (C+ m))] dz

% exp [s (a(s) — C’)] .
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We deduce that 1
E(XX - O)* < exp [s*(a(s*) - C)] (3.10)

where s* attains the infimum in (3.8). Thus if condition (3.7) is satisfied, and
hence P{X > C} < e™7 is assured, then also assured is that E(X — C)* <
e~7/s*. Note that the proportion of load lost is just E(X — C)*/EX. Let
Asi(7,C) be the subset of Ry, such that n € Ay (y,C) implies that the pro-
portion of work lost is not greater than e™. Then a further consequence of
Chernoff’s theorem is that

lim Ast ("YN, CN)

= A.
N—oo N

3.1.2 Improved approximations

The inequalities (3.5) and (3.10) provide bounds on probability of resource over-
load or the proportion of work lost: closely related tilted approximations may be
developed by various techniques reviewed by Reid (1988, Section 6.3), Bucklew
(1990, Chapter VII), and Jensen (1995). For example the estimates

P{X>C)~ ;1 et (a(s7)=0) (3.11)
s*(2mo2(s*))2
and 1
E(X —C)F ~ ——— ¢ (a(s")=0), (3.12)

$*2(2m02(s*))®

where 02(s) = g—; (sa(s)), have been discussed by Hui (1988), Roberts (1992,
p. 154), and Hsu and Walrand (1995): the prefactor of the exponential term
considerably improves accuracy. Note that the prefactor depends upon whether
the measure of interest is resource-based or stream-based.

3.1.3  Approxzimate linearity

How well approximated is the region (3.6) by the linearly constrained region
(3.7)? Some insight may be obtained from the Gaussian case, where explicit
calculations are easy to perform. Suppose that

sa?

aj(s) = /\j =+ -7 R
2
corresponding to a normally distributed load with mean A; and variance crjz.
Then the region (3.6) becomes

> ngd+ (27 Y mjed)t < C. (3.13)
i i

The tangent plane at a point n* on the boundary of the region (3.13) is of the
form (3.7) with
* _ C - Zj ’IL;/\]
2

s* =
22 m50;
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and hence )
Yo;

Cc(1-6%)

where §* = 3. njA;/C, the traffic intensity. Thus the coefficients (3.14) will be
relatively insensitive to the traffic mix n*, provided (1 —&*)~! does not vary too
greatly with n*, or, equivalently, provided the traffic intensity is not too close to
1 on the boundary of the acceptance region.

Let C* = C — v/s*, the effective capacity appearing on the right hand side
of inequality (3.7). Then

a;(s™) =X + (3.14)

* 2
c* = C—’ym
C(1-6%)

- o variance of load

mean free capacity
We shall refer again to this simple model in Sections 3.3.1 and 3.6.2.
3.2 M/G/1 models

Next suppose that each of the processes Xj;[0, t] has independent increments, as
discussed in Section 2.5, and write a;(s) = a;(s,t), a(s) = a(s,t). Let Q be
distributed as the stationary workload in a queue with a server of capacity C
and an infinite buffer, fed by the arrival stream X|0,¢]. (More formally we could
define the queue size at time 7 as

Q(r) = (X[0,7] - Cr) — it {X[0,4] - Ct},

and let 7 — co—see Harrison 1985, p. 19, or Asmussen 1987, Chapter III, 7-8.)
Then the Pollaczek—Khinchin formula (see, for example, Asmussen 1987, p. 206,
or Kella and Whitt 1992) is simply
C — a(0)

E[e*?] = —=. 3.15

€= Gl (3.15)

Cramér’s estimate (Feller 1971) describes the tail behaviour of the distribu-

tion for (). Suppose there exists a finite constant k such that a(x) = C, and

suppose that k is in the interior of the interval on which a(s) is finite, so that
o' (k) is necessarily finite. Then Cramér’s estimate is

C—a(0) _,,

Let A(v,b) be the subset of R such that n € A(y,b) implies log P{Q > b} <

—~. Then a consequence of Cramér’s estimate is that

J\}im A(yN,bN) = A, (3.17)
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where

A={n:Y njo (%) <c}, (3.18)
j

again a region defined by a constraint of the form (3.3). Kelly (1991) notes that
A C A(7,b), and so the linearly constrained region A is a conservative global
bound, as well as an asymptotic limit.

