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Exercise 1. Recall the definition of a Wardrop equilibrium for the flows in a congested
network. Check that if the delay Dj(yj) at link j is a continuous increasing function of
the throughput yj of link j, then a Wardrop equilibrium exists and solves an optimization
problem of the form

minimize
∑
j∈J

∫ yj

0

Dj(u)du

over x ≥ 0, y,

subject to Hx = f , Ax = y.

In what sense is the equilibrium unique?
Suppose that, in addition to the delay Dj(yj), users of link j incur a traffic-dependent toll

Tj(yj) = yjD
′
j(yj).

Show that if users select routes in an attempt to minimize the sum of their tolls and their
delays, then they will produce a flow pattern that minimizes the average delay in the network.

Proof. The first part of the question is done in the lecture notes: the conditions for a Wardrop
equilibrium are the same as the KKT (complementary slackness) conditions for the mini-
mization problem. The equilibrium gives a unique set of y values when all Dj are strictly
increasing; but in general not a unique set of x values unless the link-route incidence matrix
A has full rank.

If we want the system problem to be

minimize
∑
j∈J

yjDj(yj)

over x ≥ 0, y,

subject to Hx = f , Ax = y

(i.e., minimizing the total rate at which traffic accumulates to everyone in the network), then
the corresponding Lagrangian is

L(x,y; λ, µ) =
∑
j∈J

Dj(yj) + λ · (f −Hx)− µ · (y − Ax)

and differentiating,

∂L
∂yj

= Dj(yj) + yjD
′
j(yj)− µj,

∂L
∂xr

= −λs(r) +
∑

j

µjAjr

The derivative with respect to yj must be zero at the minimum (yj is unconstrained), while
the derivative with respect to xr must be nonnegative, and zero if xr > 0 at the minimum.
Thus, we have µj = Dj(yj) + yjD

′
j(yj) is the “price” of link j to each customer, and λs(r) ≤
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j µjAjr with equality if xr > 0. This corresponds to users comparing the sum of “costs”

(delay + congestion charge) over all the links in their chosen route, and travelling only along
the route with the smallest total cost λs(r).

Of course, in practice there are various issues with congestion charges, for example privacy
(congestion charges are localised, which means someone needs to keep track of who went
where when, which seems poor). �

Exercise 2. In the definition of a Wardrop equilibrium fs is the aggregate flow for source-
sink pair s, and is assumed fixed. Extend the model to the allow the aggregate flow for
source-sink pair s to depend upon the minimal delay over routes serving the source-sink pair
s. For the extended model, can an equilibrium be characterized in terms of a solution to an
optimization problem?

Proof. I’ll use the letter ϕs to denote the function that gives the actual aggregate flow for the
source-sink pair s. We want the Wardrop equilibrium to be a vector of flows x = (xr, r ∈ R)
along routes with the property

∑
j∈r xr = ϕs(Ds) and

xr > 0 =⇒
∑
j∈r

Dj(yj) = min
r′∈s(r)

∑
j∈r′

Dj(yj) ≡ Ds.

where y = Ax and Ds =
∑

j∈r Dj(yj) for the route(s) with xr > 0.
Let us first of all make some sensible assumptions about the function ϕ: we expect ϕs to

be decreasing, continuous, and probably convex (we certainly want it to be nonnegative!).
Let’s also assume that it’s finite, i.e. ϕs(0) = fs < ∞.

In that case, we can still think of a model in which a finite number of people fs would
like to travel along routes serving the source-destination pair s. If there were no delays, they
would all travel; as delays build up in the network, more and more people decide that it isn’t
worth it, and stay at home.

Formally, consider a network with fixed flows fs = ϕs(0) for each source-sink pair s, but
with an extra one-link route added to each source-sink pair. The route is called “stay at
home (and SSH into work)” and has all the people who decided not to travel along the
congested roads. We will need to design the “delay” (cost) function on D̃s to this link in
such a way that the number of people who end up travelling along all the other routes is
ϕs(Ds).

Assuming the D̃s we construct is increasing and continuous, we now have the usual
Wardrop equilibrium model. In order for the extra route to be doing anything, we must
have traffic on it, which means that it must have the same “cost” as all the other routes. If
for a source-destination pair s, the number of people actually travelling is f 1

s and the number
of people staying at home is f 0

s , with f 0
s + f 1

s = fs, then we must have

D̃s(f
0
s ) = Ds = ϕ−1

s (f 1
s ) = ϕ−1

s (fs − f 0
s ).

(If the number of people actually travelling along s is f 1
s , then the delay for that source-

destination pair must be ϕ−1
s (f 1

s ), and this must be equal to the cost that the people staying
at home are incurring.) Observe that fs−f 0

s is decreasing in f 0
s , and ϕs was decreasing also,

so D̃s(f
0
s ) is increasing in f 0

s ; and if ϕs was strictly decreasing and continuous, than Ds is
continuous as well.

That is, our model will feature an extra one-link route for each soure-destination pair,
with delay function D̃s(y) = ϕ−1

s (fs − y), where fs = ϕs(0). We are interested in the usual
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Wardrop equilibrium for this model, which comes from the optimization problem

minimize
∑
j∈J

∫ yj

0

Dj(u)du +
∑

s

∫ f0
s

0

D̃s(u)du

over x ≥ 0, f0 ≥ 0, y,

subject to (
∑
r∈s

xr) + f 0
s = fs ∀s, Ax = y.

Since we showed above that D̃s is increasing and continuous, this is still a convex optimization
problem with unique maximum (in terms of y and f0). �

Exercise 3. Suppose that user r monitors its rate xr(t), and chooses wr(t) to track the
optimum to USERr(Ur; r(t)), where r(t) = wr(t)/xr(t) (the charge per unit flow to user r
at time t). Determine the consequent relationship between wr(t) and xr(t).

The primal algorithm becomes

d

dt
xr(t) = κ

(
wr(t)− xr(t)

∑
j∈r

µj(t)

)
where

µj(t) = pj

(∑
s:j∈s

xs(t)

)
.

Find a Lyapunov function for this system.

Proof. In lecture notes. The relationship between wr(t) and xr(t) is wr(t) = r(t)xr(t), but
more to the point U ′

r(xr(t)) = r(t) (or U ′
r(wr(t)/r(t)) = r(t)). This doesn’t change because I

happen to have added a funny set of symbols (t) at the end of all my variables – this is just
an expression for the location of the maximum!

The Lyapunov function is

U(x) =
∑
r∈R

wr log xr −
∑
j∈J

∫ P
s:j∈s xs

0

pj(y)dy

with derivative

d

dt
U(x(t)) =

∑
r∈R

∂U
∂xr

|x(t) ×
dxr(t)

dt
|x(t) =

∑
r∈R

κr

xr(t)

(
wr − xr(t)

∑
j∈r

pj(
∑
s:j∈s

xs)

)2

≥ 0.

The derivatives ∂U/∂xr don’t depend on time (because U doesn’t, it’s a function of the state
alone), but I’m then evaluating at the point x(t), which is how I get the time dependence
for ∂U/∂xr|x(t). �


