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End-to-end congestion control

Senders learn (through feedback from receivers) 
of congestion at queue, and slow down or speed 
up accordingly. With current TCP, throughput of 
a flow is proportional to 

senders receivers

)/(1 pT

T = round-trip time,  p = packet drop probability. 
(Jacobson 1988, Mathis, Semke, Mahdavi, Ott 1997, Padhye, 
Firoiu, Towsley, Kurose 1998, Floyd & Fall 1999)



Model definition

• We want to describe a network model, 
with fluctuating numbers of flows

• We first need
– notation for network structure
– abstraction of rate allocation

• Then we need to define the random nature 
of flow arrivals and departures



Network structure (J, R, A)
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Rate allocation
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w - weight of route  r

- number of flows on route r
- rate of each flow on route  r

Given the vector 
how are the rates  
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Optimization formulation
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Suppose                    is chosen to

(weighted    -fair allocations,  Mo and Walrand 2000)α
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Solution



- maximum flow  
- proportionally fair
- TCP fair 
- max-min fair)1(
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Examples of    -fair allocations  α
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Example
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Flow level model
Define a Markov chain
with transition rates
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- Poisson arrivals, exponentially distributed file sizes     
- model originally due to Roberts and Massoulié 1998   
- for a single resource (or a linear network with 
proportional fairness) we can allow arbitrary file size 
distributions  – becomes a quasi-reversible node  



Example: a linear network
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Quasi-reversible,
with:



If JjCA jr
r
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Stability

De Veciana, Lee & Konstantopoulos 1999;  
Bonald & Massoulié 2001

then the Markov chain
is positive recurrent
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Suppose vertical streams
have priority: then 
condition for stability is

and  not
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What goes wrong without fairness?

Bonald & Massoulié 2001



Heavy traffic
We’re interested in what happens when we approach 
the edge of the achievable region, when

JjCA jr
r
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Fluid model for a network operating under a fair bandwidth-sharing 
policy.  K & Williams   Ann Appl Prob 2004 
Product form stationary distributions for diffusion approximations to 
a flow level model operating under a proportional fair sharing policy.
Kang, K, Lee & Williams  Performance Evaluation Review 2007 
State space collapse and diffusion approximation for a network 
operating under a proportional fair sharing policy.
Kang, K, Lee & Williams   



Fluid and diffusion scalings

Consider a sequence of networks, labelled by N, 
where as
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Fluid scaling:                   Diffusion scaling:

N
tNn

N
Ntn NN )()( 2



Fluid and diffusion scalings 
(after Harrison, Bramson, Williams)

Fluid scaling:                             Diffusion scaling:
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On this time scale, traffic and 
capacity  are balanced, and we 
expect a law of large numbers

On this time scale, there is a 
drift of  θ,  and we expect a 
central limit theorem



Balanced fluid model
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State space collapse: invariant manifold

The following are equivalent:
• n is an invariant state
• there exists a non-negative vector p 
with 
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Thus the set of invariant states forms a  J 
dimensional manifold, parameterized by  p. 



A potential function

1
1

1
1)(

+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∑
α

α

ν
μν

α r

r
r

r
rr

nwnFLet 

(following Bonald and Massoulié 2001).  Then

0))((
d
d

≤tnF
t

with equality only if  n is an invariant state.



Workloads
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)(ˆ Wpj - Lagrange multiplier for the 
resource  j workload constraint 

Extremal characterization of an 
invariant state
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Evolution of functions F

potential function

t
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period where
workload is increasing

extremal value, 
given workloads
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provides a Lyapunov function which shows 
convergence to the invariant manifold



The case  α  = 1
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Example
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Each bounding face corresponds 
to a resource not working at full 
capacity
Entrainment: congestion at some 
resources may prevent other 
resources from working at their 
full capacity. 1W
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Stationary distribution?
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02 =p

01 =p

1p

2p

Williams (1987) determined sufficient conditions, in 
terms of the reflection angles and covariance matrix, for 
a SRBM in a polyhedral domain to have a product form 
invariant distribution – a skew symmetry condition 



Local traffic condition
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Assume the matrix  A contains the columns of the 
unit matrix amongst its columns:

i.e. each resource has 
some local traffic -



Product form under 
proportional fairness

Rrwr ∈== ,1,1α
Under the stationary distribution for the reflected 
Brownian motion, the (scaled) components of  p 
are independent and exponentially distributed.
The corresponding approximation for  n is

where 
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Dual random variables are independent and exponential



Multipath routing
Suppose a source-destination pair has access to 
several routes across the network:  

resource

routesource

destination
sr

S
∈

- set of source-destination pairs
- route  r serves s-d pair  s

Combined multipath routing and congestion control: a robust 
Internet architecture. Key, Massoulié & Towsley



Routing and optimization formulation   
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( H is an incidence matrix, showing which 
routes serve a source-destination pair )



Example of multipath routing
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First cut constraint
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Second cut constraint
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Generalized cut constraints
In general, stability requires
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- a collection of generalized cut constraints.
Provided        contains a unit matrix, we again have 
the approximation

where

A

SspAn
Jj

jjsss ∈≈ ∑
∈

ρ

JjACp
s

sjsjj ∈−∑ )Exp(~ ρ

Again independent dual random variables, now 
one for each generalized cut constraint



Models of routing and congestion control

• Flow level Markov chain model
• Heavy traffic and proportional fairness give 

product form for dual variables
• A dual variable for each generalized cut 

constraint, under multipath routing
• Good behaviour, achieved without prior 

knowledge of which cut constraints bite
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