3.2.1 Finite buffers

The above discussion concerned the proportion of time the buffer occupancy
exceeded a level b, in a queue with an infinite buffer. Next we consider what
happens if there is a finite buffer of size b, and any excess workload over this level
is lost. Note that we can construct a sample path of this process from the sample
path of an M/G/1 queue with infinite buffer: just remove the time intervals
when the workload is above b. That this construction works is a consequence
of the simple rule for overflow, and the assumption that the arrival process
has independent increments. The stationary distribution for the workload in an
M/G/1 queue with finite buffer b is thus obtained from that for the infinite buffer
case by conditioning on the event that the workload does not exceed b. From
Cramér’s estimate (3.16) it can be deduced that the proportion of workload lost
with a finite buffer of size b, L(b), satisfies

C(C - a(0))
ka!(k)a(0)

—Rb as b — oo.

L(b) ~

It follows that if Aprop(7,b) is the subset of Ry such that n € Aprop(7y,b) implies
log L(b) < —v then
Jim Aprop(YN,bN) = A.

3.2.2 Brownian input

Suppose that
X;i[0,t] = Mt + 0, Z(2)

where Z(t) is a standard Brownian motion. Then superpositions can also be
expressed in terms of a Brownian motion, Z!, as

X0, = (L m)t+ (o mye) 20,

and hence, from basic results on reflected Brownian motion (Harrison 1985),

—26(C - ¥, mi;) }

25507

Thus the constraint log P{@ > b} < —~ becomes precisely the condition

>ons (N +03 %) <c, (3.19)
;

P{sz}=eXp{
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which is just the canonical constraint (3.3) with s* = ~/b.
3.2.3 Mean delays

From the Pollaczek—Khinchin formula (3.15) it follows that EQ = &/(0)/(C —
a(0)), and hence that a constraint of the form EQ < L is satisfied if and only if

inj [ozj(O) + 0‘920)] <c.

This provides a linear acceptance region which accords with the previous example
in the case of Brownian input, but which is not, in general, of the canonical
form (3.3). In Kelly (1991) this and other possible definitions of an effective
bandwidth were considered, with emphasis on the linearity of the acceptance
region under a variety of performance criteria. In this paper we explore a different
perspective, one which emphasises the unifying role of the definition (2.1) under
a variety of multiplexing models.

3.3 Buffer asymptotic models

Tail probabilities decay exponentially in models more general than the M/G/1
queue. Suppose that @) is distributed as the stationary workload in a queue with
a server of capacity C and an infinite buffer, fed by an arrival stream X [0, ¢] with
stationary and ergodic increments. Thus we weaken the M/G/1 assumption of
independent increments to an assumption of ergodic increments. Suppose that

tli)rgo a(s,t) = a(s) (3.20)

and that there exists a finite constant k such that a(x) = C, and «'(k) is finite.
Then

1
Jim 3 log P{Q > b} = —& (3.21)

(Kesidis et al. 1993; Chang 1994; Glynn and Whitt 1994). Thus the rela-
tions (3.17), (3.18) hold in this more general context.

