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Exercise 1. Show that the traffic equations for an open migration process have a unique
solution, and that this solution is positive. [Hint: From the irreducibility of the open
migration process deduce the irreducibility of a certain Markov process on J + 1 states,
and then use the fact that the equilibrium distribution for this process is unique.]

Deduce that in an open migration process αjλj is the mean arrival rate at colony j,
counting arrivals from outside the system and from other colonies.

Proof. Consider the Markov process on J + 1 states corresponding, loosely, to the case of
N = 1 person in the open migration network (state J + 1 corresponds to “rest-of-the-
universe”). The transition rates will be

q(j, k) = λjk j, k = 1, . . . , J

q(j, J + 1) = µj j = 1, . . . , J

q(J + 1, j) = νj j = 1, . . . , J

I claim that this network is irreducible. Indeed, note that in the original network the states
ej = a single individual in colony j along with the state 0 = nobody in any colony all com-
municate – possibly going through states with multiple individuals in the system. In partic-
ular, everything communicates with state 0. (State ej corresponds to j, and 0 corresponds
to J + 1.)

Now, to get from ej to 0 we need the individual in j to leave somewhere. Let us simply
trace his path through the network: it must be along edges with positive rates, and it must
terminate with a transition out of the network. If we simply look at the corresponding
transitions in the modified Markov process, they will have positive rates too (potentially
different ones – if we had a few arrivals into state j first, the rate of leaving it may have
greatly increased or decreased; however, it couldn’t have become non-zero if the transition
rate in our process is zero). Thus, we have shown that it is possible to get from j to J + 1
for all j = 1, . . . , J + 1. The reverse direction follows by tracing back the path along which
the individual who is in colony j when the system state is ej came into the network.

Now, the equilibrium distribution (α̃j) of the modified Markov process satisfies

α̃j(
J∑

k=1

λjk + µj) =
J∑

k=1

α̃jλkj + α̃J+1νj, j = 1, . . . , J

α̃J+1(
J∑

k=1

νj) =
J∑

k=1

α̃jµj

J+1∑
j=1

α̃j = 1

1
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Since the Markov process is irreducible on a finite state space, there exists a unique distri-
bution αj with these properties, and it will then assign positive probabilities to all states (as
otherwise the chain would have to be reducible).

Now, the solution to the traffic equations (αj) corresponds to the first two equations above,
but with a different normalisation, namely, αJ+1 = 1. Clearly, we can go between the two:
given αj we can produce α̃j = αj/(1 +

∑
j αj) (with α̃J+1 = 1/(1 +

∑
j αj)), and conversely

given α̃j we can define αj = α̃j/αJ+1.
Thus, we conclude existence, uniqueness, and positivity of the solution to the traffic equa-

tions.
Finally, the mean arrival rate into colony j is∑
n

π(n)(
∑

k

q(Tjkn,n)+νj) =
∑
n

π(n)(
∑

k

λkjφk(nk+1))+νj =
∑

k

λkj

∑
n

π(n)φk(nk+1))+νj

=
∑

k

αkλkj + νj = αjλj.

�

Exercise 2. Show that the reversed process obtained from a stationary closed migration
process is also a closed migration process, and determine its transition rates.

Proof. Recall that the form of the equilibrium distribution for a closed migration process is

π(n) = BN

J∏
j=1

α
nj

j∏nj

r=1 φj(r)
.

In that case, the transition probabilities for the reversed process are

q′(n, Tjk(n)) =
π(Tjk(n))

π(n)
q(Tjk(n),n) = φk(nk + 1)/πj(nj)λkjφk(nk + 1) = φj(nj)

αk/αj

λ kj
.

Note that this has the required form, with φ′j(nj) = φj(nj) and λ′jk = αk

αj
λkj. �

Exercise 3. A restaurant has N tables, with a customer seated at each table. Two waiters
are serving them. One of the waiters moves from table to table taking orders for food. The
time that he spends taking orders at each table is exponentially distributed with parameter
µ1. He is followed by the wine waiter who spends an exponentially distributed time with
parameter µ2 taking orders at each table. Customers always order food first and then wine,
and orders cannot be taken concurrently by both waiters from the same customer. All times
taken to order are independent of each other. A customer, after having placed her two orders,
completes her meal at rate ν, independently of the other customers. As soon as she finishes
her meal, she departs and a new customer takes her place and waits to order. Model this as
a closed migration process. Show that the stationary probability that both waiters are busy
can be written in the form

G(N − 2)

G(N)
· ν2

µ1µ2

,

for a function G(·), which may also depend on ν, µ1, µ2, to be determined.
In the above model it is assumed that the restaurant is always full. Develop a model in

which this assumption is relaxed: for example, assume that customers enter the restaurant
at rate λ while there are tables empty. Again obtain an expression for the probability that
both waiters are busy.
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Proof. The closed migration model will have three colonies: colony 1 “not-yet-ordered”,
colony 2 “ordered food but not wine”, and colony 3 “ordered both”. The transition rates
are

λ12 = µ1 φ1 = I[n1 > 0]

λ23 = µ2 φ2 = I[n2 > 0]

λ31 = ν φ3 = n3.

(You may notice that this looks strikingly familiar from the lectures.) We conclude that
α0 : α1 : α2 = µ−1

1 : µ−1
2 : ν−1, and

π(n1, n2, n3) = C(N)−1 1

µn1
1 µn2

2 νn3n3!

for the appropriate normalising constant C(N). The probability in which we are interested
is

P(both waiters busy) =
∑

n1>0,n2>0,n3
n1+n2+n3=N

π(n1, n2, n3) = C(N)
∑

n1>0,n2>0,n3
n1+n2+n3=N

1

µn1
1 µn2

2 νn3n3!

= C(N)−1
∑

n′
1,n′

2,n3

n′
1+n′

2+n3=N−2

1/(µ1µ2)

µ
n′

1
1 µ

n′
2

2 νn3
2 n3!

=
1

µ1µ2

C(N − 2)

C(N)
.

Now, this has almost the right shape, but it would be nicer to express the answers as
dimensionless – for example, if we were to try and scale the quantities in the problem by a
constant factor, it would be nice to be able to easily see that this probability is unchanged.
In light of this, we define

G(N) =
∑

n1+n2+n3=N

1

n3!

(
ν

µ1

)n1
(

ν

µ2

)n2

= νNC(N),

which is obviously dimensionless, and for which the desired form holds. (Quantities of the
form ρ = ν/µ, the load, are very natural in queueing theory.)

If we allow customers to leave the system after eating and to arrive to empty tables, then
we will need to have an extra colony, 0 “table empty” in our system. The transition rates
become

λ01 = λ φ0 = I[n0 > 0]

λ12 = µ1 φ1 = I[n1 > 0]

λ23 = µ2 φ2 = I[n2 > 0]

λ30 = ν φ3 = n3.

This gives

α0 : α1 : α2 : α3 =
1

λ
:

1

µ1

:
1

µ2

:
1

ν

and therefore

π(n0, n1, n2, n3) = C ′(N)−1 1

λn0µn1
1 µn2

2 νn3n3!
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We are still interested in summing over the states with n1 > 0 and n2 > 0, which will still

give an expression of the form C(N−2)
C(N)

1
µ1µ2

, or the same terminal form as before, for

G′(N) = νNC ′(N) =
∑

n0+n1+n2+n3=N

1

n3!

(ν

λ

)n0
(

ν

µ1

)n1
(

ν

µ2

)n2

Note that we can also define G′(N) = λNC ′(N) and get λ2/(µ1µ2) as the second factor. �

Exercise 4. Show that if the parameters of a stationary open migration process are such
that there is no path by which an individual leaving colony k can later reach colony j, then
the stream of individuals moving directly from j to k forms a Poisson process.

Proof. Note first of all that this does not show the system is reducible – all states can still
communicate with the state “system empty”.

Consider the communicating class of colony j, i.e. the set of colonies j′ such that an
individual can get from j to j′ and back again without leaving the system. Observe that
if we look only at the individuals in these colonies, then we have a Markov process, and
its transition rates mean that it is itself an open migration process. Consequently, the exit
stream from colony j in this process is Poisson. Now, the stream of individuals moving
directly from j to k is a probabilistic thinning of this exit stream, and therefore also Poisson.

�

Exercise 5. Airline passengers arrive at a passport control desk in accordance with a Poisson
process of rate ν. The desk operates as a single-server queue at which service times are
independent and exponentially distributed with mean µ (< ν−1) and are independent of the
arrival process. After leaving the passport control desk a passenger must pass through a
security check. This also operates as a single-server queue, but one at which service times
are all equal to τ (< ν−1). Show that in equilibrium the probability that both queues are
empty is

(1− νµ)(1− ντ).

It if takes a time σ to walk form the first queue to the second, what is the equilibrium
probability that both queues are empty and there is no passenger walking between them?

