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Processor sharing discipline

Kleinrock, 1967, 1976: Boxma tutorial, informs 2005

« Often attractive in practice, since gives
— rapid service for short jobs

— the appearance of a processor continuously
avallable (albeit of varying capacity)

 Tractable analytically — a symmetric discipline.
E.g. for M/G/1 PS

X
C-p
(similar tractability for LCFS, Erlang loss system,

networks of symmetric queues)

E[sojourn time, S | jobsize, x|=



The M/G/1 processor sharing queue
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The M/G/1 processor sharing queue
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The M/G/1 processor sharing queue
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The M/G/1 processor sharing queue
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In both cases, of course!

E[S |x]= CX



What Is the network equivalent?

set of resources

set of routes

If resource ] Isonroute r
otherwise

J

R
1
0

A,
A,
route

J 'eSource




Rate allocation

n. - number of flows on route r

r

x. - rate of each flow on route r

Given the vector n=(n,reR)
how are the rates  x=(x,reR)
chosen ?



Optimization formulation

Suppose x=x(n) ischosen to

-

maximize ZW
—
<

subject to ZAJr n, C, jel

X, 20 reR

(weighted ¢-fair allocations, Mo and Walrand 2000)

1-a
O<a<ow (replace f" by log(x,) If aa=1)




Solution

/ \1/0:

W
X = ' reR

r ZAjr pj(n)
\ J

where YA nx< C jed; x,=20 reR

p,(nN)=0 jelJ KKT

_ conditions
p(n)( ZA,r : rj— jed

p;(n) - shadow price (Lagrange multiplier) for the
resource | capacity constraint



Examples of a-fair allocations

1-a
imi X
maximize Zwrnr 1r
- / \1/05
subject to ZAJI’ n X < C Jel X, = bl reR
2. Arp;(n)
X, 20 reR N /

maximum flow
proportionally fair

TCP fair
max-min fair

a—>0 (w=1)

a—1 (w=1)
a=2 (w =1/T°)
a—>o (w=1)



n.=1 w =1reR,
Example C -1jel

1/2 1/2
max-min fairness:
o —> 0 1/
proportlonal fairness: + *

maximum flow:
a—>0



Source:.CAIDA



http://mappa.mundi.net/maps/maps_020/index.html#walrus

Source: CAIDA -
Young Hyun,

Bradley Huffaker
(displayed at MOMA)




Flow level model

Define a Markov process n(t) =(n,(t), r e R)
with transition rates

n—>n+1 atrate v reR

r

n —»>n-1 atrate n x(n) g reR

- Poisson arrivals, exponentially distributed file sizes

Roberts and Massoulié 1998




Stability

V

Let o, =— TeR
Hy
If YA, pp < C jel

then the Markov chain  n(t) =(n.(t), r € R)
IS positive recurrent

De Veciana, Lee & Konstantopoulos 1999;
Bonald & Massoulié 2001




Multipath routing

Suppose a source-destination pair has access to
several routes across the network:

sSource

route

resource

destination

S - set of source-destination pairs
res - route r servess-d pair s



Example of multipath routing

Routes, as well as flow rates,

are chosen to optimize

Zns log(x;) over source-destination pairs s
S



First cut constraint

nx, +n,x, <C, +C,

Cut defines a single pooled resource



Second cut constraint

1
5 nX +NX, <C,

Cut defines a second pooled resource



Product form

a=1w =1 reR

In heavy traffic, and subject to some technical conditions,
the (scaled) components of the shadow prices p for the
pooled resources are independent and exponentially
distributed. The corresponding approximation for n is

ns z/Osz ijjs SES

where
0 o
p, ~Exp(Ci—> Aisp,) je

Dual random variables are independent and exponential

Kang, K, Lee and Williams 2009
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What we've learned about highway congestion

P. Varaiya, Access 27, Fall 2005, 2-9.

FIGURE 1

Speed vs. Flow on I-10
westbound in 5 minute

imtervals fram 4:00 am
to &:00 pm


http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/accessF05v2.pdf
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Data, modelling and

inference in road traffic

networks

R.J. Gibbens and Y. Saatci
Phil. Trans. R. Soc. A366
(2008), 1907-1919.


http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract

A linear network

m,(t) =m, (0) +&,(t) - [ A,(m(s))ds, >0

/

queue
size

|

cumulative
Inflow

N

metering
rate

K and Williams
2010




Metering policy

Suppose the metering rates can be chosen to be
any vector A =A(m) satisfying

ZAjiAiS C,, jel

A>0 1€l

A, =0, m=0
and such that

m,(t) =m, (0) +& (1)~ [ A,(m(s))ds >0, >0



Optimal policy?
Foreachof 1 =1,1-1, ...... 1 1n turn choose

j;Ai (m(s))ds > 0

to be maximal, subject to the constraints.

This policy minimizes
2. (t)

for all times t



Proportionally fair metering
Suppose A(m)=(A;(m),iel) ischosen to

maximize > m; log A,

subject to ZAJ" A< Cp o Jeld

A >0, 1€l
A; =0, m =0



Proportionally fair metering

m

D PiA;

J

Ai (m) —

where A =20, 1€l
YA NS CL o jel

conditions
pj(cj YA Aijzo, jeld

P; - shadow price (Lagrange multiplier) for the
resource | capacity constraint
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Fig. 2 A sample of the international financial network, where the nodes represent major financial
institutions and the links are both directed and weighted and represent the strongest existing relations
among them
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Chart 3.2 Network of large exposures between
UK banks(a)(b)(c)

Source: FSA returns.

(@) Alarge exposure is one that exceeds 10% of a lending bank’s eligible capital at the end of a period. Eligible capital is defined as Tier 1
plus Tier 2 capital, minus regulatory deductions.
(b) Each node represents a bank in the United Kingdom. The size of each node is scaled in proportion to the sum of (1) the total value of

exposures to a bank, and (2) the total value of exposures of the bank to others in the network. The thickness of the line is proportional to the
value of a single bilateral exposure.

(€) Basedon 2009 Q2 data. http://www.bankofengland.co.uk/financialstability/




Schematic model for a ‘node’ in the IB network.
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Stylised bank balance sheet

Liabilities Assets
external
deposits assets




Stylised bank balance sheet
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Erlang’s formula

e calls arrive randomly, at rate a
e resource has C circuits

e accepted calls hold a circuit for a
random holding time, with unit mean

 blocked calls are lost

e proportion of calls lost is:




A loss network

NN

Link constraint: ZA(L nn(r)<C(j)



Resource pooling

AIms:

 respond robustly to failures and overloads
 |lessen the impact of forecasting errors

* make use of spare capacity in the network
o permit flexible use of network resources

Problems:
e Instability
o complexity



Example: alternative routing

« Complete graph

 All links have
capacity C

 Call routed directly
If possible;
otherwise one
randomly chosen

alternative route
may be tried

Marbukh 1984, Gibbens, Hunt, K 1990,
Crametz, Hunt 1991, Graham, Méléard 1993, 1994




alternative routing

Arrival rate per link - a
Capacity per link - C
Let B Dbe the link blocking probability

Then as the number of nodes grows, the blocking
probability B approaches a solution of:

B = E(a[l+ 2B(1- B)],C)



Instability, and hysteresis

link blocking
probability, B
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s bistability
50

call holding times



Sudden impact of capacity

Feedback signal
(loss, delay, price,...)
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Open guestions on resource pooling

* Resource pooling does indeed
— respond robustly to failures and overloads
— lessen the impact of forecasting errors
— make use of spare capacity in the network
— permit flexible use of network resources

e But
— can produce phase transitions if load amplified
— obscures the approach of capacity overload

e Can decentralised control take account of
system-wide risks?



The future?

 Many mathematical challenges, associated
with the combination of network flow and
stochastic models of resource possession

 Applications to controlled motorways,
router design, systemic risk
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