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Outline

e Rate control in communication networks
(relatively well understood)

* Philosophy: optimization vs fairness

 Ramp metering (very preliminary)
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Network structure

set of resources

set of routes

If resource ] Isonroute r
otherwise

g 'esource

route



Rate allocation

n. - number of flows on route r

r

x. - rate of each flow on route r

Given the vector n=(n,reR)
how are the rates  x=(x,reR)
chosen ?



Optimization formulation

Suppose x=x(n) ischosen to

—a

maximize ZW
—
S

subject to ZA" n, C, jel

X, 20 reR

(weighted -fair allocations, Mo and Walrand 2000)

1-a
O<a <o (replace fr by log(x.) 1If a¢=1)




Solution
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r ZAjr pj(n)
\ | J

reR

where YA nx< C, jel; x>0 reR

conditions
pj(n)(cj _ZAjr n, er >0 Je

p;(n) - shadow price (Lagrange multiplier) for the
resource | capacity constraint



Examples of a-fair allocations

l1-a

maximize ZW n X
rr
1_a / \1/0{
- W
SUbjeCttO ZAJF nrXr— C JE‘] X, = A r reR
Z jr pj(n)
X, 20 reR \ J

maximum flow
proportionally fair

TCP fair
max-min fair

a—>0 (w=1)

a—1 (w=1)
a=2 (w =1/T°)
a—>o (w=1)



n=1 w =1reR,
Example C -1jel

1/2 1/2
max-min fairness:
o, —> O 1/
proportlonal fairness: + *

maximum flow:
a—>0



Source:.CAIDA



http://mappa.mundi.net/maps/maps_020/index.html#walrus
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Source: CAIDA -
Young Hyun,
Bradley Huffaker
(displayed at MOMA)



Flow level model

Define a Markov process n(t) =(n.(t), r eR)
with transition rates

nn—>n+1 atrate v reR

r

n ->n-1 atratt n x Ny reR

- Poisson arrivals, exponentially distributed file sizes

Roberts and Massoulié 1998




Stability

1%
Let o, =— TeR

Hy
If ZAerOr < C; Jel

then the Markov chain ~ n(t) =(n (t), r € R)
IS positive recurrent

De Veciana, Lee & Konstantopoulos 1999;
Bonald & Massoulieé 2001




Heavy traffic: balanced fluid model

The following are equivalent: a=1

N IS an invariant state
e there exists a non-negative vector p with

n, :iZAjrpj reR
He i

Thus the set of invariant states forms a J
dimensional subspace, parameterized by p.
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Each bounding face correspon

to a resource not working at full
capacity

Entrainment: congestion at some
resources may prevent other
resources from working at their
full capacity. W1




Stationary distribution?

Williams (1987) determined sufficient conditions, in
terms of the reflection angles and covariance matrix, for
a SRBM in a polyhedral domain to have a product form
Invariant distribution — a skew symmetry condition



|_ocal traffic condition

Assume the matrix A contains the columns of the
unit matrix amongst its columns:

( . 100 0 0

. 01000

A = 00100
. 00010

’ 0000 1

1.e. each resource has
some local traffic -




Product form under [kang, K, Lee and

proportional fairness Williams 2009

a=1w =1 reR

Under the stationary distribution for the reflected
Brownian motion, the (scaled) components of p
are independent and exponentially distributed.
The corresponding approximation for n is

nrzprZAjrpj FER
where J

Pj ~ Exp(Cj _ZAjrpr) e

Dual random variables are independent and exponential
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What we've learned about highway congestion

P. Varaiya, Access 27, Fall 2005, 2-9.

FIGURE 1

Speed vs. flow on 1-10
westhaund in 5 minute
intervals from 4:00 am
to &:00 pm


http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/accessF05v2.pdf
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Data, modelling and

inference in road traffic

networks

R.J. Gibbens and Y. Saatci
Phil. Trans. R. Soc. A366
(2008), 1907-1919.


http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract

A linear network

Tz

m (t) = m. (0) +& () - I;Ai (m(s))ds, t>0

/ |

queue cumulative metering
size Inflow rate




Metering policy

Suppose the metering rates can be chosen to be
any vector A =A(m) satisfying

ZAjiAiS C,, jel

A>0 1el

A;=0, m =0
and such that

m,(t) =m, (0) +&, (1)~ [ A(m(s))ds >0, >0



Optimal policy?
Foreachof 1 =1,1-1, ...... 1 In turn choose

j:Ai (m(s))ds > 0

to be maximal, subject to the constraints.

This policy minimizes
2. mi(t)

for all times t



Proportionally fair metering
Suppose A(m)=(A,(m),iel) ischosento

maximize > m; log A,

subject to ZAji A< Gy, Jeld

A >0, 1€l
Aizol m|:O



where

Proportionally fair metering

m,

D PiA;

J

Ai (m) —

A=>20, 1€l
ZAjiAiS C,, jel

p; =20, Jel

pj(Cj —ZAji AiJZO, jel

KKT
conditions

P; - shadow price (Lagrange multiplier) for

the resource | capacity constraint



Brownian network model

Suppose that (g (t),t >0) isa Brownian
motion, starting from the origin, with drift p.
and variance p.c’. Let

X;®)=2 Aet)-Cit

Then  X(t)=(X;(t),JeJ) isaJ-dimensional
Brownian motion starting from the origin
with drift —-0=Ap-C

and variance T =g’A[p]A’



Brownian network model

et W = A[p]A'Ri
and W' ={Ap]A: geR], q,=0}

Define W (t) by the following relationships::

i) W({t)=X({)+U(t) forall t>0

(i1) W has continuous paths,W (t) e W

(1) foreach je J,U, isaone-dimensional processsuch that

(@) U; Iscontinuousand non -decreasing, with U (0) =0,

(b) U, (t) = j; {W (s) € W'3dU (s) forall t>0.



Brownian network model

If gj >0, jeJ, thenthere isaunique
stationary distribution W under which the
components of

Q=(Alp]A)"W

are independent, and Q, is exponentially
distributed witzh parameter

9 9.
2 J
and queue sizes are given by

M =[p]AQ

jed



Delays

Let D, (m) = An(]lm)

- the time 1t would take to process the work In
queue 1 at the current metered rate. Then

Di(M): ZQjAji

Q+Q, +Q; QrQ 2

Triz




A tree network
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A tree network
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Route choices
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Route choices
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Route choices
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Route choices
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Brownian network model

* As Mike has cogently argued, for many
applications it may be easier to describe
the workload arrival process in terms of the
mean and variance of a Brownian motion.

* |If relevant time periods long enough,
negative increments less likely.

e The Brownian model exposes structure in a
way that more detailed models (e.g. MDP
models) do not.
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