Proof. To solve the first part of the problem, recall the result that queues in a series of
M/M/1 queues are independent, and note that we can make the last queue in that a ·/D/1
queue without changing anything. Thus, the probability that both queues are empty is

P(both empty) = P(queue 1 empty)P(queue 2 empty)

(Since the arrivals to both queues are Poisson, the probability that the queue is empty when
an arrival happens is the same as the stationary probability of its being empty.) For queue 1
we know this probability exactly to be (1−νµ), but in fact it is insensitive to the service time
distribution. Indeed, we can compute the stationary probability that a queue with mean
service time τ is empty from Little’s law: let the “number in the system” be the number of
customers in service (0 or 1), in which case the probability that the system is occupied is the
expected number in system L. The sojourn time is the service time, so W = τ ; the arrival
rate is still ν, assuming the queue is stable (the customers must come up for service about
as often as they come into the queue). Thus, L = ντ , and the probability of the server being
idle is (1− ντ).
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Adding a walking time is like adding an infinite-server queue with deterministic service
time into the series queue. The event that the system is empty corresponds to the following:
firstly, we need queues 1 and 2 to be empty at time 0, and secondly, we need no departures
from queue 1 between −σ until 0. Now that the input stream for queue 2 is simply the
output stream from queue 1 shifted by σ; so the state of queue 2 at time 0 is determined by
the departures from queue 1 during the time (−∞,−σ]. The number of people walking is
determined by the departures from queue 1 during the time (−σ, 0). These are independent
of each other and of the state of queue 1 at time 0. Therefore, the desired probability is

(1− νµ)(1− ντ)e−νσ.

�

Exercise 6. Cars arrive at the beginning of a long road in a Poisson stream of rate ν from
time t = 0 onwards. A car has a fixed velocity V > 0 which is a random variable. The
velocities of cars are independent and identically distributed, and independent of the arrival
process. Cars can overtake each other freely. Show that the number of cars on the first x
miles of road at time t has a Poisson distribution with mean

νE
[ x

V
∧ t

]
.

Proof. By the theorem from lecture, we know that the number of cars on the first x miles of
road at time t has a Poisson distribution with mean

M(t, [0, x]) = ν

∫ t

0

P (u, [0, x])du,

where P (u, [0, x]) is the probability that a car is in the set [0, x] a time u after entering the
system.

Now, a car is in the set [0, x] a time u after entering the system if and only if its speed V
satisfies V ≤ x/u, or equivalently x/V ≥ u. Thus, we have

M(t, [0, x]) = ν

∫ t

0

P(
x

V
≥ u)du = νE

[ x

V
∧ t

]
.

(Here, ∧ stands for minimum.) To see the equality, recall that for a random variable X we
have E[X] =

∫∞
0

P(X > x)dx; here we simply use the fact that, for the random variable
X = min(x/V, t) the probability that X > t will be 0, so we can truncate the integral. �

Exercise 7. Recall the mathematical model for a loss network with fixed routing.
A network consists of three nodes, with each pair of nodes connected by a link. A call in

progress between two nodes may be routed on the direct link between the nodes, on on the
two link path through the third node. A call in progress can be rerouted if this will allow
an additional arriving call to be accepted. Describing carefully the modelling assumptions
you make, obtain an exact expression for the probability an arriving call is lost, and sketch a
network with fixed routing which shares the same loss probabilities. Deduce an Erlang fixed
point approximation for the loss probabilities in the original network, in terms of blocking
probabilities across certain cuts in the network.

Proof. This problem is solved in the lecture notes. We will assume Poisson arrivals of calls
(with rates νij for calls going between i and j), exponential holding times of rate 1 for each
call, and independence of lots of things. �
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Exercise 8. Calls arrive as a Poisson process of rate ν at a link with capacity C circuits. A
call is blocked and lost if all C circuits are busy; otherwise the call is accepted and occupies
a single circuit for an exponentially distributed holding time with mean one. Holding times
are independent of each other and of the arrival process. Calculate the mean number of
circuits in use, M(ν, C). Show that, as n →∞,

M(νn, Cn)

n
→ ν ∧ C,

and the mean number of idle circuits satisfies

Cn−M(νn, Cn) → C

ν ∨ C − C
.

Proof. From the Erlang formula,

M(ν, C) =
C∑

k=1

k
νk/k!∑C

k=0 νk/k!