The examples of Section 2.3 show that even if the limit (3.20) exists, conver-
gence to the limit may be arbitrarily slow; further, for finite values of ¢, a(s,t)
may be much smaller or larger than the limit a(s). The examples of Choudhury
et al. (1994) can be interpreted as further illustrations of this phenomenon. The
usefulness of the limit (3.21) thus depends on the rate of convergence to this
limit, and whether convergence has essentially occurred on the time scales of
interest. Interestingly, the GI/G/1 or M/G/1 models provide a natural choice
of time scale. For example, suppose the limit (3.20) is approximately of the
form (2.11) appropriate for an M/G/1 model. Under this model the time taken
to empty a full buffer is of order t; = b/(C — «(0)), while the time taken to fill an
empty buffer is of order to = b/(ka/(k)), as b increases (see Tse et al. 1995 for a
valuable discussion of regenerative structure in this model). For the asymptotic
(3.21) to be appropriate, a(x,t) should have essentially converged to its limit
a(k) by time scales ¢ in the region of ¢1,t2; and «a(s,t) evaluated in this region
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should be used in estimates such as (3.16).

The limit (3.20) may not, however, be capable of representation in the form
(2.11) appropriate for an M/G/1 model, or even in the form (3.4) for any ran-
dom variable. The form (3.4) is differentiable, while, for example, the function
(2.13),(2.14) obtained from a shaped process has a discontinuous derivative at
the critical point s = (C — X)/o?, where there is a transition away from a regen-
erative regime.

Duffield and O’Connell (1996) have extended buffer asymptotics to examples
where the limit (3.20) does not exist, but where, with a suitable rescaling, a large
deviation principle may still be applied. We illustrate their result with a simple
example.

3.3.1 Fractional Brownian input
Suppose that «a(s,t) is given by expression (2.8), corresponding to fractional
Brownian motion with Hurst parameter H. Then Duffield and O’Connell (1996)
show that
log P{Q > b 1 -\
-2 (O=4) (C ) (1 - H)~20-1) (3.22)

oo B20—H) 252 \ H

agreeing with an earlier bound of Norros (1994).

Next suppose that
2

aji(s,t) = Aj + %J st2H =1 (3.23)
so that a(s,t), given by relation (3.2), corresponds to a superposition of fractional
Brownian sources, all sharing the same Hurst parameter H. Then from the
result (3.22) it is possible to deduce (Duffield et al. 1994) that the condition
P{Q > b} < e~ becomes (asymptotically, as 7,b — oo with ~/b21=#) held
constant) the condition

d C—-Y7_ nj)\ 2
2y njo? < b= (%”) (1— H)~20-1), (3.24)

i=1

Observe that for H = 1/2 this is just the (exact) condition (3.19), while as
H — 1 it approaches the condition (3.13). The major effect of long range order
is thus on the scaling relationship between ~, b and C, as discussed by Norros
(1994), rather than on the geometrical form of the acceptance region A. We
shall return to this point later, in Section 3.6.2, where we shall also discuss the
connection between inequality (3.24) and the form (3.3).

3.4 Deterministic multiplexing

Suppose the arriving work is dealt with by a server of capacity C with a finite
buffer of capacity b, initially empty. Under what condition is the capacity of the
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buffer never exceeded? The condition is (Cruz 1991) that n € A where
A= (N A, (3.25)
0<t< o0

an intersection of linearly constrained regions

g (3.26)

Ar=(n: anaj(oo,t) <C+
J

3.4.1 Policed sources

Recall that in Section 2.5 we discussed policed sources. If

B
aj(oo,t) = pj + TJ

corresponding to a source policed by parameters (p;, 5;), then
A=A NAx

where

Ag={n: anﬁj <b}, Ax={n: anpj <C}.
J J

Note that if 3;/p; does not vary with the source type j, then the boundaries of
the regions Ay and A, are parallel.

3.4.2 Multiple policers
If

, Bik
ajtoe.t) = uin { o+ 2

corresponding to a source policed by a finite set K; of parameter choices, then
A can be written as an intersection of a finite collection of sets A;. For example,
if K; ={1,2,...,K},if (Bjx,k=1,2,...,K) is an increasing sequence for each
j=1,2,...,J, and if the ratios
ty = Bir+1 — Bjk (3.27)
Pik — Pjk+1

do not vary with the source type j and are increasing in k, then

K
A=) Au,
k=0

where tg = 0 and tg = oc.

3.5 Brownian bridge models

When several independent periodic sources, of type (2.6), are superimposed, the
resulting process can be approximated by a Brownian bridge (for a recent review



Notes on Effective Bandwidths 19

see Hajek 1994). This motivates study of the source
in[O,t] e )\jt + O'jZ()(t — I_tJ)

where Zy(t),0 <t < 1, is a standard Brownian bridge. Then

02

a;(s,t) =X + = 2t (t— [t])(T + [t] —1)- (3.28)
For example, a periodic source, with period 1 and burst size 3, might be approx-
imated by A; = B;,0; = B;: this example is of some interest as a conservative
description of sources policed by parameters (p;,5;), where the ratio 8;/p; does
not vary with source type, and where setting the ratio to 1 simply fixes the time
unit. Superpositions can also be expressed in terms of a Brownian bridge, Z{,

* X0, ] _an)\ t+( ana )2 Zi(t - [t]).

The condition for the queue to be stable is just

an)\j < C. (329)

Given this, the stationary probability P{Q > b} is

P{orgfg)i{X[O’t] —Ct} > b} :exp{z n (b+C— an }
J J
(Hajek 1994, p. 150), and this probability is less than e~7 if and only if

Zn, <,\ + 02 26) <b+C. (3.30)

This constraint does not, in general, imply the condition (3.29).

Thus two linear constraints (3.29) and (3.30) are equivalent to the condition
that log P{@ > b} < —v. Constraint (3.29) is of the canonical form (3.3)
with t* = oco. Constraint (3.30) may be thrown into the form (3.3), with for
example the choice (s*,t*) = (2v/b,1/2). This example will be explored further
in Section 3.6.1.

3.6 Buffer and source asymptotics

In Sections 3.1 and 3.3 we described asymptotic results when the number of
sources or the buffer size, respectively, increased. Recently Botvich and Duffield
(1995), Simonian and Guibert (1995) and Courcoubetis and Weber (1996) have
obtained important results when the number of sources and the buffer size in-
crease together, the regime considered in a key early paper of Weiss (1986).
Again suppose that the arrival process is given by the superposition (3.1),
where the increments of X;;[0, ] are stationary. Let L(C, b,n) be the proportion
of workload lost, through overflow of a buffer of size b > 0, when the server has
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rate C' and as usual n = (ny1,n2,...,ny). Then the above authors establish that

.1 .
A}E)noo N log L(CN,bN,nN) = sup ugf [st;njaj(s, t)—s(b+Ct)]. (3.31)

Let A(y, C, b) be the subset of R] such that n € A(y,C,b) implies log L(C, b,n) <
—~. As in Section 3.2, the limit (3.31) is strictly increasing in each component
of n, and hence

lim AON.CNWN) _
N—>oo N
where
A= (] A (3.32)
0<t<o0
with
Ay = {n :inf [sthjaj(s,t) —s(b+Ct)] < —7}, (3.33)
J

a region with convex complement in Ri. Moreover, if the boundary of the region
A is differentiable at a point n*, then the tangent plane is

anaj(s*,t*) =C+ tﬁ* - sjt* (3.34)
J
where (s*,t*) is an extremizing pair in relation (3.31) with n replaced by n*.
Thus a constraint of the canonical form (3.3) emerges as an asymptotic local
limit, local in variations of the traffic mix n.

It is interesting to compare the regions (3.32) and (3.33) with corresponding
regions obtained in earlier Sections. Consider the model of Section 3.1, where
several formal comparisons are possible. If b = 0, then A; is increasing in ¢, by the
final remark of property (ii), and so A = Ay. We recover the region (3.6), with
the interpretation a;(s) = limy_ o (s/t,t). Or,if b > 0 and «;(s,t) depends on
s, t only through the product st, then A; is decreasing in t and so A = A,,. Again
we recover the region (3.6) with the interpretation a;(s) = a;(s/t,t),t > 0. If
a;(s,t) is independent of ¢, as discussed in Section 3.2, then the envelope of the
regions A; is the linear boundary of the region (3.18).

The results of Section 3.1 concern a regime where the time taken to fill a
buffer is much shorter than the time periods over which sources fluctuate, while
the results of Section 3.3 concern a regime where it is much longer. In both cases
the limit results concern the behaviour of a(s,t) for ¢ near zero or infinity. The
great advantage of the limiting regime described in this Section is that allows
the shape of the effective bandwidth a(s,t) to identify the relevant time scale
implicitly, and, in general, the region (3.32) will depend upon af(s,t) evaluated
at finite values of t. A simple illustration of this is provided by the limit as
~v — 00, when the region (3.33) shrinks to the region (3.26) of Section 3.4; thus
in example 3.4.2 there is a single linear constraint for each of the time constants
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(3.27). A more subtle illustration is provided by examples 3.6.1 and 3.6.2 below.
Several further examples are discussed in detail by Botvitch and Duffield

(1995), Simonian and Guibert (1995) and Courcoubetis and Weber (1996). Si-

monian and Guibert (1995) also describe bounds and estimates that parallel the

tilted approximations (3.11), (3.12).

3.6.1 A Brownian bridge model

Suppose that a;;(s,t) is given by expression (3.28). Then the set (3.32) becomes

A= (] ANAw=A01NAx
0<t<1
where A(g,1) and A, are simply the regions (3.30) and (3.29) respectively; recall
that for the Brownian bridge model of Section 3.5 the acceptance region A is
exact for finite values of v, C and b.
3.6.2 Fractional Brownian input

If aji(s,t) is given by expression (3.23), then the tangent plane (3.34) uses the
space and time scales!

. Y H b
—21-H)Y, =
S=AL-H)y, (1—H)C—Ejn;,\j

and the acceptance region (3.32) becomes
L1
1-H\" 2\ 77
H(—— (27> mjo})™ +> mid; < C. (3.35)
J J

This is just condition (3.24), although the limiting regime is different. Note
that the region (3.35) is convex or concave (has convex complement) according
as H < L or H > 1. Regions that are neither convex nor concave can be
constructed by allowing the Hurst parameter H to vary with source type.

If H = § the condition (3.35) is just the linear constraint (3.19). Even the
most extreme values of H produce rather well behaved acceptance regions: as
H — 1 the inequality (3.35) approaches the condition (3.13), and as H — 0 it
approaches the conditions

an/\j S C, 272”]'0'12‘ S b2,
J J

1The published version of this paper has a mistake in its formula for ¢* (the exponent of
the first term in the published version should be —1/2H, not 1/2H): I'm grateful to Yih-
Choung Teh for pointing this out. But in addition the published expressions for s* and
t* are not as simple as those above. I'm grateful to Bong Ryu for providing the expres-
sion above for t*, an expression that appears in his paper with Anwar Elwalid entitled ” The
Importance of the Long-Range Dependence of VBR Video Traffic in ATM Traffic Engineer-
ing: Myths and Realities,” Proc. ACM SIGCOMM ’96 Stanford University, CA, available at
http://www.wins.hrl.com/people/ryu. The expressions above make clear that the space scale
s* is inversely proportional to b, and the time scale ¢* is linear in b, for given values of v, C,
and n.
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a limiting acceptance region with a similar geometrical form to that found in
example 3.4.1.

3.7 Priorities

Multiple time and space scales may also arise for certain priority mechanisms.
Suppose a single resource gives strict priority to sources j € Ji, which have a
strict delay requirement, but also serves sources j € Jo, which have a much less
stringent delay requirement. Then two constraints of the form

Z CMj(Sl,tl) S Cl, Z Oéj (Sz,tz) S Cz (336)

je1 jeJ1UJ2

may be needed to ensure that both sets of requirements are met (for several
examples, see Bean 1994, Elwalid and Mitra 1995, de Veciana and Walrand
1995). If the less stringent delay requirement becomes very weak, corresponding
to a wery large buffer and almost no sensitivity to delay, then s, will approach
zero, and o;(s2,t2) will approach EX0,t]/t, the mean load produced by source
j. The second constraint of (3.36) then becomes the simple constraint that the
mean loads of all sources should not exceed the capacity of the resource.

With several priority classes the key point remains that each priority class
may have its own characteristic space and time scale: under strict priority a
source is unaffected by lower priority sources, but will be affected by the be-
haviour of higher priority sources on its characteristic space and time scale.
Kulkarni et al. (1995) study an alternative priority mechanism, where first-in-
first-out scheduling is used and arriving work of low priority is rejected if the
workload is above a threshold.

In Section 3 we have reviewed a variety of results, emphasising their interpre-
tation in terms of effective bandwidths. Of course other perspectives are possible.
In particular, Shwartz and Weiss (1995) explore several more detailed aspects
of buffer behaviour for on-off fluid sources of the type defined in Section 2.3.2,
using this model to illustrate the considerable power of large deviation theory.

4 Tariffs and connection acceptance

The effective bandwidth of a source depends sensitively upon its statistical char-
acteristics. The source, however, may have difficulty providing such information.
Uncertain characterization of sources raises challenging practical and theoretical
issues for the design of tariffing and connection acceptance control mechanisms.
Suppose, for example, that mechanisms are based on attempts to measure the
effective bandwidth of a connection, perhaps by estimating expression (2.1) using
an empirical averaging to replace the expectation operator. Is this satisfactory?
Suppose a user requests a connection policed by a high peak rate, but then hap-
pens to transmit very little traffic over the connection. Then an a posteriori
estimate of quantity (2.1) will be near zero, even though an a priori expectation
may be much larger, as assessed by either the user or the network. If tariffing
and connection acceptance control are primarily concerned with expectations of
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future quality of service, and if sources may be non-ergodic over the relevant
time scales, then the distinction matters.

In this Section we describe an approach to tariffing and connection accep-
tance control mechanisms that can make effective and robust use of both prior
declarations and empirical averages. The key idea is the use of prior declarations
to choose a linear function that bounds the effective bandwidth (as illustrated
in Fig. 5); tariffs and connection acceptance can then be based upon the rela-
tively simple measurements needed to evaluate this function.

Although an individual source may be poorly characterized, certain features
of the aggregate load on a resource may be known. In this Section we assume
that the key constraints (3.3), and the critical space and time scales appearing
in these constraints, have been identified.

4.1 Charging mechanisms

Let
Z = Ee* X7t (4.1)

and rewrite expression (2.1) as
1
a(Z) = por log Z, (4.2)

where the notation now emphasizes the dependence of the effective bandwidth
on the summary Z of the statistical characteristics of the source.

Suppose that, before the call’s admission, the network requires the user to
announce a value z, and then charges for the call an amount f(z;Z) per unit
time, where Z is estimated by an empirical averaging. We suppose that the
user is risk-neutral and attempts to select z so as to minimize the expected cost
per unit time: call a minimizing choice of z, % say, an optimal declaration for
the user. What properties would the network like the optimal declaration Z to
have? Well, first of all the network would like to be able to deduce from Z the
user’s a priori expectation (4.1). A second desirable property would be that the
expected cost per unit time under the optimal declaration Z be proportional to
the effective bandwidth (4.2) of the call. In Kelly (1994a) it is shown that these
two requirements essentially characterize the tariff f(z; Z) as

f(z2) =a(z) +b(2)Z, (4.3)
defined as the tangent to the curve a(Z) at the point Z = 2.
4.1.1 On-off sources

Consider the very simple case of an on-off source which produces workload at a
constant rate h while in an ‘on’ state, and produces no workload while in an ‘off’
state. Suppose the periods spent in ‘on’ and ‘off’ states are large, so that the
effective bandwidth is given by expression (2.9) with a4 (s,t) = h and p = M/h.
Here M and h are respectively the mean and peak of the source. If h is fixed
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8 “|alm, k] + b[m, A]M effective bandwidth

0 T T T
0 4 8
Mean rate, M

Fia. 5. Implicit pricing of an effective bandwidth. The effective bandwidth is
shown as a function of the mean rate, M. The user is free to choose the
declaration m, and is then charged an amount a[m,h] per unit time, and
an amount b[m,h] per unit volume. The values of a[m,h] and b[m, h] are
determined from the tangent at the point M = m.

and known (it may, for example, be policed) then

M
Z=1+— (e —1). (4.4)
(Kelly 1994b provides a numerical illustration of the choice, discussed theoreti-
cally in Section 3.1, of the parameter st.) If we let z be defined by expression (4.4)
with M replaced by m then the tariff (4.3) may be rewritten as

alm, h] + b[m, h| M, (4.5)

the tangent to the function

1 M
a[M,h] = — log |1+ — (et —1
[M,h] = — log |1+ 5~ ( )
at the point M = m (see Fig. 5). Note the very simple interpretation possible
for the tariff (4.5): the user is free to choose a value m, and then incurs a charge
alm, h] per unit time, and a charge b[m, h] per unit of volume carried.

4.1.2 Priorities

Next we consider an example where it may be important to tariff several con-
straints of the form (3.3) simultaneously. Consider the model of Section 3.7,
where there are several priority classes. Let Zy, ar(Z), 2k, fr, ar, by be defined
as in relations (4.1)—(4.3), but with (s,%) replaced by (sg,t;). Then a tariff for
priority class j of

FO((zr)r; (Zr)r) = ch [ar(zx) + br(2k) Zi]

k>j
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has the required incentive properties, where ¢ is a weight, or shadow price,
attached to the k*" constraint from the collection (3.36).

4.2 Connection acceptance control

We now describe how the coeflicients defined in Section 4.1 can be used as the
basis of a simple and effective connection acceptance control.

Suppose that a resource has accepted connections 1,2, ..., I, and write (a;, b;)
for the coefficients (a(z;),b(z;)) chosen by the user responsible for connection %
at the time that the connection was accepted. Suppose also that the resource
measures the load X;[r, T + t] produced by connection i over a period of length
t, and let Y; = exp(sX;[r,7 + t]). Define the effective load on the resource to be

I
Z(ai +b;Y5).
i=1
Then a connection acceptance control may be defined as follows. A new request
for a connection should be accepted or rejected according as the most recently
calculated effective load is below or above a threshold value, with the proviso
that if a request is rejected then later requests are also rejected until an existing
connection terminates.

4.2.1 On-off sources

Consider again the simple case of on-off sources described in Section 4.1.1. Let
h; be the fixed and known peak of connection ¢, write (a;,b;) for the coeffi-
cients (a[m;, h;], blm;, h;]) chosen by the user, and let the measured load from
connection ¢ be M; = X;[r,7 + t]/t. Then the effective load on the resource

becomes
I

Z(ai + b M;),
i=1
to be compared with a threshold value.

An advantage of the on-off model, both for tariffing and connection accep-
tance control, is that it bounds other more complex source models. The reader
surprised that schemes using only simple load measurements can guarantee strict
quality of service requirements should see Gibbens et al. (1995), where issues of
robustness and performance are investigated in some detail.

Of course on-off sources may, on a finer time scale, have more detailed struc-
ture, as in example 2.3.4. This may give rise to additional constraints of the
form (3.3). There are a range of responses possible, ranging in complexity and
conservatism. The models of Sections 2.3.1 or 3.5 might be appropriate as a con-
servative bound when source ¢ is policed by parameters (p;, 8;), where 3;/p; = 1;
this approach is described for a single source type in Gibbens et al. (1995, Sec-
tion 6). A less conservative approach would use the same space and time scales,
around (s,t) = (2v/b,1/2), to assess the aggregate fine time scale load (4.1).
Work in progress concerns how such connection acceptance controls might be
implemented.
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