The first method of proof is to observe that

M(ν, C) = ν(1− E(ν, C))

and then

E(νn, Cn) =
(νn)Cn/(Cn)!∑nC

k=0 νk/k!
=

1

1 + Cn
νn

+ (Cn)(Cn−1)
(νn)2

+ . . .
→ 1

1 + C
ν

+ C2

ν2 + . . .
=

{
0, C ≥ ν

1− C/ν, C < ν

(This is monotone convergence – the denominator converges to the geometric series term-
by-term from below.) Then

M(ν, C)

n
→ ν ∧ C

as required.
An alternative method of proof is to show that the distribution of the number of busy

circuits is tightly centered on the smaller of Cn and νn. Suppose first that ν > C, and let
C/ν = α < 1. Consider k with k

n
< C. Then

π(k − 1) = π(k) · k

νn
≤ π(k) · C

ν
= π(k) · α ≤ π(Cn) · αCn−k.

Summing over all k < (1− ε)Cn, we get∑
k<(1−ε)Cn

π(k) < π(C)

(1−ε)Cn∑
k=0

αCn−k < π(C)αεn

∞∑
k′=0

αk′
= π(C)

αεn

1− α
.

Note that as n →∞ this tends to 0, for any ε. Consequently, for any ε > 0 and any δ > 0,
for large enough n, the probability that the number of busy circuits is at least (1− ε)Cn will
be at least 1− δ. Therefore,

1

n
M(νn, Cn) → C.

Remark. We do not need to worry about tightness of measures here – we are interested in the
distribution of k

n
, which lives on the compact set [0, C]. We’ve shown that the probability

that it lives outside of [C(1 − ε), C] can be made arbitrarily small, which tells us that its
average will converge to C.
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On the other hand, if ν < C, we consider the probability that k
n

< (1−ε)ν or k
n

> (1−ε)−1ν.

In the first case, the calculation will be the same, using the bound π(k − 1) = π(k) · k
νn

<

π(k) · (1− ε) for k
n
≤ (1− ε)ν. This gives

π(k) < π((1− ε)νn) · (1− ε)(1−ε)νn−k

and the computation continues as above to give a total probability that tends to 0 as n →∞
for any fixed ε. For the upper bound, we note π(k + 1) = π(k) · νn

k+1
< π(k) · (1 − ε) if

k > (1− ε)−1νn, and repeat the calculation. Thus, if ν < C we have shown

1

n
M(νn, Cn) → ν.

The case ν = C can be incorporated into either of these.
For the mean number of idle circuits, first note that if ν < C, i.e. ν∨C = max(ν, C) = C,

then M(νn, Cn)/n → ν and therefore Cn−M(νn, Cn) = Cn− νn + o(n) →∞. Thus, we
are only interested in the case ν ≥ C.

In this case, as we saw above, the probability that k < (1− ε)Cn circuits are occupied can
be made arbitrarily small. Consequently, for the system as a whole the arrival rate is νn and
the service rate is between (1 − δ)(1 − ε)Cn and Cn. Thus, the free circuits in the system
behave (almost) as an M/M/1 queue with arrival rate Cn and service rate νn. Their mean,
therefore, converges to

Cn

νn− Cn
=

C

ν − C
.

(This could be made precise with a coupling argument: think of a queue with arrival rate
(1− δ)(1− ε)Cn for the lower bound, and with arrival rate Cn for the upper bound.) �

Exercise 9. Show that the solutions of the fixed point equation

B = E(ν[1 + 2B(1−B)], C)

locate stationary points of the potential function

ν

[
e−y + e−2y(1 +

2

3
e−y)

]
+

∫ y

0

U(z, C)dz.

Proof. Differentiate the potential function with respect to y, and set to 0:

0 = −νe−y − 2νe−2y(1− 2

3
e−y) +

2

3
νe−2ye−y + U(y, C)

Simplifying:

νe−y + 2νe−2y − 2νe−3y = U(y, C).

Letting B = 1− e−y, the left-hand side becomes

ν
(
(1−B) + 2(1−B)2 − 2(1−B)3

)
= ν(1−B)(1 + 2B(1−B)),

while the right-hand side is U(− log(1−B), C). The statement that

ν(1−B)(1 + 2B(1−B)) = U(− log(1−B), C)

precisely expresses the fact that

B = E(ν[1 + 2B(1−B)]︸ ︷︷ ︸
ν′

, C) :
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indeed,

U(− log(1−B), C) = U(− log(1−E(ν ′, C)), C) = ν[1 + 2B(1−B)]︸ ︷︷ ︸
ν′

(1−E(ν ′)], C) = [1+2B(1−B)](1−B).

�


