
Lecture Notes on Stochastic Networks

Frank Kelly and Elena Yudovina





Contents

Preface page viii

Overview 1

Queueing and loss networks 2

Decentralized optimization 4

Random access networks 5

Broadband networks 6

Internet modelling 8

Part I 11

1 Markov chains 13

1.1 Definitions and notation 13

1.2 Time reversal 16

1.3 Erlang’s formula 18

1.4 Further reading 21

2 Queueing networks 22

2.1 An M/M/1 queue 22

2.2 A series of M/M/1 queues 24

2.3 Closed migration processes 26

2.4 Open migration processes 30

2.5 Little’s law 36

2.6 Linear migration processes 39

2.7 Generalizations 44

2.8 Further reading 48

3 Loss networks 49

3.1 Network model 49

3.2 Approximation procedure 51

v



vi Contents

3.3 Truncating reversible processes 52

3.4 Maximum probability 57

3.5 A central limit theorem 61

3.6 Erlang fixed point 67

3.7 Diverse routing 71

3.8 Further reading 81

Part II 83

4 Decentralized optimization 85

4.1 An electrical network 86

4.2 Road traffic models 92

4.3 Optimization of queueing and loss networks 101

4.4 Further reading 107

5 Random access networks 108

5.1 The ALOHA protocol 109

5.2 Estimating backlog 115

5.3 Acknowledgement-based schemes 119

5.4 Distributed random access 125

5.5 Further reading 132

6 Effective bandwidth 133

6.1 Chernoff bound and Cramér’s theorem 134

6.2 Effective bandwidth 138

6.3 Large deviations for a queue with many sources 143

6.4 Further reading 148

Part III 149

7 Internet congestion control 151

7.1 Control of elastic network flows 151

7.2 Notions of fairness 158

7.3 A primal algorithm 162

7.4 Modelling TCP 166

7.5 What is being optimized? 170

7.6 A dual algorithm 172

7.7 Time delays 173

7.8 Modelling a switch 177

7.9 Further reading 185



Contents vii

8 Flow level Internet models 186

8.1 Evolution of flows 186

8.2 α-fair rate allocations 187

8.3 Stability of α-fair rate allocations 189

8.4 What can go wrong? 192

8.5 Linear network with proportional fairness 195

8.6 Further reading 199

Appendix A Continuous time Markov processes 201

Appendix B Little’s law 204

Appendix C Lagrange multipliers 207

Appendix D Foster–Lyapunov criteria 210

References 217

Index 221



Preface

Communication networks underpin our modern world, and provide fasci-

nating and challenging examples of large-scale stochastic systems. Ran-

domness arises in communication systems at many levels: for example, the

initiation and termination times of calls in a telephone network, or the sta-

tistical structure of the arrival streams of packets at routers in the Internet.

How can routing, flow control, and connection acceptance algorithms be

designed to work well in uncertain and random environments? And can

we design these algorithms using simple local rules so that they produce

coherent and purposeful behaviour at the macroscopic level?

The first two parts of the book will describe a variety of classical models

that can be used to help understand the behaviour of large-scale stochastic

networks. Queueing and loss networks will be studied, as well as random

access schemes and the concept of an effective bandwidth. Parallels will

be drawn with models from physics, and with models of traffic in road

networks.

The third part of the book will study more recently developed models

of packet traffic and of congestion control algorithms in the Internet. This

is an area of some practical importance, with network operators, content

providers, hardware and software vendors, and regulators actively seeking

ways of delivering new services reliably and effectively. The complex in-

terplay between end-systems and the network has attracted the attention of

economists as well as mathematicians and engineers.

We describe enough of the technological background to communication

networks to motivate our models, but no more. Some of the ideas described

in the book are finding application in financial, energy, and economic net-

works as computing and communication technologies transform these ar-

eas. But communication networks currently provide the richest and best-

developed area of application within which to present a connected account

of the ideas.

The lecture notes that have become this book were used for a Mas-
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Preface ix

ters course (“Part III”) in the Faculty of Mathematics at the University of

Cambridge. This is a one-year postgraduate course which assumes a math-

ematically mature audience, albeit from a variety of different mathemati-

cal backgrounds. Familiarity with undergraduate courses on Optimization

and Markov Chains is helpful, but not absolutely necessary. Appendices

are provided on continuous time Markov processes, Little’s law, Lagrange

multipliers, and Foster–Lyapunov criteria, reviewing the material needed.

At Cambridge, students may attend other courses where topics touched on

in these notes, for example Poisson point processes, large deviations, or

game theory, are treated in more depth, and this course can serve as addi-

tional motivation.

Suggestions on further reading are given at the end of each chapter; these

include reviews where the historical development and attribution of results

can be found – we have not attempted this here – as well as some recent

papers which give current research directions.

The authors are grateful to students of the course at Cambridge (and,

for one year, Stanford) for their questions and insights, and especially to

Joe Hurd, Damon Wischik, Gaurav Raina, and Neil Walton, who produced

earlier versions of these notes.

Frank Kelly and Elena Yudovina





Overview

This book is about stochastic networks and their applications. Large-scale

systems of interacting components have long been of interest to physicists.

For example, the behaviour of the air in a room can be described at the mi-

croscopic level in terms of the position and velocity of each molecule. At

this level of detail a molecule’s velocity appears as a random process. Con-

sistent with this detailed microscopic description of the system is macro-

scopic behaviour best described by quantities such as temperature and pres-

sure. Thus the pressure on the wall of the room is an average over an area

and over time of many small momentum transfers as molecules bounce off

the wall, and the relationship between temperature and pressure for a gas

in a confined volume can be deduced from the microscopic behaviour of

molecules.

Economists, as well as physicists, are interested in large-scale systems,

driven by the interactions of agents with preferences rather than inanimate

particles. For example, from a market with many heterogeneous buyers and

sellers there may emerge the notion of a price at which the market clears.

Over the last 100 years, some of the most striking examples of large-

scale systems have been technological in nature and constructed by us,

from the telephony network through to the Internet. Can we relate the

microscopic description of these systems in terms of calls or packets to

macroscopic consequences such as blocking probabilities or throughput

rates? And can we design the microscopic rules governing calls or packets

to produce more desirable macroscopic behaviour? These are some of the

questions we address in this book. We shall see that there are high-level

constructs that parallel fundamental concepts from physics or economics

such as energy or price, and which allow us to reason about the systems we

design.

In this chapter we briefly introduce some of the models that we shall en-

counter. We’ll see in later chapters that for the systems we ourselves con-
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2 Overview

struct, we are sometimes able to use simple local rules to produce macro-

scopic behaviour which appears coherent and purposeful.

Queueing and loss networks

We begin Chapter 1 with a brief introduction to Markov chains and Markov

processes, which will be the underlying probabilistic model for most of the

systems we consider. In Chapter 2 we study queueing networks, in which

customers (or jobs or packets) wait for service by one or several servers.

Figure 1 A network of four queues.

First, we look at a single queue. We shall see how to model it as a

Markov process, and derive information on the distribution of the queue

size. We then look briefly at a network of queues. Starting from a simpli-

fied description of each queue, we shall obtain information about the sys-

tem behaviour. We define a traffic intensity for a simple queue, and identify

Poisson flows in a network of queues.

A natural queueing discipline is first-come-first-served, and we also look

at processor sharing, where the server shares its effort equally over all the

customers present in the queue.

C=3

C=2

Figure 2 A loss network with some of the routes highlighted.

In Chapter 3, we move on to consider loss networks. A loss network

consists of several links, each of which may have a number of circuits.

The classical example of its use is to model landline telephone connections
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between several cities. When a telephone call is placed between one node

and another, it needs to hold simultaneously a circuit on each of the links

on a route between the two nodes – otherwise, the call is lost. Note the key

differences between this and a queueing network, which are summarized

in Table 1.

Table 1 Queueing versus loss networks.

Queueing networks Loss networks

Sequential use of resources Simultaneous resource possession

Congestion =⇒ delay Congestion =⇒ loss

First, we treat loss networks where routing is fixed in advance. We show

that the simple rules for call acceptance lead to a stationary distribution

for the system state that is centred on the solution to a certain optimiza-

tion problem, and we’ll relate this problem to a classical approximation

procedure.

Next, we allow calls to be rerouted if they are blocked on their primary

route. One example we consider is the following model of a loss network

on a complete graph. Suppose that if a call arrives between two nodes and

there is a circuit available on the direct link between the two nodes, the call

is carried on the direct link. Otherwise, we attempt to redirect the call via

another node (chosen at random), on a path through two links. (Figure 2

shows the single links and some of the two-link rerouting options.)

load

P(losing a call)

Figure 3 Hysteresis.

What is the loss probability in such a network as a function of the ar-

rival rates? In Figure 3 we sketch the proportion of calls lost as the load on
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the system is varied. The interesting phenomenon that can occur is as fol-

lows: as the load is slowly increased, the loss probability increases slowly

to begin with, but then jumps suddenly to a higher value; if the load is then

slowly decreased, the loss probability does not trace the same curve, but

drops back at a noticeably lower level of load. The system exhibits hystere-

sis, a phenomenon more often associated with magnetic materials.

How can this be? We model the network as an irreducible finite-state

Markov chain, so it must have a unique stationary distribution, hence a

unique probability of losing a call at a given arrival rate.

On the other hand, it makes sense. If the proportion of occupied circuits

is low, a call is likely to be carried on the direct route through a single link;

if the proportion of occupied circuits is high, more calls will be carried

along indirect routes through two circuits, which may in turn keep link

utilization high.

How can both of these insights be true? We’ll see that the resolution con-

cerns two distinct scaling regimes, obtained by considering either longer

and longer time intervals, or larger and larger numbers of nodes.

We end Chapter 3 with a discussion of a simple dynamic routing strategy

which allows a network to respond robustly to failures and overloads. We

shall use this discussion to illustrate a more general phenomenon, resource

pooling, that arises in systems where spare capacity in part of the network

can be used to deal with excess load elsewhere. Resource pooling allows

systems to operate more efficiently, but we’ll see that this is sometimes at

the cost of losing early warning signs that the system is about to saturate.

Decentralized optimization

A major practical and theoretical issue in the design of communication

networks concerns the extent to which control can be decentralized, and in

Chapter 4 we place this issue in a wider context through a discussion of

some ideas from physics and economics.

In our study of loss networks we will have seen a network implicitly

solving an optimization problem in decentralized manner. This is reminis-

cent of various models in physics. We look at a very simple model of elec-

tron motion and establish Thomson’s principle: the pattern of potentials in

a network of resistors is just such that it minimizes heat dissipation for a

given level of current flow. The local, random behaviour of the electrons

results in the network as a whole solving a rather complex optimization

problem.

Of course, simple local rules may lead to poor system behaviour if the
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rules are the wrong ones. We’ll look at a simple model of a road traffic net-

work to provide a chastening example of this. Braess’s paradox describes

how, if a new road is added to a congested network, the average speed of

traffic may fall rather than rise, and indeed everyone’s journey time may

lengthen. It is possible to alter the local rules, by the imposition of appro-

priate tolls, so that the network behaves more sensibly, and indeed road

traffic networks have long provided an example of the economic principle

that externalities need to be appropriately penalized if the invisible hand is

to lead to optimal behaviour.

In a queueing or loss network we can approach the optimization of the

system at various levels, corresponding to the two previous models: we can

dynamically route customers or calls according to the instantaneous state of

the network locally, and we can also measure aggregate flows over longer

periods of time, estimate externalities and use these estimates to decide

where to add additional capacity.

Random access networks

In Chapter 5, we consider the following model. Suppose multiple base sta-

tions are connected with each other via a satellite, as in Figure 4. If a base

station needs to pass a message to another station it sends it via the satel-

lite, which then broadcasts the message to all of them (the address is part

of the message, so it is recognized by the correct station at the end). If

transmissions from two or more stations overlap, they interfere and need to

be retransmitted. The fundamental issue here is contention resolution: how

should stations arrange their transmissions so that at least some of them get

through?

Earth

Figure 4 Multiple base stations in contact via a satellite.

If stations could instantaneously sense when another station is trans-

mitting, there would be no collisions. The problem arises because the fi-

nite speed of light causes a delay between the time when a station starts
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transmitting and the time when other stations can sense this interference.

As processing speeds increase, speed-of-light delays pose a problem over

shorter and shorter distances, so that the issue now arises even for distances

within a building or less.

Consider some approaches.

• We could divide time into slots, and assign, say, every fourth slot to each

of the stations. However, this only works if we know how many stations

there are and the load from each of them.

• We could implement a token ring: set up an order between the stations,

and have the last thing that a station transmits be a “token” which means

that it is done transmitting. Then the next station is allowed to start trans-

mitting (or it may simply pass on the token). However, if there is a large

number of stations, then simply passing the token around all of them

will take a very long time.

• The ALOHA protocol: listen to the channel; if nobody else is transmit-

ting, just start your own transmission. As it takes some time for messages

to reach the satellite and be broadcast back, it is possible that there will

be collisions (if two stations decide to start transmitting at sufficiently

close times). If this happens, stop transmitting and wait for a random

amount of time before trying to retransmit.

• The Ethernet protocol: after k unsuccessful attempts, wait for a random

time with mean 2k before retransmitting.

We shall study the last two approaches, which have advantages for the

challenging case where the number of stations is large or unknown, each

needing to access the channel infrequently.

We end Chapter 5 with a discussion of distributed random access, where

each station can hear only a subset of the other stations.

Broadband networks

Consider a communication link of total capacity C, which is being shared

by lots of connections, each of which needs a randomly fluctuating rate.

We are interested in controlling the probability that the link is overloaded

by controlling the admission of connections into the network.

If the rate is constant, as in the first panel of Figure 5, we could control

admission as to a single-link loss network: don’t admit another connection

if the sum of the rates would exceed the capacity. But what should we do

if the rate needed by a connection fluctuates, as in the second panel? A

conservative approach might be to add up the peaks and not admit another
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bandwidth

bandwidth

a telephone call

peak

mean

t

t

Figure 5 Possible bandwidth profiles; mean and peak rates.

connection if the sum would exceed the capacity. But this looks very con-

servative, and would waste a lot of capacity if the peak/mean ratio is high.

Or we might add up the means and only refuse a connection if the sum of

the means would exceed the capacity. If there is enough buffering available

to smooth out the load we might expect a queueing model to be stable, but

connections would suffer long delays and this would not work for real-time

communication.

In Chapter 6, we use a large deviations approach to define an effective

bandwidth somewhere between the mean and the peak; this will depend on

the statistical characteristics of the bandwidth profiles and on the desired

low level of overload probability. Connection acceptance takes on a simple

form: add the effective bandwidth of a new request to the effective band-

widths of connections already in progress and accept the new request if the

sum satisfes a bound. This approach allows the insights available from our

earlier model of a loss network to transfer to the case where the bandwidth

required by a connection fluctuates.

If the connections are transferring a file, rather than carrying a real-time

video conversation, another approach is possible which makes more effi-

cient use of capacity, as we describe next.
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Internet modelling

What happens when I want to see a web page? My device (e.g. computer,

laptop, phone) sends a request to the server, which then starts sending the

page to me as a stream of packets through the very large network that is the

Internet. The server sends one packet at first; my device sends an acknowl-

edgement packet back; as the server receives acknowledgements it sends

further packets, at an increasing rate. If a packet is lost (which will happen

if a buffer within the network overflows) it is detected by the endpoints

(packets have sequence numbers on them) and the server slows down. The

process is controlled by TCP, the transmission control protocol of the In-

ternet, implemented at the endpoints (on my device and on the server) –

the network itself is essentially dumb.

server

device

Figure 6 A schematic diagram of the Internet. Squares
correspond to devices and servers, the network contains resources
with buffers, and many flows traverse the network.

Even this greatly simplified model of the Internet raises many fascinat-

ing questions. Each flow is controlled by its own feedback loop, and these

control loops interact with each other through their competition for shared

resources. Will the network be stable, and what does this mean? How will

the network end up sharing the resources between the flows?

In Chapter 7, we discuss various forms of fairness and their interpreta-

tion in terms of optimization problems. We will study dynamical models of

congestion control algorithms that correspond to primal or dual approaches

to the solution of these optimization problems.

Over longer time scales, flows will come and go, as web pages and files

are requested or their transfers are completed. On this time scale, the net-

work’s overall behaviour resembles a processor-sharing queueing system,

with congestion decreasing flow rates and lengthening the delay before a

flow is completed. We’ll look at models of this behaviour in Chapter 8.
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We shall see that to understand the Internet’s behaviour we need to con-

sider many time and space scales, depending on the level of aggregation

and the time intervals of interest. At the packet level the system looks like

a queueing network, and we need to model packet-level congestion con-

trol algorithms and scheduling disciplines; but if we look on a longer time

scale, a flow makes simultaneous use of resources along its route, and flow

rates converge to the solution of an optimization problem; and over longer

time scales still, where the numbers of flows can fluctuate significantly, the

system behaves as a processor-sharing queue.
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Markov chains

Our fundamental model will be a Markov chain. We do not presume to give

an introduction to the theory of Markov chains in this chapter; for that, see

Norris (1998). In this chapter, we briefly review the basic definitions.

1.1 Definitions and notation

Let S be a countable state space, and let P = (p(i, j), i, j ∈ S) be a matrix

of transition probabilities. That is, p(i, j) ≥ 0 for all i, j, and
∑

j p(i, j) = 1.

A collection of random variables (X(n), n ∈ Z+), defined on a common

probability space and taking values in S, is a Markov chain with transition

probabilities P if, for j, k ∈ S and n ∈ Z+, we have

P(X(n + 1) = k | X(n) = j, X(n − 1) = xn−1, . . . , X(0) = x0) = p( j, k)

whenever the conditioning event has positive probability. That is, the con-

ditional probability depends only on j and k, and not on the earlier states

x0, . . . , xn−1, or on n (the Markov property). Here we have used capital let-

ters to denote random variables, and lower case letters to refer to specific

states in S. Thus, X(0) is a random variable, and x0 is a particular element

of S.

We assume that any Markov chain with which we deal is irreducible, and

often we additionally assume aperiodicity. A Markov chain is irreducible

if every state in S can be reached, directly or indirectly, from every other

state. A Markov chain is periodic if there exists an integer δ > 1 such that

P(X(n+τ) = j | X(n) = j) = 0 unless τ is divisible by δ; otherwise the chain

is aperiodic.

A Markov chain evolves in discrete time, potentially changing state

at integer times. Next we consider continuous time. Let

Q = (q(i, j), i, j ∈ S) be a matrix with q(i, j) ≥ 0 for i , j, q(i, i) = 0,

13



14 Markov chains

and 0 < q(i) ≡ ∑

j∈S q(i, j) < ∞ for all i. Let

p( j, k) =
q( j, k)

q( j)
, j, k ∈ S,

so that P = (p(i, j), i, j ∈ S) is a matrix of transition probabilities. Infor-

mally, a Markov process in continuous time rests in state i for a time that

is exponentially distributed with parameter q(i) (hence mean q(i)−1), and

then jumps to state j with probability p(i, j). Note that p(i, i) = 0 in our

definition, so the Markov process must change state when it jumps.

Formally, let (XJ(n), n ∈ Z+) be a Markov chain with transition prob-

abilities P, and let T0, T1, . . . be an independent sequence of independent

exponentially distributed random variables with unit mean. Now let S n =

q(XJ(n))−1Tn; thus if XJ(n) = i then S n is an exponentially distributed ran-

dom variable with parameter q(i). (The letter S stands for “sojourn time”.)

We shall define a process evolving in continuous time by using the Markov

chain XJ to record the sequence of states occupied, and the sequence S n to

record the time spent in successive states. To do this, let

X(t) = XJ(N) for S 0 + . . . + S N−1 ≤ t < S 0 + . . . + S N .

Then it can be shown that the properties of the Markov chain XJ together

with the memoryless property of the exponential distribution imply that,

for t0 < t1 < . . . < tn < tn+1,

P(X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0)

= P(X(tn+1) = xn+1 | X(tn) = xn)

whenever the event {X(tn) = xn} has positive probability; and, further, that

for any pair j , k ∈ S

lim
δ→0

P(X(t + δ) = k | X(t) = j)

δ
= q( j, k)

exists and depends only on j and k, whenever the event {X(t) = j} has

positive probability. Intuitively, we can think of conditioning on the entire

trajectory of the process up to time t – we claim that the only important

information is the state at time t, not how the process got there. We call

q( j, k) the transition rate from j to k. The Markov chain XJ is called the

jump chain. The sum
∑∞

0 S n may be finite, in which case an infinite number

of jumps takes place in a finite time (and the process “runs out of instruc-

tions”); if not, we have defined the Markov process (X(t), t ∈ R+).
We shall only be concerned with countable state space processes. There

is a rich theory of Markov chains/processes defined on an uncountable state
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space; in some other texts the term “Markov process” refers to continu-

ous space, rather than continuous time. Even with only a countable state

space it is possible to construct Markov processes with strange behaviour.

These will be excluded: we shall assume that all our Markov processes are

irreducible, remain in each state for a positive length of time, and are in-

capable of passing through an infinite number of states in finite time. See

Appendix A for more on this.

A Markov chain or process may possess an equilibrium distribution, i.e.

a collection π = (π( j), j ∈ S) of positive numbers summing to unity that

satisfy

π( j) =
∑

k∈S
π(k)p(k, j), ∀ j ∈ S, (1.1)

for a Markov chain, or

π( j)
∑

k∈S
q( j, k) =

∑

k∈S
π(k)q(k, j), ∀ j ∈ S, (1.2)

for a Markov process (the equilibrium equations).

Under the assumptions we have made for a Markov process, if π ex-

ists then it will be unique. It will then also be the limiting, ergodic, and

stationary distribution:

Limiting ∀ j ∈ S, P(X(t) = j)→ π( j) as t → ∞.

Ergodic ∀ j ∈ S, 1
T

∫ T

0
I{X(t) = j} dt → π( j) as T → ∞ with probability

1. (The integral is the amount of time, between 0 and T , that the

process spends in state j.)

Stationary If P(X(0) = j) = π( j) for all j ∈ S, then P(X(t) = j) = π( j) for

all j ∈ S and all t ≥ 0.

If an equilibrium distribution does not exist then P(X(t) = j)→ 0 as t → ∞
for all j ∈ S. An equilibrium distribution will not exist if we can find a

collection of positive numbers satisfying the equilibrium equations whose

sum is infinite. When the state space S is finite, an equilibrium distribution

will always exist. All of this paragraph remains true for Markov chains,

except that for a periodic chain there may not be convergence to a limiting

distribution.

A chain or process for which P(X(0) = j) = π( j) for all j ∈ S is termed

stationary. A stationary chain or process can be defined for all t ∈ Z or R

– we imagine time has been running from −∞. We shall often refer to a

stationary Markov process as being in equilibrium.
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Exercises

Exercise 1.1 Let S be an exponentially distributed random variable.

Show that for any s, t > 0

P(S > s + t | S > t) = P(S > s),

the memoryless property of the exponential distribution.

Let S , T be independent random variables having exponential distribu-

tions with parameters λ, µ. Show that

Z = min{S , T }

also has an exponential distribution, with parameter λ + µ.

Exercise 1.2 A Markov process has transition rates (q( j, k), j, k ∈ S)

and equilibrium distribution (π( j), j ∈ S). Show that its jump chain has

equilibrium distribution (πJ( j), j ∈ S) given by

πJ( j) = G−1π( j)q( j)

provided

G =
∑

j

∑

k

π( j)q( j, k) < ∞. (1.3)

Exercise 1.3 Show that the Markov property is equivalent to the follow-

ing statement: for any t−k < . . . < t−1 < t0 < t1 < . . . < tn,

P(X(tn) = xn, X(tn−1) = xn−1, . . . , X(t−k) = x−k | X(t0) = x0)

= P(X(tn) = xn, . . . , X(t1) = x1 | X(t0) = x0)

× P(X(t−1) = x−1, . . . , X(t−k) = x−k | X(t0) = x0),

whenever the conditioning event has positive probability. That is, “condi-

tional on the present, the past and the future are independent”.

1.2 Time reversal

For a stationary chain or process, we can consider what happens if we

run time backwards. Because the Markov property is symmetric in time

(Exercise 1.3), the reversed chain or process will again be Markov. Let’s

calculate its transition rates.

Proposition 1.1 Suppose (X(t), t ∈ R) is a stationary Markov process

with transition rates (q(i, j), i, j ∈ S) and equilibrium distribution π =

(π( j), j ∈ S). Let Y(t) = X(−t), t ∈ R. Then (Y(t), t ∈ R) is a stationary
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Markov process with the same equilibrium distribution π and transition

rates

q′( j, k) =
π(k)q(k, j)

π( j)
, ∀ j, k ∈ S.

Proof We know (Y(t), t ∈ R) is a Markov process; we determine its tran-

sition rates by an application of Bayes’ theorem.

P(Y(t + δ) = k |Y(t) = j) =
P(Y(t + δ) = k, Y(t) = j)

P(Y(t) = j)

=
P(X(−t − δ) = k, X(−t) = j)

π( j)

=
π(k)P(X(−t) = j | X(−(t + δ)) = k)

π( j)

=
π(k)(q(k, j)δ + o(δ))

π( j)
.

Now divide both sides by δ and let δ → 0 to obtain the desired expression

for q′( j, k).

Of course, P(Y(t) = i) = π(i) for all i ∈ S and for all t, and so π is the

stationary distribution. �

If the reversed process has the same transition rates as the original pro-

cess we call the process reversible. In order for this to hold, i.e. to have

q( j, k) = q′( j, k), we need the following detailed balance equations to be

satisfied:

π( j)q( j, k) = π(k)q(k, j), ∀ j, k ∈ S. (1.4)

Detailed balance says that, in equilibrium, transitions from j to k happen

“as frequently” as transitions from k to j.

Note that detailed balance implies the equilibrium equations (1.2),

which are sometimes known as full balance. When it holds, detailed bal-

ance is much easier to check than full balance. Consequently, we will often

look for equilibrium distributions of Markov processes by trying to solve

detailed balance equations.

Exercises

Exercise 1.4 Check that the distribution (π( j), j ∈ S) and the transition

rates (q′( j, k), j, k ∈ S) found in Proposition 1.1 satisfy the equilibrium

equations.

Establish the counterpart to Proposition 1.1 for a Markov chain.
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Exercise 1.5 Associate a graph with a Markov process by letting an edge

join states j and k if either q( j, k) or q(k, j) is positive. Show that if the

graph associated with a stationary Markov process is a tree, the process is

reversible.

1.3 Erlang’s formula

In the early twentieth century Agner Krarup Erlang worked for the Copen-

hagen Telephone Company, and he was interested in calculating how many

parallel circuits were needed on a telephone link to provide service (say,

out of a single town, or between two cities). We will later look at general-

izations of this problem for networks of links; right now, we will look at a

single link.

Suppose that calls arrive to a link as a Poisson process of rate λ. The link

has C parallel circuits, and while a call lasts it uses one of the circuits. We

will assume that each call lasts for an exponentially distributed amount of

time with parameter µ, and that these call holding periods are independent

of each other and of the arrival times. If a call arrives to the link and finds

that all C circuits are busy, it is simply lost. We would like to estimate the

probability that an arriving call is lost.

Let X(t) = j be the number of busy circuits on the link. This is a Markov

process, with transition rates given by

q( j, j + 1) = λ, j = 0, 1, . . . ,C − 1; q( j, j − 1) = jµ, j = 1, 2, . . . ,C.

The upward transition is equivalent to the assumption that the arrival pro-

cess is Poisson of rate λ; the downward transition rate arises since we are

looking for the first of j calls to finish – recall Exercise 1.1.

We try to solve the detailed balance equations:

π( j − 1)q( j − 1, j) = π( j)q( j, j − 1)

=⇒ π( j) =
λ

µ j
π( j − 1) = · · · =

(

λ

µ

) j
1

j!
π(0).

Adding the additional constraint
∑C

j=0 π( j) = 1, we find

π(0) =





C∑

j=0

(

λ

µ

) j
1

j!





−1

.

This is the equilibrium probability of all circuits being free.
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The equilibrium probability that all circuits are busy is therefore

π(C) = E

(

λ

µ
,C

)

where E(ν,C) =
νC/C!

∑C
j=0 ν

j/ j!
. (1.5)

This is known as Erlang’s formula.

This was a model that assumed that the arrival rate of calls is constant at

all times. Suppose, however, that we have a finite population of M callers,

so that those already connected will not be trying to connect again, and

suppose someone not already connected calls at rate η. We consider a link

with C parallel circuits, where C < M.

Letting X(t) = j be the number of busy lines, we now have the transition

rates

q( j, j+1) = η(M− j), j = 0, . . . ,C−1; q( j, j−1) = µ j, j = 1, 2, . . . ,C.

The equilibrium distribution πM( j) now satisfies (check this!)

πM( j − 1)q( j − 1, j) = πM( j)q( j, j − 1)

=⇒ πM( j) = πM(0)

(

M

j

) (

η

µ

) j

.

Next we find the distribution of the number of busy circuits when a new

call is initiated. Now

P( j lines are busy and a call is initiated in (t, t + δ))

= πM( j)(η(M − j)δ + o(δ)), j = 0, 1, . . . ,C,

and the probability of a call being initiated is just the sum of these terms

over all j. Letting δ→ 0, we find that the conditional probability of j lines

being busy when a new call arrives is

πM( j)η(M − j)
∑

i πM(i)η(M − i)
∝ πM( j)(M − j)

∝
(

M

j

)

(M − j)

(

η

µ

) j

∝
(

M − 1

j

) (

η

µ

) j

.

The symbol “∝” means “is proportional to”. We have used the trick of only

leaving the terms that depend on j; the normalization constant can be found

later, from the fact that we have a probability distribution that adds up to 1.

If we now enforce this condition, we see

P( j lines are busy when a call is initiated) = πM−1( j), j = 0, 1, . . . ,C.
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Thus

P(an arriving call is lost) = πM−1(C) < πM(C);

an arriving call sees a distribution of busy lines that is not the time-averaged

distribution of busy lines, πM.

Note that if M → ∞ with ηM held fixed at λ, we recover the previ-

ous model, and the probability that an arriving call finds all lines busy

approaches the time-averaged probability, given by Erlang’s formula. This

is an example of a more general phenomenon, called the PASTA property

(“Poisson arrivals see time averages”).

Exercises

Exercise 1.6 A Markov process has transition rates (q( j, k), j, k ∈ S)

and equilibrium distribution (π( j), j ∈ S). A Markov chain is formed by

observing the transitions of this process: at the successive jump times of

the process, the state j just before, and the state k just after, the jump are

recorded as an ordered pair ( j, k) ∈ S2. Write down the transition prob-

abilities of the resulting Markov chain, and show that it has equilibrium

distribution

π′( j, k) = G−1π( j)q( j, k)

provided (1.3) holds.

Give an alternative interpretation of π′( j, k) in terms of the conditional

probability of seeing the original process jump from state j to state k in the

interval (t, t+ δ), given that the process is in equilibrium and a jump occurs

in that interval.

Exercise 1.7 Show that the mean number of circuits in use in the model

leading to Erlang’s formula, i.e. the mean of the equilibrium distribution π,

is

ν(1 − E(ν,C)).

Exercise 1.8 Show that

d

dν
E(ν,C) = −(1 − E(ν,C))(E(ν,C) − E(ν,C − 1)).

Exercise 1.9 Car parking spaces are labelled n = 1, 2, . . . , where the

label indicates the distance (in car lengths) the space is from a shop, and

an arriving car parks in the lowest numbered free space. Cars arrive as a

Poisson process of rate ν; parking times are exponentially distributed with
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unit mean, and are independent of each other and of the arrival process.

Show that the distance at which a newly arrived car parks has expectation

∞∑

C=0

E(ν,C),

where E(ν,C) is Erlang’s formula.

[Hint: Calculate the probability the first C spaces are occupied.]

1.4 Further reading

Norris (1998) is a lucid and rigorous introduction to discrete and continu-

ous time Markov chains. The fourth chapter of Whittle (1986) and the first

chapter of Kelly (2011) give more extended discussions of reversibility

than we have time for here.
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Queueing networks

In this chapter we look at simple models of a queue and of a network of

queues. We begin by studying the departure process from a queue with

Poisson arrivals and exponential service times. This will be important to

understand if customers leaving the queue move on to another queue in a

network.

2.1 An M/M/1 queue

Suppose that the stream of customers arriving at a queue (the arrival pro-

cess) forms a Poisson process of rate λ. Suppose further there is a single

server and that customers’ service times are independent of each other and

of the arrival process and are exponentially distributed with parameter µ.

Such a system is called an M/M/1 queue, the M’s indicating the memo-

ryless (exponential) character of the interarrival and service times, and the

final digit indicating the number of servers. Let X(t) = j be the number

of customers in the queue, including the customer being served. Then it

follows from our description of the queue that X is a Markov process with

transition rates

q( j, j + 1) = λ, j = 0, 1, . . . ,

q( j, j − 1) = µ, j = 1, 2, . . . .

If the arrival rate λ is less than the service rate µ, the distribution

π( j) = (1 − ρ)ρ j, j = 0, 1, . . . ,

satisfies the detailed balance equations (1.4) and is thus the equilibrium

distribution, where ρ = λ/µ is the traffic intensity.

Let (X(t), t ∈ R) be a stationary M/M/1 queue. Since it is reversible, it

is indistinguishable from the same process run backwards in time:

(X(t), t ∈ R)
D
= (X(−t), t ∈ R),

22
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where
D
= means equal in distribution. That is, there is no statistic that can

distinguish the two processes.

Now consider the sample path of the queue. We can represent it in terms

of two point processes (viewed here as sets of random times): the arrival

process A, and the departure process D. The arrival process A records the

t

X(t)

Figure 2.1 Sample path of the M/M/1 queue; + marks the points
of A, − marks the points of D.

jumps up of the Markov process X(t); the departure process D records the

jumps down of the Markov process X(t). By assumption, A is a Poisson

process of rate λ. On the other hand, A is defined on (X(t), t ∈ R) exactly as

D is defined on (X(−t), t ∈ R) – the departures of the original process are

the arrivals of the reversed process. Since (X(t), t ∈ R) and (X(−t), t ∈ R)

are distributionally equivalent, we conclude that D is also a Poisson process

of rate λ. That is, we have shown the following theorem.

Theorem 2.1 (Burke, Reich) In equilibrium, the departure process from

an M/M/1 queue is a Poisson process.

Remark 2.2 Time reversibility for the systems we consider holds only in

equilibrium! For example, if we condition on the queue size being positive,

then the time until the next departure is again exponential, but now with

parameter µ rather than λ. A related comment is that A and D are both

Poisson processes, but they are by no means independent.

To investigate the dependence structure, we introduce the following no-

tation. For random variables or processes B1 and B2, we will write B1⊥⊥B2

to mean that B1 and B2 are independent. Now, for a fixed time t0 ∈ R, the

state of the queue up to time t0 is independent of the future arrivals:

(X(t), t ≤ t0)⊥⊥(A ∩ (t0,∞)
)

.

Applying this to the reversed process, we get for every fixed time t1 ∈ R

(X(t), t ≥ t1)⊥⊥(D ∩ (−∞, t1)
)

.
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In particular, when the queue is in equilibrium, the number of people that

are present in the queue at time t1 is independent of the departure process up

to time t1. (But clearly it isn’t independent of the future departure process!)

Exercises

Exercise 2.1 Upon an M/M/1 queue is imposed the additional constraint

that arriving customers who find N customers already present leave and

never return. Find the equilibrium distribution of the queue.

Exercise 2.2 An M/M/2 queue has two identical servers at the front.

Find a Markov chain representation for it, and determine the equilibrium

distribution of a stationary M/M/2 queue. Is the queue reversible?

[Hint: You can still use the number of customers in the queue as the state

of the Markov chain.]

Deduce from the equilibrium distribution that the proportion of time

both servers are idle is

π(0) =
1 − ρ
1 + ρ

, where ρ =
λ

2µ
< 1.

Exercise 2.3 An M/M/1 queue has arrival rate ν and service rate µ, where

ρ = ν/µ < 1. Show that the sojourn time (= queueing time + service time)

of a typical customer is exponentially distributed with parameter µ − ν.

Exercise 2.4 Consider an M/M/∞ queue with servers numbered 1, 2, . . .

On arrival a customer chooses the lowest numbered server that is free. Cal-

culate the equilibrium probability that server j is busy.

[Hint: Compare with Exercise 1.9, and calculate the expected number out

of the first C servers that are busy.]

2.2 A series of M/M/1 queues

The most obvious application of Theorem 2.1 is to a series of J queues

arranged so that when a customer leaves a queue she joins the next one,

until she has passed through all the queues, as illustrated in Figure 2.2.

Suppose the arrival stream at queue 1 is Poisson at rate ν, and that service

times at queue j are exponentially distributed with parameter µ j, where ν <

µ j for j = 1, 2, . . . , J. Suppose further that service times are independent of

each other, including those of the same customer in different queues, and

of the arrival process at queue 1.

By the analysis in Section 2.1, if we look at the system in equilibrium,
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nJn2n1

ν
µ1 µ2 µJ

...

Figure 2.2 A series of M/M/1 queues.

then (by induction) each of the queues has a Poisson arrival process, so

this really is a series of M/M/1 queues. Let n(t) = (n1(t), . . . , nJ(t)) be the

Markov process giving the number of customers in each of the queues at

time t. In equilibrium we know the marginal distribution of the compo-

nents:

π j(n j) = (1 − ρ j)ρ
n j

j
, n j = 0, 1, . . .

where ρ j = ν/µ j. But what is the joint distribution of all J queue lengths?

Equivalently, what is the dependence structure between them? To discover

this, we develop a little further the induction that gave us the marginal

distributions.

For a fixed time t0, consider the following quantities:

(1) n1(t0);

(2) departures from queue 1 prior to t0;

(3) service times of customers in queues 2, 3, . . . , J;

(4) the remaining vector (n2(t0), . . . , nJ(t0)).

In Section 2.1, we have established (1)⊥⊥(2). Also, (3)⊥⊥(1, 2) by construc-

tion: the customers’ service times at queues 2, . . . , J are independent of the

arrival process at queue 1 and service times there. Therefore, (1), (2) and

(3) are mutually independent, and in particular (1)⊥⊥(2, 3). On the other

hand, (4) is a function of (2,3), so we conclude that (1)⊥⊥(4).

Similarly, for each j we have n j(t0)⊥⊥(n j+1(t0), . . . , nJ(t0)). Therefore the

equilibrium distribution π(n) factorizes:

π(n1, . . . , nJ) =

J∏

j=1

π j(n j).

You can use this technique to show a number of other results for a

series of M/M/1 queues; for example, Exercise 2.5 shows that the sojourn

times of a customer in successive queues are independent. However, the

technique is fragile; in particular, it does not allow a customer to leave a

later queue and return to an earlier one. We will next develop a set of tools
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that does not give such fine-detail results, but can tolerate more general

flow patterns.

Exercise

Exercise 2.5 Suppose that customers at each queue in a stationary series

of M/M/1 queues are served in the order of their arrival. Note that, from a

sample path such as that illustrated in Figure 2.1, each arrival time can be

matched to a departure time, corresponding to the same customer. Argue

that the sojourn time of a customer in queue 1 is independent of departures

from queue 1 prior to her departure. Deduce that in equilibrium the sojourn

times of a customer at each of the J queues are independent.

2.3 Closed migration processes

In this section, we will analyze a generalization of the series of queues

example. It is simplest to just give a Markovian description. The state space

n2

n1

n5
n4

n3

Figure 2.3 Closed migration process.

of the Markov process is S = {n ∈ ZJ
+ :

∑J
j=1 n j = N}. Each state is written

as n = (n1, . . . , nJ), where n j is the number of individuals in colony j.

For two different colonies j and k, define the operator T jk as

T jk(n1, . . . , nJ) =






(n1, . . . , n j − 1, . . . , nk + 1, . . . , nJ), j < k,

(n1, . . . , nk + 1, . . . , n j − 1, . . . , nJ), j > k.

That is, T jk transfers one individual from colony j to colony k.

We now describe the rate at which transitions occur in our state space.

We will only allow individuals to move one at a time, so transitions can
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only occur between a state n and T jkn for some j, k. We will assume that

the transition rates have the form

q(n, T jk(n)) = λ jkφ j(n j), φ j(0) = 0.

That is, it is possible to factor the rate into a product of two functions: one

depending only on the two colonies j and k, and another depending only

on the number of individuals in the “source” colony j.

We will suppose that n is irreducible in S (in particular, that it is possible

for individuals to get from any colony to any other colony, possibly in

several steps). In this case, we call n a closed migration process.

We can model an s-server queue at colony j by taking φ j(n) = min(n, s).

Each of the customers requires an exponential service time with parameter

λ j =
∑

k λ jk; and once service is completed, the individual goes to colony k

with probability λ jk/λ j.

Another important example is φ j(n) = n for all j. These are the transition

rates we get if individuals move independently of one another. This can be

thought of as a network of infinite-server queues (corresponding to s = ∞
above), and is an example of a linear migration process; we study these

further in Section 2.6. If N = 1, the single individual performs a random

walk on the set of colonies, with equilibrium distribution (α j), where the

α j satisfy

α j > 0,
∑

j

α j = 1,

α j

∑

k

λ jk =
∑

k

αkλk j, j = 1, 2, . . . , J. (2.1)

We refer to these equations as the traffic equations, and we use them to

define the quantities (α j) in terms of (λ jk) for a general closed migration

process.

Remark 2.3 Note that the quantities λ jk and φ j(·) are only well defined

up to a constant factor. In particular, the (α j) are only well defined after we

have picked the particular set of (λ jk).

Theorem 2.4 The equilibrium distribution for a closed migration process

is

π(n) = G−1
N

J∏

j=1

α
n j

j
∏n j

r=1
φ j(r)

, n ∈ S .

Here, GN is a normalizing constant, chosen so the distribution sums to 1,

and (α j) are the solution to the traffic equations (2.1).
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Remark 2.5 Although this expression looks somewhat complicated, its

form is really quite simple: the joint distribution factors as a product over

individual colonies.

Proof In order to check that this is the equilibrium distribution, it suffices

to verify that for each n the full balance equations hold:

π(n)
∑

j

∑

k

q(n, T jkn)
?
=

∑

j

∑

k

π(T jkn)q(T jkn, n).

These will be satisfied provided the following set of partial balance equa-

tions hold:

π(n)
∑

k

q(n, T jkn)
?
=

∑

k

π(T jkn)q(T jkn, n), ∀ j.

That is, it suffices to check that, from any state, the rate of individuals

leaving a given colony j is the same as the rate of individuals arriving into

it. We now recall

q(n, T jkn) = λ jkφ j(n j), q(T jkn, n) = λk jφk(nk + 1),

and from the claimed form for π we have that

π(T jkn) = π(n)
φ j(n j)

α j

αk

φk(nk + 1)
.

(T jk(n) has one more customer in colony k than n does, hence the appear-

ance of nk + 1 in the arguments.) After substituting and cancelling terms,

we see that the partial balance equations are equivalent to

∑

k

λ jk
?
=

1

α j

∑

k

αkλk j,

which is true by the definition of the α j. �

Remark 2.6 The full balance equations state that the total probability

flux into and out of any state is the same. The detailed balance equations

state that the total probability flux between any pair of states is the same.

Partial balance says that, for a fixed state, there is a subset of the states for

which the total probability flux into and out of the subset is equal.

Example 2.7 A telephone banking facility has N incoming lines and a

single (human) operator. Calls to the facility are initiated as a Poisson pro-

cess of rate ν, but calls initiated when all N lines are in use are lost. A call

finding a free line has to wait for the operator to answer. The operator deals

with waiting calls one at a time, and takes an exponentially distributed
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length of time with parameter λ to check the caller’s identity, after which

the call is passed to an automated handling system for the caller to transact

banking business, and the operator becomes free to deal with another caller.

The automated handling system is able to serve up to N callers simultane-

ously, and the time it takes to serve a call is exponentially distributed with

parameter µ. All these lengths of time are independent of each other and of

the Poisson arrival process.

n1 lines free

n2 lines waiting for service

n3 connected calls

n1

n3

n2

Figure 2.4 Closed migration process for the telephone banking
facility.

We model this system as a closed migration process as in Figure 2.4.

The transition rates correspond to

λ12 = ν, φ1(n1) = I[n1 > 0],

λ23 = λ, φ2(n2) = I[n2 > 0],

λ31 = µ, φ3(n3) = n3.

We can easily solve the traffic equations

α1 : α2 : α3 =
1

ν
:

1

λ
:

1

µ

because we have a random walk on three vertices, and these are the aver-

age amounts of time it spends in each of the vertices. Therefore, by Theo-

rem 2.4,

π(n1, n2, n3) ∝ 1

νn1

1

λn2

1

µn3

1

n3!
.

For example, the proportion of incoming calls that are lost is, by the PASTA

property,

P(n1 = 0) =
∑

n2+n3=N

π(0, n2, n3).
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Exercises

Exercise 2.6 For the telephone banking example, show that the propor-

tion of calls lost has the form

H(N)
∑N

n=0 H(n)
,

where

H(n) =

(
ν

λ

)n n∑

i=0

(

λ

µ

)i
1

i!
.

Exercise 2.7 A restaurant has N tables, with a customer seated at each

table. Two waiters are serving them. One of the waiters moves from table to

table taking orders for food. The time that he spends taking orders at each

table is exponentially distributed with parameter µ1. He is followed by the

wine waiter who spends an exponentially distributed time with parameter

µ2 taking orders at each table. Customers always order food first and then

wine, and orders cannot be taken concurrently by both waiters from the

same customer. All times taken to order are independent of each other. A

customer, after having placed her two orders, completes her meal at rate

ν, independently of the other customers. As soon as a customer finishes

her meal, she departs, and a new customer takes her place and waits to

order. Model this as a closed migration process. Show that the stationary

probability that both waiters are busy can be written in the form

G(N − 2)

G(N)
· ν

2

µ1µ2

for a function G(·), which may also depend on ν, µ1, µ2, to be determined.

2.4 Open migration processes

It is simple to modify the previous model so as to allow customers to enter

and exit the system. Define the operators

T j→n = (n1, . . . , n j − 1, . . . , nJ), T→kn = (n1, . . . , nk + 1, . . . , nJ),

where T j→ corresponds to an individual from colony j departing the sys-

tem; T→k corresponds to an individual entering colony k from the outside

world. We assume that the transition rates associated with these extra pos-

sibilities are

q(n, T jkn) = λ jkφ j(n j); q(n, T j→n) = µ jφ j(n j); q(n, T→kn) = νk.
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That is, immigration into colony k is Poisson. We can think of→ as simply

another colony, but with an infinite number of individuals, so that individ-

uals entering or leaving it do not change the overall rate.

If the resulting process n is irreducible in ZJ
+, we call n an open migration

process.

As before, we define quantities (α1, . . . , αJ), which satisfy the new traffic

equations

α j



µ j +
∑

k

λ jk



 = ν j +
∑

k

αkλk j, ∀ j. (2.2)

These equations have a unique, positive solution (see Exercise 2.9).

Since the state space of an open migration process is infinite, it is pos-

sible that there may not exist an equilibrium distribution. Define the con-

stants

g j =

∞∑

n=0

αn
j

∏n
r=1 φ j(r)

, j = 1, 2, . . . , J.

Theorem 2.8 If g1, . . . , gJ < ∞, then n has the equilibrium distribution

π(n) =

J∏

j=1

π j(n j), π j(n j) = g−1
j

α
n j

j
∏n j

r=1
φ j(r)

.

Proof Once again, we need to check for each n the full balance equations,

π(n)





∑

j

∑

k

q(n, T jkn) +
∑

j

q(n, T j→n) +
∑

k

q(n, T→kn)





?
=

∑

j

∑

k

π(T jkn)q(T jkn, n) +
∑

j

π(T j→n)q(T j→n, n)

+
∑

k

π(T→kn)q(T→kn, n),

which will be satisfied if we can solve the partial balance equations,

π(n)





∑

k

q(n, T jkn) + q(n, T j→n)





?
=

∑

k

π(T jkn)q(T jkn, n) + π(T j→n)q(T j→n, n) (2.3)

and

π(n)
∑

k

q(n, T→kn)
?
=

∑

k

π(T→kn)q(T→kn, n). (2.4)
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(These look a lot like the earlier partial balance equations with an added

colony called→.) Substitution of the claimed form for π(n) will verify that

equations (2.3) are satisfied (check this!).

To see that equations (2.4) are satisfied, we substitute

q(n, T→kn) = νk, π(T→kn) = π(n)
αk

φk(nk + 1)
, q(T→kn, n) = µkφk(nk+1),

to obtain, after cancellation,

∑

k

νk
?
=

∑

k

αkµk.

This is not directly one of the traffic equations (2.2): instead, it is the sum

of these equations over all j. �

We conclude that, in equilibrium, at any fixed time t the random vari-

ables n1(t), n2(t), . . . , nJ(t) are independent (although in most open migra-

tion networks they won’t be independent as processes).

A remarkable property of the distribution π j(n j) is that it is the same as if

the arrivals at colony j were a Poisson process of rate α jλ j, with departures

happening at rate λ jφ j(n j), where we define λ j = µ j +
∑

k λ jk. However,

in general the entire process of arrivals of individuals into a colony is not

Poisson. For example, consider the system in Figure 2.5 below. If ν is quite

small but λ21/µ2 is quite large, the typical arrival process into queue 1 will

look like the right-hand picture: rare bursts of arrivals of geometric size.

ν µ2

λ21

Figure 2.5 Simple open migration network. The typical arrival
process into queue 1 is illustrated on the right.

While an open migration process is not in general reversible (the detailed

balance equations do not hold), it does behave nicely under time reversal:

the reversed process also looks like an open migration process.

Theorem 2.9 If (n(t), t ∈ R) is a stationary open migration process, then

so is the reversed process (n(−t), t ∈ R).

Proof We need to check that the transition rates have the required form.
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Using Proposition 1.1, we have

q′(n, T jkn) =
π(T jkn)

π(n)
q(T jkn, n) =

φ j(n j)

α j

αk

φk(nk + 1)
λk jφk(nk + 1)

= λ′jkφ j(n j), where λ′jk =
αk

α j

λk j.

Similarly we find (check this) that the remaining transition rates of the

reversed open migration process have the form

q′(n, T j→n) = µ′jφ j(n j), q′(n, T→kn) = ν′k,

where µ′j = ν j/α j and ν′
k
= αkµk. �

Corollary 2.10 The exit process from colony k, i.e. the stream of individ-

uals leaving the system from colony k, is a Poisson process of rate αkµk.

Of course, as Figure 2.5 shows, not all of the internal streams of indi-

viduals can be Poisson! However, more of them may be Poisson than has

been asserted so far.

Remark 2.11 Consider the open migration process illustrated in Fig-

ure 2.6; the circles are colonies and the arrows indicate positive values

of λ, ν, µ.

P

PP

P

P P

P

P

Figure 2.6 Example open migration network. The dashed sets of
colonies will be useful in Exercise 2.10.

In Exercise 2.10 we will show that the stream of customers is Poisson,

not only along those arrows marked with a P, but also along all the thicker

arrows.

We have so far tacitly assumed that the open migration process has a

finite number of colonies, but we haven’t explicitly used this assumption;

the only extra condition we require to accommodate J = ∞ is to insist that

the equilibrium distribution can be normalized, i.e. that
∏∞

j=1 g−1
j > 0. We

will now discuss an example of an open migration process with J infinite.
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Family-size process

This process was studied by Kendall (1975), who was interested in family

names in Yorkshire. An immigrating individual has a distinguishing char-

acteristic, such as a surname or a genetic type, which is passed on to all his

descendants. The population is divided into families, each of which con-

sists of all those individuals alive with a given characteristic. The process

can also be used to study models of preferential attachment, where new

objects (e.g. web pages or news stories) tend to attach to popular objects.

Let n j be the number of families of size j. Then the family-size process

(n1, n2, . . . ) is a linear open migration process with transition rates

q(n, T j, j+1n) = jλn j, j = 1, 2, . . . , – λ is the birth rate

q(n, T j, j−1n) = jµn j, j = 2, 3, . . . , – µ is the death rate

q(n, T→1n) = ν, – immigration

q(n, T1→n) = µn1, – extinction of a family.

This corresponds to an open migration process with φ j(n j) = n j (and, for

example, λ j, j+1 = jλ). Observe that a family is the basic unit which moves

through the colonies of the system, and that the movements of different

families are independent.

The traffic equations have a solution (check!)

α j =
ν

λ j

(

λ

µ

) j

,

with

g j =

∞∑

n=0

αn
j

n!
= eα j ,

∞∏

i=1

g−1
i = e−

∑

αi > 0 if λ < µ.

The condition λ < µ is to be expected, for stability. Under this condition,

the equilibrium distribution is

π(n) =

∞∏

j=1

e−α j

α
n j

j

n j!
,

and thus the number of families of size j, n j, has a Poisson distribution

with mean α j, and n1, n2, . . . are independent. Hence the total number of

distinct families, N =
∑

j n j, has a Poisson distribution with mean

∑

j

α j = −
ν

λ
log

(

1 − λ
µ

)

,

from the series expansion of log(1 − x).
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Exercises

Exercise 2.8 Show that the reversed process obtained from a stationary

closed migration process is also a closed migration process, and determine

its transition rates.

Exercise 2.9 Show that there exists a unique, positive solution to the traf-

fic equations (2.2).

[Hint: Define α→ = 1.]

Exercise 2.10 Consider Figure 2.6. Show that each of the indicated sub-

sets of colonies is itself an open migration process.

[Hint: Induction.]

Suppose that, in an open migration process, individuals from colony k

cannot reach colony j without leaving the system. Show that the process

of individuals transitioning directly from colony j to colony k is Poisson.

Conclude that the processes of individuals transitioning along bold arrows

are Poisson.

[Hint: Write j { k if individuals leaving colony j can reach colony k by

some path with positive probability. Form subsets of colonies as equiva-

lence classes, using the equivalence relation: j ∼ k if both j { k and

k{ j.]

Exercise 2.11 In the family-size process show that the points in time at

which family extinctions occur form a Poisson process.

Exercise 2.12 In the family-size process, let

M =

∞∑

1

jn j

be the population size. Determine the distribution of n conditional on M,

and show that it can be written in the form

π(n |M) =

(

θ + M − 1

M

)−1 M∏

j=1

(

θ

j

)n j 1

n j!
, (2.5)

where θ = ν/λ.

[Hint: In the power series expansions of the identity

(1 − x)−θ =

∞∏

j=1

exp

(

θ

j
x j

)

,

consider the coefficients of xM.]
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Exercise 2.13 (The Chinese restaurant process) An initially empty restau-

rant has an unlimited number of tables, each capable of sitting an unlimited

number of customers. Customers numbered 1, 2, . . . arrive one by one and

are seated as follows. Customer 1 sits at a new table. For m ≥ 1 suppose

m customers are seated in some arrangement: then customer m + 1 sits at a

new table with probability θ/(θ+m) and sits at a given table already seating

j customers with probability j/(θ + m).

Let n j be the number of tables occupied by j customers. Show that after

the first M customers have arrived the distribution of (n1, n2, . . . ) is given

by expression (2.5).

Deduce that for the family-size process the expected number of distinct

families (e.g. surnames, genetic types, or news stories) given the population

size is

E(N |M) =

M∑

i=1

θ

θ + i − 1
.

2.5 Little’s law

Consider a stochastic process (X(t), t ≥ 0) on which is defined a function

n(t) = n(X(t)), the number of customers in the system at time t. Suppose that

with probability 1 there exists a time T1 such that the continuation of the

process beyond T1 is a probabilistic replica of the process starting at time

0: this implies the existence of further times T2, T3, . . . having the same

property as T1. These times are called regeneration points. Suppose also

that the regeneration point is such that n(T1) = 0. (For example, in an open

migration process a regeneration point may be “entire system is empty”.)

Suppose ET1 < ∞. Then we can define the mean number of customers in

the system as follows:

lim
T→∞

1

T

∫ T

0

n(s)ds
w.p.1
= lim

T→∞

1

T

∫ T

0

En(s)ds =
E

∫ T1

0
n(s)ds

ET1

≡ L

(that is, the average number of customers in the system can be computed

from a single regeneration cycle – treat this as an assertion for the moment).

Also, let Wn, n = 1, 2, . . . , be the amount of time spent by the nth cus-

tomer in the system. Then we can define the mean time spent by a customer

in the system as follows:

lim
n→∞

1

n

n∑

i=1

Wn

w.p.1
= lim

n→∞

1

n

n∑

i=1

EWn =
E

∑N
n=1 Wn

EN
≡ W,
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where N is the number of customers who arrive during the first regeneration

cycle [0, T1].

Finally, we can define the mean arrival rate

lim
T→∞

1

T
(number of arrivals in [0, T ])

w.p.1
= lim

T→∞

1

T
E(number of arrivals in [0, T ]) =

EN

ET1

≡ λ.

Note that we do not assume that the arrivals are Poisson; λ is simply the

long-run average arrival rate.

Remark 2.12 We will not prove any of these statements. (They follow

from renewal theory, and are discussed further in Appendix B.) But we

will establish a straightforward consequence of these statements.

Note that the definition of what constitutes the system, or a customer, is

left flexible. We require only consistency of meaning in the phrases “num-

ber of customers in the system”, “time spent in the system”, “number of

arrivals”. For example, suppose that in an open migration process we want

to define “the system” to be a subset of the colonies. Then n(t) is the num-

ber of customers present in the subset of the colonies, but we have a choice

for the arrivals and time periods. We could view each visit of an individual

to the subset as a distinct arrival, generating a distinct time spent in “the

system”. Alternatively, we could count each distinct individual as a single

arrival, and add up the times of that individual’s visits into a single time

spent in the system.

Theorem 2.13 (Little’s law) L = λW.

Proof Note

L =
E

∫ T1

0
n(s)ds

ET1

=
E

∫ T1

0
n(s)ds

EN

EN

ET1

,

whereas

λW =
EN

ET1

E
∑N

i=1 Wi

EN
.

Thus, it suffices to show

∫ T1

0

n(s)ds =

N∑

i=1

Wi. (2.6)

Figure 2.7 illustrates this equality for a simple queue: the shaded area can

be calculated as an integral over time, or as a sum over customers. More
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generally, we see equality holds by the following argument. Imagine each

customer pays at a rate of 1 per unit time while in the system (and so the

total paid by the nth customer in the system is just Wn). Then the two sides

of (2.6) are just different ways of calculating the total amount paid during

a regenerative cycle.
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Arrivals

Departures

number of customers

tT1

N

Figure 2.7 Shaded area is
∫ T1

0
n(s)ds, but also

∑N
i=1 Wi.

�

Remark 2.14 Little’s law holds whenever we can reasonably define the

quantities L, λ and W. The proof of the relationship between them is going

to be essentially the same; the question is simply whether it makes sense to

talk of the average arrival rate, the number of customers in the system, or

the time spent in the system.

Exercises

Exercise 2.14 The Orchard tea garden remains open 24 hours per day,

365 days per year. The total number of customers served in the tea gar-

den during 2012 was 21% greater than the total for 2011. In each year,

the number of customers in the tea garden was recorded at a large num-

ber of randomly selected times, and the average of those numbers in 2012

was 16% greater than the average in 2011. By how much did the average

duration of a customer visit to the Orchard increase or decrease?

Exercise 2.15 Use Little’s law to check the result in Exercise 1.7.

Exercise 2.16 Customers arrive according to a Poisson process with rate

ν at a single server, but a restricted waiting room causes those who arrive
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when n customers are already present to be lost. Accepted customers have

service times which are independent and identically distributed with mean

µ, and independent of the arrival process. (Service times are not necessarily

exponentially distributed.) Identify a regeneration point for the system. If

P j is the long-run proportion of time j customers are present, show that

1 − P0 = νµ(1 − Pn).

Exercise 2.17 Consider two possible designs for an S -server queue. We

may have all the customers wait in a single queue; the person at the head of

the line will be served by the first available server. (This is the arrangement

at the Cambridge railway ticket office.) Alternatively, we might have S

queues (one per server), with each customer choosing a queue to join when

she enters the system. Assuming that customers can switch queues, and in

particular will not allow a server to go idle while anyone is waiting, is there

a difference in the expected waiting time between the two systems? Is there

a difference in the variance?

2.6 Linear migration processes

In this section we consider systems which have the property that after in-

dividuals (or customers or particles) have entered the system they move

independently through it. We have seen the example of linear open migra-

tion networks, where in equilibrium the numbers in distinct colonies are

independent Poisson random variables. We will see that this result can be

be substantially generalized, to time-dependent linear migration processes

on a general space. We’ll need a little more mathematical infrastructure,

which is useful also to gain a better understanding of Poisson processes.

Let X be a set, and F a σ-algebra of measurable subsets of X. (If you

are not familiar with measure theory, then just view the elements of F as

the subsets of X in which we are interested.)

A Poisson point process with mean measure M is a point process for

which, if E1, . . . , Ek ∈ F are disjoint sets, the number of points in

E1, . . . , Ek ∈ F are independent Poisson random variables, with M(Ei)

the mean number of points in Ei.

As a simple example, let X = R, let F be the Borel σ-algebra gener-

ated by open intervals, and let M be Lebesgue measure (intuitively, M(E)

measures the size of the set E – its length if E is an interval – and E ∈ F
if the size can be sensibly defined). The probability of no points in the in-

terval (0, t) is, from the Poisson distribution, e−t; hence the distance from 0
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to the first point to the right of 0 has an exponential distribution. Similarly,

the various other properties of a Poisson process indexed by time can be

deduced. For example, given there are N points in the interval (0, t), their

positions are independent and uniformly distributed.

Another example is a Poisson process on [0, 1] × [0,∞), with the Borel

σ-algebra and Lebesgue measure. We can think of [0, 1] as “space” and

[0,∞) as “time”: then this is a sequence of points arriving as a unit rate

Poisson process in time, and each arriving point is distributed uniformly

on [0, 1], independently of all the other points. The collections of points ar-

riving to different subsets of [0, 1], or over different time periods, are inde-

pendent. If we colour red those points whose space coordinate lies in (0, p),

and blue those points whose space coordinate lies in (p, 1), for 0 < p < 1,

then the times of arrival of red and blue points form independent Poisson

processes with rates p and 1 − p, respectively. The arrival process of red

points is formed by thinning the original arrival process: an arriving point

is retained with probability p, independently from point to point. Similarly,

if two independent Poisson processes with mean measures M1,M2 are su-

perimposed, we obtain a Poisson process with mean measure M1 + M2.

Suppose now that individuals arrive into X as a Poisson stream of rate

ν, and then proceed to move independently through X according to some

stochastic process before (possibly) leaving X. We would like to under-

stand the collection of points that represents the (random) set of individuals

in the system at any given time.

Example 2.15 Recall our earlier discussion of linear migration processes,

in Section 2.4. Then we can take X to be the set of colonies {1, 2, . . . , J}
or {1, 2, . . . }. We assume that individuals enter the system into colony j as

a Poisson process of rate ν j. After arriving at colony j, an individual stays

there for a certain random amount of time T j with mean λ−1
j , the holding

time of the individual in colony j. At the end of its holding time in colony

j, an individual moves to colony k with probability p( j, k) or leaves the

system with probability p( j,→).

In our earlier discussion of linear migration processes in Section 2.4, the

times T j were exponentially distributed with parameter λ j, and all holding

times were independent. But now, in this example, we relax this assump-

tion, allowing T j to be arbitrarily distributed with mean λ−1
j , and we allow

the holding times of an individual at the colonies she visits to be depen-

dent. (But we insist these holding times are independent of those of other

individuals, and of the Poisson arrival process.) In Exercise 2.20, we will
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show that this does not change the limiting distribution for the numbers in

different colonies, a result known as insensitivity.

Example 2.16 Consider cars moving on a highway. The set X = R+ cor-

responds to a semi-infinite road. Cars arrive at the point 0 as a Poisson

process, and then move forward (i.e. right). If the highway is wide and un-

congested, we may assume that they move independently of each other,

passing if necessary. At any time, the set of car locations is a random col-

lection of points in X, and we are interested in properties of this random

collection as it evolves in time. To determine the stochastic process fully,

we need to specify the initial state of the highway at some time t = 0, and

the way in which each car moves through the system. We will do this in

Exercise 2.18.

For E ∈ F define the quantity

P(u, E) = P(individual is in E a time u after her arrival into the system).

Theorem 2.17 (Bartlett’s theorem) If the system is empty at time 0 then

at time t individuals are distributed over X according to a Poisson process

with mean measure

M(t, E) = ν

∫ t

0

P(u, E) du, E ∈ F .

Remark 2.18 The form for the mean measure should not be a surprise:

the mean number of individuals in E at time t is obtained by integrating

over (0, t) the rate at which individuals arrive multiplied by the probability

that at time t they are in E. But we need to prove that the numbers in disjoint

subsets are independent, with a Poisson distribution.

Proof Let E1, . . . , Ek ∈ F be disjoint, and let n j(t) be the number of in-

dividuals in E j at time t. In order to calculate the joint distribution of the

random variables n j(t), we will compute the joint probability generating

function. We will use the shorthand zn(t) to mean z
n1(t)

1
. . . z

nk(t)

k
; the probabil-

ity generating function we want is then Ezn(t).

Let m be the number of arrivals into the system in (0, t). Conditional on

m, the arrival times τ1, . . . , τm are independent and uniform in (0, t) (un-

ordered, of course). Let Ari be the event that the individual who arrived at

time τr is in Ei at time t; then P(Ari) = P(t − τr, Ei).
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Now,

E[zn(t) |m, τ1, . . . , τm] = E





m∏

r=1

k∏

i=1

z
I[Ari]

i
|m, τ1, . . . , τm





=

m∏

r=1

E





k∏

i=1

z
I[Ari]

i
| τr



 (by independence of τr)

=

m∏

r=1



1 −
k∑

i=1

(1 − zi)P(t − τr, Ei)



 ,

by considering the various places the arrival at time τr could be (in at most

one of Ei, i = 1, 2, . . . , k). Taking the average over τr, we get

E[zn(t) |m] =

m∏

r=1



1 −
k∑

i=1

(1 − zi)
1

t

∫ t

0

P(t − τ, Ei) dτ





=



1 −
k∑

i=1

(1 − zi)
1

t

∫ t

0

P(t − τ, Ei) dτ





m

.

To take the average over m, note that m is a Poisson random variable with

mean νt, and for a Poisson random variable X with mean λ we have EzX =

e−(1−z)λ. Therefore,

E[zn(t)] = exp



−νt
k∑

i=1

(1 − zi)
1

t

∫ t

0

P(u, Ei) du





=

k∏

i=1

exp(−(1 − zi)M(t, Ei)).

This shows that the joint probability generating function of n1(t), . . . , nk(t)

is the product of the probability generating functions of Poisson random

variables with means M(t, Ei); therefore, n1(t), . . . , nk(t) are independent

Poisson random variables with the claimed means, as required. �

Remark 2.19 Some intuition (and a rather slicker proof) for the above

result can be developed as follows. Colour an individual who arrives at

the system at time τ with colour j if that individual is in E j at time t, for

j = 1, . . . , J, and leave it uncoloured if it is not in any of these sets at time

t. Then the colours of individuals are independent, and the probability an

arrival at time τ is coloured j is P(t−τ, E j). We are interested in the colours

of the arrivals over (0, t), and the result then follows from general thinning

and superposition results for Poisson processes.
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Corollary 2.20 As t → ∞ the distribution of individuals over X ap-

proaches a Poisson process with mean measure

M(E) = ν

∫ ∞

0

P(u, E) du, E ∈ F .

Remark 2.21 Observe that
∫ ∞

0
P(u, E) du is the mean time spent by an

individual in the set E, and so this expression for the mean number in the

set E is Little’s law. (Of course, Little’s law does not give the distribution,

only the mean.)

Exercises

Exercise 2.18 Cars arrive at the beginning of a long stretch of road in a

Poisson stream of rate ν from time t = 0 onwards. A car has a fixed velocity

V > 0, which is a random variable. The velocities of cars are independent

and identically distributed, and independent of the arrival process. Cars can

overtake each other freely. Show that the number of cars on the first x miles

of road at time t has a Poisson distribution with mean

νE

[
x

V
∧ t

]

.

Exercise 2.19 Airline passengers arrive at a passport control desk in ac-

cordance with a Poisson process of rate ν. The desk operates as a single-

server queue at which service times are independent and exponentially dis-

tributed with mean µ(< ν−1) and are independent of the arrival process.

After leaving the passport control desk, a passenger must pass through a

security check. This also operates as a single-server queue, but one at which

service times are all equal to τ(<ν−1). Show that in equilibrium the proba-

bility both queues are empty is

(1 − νµ)(1 − ντ).

If it takes a time σ to walk from the first queue to the second, what is the

equilibrium probability that both queues are empty and there is no passen-

ger walking between them?

[Hint: Use Little’s law to find the probability the second queue is empty;

use the approach of Section 2.2 to establish independence; and use the

properties of a Poisson process to determine the distribution of the number

of passengers walking between the two queues.]

Exercise 2.20 Consider the linear migration process of Example 2.15.
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Write down the limiting distribution of the vector (n1, n2, . . . , nJ), the num-

bers of individuals in the J colonies. Show that the limiting distribution of

n j depends on the distribution of T j only through ET j, the expected amount

of time that an individual customer spends in colony j. The limiting distri-

bution is insensitive to the precise form of the holding time distribution, as

well as to dependencies between an individual’s holding times at colonies

visited.

2.7 Generalizations

The elementary migration processes considered earlier in this chapter can

be generalized in various ways, while still retaining the simplicity of a

product-form equilibrium distribution. We shall not go into this in great de-

tail, but with a few examples we briefly sketch two generalizations, namely

multiple classes of customer and general service distributions.

Example 2.22 (Communication network/optimal allocation) Our first ex-

ample is of a network (e.g., of cities) with one-way communication links

between them. The links are used to transmit data packets; and if there are

capacity constraints on the links, it is possible that packets may have to

queue for service. If we model the links as queues (as in the right-hand di-

1

3

2

4

5

1

5
2

3
4

Figure 2.8 A communication network. On the right is shown the
same network with links modelled as queues.

agram of Figure 2.8), we get something that isn’t quite an open migration

network; in an open migration network, individuals can travel in cycles,

whereas packets would not do that. (In fact, a natural model of this system

is as a multi-class queueing network, but we will not be developing that

framework here.)
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Let a j be the average arrival rate of messages at queue j, and let n j be

the number of messages in queue j. Suppose that we can establish that in

equilibrium

P(n j = n) =

(

1 −
a j

φ j

) (
a j

φ j

)n

,

where φ j is the service rate at queue j. (It is possible to prove under some

assumptions that the equilibrium distribution of a multi-class queueing net-

work is of product form, with these distributions as marginal distributions.)

Suppose now that we are allowed to choose the service rates (capaci-

ties) φ1, . . . , φJ , subject only to the budget constraint
∑

φ j = F, where all

summations are over j = 1, 2, . . . , J. What choice will minimize the mean

number of packets in the system, or (equivalently, in view of Little’s law)

the mean period spent in the system by a message?

The optimization problem we are interested in solving is:

minimize E
(∑

n j

)

=
∑ a j

φ j − a j

,

subject to
∑

φ j = F,

over φ j ≥ 0, ∀ j.

We shall solve this problem using Lagrangian techniques (see Appendix C

for a review). Introduce a Lagrange multiplier y for the budget constraint,

and let

L(φ; y) =
∑ a j

φ j − a j

+ y
(∑

φ j − F
)

.

Setting ∂L/∂φ j = 0, we find that L is minimized over φ by the choice

φ j = a j +

√

a j/y.

Substitution of this into the budget constraint and solving for y shows that

we should choose

φ j = a j +

√
a j

∑ √
ak

(

F −
∑

ak

)

.

This is known as Kleinrock’s square root channel capacity assignment:

any excess capacity (beyond the bare minimum required to service the

mean arrival rates) is allocated proportionally to the square root of the ar-

rival rates. This approach was used by Kleinrock (1964, 1976) for the early

computer network ARPANET, the forerunner of today’s Internet, when

capacity was expensive and queueing delays were often lengthy.
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Example 2.23 (Processor sharing) Consider a model in which K indi-

viduals, or jobs, oscillate between being served by a processor and being

idle, where the processor has a total service rate µ that it shares out equally

among all the n0 active jobs. (One might imagine K customers using a

web server for their shopping, with idleness corresponding to waiting for a

customer’s response.) Each job has an exponential service requirement of

unit mean at the processor, queue 0, and so if n0 jobs are at queue 0 then

each one of them departs at rate µ/n0. Suppose when job k becomes idle

it remains so for an exponentially distributed time with parameter λk. The

schematic diagram appears in Figure 2.9.

n0

λ1

λ2

λK

µ/n0
...

n1

nK

n2

Figure 2.9 Processor-sharing system: n0 jobs are currently being
served, and nk = 0 or 1 for k , 0.

In Exercise 2.21, you will check that the stationary distribution for this

system is

π(n0, . . . , nK) ∝ n0!µ−n0

K∏

k=1

λ
−nk

k
(2.7)

and that it satisfies detailed balance.

The interesting fact about this example is that whereas in order to check

detailed balance we need quite specific distributional assumptions (expo-

nential service requirements and idle times), the stationary distribution for

(n0, . . . , nK) is actually the same if the distributions are quite arbitrary with

the same mean. There are several scheduling disciplines for which this sort

of insensitivity holds, including the queues of this example. The Erlang

model of Section 1.3 is insensitive to the distribution of call holding pe-

riods, as is its network generalization of Chapter 3. We looked briefly at

this phenomenon in Exercise 2.20, but we shall not study it in more de-

tail. (Notably, a single-server queue with first-come first-serve scheduling

discipline is sensitive to its service time distribution.)
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Example 2.24 (A wireless network) Our next example is a model of a

network of K nodes sharing a wireless medium. Let the nodes form the

vertex set of a graph, and place an edge between two nodes if the two

nodes interfere with each other. Call the resulting undirected graph the in-

terference graph of the network. Let S ⊂ {0, 1}K be the set of vectors

n = (n1, n2, . . . , nK) with the property that if i and j have an edge between

them then ni · n j = 0. Let n be a Markov process with state space S and

transition rates

q(n, n − ek) = µk if nk = 1,

q(n, n + ek) = νk if n + ek ∈ S,

where ek ∈ S is a unit vector with a 1 as its kth component and 0s else-

where. We interpret nk = 1 as indicating that node k is transmitting. Thus

a node is blocked from transmitting whenever any of its neighbours are

active. Node k starts transmitting at rate νk provided it is not blocked, and

transmits for an exponentially distributed period of time with parameter µk.

It is immediate that the stationary distribution for this system is

π(n1, . . . , nK) ∝
K∏

k=1

(

νk

µk

)nk

(2.8)

normalized over the state space S, and that it satisfies detailed balance. (In-

deed the distribution is unaltered if the periods for which node k transmits

are independent random variables arbitrarily distributed with mean 1/µk,

and if the periods for which node k waits before attempting a transmission

following either the successful completion of, or a blocked attempt at, a

transmission are independent random variables arbitrarily distributed with

mean 1/νk.)

We look at variants of this model in Chapters 3, 5 and 7.

Exercises

Exercise 2.21 Check (by verifying detailed balance) that expression (2.7)

gives the stationary distribution for the processor-sharing example.

Exercise 2.22 Deduce, from the form (2.8), that if λ = νk/µk does not

depend on k then the stationary probability of any given configuration

(n1, . . . , nK) depends on the number of active transmissions,
∑

k nk, but not

otherwise on which stations are transmitting.

An independent vertex set is a set of vertices of the interference graph

with the property that no two vertices are joined by an edge. Show that as
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λ → ∞ the stationary probability approaches a uniform distribution over

the independent vertex sets of maximum cardinality.

2.8 Further reading

Whittle (1986), Walrand (1988), Bramson (2006) and Kelly (2011) give

more extended treatments of migration processes and queueing networks,

including the generalizations of Section 2.7. Pitman (2006) provides an

extensive treatment of the Chinese restaurant process (Exercise 2.13). Bac-

celli and Brémaud (2003) develop a very general framework for the study

of queueing results such as Little’s law and the PASTA property. Kingman

(1993) is an elegant text on Poisson processes on general spaces.

The short-hand queueing notation was suggested by Kendall (1953):

thus a D/G/K queue has a deterministic arrival process, general service

times, and K servers. Asmussen (2003) provides an authoritative treatment

of queues, and of the basic mathematical tools for their analysis.
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Loss networks

We have seen, in Section 1.3, Erlang’s model of a telephone link. But what

happens if the system consists of many links, and if calls of different types

(perhaps voice, video or conference calls) require different resources? In

this chapter we describe a generalization of Erlang’s model, which treats

a network of links and which allows the number of circuits required to

depend upon the call. The classical example of this model is a telephone

network, and it is natural to couch its definition in terms of calls, links and

circuits. Circuits may be physical (in Erlang’s time, a strand of copper; or,

for a wireless link, a radio frequency) or virtual (a fixed proportion of the

transmission capacity of a communication link such as an optical fibre).

The term “circuit-switched” is common in some application areas, where

it is used to describe systems in which, before a request (which may be

a call, a task or a customer) is accepted, it is first checked that sufficient

resources are available to deal with each stage of the request. The essential

features of the model are that a call makes simultaneous use of a number

of resources and that blocked calls are lost.

The simplest model of a loss network is a single link with C circuits,

where the arrivals are Poisson of rate ν, the holding times are exponential

with mean 1, and blocked calls are lost. In this case, we know from Erlang’s

formula (1.5)

P(an arriving call is lost) = E(ν,C) =
νC

C!





C∑

j=0

ν j

j!





−1

.

3.1 Network model

Let the set of links beJ = {1, 2, . . . , J}, and let C j be the number of circuits

on link j. A route r is a subset of {1, 2, . . . , J}, and the set of all routes is

called R (this is a subset of the power set of J). Let R = |R|. Figure 3.1

49
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Figure 3.1 A loss network with six links and six two-link routes.

shows an example of a network with six links, in which “routes” are pairs

of adjacent links.

Calls requesting route r arrive as a Poisson process of rate νr, and as r

varies it indexes independent Poisson streams. A call requesting route r is

blocked and lost if on any link j ∈ r there is no free circuit. Otherwise the

call is connected and simultaneously holds one circuit on each link j ∈ r

for the holding period of the call. The call holding period is exponentially

distributed with unit mean and independent of earlier arrival and holding

times.

Let A be the link-route incidence matrix,

A jr =






1, j ∈ r,

0, j < r.

Remark 3.1 Often the set of links comprising a route will form a path

between two nodes for some underlying graph, but we do not make this

a requirement: for example, for a conference call the set of links may in-

stead form a tree, or a complete subgraph, in an underlying graph. Later,

from Section 3.3, we shall allow entries of A to be arbitrary non-negative

integers, with the interpretation that a call requesting route r requires A jr

circuits from link j, and is lost if on any link j = 1, . . . , J there are fewer

than A jr circuits free. But for the moment assume A is a 0–1 matrix, and

conveys the same information as the relation j ∈ r.

Let nr be the number of calls in progress on route r. The number of

circuits busy on link j is given by
∑

r A jrnr. Let n = (nr, r ∈ R), and let

C = (C j, j ∈ J). Then n is a Markov process with state space

{n ∈ ZR
+ : An ≤ C}

(the inequality is to be read componentwise). This process is called a loss

network with fixed routing.
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Later we compute the exact equilibrium distribution for n. But first we

describe a widely used approximation procedure.

Exercise

Exercise 3.1 Suppose that µk = 1, k = 1, . . . ,K in the model of Exam-

ple 2.24. Show that the model is a loss network, with the resource set J
taken as the set of edges in the interference graph.

3.2 Approximation procedure

The idea underlying the approximation is simple to explain. Let B j be the

probability of blocking on link j. Suppose that a Poisson stream of rate νr

is thinned by a factor 1 − Bi at each link i ∈ r \ j before being offered to

link j. If these thinnings could be assumed independent both from link to

link and over all routes passing through link j (they clearly are not), then

the traffic offered to link j would be Poisson at rate
∑

r

A jrνr

∏

i∈r\{ j}
(1 − Bi)

(the reduced load), and the blocking probability at link j would be given

by Erlang’s formula:

B j = E





∑

r

A jrνr

∏

i∈r−{ j}
(1 − Bi),C j




, j = 1, . . . , J. (3.1)

Does a solution exist to these equations? First, let’s recall (or note) the

Brouwer fixed point theorem: a continuous map from a compact, convex

set to itself has at least one fixed point. But the right-hand side of (3.1)

defines a continuous map F : [0, 1]J → [0, 1]J via

(B j, j = 1, . . . , J) 7→



E
(∑

r

A jrνr

∏

i∈r−{ j}
(1 − Bi),C j

)

, j = 1, . . . , J




,

and [0, 1]J is convex and compact. Hence there exists a fixed point. We

shall see later that this fixed point is unique, and we call it, i.e. the solution

to equations (3.1), the Erlang fixed point.

Example 3.2 Consider the following network with three cities linked via

a transit node in the middle. We are given the arrival rates ν12, ν23, ν31. (We
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1 2

3

C1 C2

C3

Figure 3.2 Telephone network for three cities.

write ν12 for the more cumbersome ν{1,2}). The approximation reads

B1 = E(ν12(1 − B2) + ν31(1 − B3),C1),

B2 = E(ν12(1 − B1) + ν23(1 − B3),C2),

B3 = E(ν23(1 − B2) + ν31(1 − B1),C3),

with corresponding loss probability along the route {1, 2} given by

L12 = 1 − (1 − B1)(1 − B2),

and similarly for L23, L31.

Remark 3.3 How can we solve equations (3.1)? If we simply iterate the

transformation F, we usually converge to the fixed point. This method,

called repeated substitution, is often used in practice. If we use a suffi-

ciently damped iteration, i.e. take a convex combination of the previous

point and its image under F as the next point, we are guaranteed con-

vergence. The complication of damping can be avoided by a variant of

repeated substitution whose convergence you will establish later, in Exer-

cise 3.7.

The approximation is often surprisingly accurate. Can we provide any

insight into why it works well when it does? This will be a major aim in

this chapter.

3.3 Truncating reversible processes

We now determine a precise expression for the equilibrium distribution of

a loss network with fixed routing.

Consider a Markov process with transition rates (q( j, k), j, k ∈ S). Say

that it is truncated to a set A ⊂ S if q( j, k) is changed to 0 for j ∈ A,

k ∈ S \ A, and if the resulting process is irreducible withinA.



3.3 Truncating reversible processes 53

Lemma 3.4 If a reversible Markov process with state space S and equi-

librium distribution (π( j), j ∈ S) is truncated to A ⊂ S, the resulting

Markov process is reversible and has equilibrium distribution

π( j)





∑

k∈A
π(k)





−1

, j ∈ A. (3.2)

Proof By the reversibility of the original process

π( j)q( j, k) = π(k)q(k, j),

and so the probability distribution (3.2) satisfies detailed balance. �

Remark 3.5 If the original process is not reversible, then (3.2) is the

equilibrium distribution of the truncated process if and only if

π( j)
∑

k∈A
q( j, k) =

∑

k∈A
π(k)q(k, j).

Earlier, equations of this form were termed “partial balance”.

Consider a loss network with fixed routing for which C1 = . . . = CJ =

∞. If this is the case, arriving calls are never blocked; they simply arrive

(at rate νr), remain for an exponentially distributed amount of time with

unit mean, and leave. Henceforth allow the link-route incidence matrix A

to have entries in Z+, not just 0 or 1.

This system is described by a linear migration process with transition

rates

q(n, T→rn) = νr, q(n, Tr→n) = nr,

and equilibrium distribution

∏

r∈R
e−νr
ν

nr
r

nr!
, n ∈ ZR.

(Since the capacities are infinite, the individual routes become indepen-

dent.) If we now truncate n to S(C) = {n : An ≤ C}, we obtain precisely

the original loss network with fixed routing (and finite capacities). There-

fore, its equilibrium distribution is

π(n) = G(C)
∏

r

ν
nr
r

nr!
, n ∈ S(C) = {n : An ≤ C}, (3.3)

with

G(C) =





∑

n∈S(C)

∏

r

ν
nr
r

nr!





−1

.
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Further, the equilibrium probability that a call on route r will be accepted

is

1 − Lr =
∑

n∈S(C−Aer)

π(n) =
G(C)

G(C − Aer)
,

where er ∈ S(C) is the unit vector that describes one call in progress on

route r.

Remark 3.6 This is not a directly useful result for large (C big) or com-

plex (R big) networks, because of the difficulty of computing the normal-

izing constant (in the case of an arbitrary matrix A, this is an NP-hard

problem). However, we might hope for a limit result. We know that for

large ν and C the Poisson distribution is going to be well approximated by

a multivariate normal. Conditioning a multivariate normal on an inequal-

ity will have one of two effects: if the centre is on the feasible side of the

inequality, the constraint has very little effect; if the centre is on the in-

feasible side of the inequality, we effectively restrict the distribution to the

boundary of the constraint (because the tail of the normal distribution dies

off very quickly), and the restriction of a multivariate normal to an affine

subspace is again a multivariate normal distribution. In later sections we

make this more precise.

We end this section with some further examples of truncated processes.

These examples show that a variety of models may reduce to be equivalent

to a loss network with fixed routing (and in particular the equilibrium dis-

tribution is given by independent Poisson random variables conditioned on

a set of linear inequalities).

Example 3.7 (Call repacking) Consider the network in Figure 3.3 joining

three nodes. Suppose that calls can be rerouted, even while in progress, if

3

21

C1C2

C3

Figure 3.3 Loss network with call repacking.
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this will allow another call to be accepted. (We also, as usual, assume that

arrivals are Poisson and holding times are exponential.)

Let nαβ be the number of calls in progress between α and β. Then n =

(n12, n23, n31) is Markov, since all we need to know is the number of calls

between each pair of cities. Further, we claim n = (n12, n23, n31) is a linear

migration process with equilibrium distribution

∏

r

e−νr
ν

nr
r

nr!
, r = {1, 2}, {2, 3}, {3, 1}

truncated to the set

A = {n : n12 + n23 ≤ C3 +C1, n23 + n31 ≤ C1 +C2, n31 + n12 ≤ C2 +C3}.

Indeed, it is clear that these restrictions are necessary: that is, if the state

n is not in A then it cannot be reached. (Each of the three inequalities is a

cut constraint separating one of the vertices from the rest of the network.)

Next we show they are sufficient: that is, if n ∈ A then it is feasible to

pack the calls so that all the calls in n are carried. First note that if all

three inequalities of the form n23 ≤ C1 hold (one for each direct route),

the state n is clearly feasible. If not, suppose, without loss of generality,

n23 > C1. Then we can route C1 of the calls directly and reroute the remain-

ing n23 − C1 calls via node 1. This will be possible provided

n23 − C1 ≤ min(C3 − n12,C2 − n31), i.e. provided n12 + n23 ≤ C1 +C3 and

n23 + n31 ≤ C1 + C2, which will necessarily hold since n ∈ A. Thus in this

case too the state n is feasible.

Thus, the equilibrium distribution is

π(n) = G(A)
∏

r

ν
nr
r

nr!
, n ∈ A, r = {1, 2}, {2, 3}, {3, 1}.

1 2

3

C1 +C2

C1 +C3C2 +C3

Figure 3.4 An equivalent network to the repacking model.

Note that the process n is equivalent to the loss network with fixed rout-
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ing illustrated in Figure 3.4: the transition rates, as well as the state space

and the equilibrium distribution, are identical.

Example 3.8 (A cellular network) Consider a cellular network, with

seven cells arranged as in Figure 3.5. There are C distinct radio commu-

2

7

6

5

4

1

3

Figure 3.5 A cellular network: adjacent cells cannot use the
same radio channel.

nication channels, but two adjacent cells cannot use the same channel. (A

channel may be a frequency or a time slot, and interference prevents the

same channel being used in adjacent cells. Two cells are adjacent in Fig-

ure 3.5 if they share an edge.) Calls may be reallocated between channels,

even while they are in progress, if this will allow another call to be ac-

cepted. It is clear that nα + nβ + nγ ≤ C for all cells α, β, γ that meet at

a vertex in Figure 3.5. In Exercise 3.3 it is shown that these are the only

constraints. Thus the network is equivalent to a loss network with fixed

routing: it is as if there is a virtual link of capacity C associated with each

vertex, and a call arriving at a cell requires one circuit from each of the

virtual links associated with the vertices of that cell.

Exercises

Exercise 3.2 Let m = C − An, so that m j is the number of free circuits

on link j, and let π′(m) =
∑

n:An=C−m π(n) be the equilibrium probability

of the event that m j circuits are free on link j for j ∈ J . Establish the

Kaufman–Dziong–Roberts recursion

(C j − m j)π
′(m) =

∑

r:Aer≤C−m

A jrνrπ
′(m + Aer).

[Hint: Calculate E[nr |m], using the detailed balance condition for π(n).

Note that the recursion can be used to solve for π′(m) in terms of π′(C),

using the boundary condition that π′(m) = 0 if m j > C j for any j.]
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Exercise 3.3 Establish the result claimed in Example 3.8: that there is an

allocation of radio channels to cells such that no channel is used in two

adjacent cells if and only if nα + nβ + nγ ≤ C for all cells α, β, γ that meet

at a vertex in Figure 3.5.

[Hint: Begin by allocating channels 1, . . . , n1 to cell 1, and channels n1 +

1, . . . , n1 + n2 to cell 2, n1 + 1, . . . , n1 + n4 to cell 4, and n1 + 1, . . . , n1 + n6

to cell 6. Generalizations of this example are treated in Pallant and Taylor

(1995) and Kind et al. (1998).]

3.4 Maximum probability

To obtain some insight into the probability distribution (3.3), we begin by

looking for its mode, i.e. the location of the maximum of π(n) over n ∈ ZR
+

and An ≤ C. Write

log π(n) = log



G(C)
∏

r

ν
nr
r

nr!



 = log G(C) +
∑

r

(

nr log νr − log(nr!)
)

.

By Stirling’s approximation,

n! ∼
√

2πnn+ 1
2 e−n as n→ ∞,

and so

log(n!) = n log n − n + O(log n).

We will now replace the discrete variable n by a continuous variable x, and

also ignore the O(log n) terms to obtain the following problem.

Primal:

maximize
∑

r

(xr log νr − xr log xr + xr)

subject to Ax ≤ C (3.4)

over x ≥ 0.

The optimum in this problem is attained, since the feasible region is com-

pact. The strong Lagrangian principle holds (Appendix C) since the objec-

tive function is concave, and the feasible region is defined by a set of linear

inequalities. The Lagrangian is

L(x, z; y) =
∑

r

(xr log νr − xr log xr + xr) +
∑

j

y j



C j −
∑

r

A jr xr − z j



 .
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Here, z ≥ 0 are the slack variables in the constraint Ax ≤ C and y are

Lagrange multipliers. Rewrite as

L(x, z; y) =
∑

r

xr +
∑

r

xr




log νr − log xr −

∑

j

y jA jr




+

∑

j

y jC j −
∑

j

y jz j,

which we attempt to maximize over x, z ≥ 0. To obtain a finite maximum

when we maximize the Lagrangian over z ≥ 0, we require y ≥ 0; and given

this, we have at the optimum y · z = 0. Further, differentiating with respect

to xr yields

log νr − log xr −
∑

j

y jA jr = 0,

and hence at the maximum

xr = νre
−∑

j y jA jr .

Thus, if for given y we maximize the Lagrangian over x, z ≥ 0 we obtain

max
x,z≥0

L(x, z; y) =
∑

r

νre
−∑

j y jA jr +
∑

j

y jC j,

provided y ≥ 0. This gives the following as the Lagrangian dual problem.

Dual:

minimize
∑

r

νre
−∑

j y jA jr +
∑

j

y jC j (3.5)

over y ≥ 0.

By the strong Lagrangian principle, there exists y such that the Lagrangian

form L(x, z; y) is maximized at x = x, z = z that are feasible (i.e. x ≥ 0, z =

C−Ax ≥ 0), and x, z are then optimal for the Primal problem. Necessarily,

y ≥ 0 (dual feasibility) and y · z = 0 (complementary slackness).

Let

e−y j = 1 − B j.

We can rewrite the statement that there exist y, z satisfying the conditions

y ≥ 0 and y · z = 0 in terms of the transformed variables as follows: there

exist (B1, . . . , BJ) ∈ [0, 1)J that satisfy
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Conditions on B:





∑

r

A jrνr

∏

i

(1 − Bi)
Air= C j if B j > 0,

≤ C j if B j = 0.

(3.6)

(To check the correspondence with the complementary slackness condi-

tions, note that B j > 0 if and only if y j > 0. If you don’t know the strong

Lagrangian principle, don’t worry: in a moment we’ll establish directly the

existence of a solution to the conditions on B.)

Remark 3.9 The conditions on B have an elegant fluid flow interpreta-

tion. With the substitution e−y j = 1 − B j, the flow xr = νr

∏

i(1 − Bi)
Air

looks like a thinning of the arrival stream νr by a factor (1 − Bi) for each

circuit requested from link i for each link i that the route r goes through.

Then
∑

r A jrνr

∏

i(1−Bi)
Air is the aggregated flow on link j. The conditions

on B tell us that the aggregated flow on link j does not exceed the link’s

capacity, and that blocking only occurs on links that are at full capacity.

Let’s summarize what we have shown thus far, with a few additional

points.

Theorem 3.10 There exists a unique optimal solution x = (xr, r ∈ R) to

the Primal problem (3.4). It can be expressed in the form

xr = νr

∏

j

(1 − B j)
A jr , r ∈ R,

where B = (B1, . . . , BJ) is any solution to (3.6), the conditions on B. There

always exists a vector B satisfying these conditions; it is unique if A has

rank J. There is a one-to-one correspondence between vectors satisfying

the conditions on B and optima of the Dual problem (3.5), given by

1 − B j = e−y j , j = 1, . . . , J.

Proof Strict concavity of the Primal objective function gives uniqueness

of the optimum x. The form of the optimum x was found above in terms of

the Lagrange multipliers y, or equivalently B.

The explicit form of the Dual problem will allow us to establish directly

the existence of B satisfying the conditions on B, without relying on the

strong Lagrangian principle. Note that in the Dual problem we are min-

imising a convex, differentiable function over the positive orthant, and the

function grows to infinity as y j → ∞ for each j = 1, . . . , J. Therefore, the

function achieves its minimum at some point y in the positive orthant. If
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the minimum y has y j > 0, the partial derivative ∂/∂y j | y = 0. If y j = 0, the

the partial derivative must be non-negative. (See Figure 3.6.)

Figure 3.6 Minimum of a convex function over non-negative
values occurs either where the derivative is zero, or at 0 with the
derivative non-negative.

But this partial derivative of the Dual objective function is simply

−
∑

r

A jrνre
−∑

i yiAir +C j,

and so the minimum over y ≥ 0 will be at a point where






∑

r

A jrνre
−∑

i yiAir = C j if y j > 0,

≤ C j if y j = 0.

Note that these are precisely the conditions on B, under the substitution

B j = 1 − e−y j ; this gives the existence of a solution to the conditions on B,

and establishes the one-to-one correspondence with the optima of the Dual

problem.

Finally, note that the Dual objective function
∑

r νre
−∑

j y jA jr is strictly

convex in the components of yA. If A has rank J, the mapping y 7→ yA is

one-to-one, and therefore the objective function is also strictly convex in

the components of y, and so there is a unique optimum. �

Example 3.11 (Rank deficiency) If A is rank deficient, the Dual objec-

tive function may not be strictly convex in the components of y, and the

optimizing y may not be unique. Consider

A =





1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1
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corresponding to the system in Figure 3.7. The routes in R are {1, 2}, {2, 3},

1 3

4

2

Figure 3.7 A network with a rank-deficient matrix.

{3, 4}, {4, 1}, and the matrix A has rank 3. In Exercise 3.4 it is shown that a

solution to the conditions on B will, in general, be non-unique.

Remark 3.12 A will have rank J if there is some single-link traffic on

each link (i.e. there exists a route r = { j} for each j ∈ R), since then the

matrix A will contain the columns of the J × J identity matrix amongst its

columns. This is a natural assumption in many cases.

Exercise

Exercise 3.4 Consider Example 3.11. Show that if B1, B2, B3, B4 > 0

solve the conditions on B, then so do

1 − d(1 − B1), 1 − d−1(1 − B2), 1 − d(1 − B3), 1 − d−1(1 − B4),

i.e. only (1 − Bodd)(1 − Beven) is fixed. Deduce that for this example, where

the matrix A is rank deficient, a solution to the conditions on B may be

non-unique.

3.5 A central limit theorem

We noted earlier that we expect the truncated multivariate Poisson distri-

bution (3.3) to approach a conditioned multivariate normal distribution as

arrival rates and capacities become large. In this section we make this pre-

cise, and we shall see that the solutions to the optimization problems of

Section 3.4 play a key role in the form of the limit.

We need first to define a limiting regime.
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3.5.1 A limiting regime

Consider a sequence of networks as follows: replace ν = (νr, r ∈ R) and

C = (C j, j ∈ J) by ν(N) = (νr(N), r ∈ R) and C(N) = (C j(N), j ∈ J) for

N = 1, 2, . . . . We will consider the scaling regime in which

1

N
νr(N)→νr, for r ∈ R,

1

N
C j(N)→C j, for j ∈ J ,

as N → ∞, where νr > 0, C j > 0 for all r and j. Write B(N), x(N), etc. for

quantities defined for the Nth network. Thus B(N) solves the conditions on

B (3.6) with ν,C replaced by ν(N),C(N).

From now on we will assume that A has full rank J, and moreover that

the unique solution to the conditions on B (3.6) satisfies
∑

r

A jrνr

∏

i

(1 − Bi)
Air < C j if B j = 0,

i.e. the inequality is strict. This will simplify the statements and proofs of

results.

Lemma 3.13 As N → ∞, B(N)→ B and 1
N

x(N)→ x.

Proof The sequence B(N), N = 1, 2, . . . takes values in the compact set

[0, 1]J . Select a convergent subsequence, say B(Nk), k = 1, 2, . . . , and let

B′ = limk→∞ B(Nk). Then for N = Nk large enough,
∑

r

A jrνr(N)
∏

i

(1 − Bi(N))Air = C j(N), if B′j > 0,

≤ C j(N), if B′j = 0.

(Note that this is true for all k with B j(Nk) on the right-hand side, but B′j >

0 =⇒ B j(Nk) > 0 for all k large enough and all j = 1, . . . , J.)

Divide by Nk, and let Nk → ∞, to obtain
∑

r

A jrνr

∏

i

(1 − B′i)
Air = C j, if B′j > 0,

≤ C j, if B′j = 0.

Note that this shows B′j , 1 for any j (it can’t be equal to 1 in the second

line, and it can’t be equal to 1 in the first line because C j > 0 for all j).

By the uniqueness of solutions to this set of relations, B′ = B.

To finish the proof that B(N)→ B, we use a standard analysis argument.

We have shown that any convergent sequence of B(N) converges to B, and
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since we are in a compact set, any infinite subset of {B(N)} has a conver-

gent subsequence. Consider an open neighbourhood O of B; we show that

all but finitely many terms of B(N) lie in O. Indeed, the set [0, 1]J \ O is

still compact; if infinitely many terms B(Nk) were to lie in it, they would

have a convergent subsequence; but that convergent subsequence would

(by above) converge to B, a contradiction.

Finally, since

xr(N) = νr(N)
∏

i

(1 − Bi(N))Air ,

we conclude that xr(N)/N → xr. �

We have shown that, in the limiting regime of high arrival rates and

large capacities, we can approximate the most likely state of a large net-

work by the most likely state of the limit. Our next task is to show that the

distribution of n(N), appropriately scaled, converges to a normal distribu-

tion conditioned on belonging to a subspace. The definitions below will be

useful in defining the subspace.

Let

pN(n(N)) =
∏

r

νr(N)nr(N)

nr(N)!

(the unnormalized distribution of n(N)), and also let

m j(N) = C j(N) −
∑

r

A jrnr(N),

the number of spare circuits on link j in the Nth network. Let

B = { j : B j > 0}, AB = (A jr, j ∈ B, r ∈ R).

The matrix AB contains those rows of A that correspond to links with pos-

itive entries of B. Intuitively, those are the links where we expect to have

positive blocking probability.

3.5.2 Limit theorems

Choose a sequence of states n(N) ∈ S(N), N = 1, 2, . . . , and let

ur(N) = N−1/2(nr(N) − xr(N)), r ∈ R.

Thus we are centring the vector (ur(N), r ∈ R) on the approximate mode,

as found in Section 3.5.1, and using the appropriate scaling for convergence

to a normal distribution.
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Theorem 3.14 The distribution of u(N) = (ur(N), r ∈ R) converges

to the distribution of the vector u = (ur, r ∈ R) formed by conditioning

independent normal random variables ur ∼ N(0, xr), r ∈ R, on ABu = 0.

Moments converge also, and hence

1

N
E[nr(N)]→ xr, r ∈ R.

Remark 3.15 The proof proceeds by directly estimating the unnormal-

ized probability mass pN(n(N)), and using Stirling’s formula in the form

n! = (2πn)1/2 exp(n log n − n + θ(n)),

where 1/(12n + 1) < θ(n) < 1/(12n). We shall not go through the more

tedious parts of the proof (controlling error terms in the tail of the distribu-

tion), but we sketch the key ideas.

Sketch of proof Restrict attention initially to sequences n(N) ∈ S(N),

N = 1, 2, . . . , such that
∑

r ur(N)2 is bounded above: then nr(N) ∼ xr(N) ∼
xrN as N → ∞. By Stirling’s formula,

pN(n(N)) =
∏

r

(2πnr(N))−1/2

· exp





∑

r

(nr(N) log νr(N) − nr(N) log nr(N) + nr(N))

︸                                                        ︷︷                                                        ︸

X

+O(N−1)





.

We now expand X:

X = −
∑

r

nr(N) log
nr(N)

eνr(N)

= −
∑

r

nr(N) log
xr(N)

νr(N)
︸                   ︷︷                   ︸

first term

−
∑

r

nr(N) log
nr(N)

exr(N)
︸                       ︷︷                       ︸

second term

.

The first term, by the construction of x as a solution to an optimization

problem, is
∑

r

nr(N)
∑

j

y j(N)A jr =
∑

j

y j(N)
∑

r

A jrnr(N)

=
∑

j

y j(N)(C j(N) − m j(N)).
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To deal with the second term, we note from a Taylor series expansion that

(1 + a)(1 − log(1 + a)) = 1 − 1

2
a2 + o(a2) as a→ 0,

and therefore

−nr(N) log
nr(N)

exr(N)
= (xr(N) + ur(N)N1/2)

(

1 − log

(

1 +
ur(N)N1/2

xr(N)

))

= xr(N)



1 −
1

2

(

ur(N)N1/2

xr(N)

)2

+ o(N−1)





= xr(N) − ur(N)2

2xr

+ o(1)

(we absorb the error from replacing xr(N)/N by xr into the o(1) term).

Putting these together,

X =
∑

j

y j(N)C j(N) +
∑

r

xr(N) −
∑

j

y j(N)m j(N) −
∑

r

ur(N)2

2xr

+ o(1),

and thus

pN(n(N)) exp




−

∑

r

xr(N) −
∑

j

y j(N)C j(N)





︸                                        ︷︷                                        ︸

term 1

=
∏

j

(1 − B j(N))m j(N)

︸                  ︷︷                  ︸

term 2

∏

r

(2πnr(N))−1/2

︸               ︷︷               ︸

term 3

exp

(

−ur(N)2

2xr

+ o(1)

)

.

︸                       ︷︷                       ︸

term 4

Remark 3.16 We have established this form uniformly over all sequences

n(N) such that
∑

r ur(N)2 is bounded above and thus uniformly over u(N)

in any compact set. To be sure that this is enough to determine the limit

distribution, we need to ensure tightness for the distributions of u(N): we

need to know that probability mass does not leak to infinity as N → ∞, so

that we can compute the limit distribution by normalizing the above form

to be a probability distribution. We also need to ensure that the probability

mass outside of a compact set decays quickly enough that moments can

be calculated from the limit distribution. It is possible to ensure this by

crudely bounding the error terms in Stirling’s formula and the Taylor series

expansion, but we omit this step.

Note that term 1 is a constant that does not depend on n (it does depend

on N, of course): it will be absorbed in the normalizing constant. Similarly,
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since nr(N) ∼ xrN, term 3 can be absorbed in the normalizing constant,

with an error that can be absorbed into the o(1) term. Term 4 looks promis-

ing: we are trying to relate the probability distribution of u(N) to the form

exp(−u2
r/2xr) corresponding to a N(0, xr) random variable. But what about

term 2?

We will now show that term 2 has the effect of conditioning the normal

distribution on the set ABu = 0. For j ∈ B, i.e. B j > 0, we consider the

quantity

m j(N) = C j(N) −
∑

r

A jrnr(N) = C j(N) −
∑

r

A jr

(

xr(N) + ur(N)N1/2
)

= C j(N) −
∑

r

A jr xr(N)

︸                     ︷︷                     ︸

= 0 for N large enough

−




∑

r

A jrur(N)



 N1/2.

Since m j(N) ≥ 0, we deduce that
∑

r A jrur(N) ≤ 0 for j ∈ B and N large

enough. Further, term 2 decays geometrically with m j(N), for each j ∈ B.

Thus the relative mass assigned by pN(n(N)) to values of m j(N) > m decays

to zero as m increases, and so the relative mass assigned by pN(n(N)) to

values of −∑

r A jrur(N) larger than any given ǫ > 0 decays to zero as N

increases. Therefore, the normalized limiting distribution is concentrated

on the set ABu = 0, as required.

�

Corollary 3.17 For r ∈ R, and as N → ∞,

Lr(N)→ Lr ≡ 1 −
∏

i

(1 − Bi)
Air .

Here, Lr(N) is the probability that a call on route r is lost (in network N).

Proof By Little’s law,

(1 − Lr(N))νr(N)
︸               ︷︷               ︸

λ

·1
W

= E[nr(N)]
︸    ︷︷    ︸

L

.

Therefore,

1 − Lr(N) =
E[nr(N)]

νr(N)
=
E[nr(N)]/N

νr(N)/N
→ xr

νr

=
∏

i

(1 − Bi)
Air .

�

Remark 3.18 Observe that if there is a link r = { j}, then the Corollary

shows that Lr(N)→ B j.
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Example 3.19 Consider the system in Figure 3.8, with link-route inci-

dence matrix

A =

(

1 0 1

0 1 1

)

.
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n3

n1

m1

m2

C2

Figure 3.8 Shared communication link and breakdown of the
number of circuits in use/free on each of the links.

Suppose B = {1, 2}, so AB = A. Then prior to conditioning on ABu =

0 we have ur = (nr − xr)/
√

N → N(0, xr), three independent normals.

However, as |B| = 2, the condition ABu = 0 reduces the support by two

dimensions, constraining u to a one-dimensional subspace, where n1+n3 ≈
C1 and n2 + n3 ≈ C2.

The free circuit processes m1 and m2 control the system: link j blocks

calls if and only if m j = 0. Thus m1 and m2 are often not zero. But, in the

limiting regime, m1 and m2 are only O(1), whereas n1, n2, n3,C1 and C2 all

scale as O(N).

3.6 Erlang fixed point

Consider the equations

E j = E



(1 − E j)
−1

∑

r

A jrνr

∏

i

(1 − Ei)
Air ,C j



 , j = 1, . . . , J, (3.7)

the generalization of the Erlang fixed point equations to matrices A that

may not be 0–1. Our goal now is to show that there exists a unique solution

to these equations, and that, in the limiting regime, the solution converges

to the correct limit B, namely that arising from the maximum probability

optimization problem.

Theorem 3.20 There exists a unique solution (E1, . . . , EJ) ∈ [0, 1]J sat-

isfying the Erlang fixed point equations (3.7).
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Proof We prove this theorem by showing that we can rewrite the Erlang

fixed point equations as the stationary conditions for an optimization prob-

lem (with a unique optimum).

Define a function U(y,C) : R+ × Z+ → R+ by the implicit relation

U(− log(1 − E(ν,C)),C) = ν(1 − E(ν,C)).

The interpretation is that U(y,C) is the utilization or mean number of cir-

cuits in use in the Erlang model, when the blocking probability is E =

1 − e−y. (See Exercise 3.5.) Observe that as ν increases continuously from

0 to ∞ the first argument of U increases continuously from 0 to ∞, and

so this implicit relation defines a function U(y,C) : R+ × Z+ → R+. As

both the utilization ν(1 − E(ν,C)) and the blocking probability E(ν,C) are

strictly increasing functions of ν, the function U(y,C) is a strictly increas-

ing function of y. Therefore, the function
∫ y

0

U(z,C) dz

is a strictly convex function of y.

Consider now the optimization problem

Revised dual:

minimize
∑

r

νre
−∑

j y jA jr +
∑

j

∫ y j

0

U(z,C j) dz (3.8)

over y ≥ 0.

Note that this problem looks a lot like (3.5), except that we have replaced

the linear term in the earlier objective function by a strictly convex term.

By the strict convexity of its objective function (3.8), the Revised dual

has a unique minimum. Differentiating, the stationary conditions yield that,

at the unique minimum,
∑

r

A jrνre
−∑

i yiAir = U(y j,C j), j = 1, . . . , J. (3.9)

Now suppose E solves the Erlang fixed point equations (3.7), and define y j

by E j = 1− e−y j (i.e. y j = −log(1− E j)). We can rewrite (3.7) in terms of y

as

E



e
y j

∑

r

A jrνre
−∑

i yiAir ,C j



 = 1 − e−y j , j = 1, . . . , J,
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or, moving things from side to side and multiplying by an arbitrary real

parameter λ,

λe−y j = λ



1 − E



e
y j

∑

r

A jrνre
−∑

i yiAir ,C j







 . (3.10)

But if we make the choice

λ = ey j

∑

r

A jrνre
−∑

i yiAir

and use the definition of U, equatons (3.10) will become precisely the state-

ment of the stationary conditions (3.9). Since the solution to the stationary

conditions is unique, we deduce that there exists a unique solution to the

Erlang fixed point equations. �

We now show that the objective function of the Revised dual asymptot-

ically approaches that of the Dual problem: first we show that U(z,C j) is

close to C j (except, of course, for z = 0).

Lemma 3.21

U(y,C) = C − (ey − 1)−1 + o(1)

as C → ∞, uniformly over y ∈ [a, b] ⊂ (0,∞) (i.e. y on compact sets,

bounded away from 0).

Proof Consider an isolated Erlang link of capacity C offered Poisson traf-

fic at rate ν. Then

π( j) =
ν j

j!





C∑

k=0

νk

k!





−1

.

Let ν,C → ∞ with C/ν → 1 − B for some B > 0. (That is, the capacity

is smaller than the arrival rate by a constant factor, and the ratio gives B.)

Then

π(C) =
1

1 + C
ν
+

C(C−1)

ν2
+ . . .

→ B,

since the denominator converges to 1 + (1 − B) + (1 − B)2 + . . . .

Now suppose a more precise relationship between ν,C: suppose that, as

C → ∞, ν takes values so that π(C) = B for fixed B ∈ (0, 1). Then the
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expectation (with respect to π) of the number of free circuits is

C∑

m=0

mπ(C − m) = π(C)

(

0 + 1 · C
ν
+ 2 · C(C − 1)

ν2
+ . . .

)

≤ π(C)

∞∑

m=0

m
Cm

νm
= π(C)

C/ν

(1 −C/ν)2
→ B(1 − B)

B2
=

1 − B

B
.

Indeed, we have bounded convergence: the elements of the series converge

term-by-term to the geometric bound, which is finite. This implies that in

the limit we have equality in the place of ≤; i.e.

Eπ[number of free circuits]→ 1 − B

B
=

e−y

1 − e−y
= (ey − 1)−1,

where, as usual, B = 1 − e−y. Since the utilization U(y,C) is the expected

number of busy circuits when the blocking probability is B = 1 − e−y, we

have established the pointwise limit stated in the result. To deduce uniform

convergence, observe that for B in a compact set contained within (0, 1) the

error in the bounded convergence step can be controlled uniformly over the

compact set. �

Let E j(N) be the Erlang fixed point, i.e. the solution to (3.7), for network

N in the sequence considered in Section 3.4. As in that section, assume A

is of full rank, so that the solution to (3.6), the conditions on B, is unique.

Corollary 3.22 As N → ∞, E j(N)→ B j.

Proof The Erlang fixed point is the unique minimum of the Revised dual

objective function, and from Lemma 3.21 we can write this objective func-

tion as

∑

r

νr(N)e−
∑

j y jA jr +
∑

j

∫ y j

0

U(z,C j(N))dz

= N





∑

r

νre
−∑

j y jA jr +
∑

j

y jC j + o(1)




,

where the convergence is uniform on compact subsets of (0,∞)J . That is,

the Revised dual objective function, scaled by N, converges uniformly to

the Dual objective function of (3.5). Since the Dual objective function is

strictly convex and continuous, the minimum of the Revised dual objective

function converges to it as N → ∞, as required.

�
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Remark 3.23 The corollary to Theorem 3.14 showed that the limiting

loss probability Lr is as if links block independently, with link j rejecting

a request for a circuit with probability B j, where (B1, . . . , BJ) is the unique

solution to the conditions on B. The above corollary shows, reassuringly,

that the Erlang fixed point converges to the same vector (B1, . . . , BJ).

Exercises

Exercise 3.5 Let y and C be given. Consider a single Erlang link of

capacity C, whose arrival rate ν = ν(y,C) is such that the probability of

a lost call is equal to 1 − e−y. Use Erlang’s formula to relate y and ν. Then

use Exercise 1.7 (or Exercise 2.15) to find the mean number of circuits in

use, U(y,C), and verify that it has the form given in proof of Theorem 3.20.

Exercise 3.6 Consider the isolated Erlang link of Lemma 3.21 under the

limiting regime considered there. Show that the distribution of the number

of free circuits on the link converges to a geometric distribution, whose

probability of being equal to 0 is the blocking probability B.

Exercise 3.7 In Section 3.2 repeated substitution was noted as a method

for finding the Erlang fixed point. A variant of repeated substitution is to

start from a vector B, perhaps (0, 0, . . . , 0), and use the right-hand side of

(3.1) to update the components of B cyclically, one component at a time.

Show that, when A is a 0–1 matrix, this corresponds to finding the mini-

mum in each coordinate direction of the function (3.8) cyclically, one co-

ordinate at a time.

[Hint: Show that solving the jth equation (3.9) for y j, for given values of

yi, i , j, corresponds to finding the minimum of the function (3.8) in the

jth coordinate direction.]

Deduce from the strict convexity of the continuously differentiable func-

tion (3.8) that this method converges.

Describe a generalization of this method, with proof of convergence, for

the case when A is not a 0–1 matrix.

3.7 Diverse routing

The limit theorems of earlier sections concern networks with increasing

link capacities and loads, but fixed network topology. Next we briefly con-

sider a different form of limiting regime, where link capacities and loads
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are fixed or bounded and where the numbers of links and routes in the

network increase to infinity.

We begin with a simple example. Consider the star network with n links,

as in Figure 3.9. An arriving call requires a single circuit from each of two

Figure 3.9 Star network with six links, and one of the routes.

randomly chosen links. Suppose we leave constant the capacities of links,

but let the number of links increase to infinity, and suppose the total arrival

rate of calls in the entire network increases at the same rate. Then it is

possible to show that the Erlang fixed point emerges under the limit as

n→ ∞.

Note that the probability that two calls sharing a link actually share their

second link also tends to 0 as n→ ∞, as this will be true for a network with

all capacities infinite, and at any time t the calls present in a finite capacity

network are a subset of those present in the infinite capacity network (under

the natural coupling).

The Erlang fixed point also emerges for various other network topolo-

gies, provided the routing is sufficiently diverse, in the sense that the prob-

ability approaches zero that two calls through a given link share a link else-

where in the network. This is unsurprising (although non-trivial to prove),

as we would expect the assumption of diverse routing to lead quite natu-

rally to links becoming less dependent, and the Erlang fixed point is based

on a link independence approximation.

The Erlang fixed point is appealing as an approximation procedure since

it works well in a range of limiting regimes, and these regimes cover net-

works with large capacities and/or diverse routing, for which exact answers

are hard to compute.
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3.7.1 Non-uniqueness

We have seen that under fixed routing the Erlang fixed point is unique.

Next we consider an example of alternative routing, interesting in its own

right, where the fixed point emerges from a diverse routing limit, but is not

unique.

Consider a network that is a complete graph on n nodes and symmetric:

the arrival rate between each pair of nodes is ν, and the number of circuits

on each of the links is C. Suppose that an arriving call is routed directly

Figure 3.10 Complete graph topology, with five nodes. A route
(solid) and an alternative route (dashed) are highlighted.

if possible, and otherwise a randomly chosen two-link alternative route is

tried; if that route happens to be blocked at either link, the call is lost.

We will develop an Erlang fixed point equation for this model, based on

the same underlying approximation that links block independently. In that

case, if B is the blocking probability on a link, taken to be the same for

each link, then

P(incoming call is accepted) = (1 − B)
︸  ︷︷  ︸

can route directly

+ B(1 − B)2,
︸      ︷︷      ︸

can’t route directly,
but can via two-link detour

and the expected number of circuits per link that are busy is ν(1 − B) +

2νB(1 − B)2. Thus, we look for a solution to

B = E(ν(1 + 2B(1 − B)),C) (3.11)

(since if an arrival rate ν(1 + 2B(1 − B)) is thinned by a factor 1− B we get

the desired expected number of busy circuits).

Remark 3.24 An alternative way to derive this arrival rate is simply to

count the calls that come for link i j: we have an arrival rate of ν for the
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calls i↔ j, plus for each other node k we have a traffic of νB(1−B)/(n−2)

for calls i ↔ k that are rerouted via j (and the same for calls j ↔ k that

are rerouted via i). Adding these 2(n − 2) terms gives the total arrival rate

ν(1 + 2B(1 − B)).

The solutions to the fixed point equation (3.11) are illustrated in Fig-

ure 3.11. The curve corresponding to C = ∞ arises as follows. Suppose

that ν,C → ∞ while keeping their ratio fixed. Then

lim
N→∞

E(νN,CN) = (1 −C/ν)+,

where x+ = max(x, 0) is the positive part of x. The fixed point equation

(3.11) therefore simplifies to

B = [1 −C/ν(1 + 2B(1 − B))]+ ,

and the locus of points satisfying this equation is plotted as the dashed

curve in Figure 3.11. Observe that for some values of ν and C there are

multiple solutions (for example, when C = ∞ we have a cubic equation for

B, which has multiple roots).

load ν/C

B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Figure 3.11 Blocking probabilities from the fixed point equation
for C = 100 (solid), C = 1000 (dash-dotted) and the limiting
C = ∞ (dashed).
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Simulations of the system with n large show hysteresis, as in Figure 3.12.

When the arrival rate is slowly increased from 0, the blocking probability

load ν/C

P(losing a call)

Figure 3.12 Sketch of loss probability, as we slowly increase or
slowly decrease the arrival rate. The dashed curve sketches the
solution of the Erlang fixed point equation on the same axes.

follows the lower solution for B until that has an infinite derivative; it then

jumps to the higher value. If the arrival rate is then slowly decreased, the

blocking probability follows the higher solution for B until that has an in-

finite derivative, then jumps to the lower value.

An intuitive explanation is as follows. The lower solution corresponds

to a mode in which blocking is low, calls are mainly routed directly, and

relatively few calls are carried on two-link paths. The upper solution corre-

sponds to a mode in which blocking is high and many calls are carried over

two-link paths. Such calls use two circuits, and this additional demand on

network resources may cause a number of subsequent calls also to attempt

two-link paths. Thus a form of positive feedback may keep the system in

the high blocking mode.

And yet the system is an irreducible finite-state Markov chain, so it must

have a unique stationary distribution, and hence a unique probability of a

link being full, at any given arrival rate.

How can both these insights be true? We can indeed reconcile them, by

observing that they concern two different scaling regimes:

(1) if we leave the arrival rate constant and simulate the network for long

enough, the proportion of time a link is full or the proportion of lost

calls will indeed converge to the stationary probability coming from the

unique stationary distribution;
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(2) if, however, we fix a time period [0, T ], fix the per-link arrival rate of

calls, and let the number of links tend to infinity, the time to jump from

one branch of the graph to the other will tend to infinity, i.e. the system

will freeze in one of the two modes (low utilization or high utilization).

Remark 3.25 In case (1), the unique stationary distribution for the chain

may be bimodal, with a separation between the two modes that becomes

more pronounced as n increases. If you are familiar with the Ising model

of a magnet, a similar phenomenon occurs there. The Ising model consid-

ers particles located at lattice points with states ±1, which are allowed to

switch states, and the particle is more likely to switch to a state where it

agrees with the majority of its neighbours. The unique stationary distribu-

tion of any finite-sized system is symmetric with mean zero; on the other

hand, if we look over a finite time horizon at ever-larger squares, for some

parameter values the system will freeze into a mode where most particles

are +1 or a mode where most particles are −1.

Figure 3.13 As we transition from the solid to the dashed and
then the dotted curve, the location of the minimum changes
abruptly. The value of the minimum will change continuously.

Remark 3.26 Some further insight into the instability apparent in this

example can be obtained as follows. The fixed point equations (3.11) locate

the stationary points of

νe−y + νe−2y(1 − 2/3e−y)
︸                ︷︷                ︸

non-convex!

+

∫ y

0

U(z,C) dz, (3.12)

where U is the utilization we defined in the proof of Theorem 3.20. (You

will show this in Exercise 3.8.) Since this is a non-convex function, chang-

ing the parameters slightly can change the location of the stationary points

quite a lot. For an example of this phenomenon, see Figure 3.13, which

plots a family of non-convex curves (not this family, however).
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The diverse routing regime can be used to provide a deeper understand-

ing of this example. Let Qn j(t) be the number of links with j busy circuits

at time t. Let Xn j(t) = n−1Qn j(t), and let Xn(t) = (Xn j, j = 0, 1, . . . ,C).

Note that (Xn(t), t ∈ [0, T ]) is a random function. But it converges to a

deterministic function as n → ∞. Indeed, it can be established (Cram-

etz and Hunt (1991)) that if Xn(0) converges in distribution to X(0) then

(Xn(t), t ∈ [0, T ]) converges in distribution to (X(t), t ∈ [0, T ]), where

X(·) = (x0(·), x1(·), . . . , xC(·)) is the unique solution to the equations

d

dt





j∑

i=0

xi(t)




= ( j + 1)x j+1(t) − (ν + σ(t))x j(t), j = 0, 1, . . . ,C − 1,

(3.13)

where

σ(t) = 2νxC(t)(1 − xC(t)).

An intuition into these equations is as follows: the sum on the left is the

proportion of links with j or fewer busy circuits; this will increase when a

circuit in a link with j+ 1 busy circuits becomes free, and decrease when a

call arrives at a link with j busy circuits.

Exercise 3.9 shows that if a probability distribution x = (x0, x1, . . . , xC)

is a fixed point of the above system of differential equations, then xC =

B, where B is a solution to the fixed point equation (3.11), and hence a

stationary point of the function (3.12). The upper and lower solutions for B

in Figure 3.11 correspond to minima in Figure 3.13 and stable fixed points

of the differential equations, and the middle solution corresponds to the

intervening maximum in Figure 3.13 and to an unstable fixed point of the

differential equation.

3.7.2 Sticky random routing

Mismatches between traffic and capacity are common in communication

networks, often caused by forecast errors or link failures. Can some form

of alternative routing allow underutilized links to help with traffic over-

flowing from busy links? Section 3.7.1 has shown what can go wrong. And

if we allow calls to try more and more alternative routes, the problem be-

comes worse, as a higher and higher proportion of calls are carried over two

circuits. How can we control this, given that we do want to allow rerouting

of calls? We describe a simple and effective method that was first imple-

mented in the BT network and elsewhere in the 1990s. There are two key

ideas.
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First: trunk reservation. A link will accept an alternatively routed call

only if there are ≥ s circuits on the link, where s ≪ C is a small constant

(for example, s = 5 for C = 100, 1000). This is an idea with a long history,

and achieves a form of priority for directly routed calls over alternatively

routed calls when the link is busy.

Second: the following sticky random scheme. A call i → j is routed

directly if there is a free circuit on the link between them. Otherwise, we

try to reroute the call via a tandem node k(i, j) (which is stored at i). If

trunk reservation allows the rerouting, the call is accepted. If not, the call

is lost, and the tandem node k(i, j) is reset randomly. Note especially that

the tandem node is not reselected if the call is successfully routed on either

the direct link or the two-link alternative route. The intuition is that the

system will look for links with spare capacity in the network, and that trunk

reservation will discourage two-link routing except where there is spare

capacity.

Dynamic routing strategies such as this are effective in allowing a net-

work to respond robustly to failures and overloads. Good strategies effec-

tively pool the resources of the network, so that spare capacity in part of

the network can be available to deal with excess traffic elsewhere.

3.7.3 Resource pooling

Next we look at a very simple model to illustrate an interesting conse-

quence of resource pooling. Consider a number of independent and par-

allel Erlang links, each with the same load and capacity. What could be

gained by pooling them, so that a call for any of the links could use a cir-

cuit from any of them? Well, to calculate the benefit we simply need to

recalculate Erlang’s formula E(ν,C) with both its parameters increased by

the same factor, the number of links pooled. The effect on the loss prob-

ability is shown in Figure 3.14. Intuitively, the aggregating of load and of

capacity lessens the effect of randomness, and this reduces the loss proba-

bility, a phenomenon known in the telecommunications industry as trunk-

ing efficiency. (If the loads differed from link to link, the reduction in loss

probability from pooling would be even greater.)

Thus, as the amount of resource pooling increases, that is as C increases,

the blocking probability decreases for a given load ν/C. Indeed, in the limit

as C → ∞, the blocking probability approaches 0 for any load less than 1.

This admirable state of affairs has one unfortunate consequence. Imagine

the load on the network is gradually increasing, perhaps over months, and

that the blocking probability is used as an indication of the health of the
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load ν/C
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Figure 3.14 Erlang blocking probability for C = 100 (solid),
C = 1000 (dot-dashed) and the limit as C → ∞ (dashed).

network; in particular, suppose an increase in blocking is used to indicate

a need for capacity expansion, which may take time to implement. When

C is small the gradual increase in blocking as load increases gives plenty

of time for capacity expansion. But when C is large there is a problem. In

the limiting case of C = ∞, nothing is noticed until the load passes through

1: at this point the blocking probability curve has a discontinous deriva-

tive, and blocking increases rapidly. The moral of this discussion is that,

in networks with very efficient resource pooling, the blocking probability

alone is not a good measure of how close the system is to capacity, and

additional information may be needed. We return to this point at the end of

Section 4.3.

Exercises

Exercise 3.8 Show that the fixed point equations (3.11) locate the sta-

tionary points of the function (3.12).

[Hint: Use the definition of the function U(·) from the proof of Theo-

rem 3.20.]
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Exercise 3.9 Show that if a probability distribution x = (x0, x1, . . . , xC)

is a fixed point of the system of differential equations (3.13), then it is also

the stationary distribution for an Erlang link of capacity C with a certain

arrival rate. Deduce that necessarily xC = B, where B is a solution to the

fixed point equation (3.11).

Exercise 3.10 Suppose that when a call i→ j is lost in the sticky random

scheme the tandem node k(i, j) is reset either at random from the set of

nodes other than i and j, or by cycling through a random permutation of

this set of nodes. Let pk(i, j) denote the long-run proportion of calls i → j

that are offered to tandem node k, and let qk(i, j) be the long-run proportion

of those calls i → j and offered to tandem node k that are blocked. Show

that

pa(i, j)qa(i, j) = pb(i, j)qb(i, j), a, b , i, j.

Deduce that, if the blocking from i → j is high on the path via the tandem

node k, the proportion of overflow routed via node k will be low.

Exercise 3.11 Consider pooling C independent M/M/1 queues, each with

the same parameters, into a single M/M/1 queue with service rate C. Show

that the mean sojourn time in the system of a customer is divided by

C. Sketch a diagram parallel to Figure 3.14, plotting mean sojourn time

against load. Note that, in the limiting case of C = ∞, the mean sojourn

time is discontinuous at a load of 1.

Exercise 3.12 Trunk reservation has several other uses. Consider a single

link of capacity C at which calls of type k, requiring Ak circuits, arrive as

independent Poisson streams of rate νk. Let n = (nk)k describe the number

of calls of each type in progress. Suppose calls of type k are accepted if

and only if the vector n prior to admission satisfies

∑

r

Arnr ≤ C − sk,

where the trunk reservation parameters sk satisfy sk ≥ Ak. Note that varying

sk varies the relative loss probabilities for different types of call. Show that

if, for each k, sk = maxr Ar, the loss probability does not depend upon the

call type.
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3.8 Further reading

Extensive reviews of work on loss networks are given by Kelly (1991) and

Ross (1995); Zachary and Ziedins (2011) review recent work on dynamical

behaviour. Sticky random schemes are surveyed by Gibbens et al. (1995).
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4

Decentralized optimization

A major practical and theoretical issue in the design of communication

networks concerns the extent to which control can be decentralized. Over

a period of time the form of the network or the demands placed on it may

change, and routings may need to respond accordingly. It is rarely the case,

however, that there should be a central decision-making processor, decid-

ing upon these responses. Such a centralized processor, even if it were itself

completely reliable and could cope with the complexity of the computa-

tional task involved, would have its lines of communication through the

network vulnerable to delays and failures. Rather, control should be de-

centralized and of a simple form: the challenge is to understand how such

decentralized control can be organized so that the network as a whole reacts

sensibly to fluctuating demands and failures.

The behaviour of large-scale systems has been of great interest to math-

ematicians for over a century, with many examples coming from physics.

For example, the behaviour of a gas can be described at the microscopic

level in terms of the position and velocity of each molecule. At this level

of detail a molecule’s velocity appears as a random process, with a station-

ary distribution as found by Maxwell. Consistent with this detailed micro-

scopic description of the system is macroscopic behaviour, best described

by quantities such as temperature and pressure. Similarly, the behaviour

of electrons in an electrical network can be described in terms of random

walks, and yet this simple description at the microscopic level leads to

rather sophisticated behaviour at the macroscopic level: the pattern of po-

tentials in a network of resistors is just such that it minimizes heat dissi-

pation for a given level of current flow. The local, random behaviour of

the electrons causes the network as a whole to solve a rather complex opti-

mization problem.

Of course, simple local rules may lead to poor system behaviour if the

rules are the wrong ones. Road traffic networks provide a chastening ex-

ample of this. Braess’s paradox describes how, if a new road is added to

85
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a congested network, the average speed of traffic may fall rather than rise,

and indeed everyone’s journey time may lengthen. The attempts of individ-

uals to do the best for themselves lead to everyone suffering. It is possible

to alter the local rules, by the imposition of appropriate tolls, so that the

network behaves more sensibly, and indeed road traffic networks provided

an early example of the economic principle that externalities need to be

appropriately penalized for decentralized choices to lead to good system

behaviour.

In this chapter, we discuss these examples of decentralized optimization.

In Section 4.1 we discuss a simple model of the motion of electrons in

a network of resistors, and in Section 4.2 we describe a model of road

traffic. We shall see that our earlier treatment of loss networks in Chapter 3

can be placed in this more general context, and we shall work through

some examples which present ideas we shall see again in later chapters on

congestion control.

4.1 An electrical network

We begin with a description of a symmetric random walk on a graph, which

we later relate to a model of an electrical network.

4.1.1 A game

Consider the following game. On a graph with vertex set G, you perform a

symmetric random walk with certain transition rates until you hit a subset

S ⊂ V . (A random walk on a graph with transition rates γ = (γ jk) is a

Markov process with state space G and transition rates q jk = γ jk if ( j, k)

is an edge, and q jk = γ jk = 0 otherwise. A symmetric random walk has

γ jk = γk j.) The game ends when you reach a vertex in S , and you receive

a reward that depends on the particular vertex you hit: if the vertex is i, the

reward is vi. How much should you pay to play this game? That is, what is

your expected reward?

γ23γ12

γ15 γ25

γ45

γ34

1 2 3

45

Figure 4.1 Random walk on a graph with transition rates γi j.
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Clearly, the answer depends on the starting position, so let p j be the ex-

pected reward starting from j. If j ∈ S then, of course, p j = v j. The random

walk with transition rates γ jk is reversible, and its invariant distribution is

uniform. By conditioning on the first vertex i to which the random walk

jumps from j, we obtain the relations

p j =
∑

i

γ ji
∑

k γ jk

pi, for j ∈ G \ S .

We can rewrite this set of equations as follows:

0 =
∑

i

current
︷            ︸︸            ︷

γi j
︸︷︷︸

1/R

(pi − p j)
︸    ︷︷    ︸

∆V

, j ∈ G \ S ,

p j = v j, j ∈ S .

Interpreting pi as the voltage at vertex (node) i, and γi j as the conductance

(inverse resistance) of the edge (i j), the first line is asserting that the sum

of the currents through all the edges into a given node i is 0. These are

Kirchhoff’s equations for an electrical network G, in which nodes i and j

are joined by a resistance of γ−1
i j , and nodes j ∈ S are held at potential v j.

Can we develop a better understanding of why Kirchhoff’s equations for

the flow of current appear in this game?

4.1.2 Button model

v0 = 0

v1 = 1

Figure 4.2 Button model.

Let us look at the special case of S = {0, 1} with v0 = 0 and v1 = 1, and

consider the following alternative model.

Suppose that on every node of the graph there is a button. Buttons on

nodes j and k swap at rate γ jk; i.e. associated with each edge there is an

independent Poisson clock that ticks at rate γ jk, and when it ticks the two
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buttons at the vertices of that edge swap places. When a button arrives at

node 1, it is painted black; when it arrives at node 0, it is painted white. (A

button may be repainted many times.) You should convince yourself that

this defines a Markov process, whose state can be taken as the set of nodes

where the buttons are coloured black.

As you will show in Exercise 4.1, each button is performing a symmet-

ric random walk on the graph. Thus, for a given button, asking the question

“am I black?” amounts to asking whether that button’s individual random

walk has more recently been to 1 or to 0. Since the random walk is re-

versible, the probability that the button is black is equal to the probability

that the random walk started from that point will in the future visit node

1 before visiting node 0. Thus, from the point of view of this button, it is

playing the game we described above, with S = {0, 1}.
Let us look at another equivalent model for this Markov process. Sup-

pose that electrons perform a random walk on the graph with exclusion.

That is, an electron in node i attempts to jump to a neighbouring node j at

rate γi j, but, if there is already an electron in j, that jump will be blocked,

and the state will be unchanged. Suppose also that electrons are pushed in

at node 1, i.e., as soon as an electron leaves node 1, another one appears

there; and electrons are pulled out at node 0, i.e., as soon as an electron

appears there, it is removed from the system. (You will show the equiva-

lence of the two models in Exercise 4.2.) This is a rather simple model of

electron movement in an electrical network, with node 1 held at a higher

voltage than node 0.

Let p j be the (stationary) probability that node j is occupied by an elec-

tron. Then

p0 = 0; p1 = 1; p j =
∑

i

γ ji
∑

k γ jk

pi, j , 0, 1.

Equivalently,

0 =
∑

i

γi j(pi − p j), j , 0, 1,

p j = v j, j = 0, 1,

which are precisely Kirchhoff’s equations for an electrical network where

nodes i and j are joined by a resistance γ−1
i j , and nodes 0, 1 are held at a

voltage of v0 = 0, v1 = 1.

The net flow of electrons from node j to node k is

γ jkP( j occupied, k empty) − γk jP(k occupied, j empty).
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Now, γ jk = γk j. Also, we can rewrite the difference of probabilities by

adding and subtracting the event that j and k are both occupied, as follows:

P( j occupied, k empty) − P(k occupied, j empty)

=
(

P( j occupied, k empty) + P( j occupied, k occupied)
)

− (

P( j occupied, k occupied) + P(k occupied, j empty)
)

= p j − pk.

Therefore, the net flow of electrons from node j to node k is

γ jk(p j − pk),

i.e. we have recovered Ohm’s law that the current flow from j to k is pro-

portional to the voltage difference; the constant of proportionality is the

conductance (inverse resistance) γ jk.

We could also prove a result stating that, during a long time interval, the

net number of electrons that have moved from j to k will be proportional

to this quantity, and even give a central limit theorem for the “shot noise”

around the average rate of electron motion from j to k.

4.1.3 Extremal characterizations

Next we give another angle of attack on current flow in networks, which

was developed in the late nineteenth century.

Let u jk be the current flowing from j to k, and let r jk = (1/γ jk) be the

resistance between nodes j and k. Then the heat dissipation in the network

is

1

2

∑

j

∑

k

r jku2
jk

(the factor of 1/2 is there because we are double-counting each edge). Sup-

pose we want to minimize the heat dissipation subject to a given total cur-

rent U flowing from node 0 to node 1, and we are free to choose where

current flows, subject only to flow balance at the other nodes. The problem
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is thus as follows:

minimize
1

2

∑

j

∑

k

r jku2
jk

subject to
∑

k

u jk =






0, j ∈ G,

−U, j = 0,

+U, j = 1,

over u jk = −uk j, j, k ∈ G.

We can write the Lagrangian as

L(u; p) =
1

2

∑

j<k

r jku2
jk +

∑

j

p j





∑

k

u jk



 + p0U − p1U;

we shall see that the notation p j for the Lagrange multipliers is not acci-

dental. To deal with the condition u jk = −uk j, we simply eliminate u jk with

j > k, so that the Lagrangian involves only u jk with j < k. (In particular,

we read uk j for k > j as −u jk in the second term. Also, the summation in

the first term is over j < k rather than over all j and k; this corresponds to

dividing the original objective function by 2.) Differentiating with respect

to u jk,

∂L

∂u jk

= r jku jk + p j − pk,

so the solution is

u jk =
pk − p j

r jk

.

That is, the Lagrange multipliers really are potentials in Kirchhoff’s equa-

tions, and the currents u jk obey Ohm’s law with these potentials.

This is known as Thomson’s principle: the flow pattern of current within

a network of resistors is such as to minimize the heat dissipation for a given

total current. (The Thomson in question is the physicist William Thomson,

later Lord Kelvin.)

Extremal characterizations are very useful in deriving certain mono-

tonicity properties of current flows. For example, suppose that we remove

an edge from the network (i.e. assign an infinite resistance to it). What will

this do to the effective resistance of the network? Intuitively, it seems clear

that the effective resistance should increase, but how can we prove it?

This becomes an easy problem if we have found an extremal charac-

terization. The effective resistance is the ratio of the heat dissipated to the
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square of the current, and so we will be done if we can show that removing

an edge increases the minimum attained in the optimization problem. But

removing an edge from the graph restricts the set of possible solutions, and

so the minimal heat dissipation can only increase (or not go down, anyway)

if we enforce u jk = 0. It is quite tricky to prove this result without using

the extremal characterization.

If we evaluate the heat dissipation in the network in terms of potential

differences rather than currents, we are led to a dual form of the optimiza-

tion problem:

minimize
1

2

∑

j

∑

k

γ jk(p j − pk)2

subject to p0 = 0, p1 = 1,

over p j, j ∈ G.

This yields the optimality conditions

∂L

∂p j

=
∑

k

γ jk(p j − pk) = 0, j , 0, 1,

which are again Kirchhoff’s equations.

You may recognize the problem of minimizing a quadratic form subject

to boundary conditions as the Dirichlet problem. (To see the connection

with the classical Dirichlet problem on continuous spaces, imagine a net-

work that is a square grid, and allow the grid to become finer and finer.)

Remark 4.1 It is interesting to note the parallels between the loss network

of Chapter 3 and our model of an electrical network. At the microscopic

level, we have a probabilistic model of call arrivals as a Poisson process and

rules for whether a call is accepted; this parallels our description of elec-

tron motion as a random walk with exclusion. At the macroscopic level, we

have quantities describing average behaviour over a period of time, such as

blocking probabilities or currents and potentials, with relationships deter-

mining them, such as the conditions on B or Ohm’s law and Kirchhoff’s

equations. Finally, at what might be termed the teleological level, we have

for both networks an extremal characterization – an objective function that

the network is “trying” to optimize.

We saw, in Figures 3.12 and 3.13, that instability of alternative routing

could be interpreted in terms of multiple minima of a function. Viewed

in this light, the bistability is a natural consequence of the form of the

function that the network is trying to minimize. One way of interpreting
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the trunk reservation, sticky random scheme is as an attempt to align more

closely the microscopic rules with the desired macroscopic consequences.

(For example, in Exercise 3.10 you showed that the proportion of traffic

rerouted from i→ j via node k is inversely proportional to the loss rate on

this route.)

Exercises

Exercise 4.1 Convince yourself that, if we look only at a single button

in the button game, it is performing a symmetric random walk on a graph

with transition rates γ jk. (Of course, the random walks of different buttons

will not be independent.)

Exercise 4.2 Convince yourself that, if we identify “electron” = “black

button” and “no electron” = “white button”, the button model is equivalent

to the model of electron motion, in the sense that the set of nodes occu-

pied by a black button and the set of nodes occupied by an electron both

define the same Markov process. Why does swapping two black buttons

correspond to a blocked electron jump?

Exercise 4.3 Show that the effective resistance of a network of resistors

is not decreased if the resistance of an edge is increased.

4.2 Road traffic models

In Section 4.1 we saw that simple local rules may allow a network to solve a

large-scale optimization problem. This is an encouraging insight; but local

rules may lead to poor system behaviour if the rules are the wrong ones.

We begin with an example that arises in the study of road traffic.

4.2.1 Braess’s paradox

Figure 4.3 depicts a road network in which cars travel from south (S) to

north (N). The labels on the edges, or one-way roads, indicate the delay

that will be incurred by the cars travelling on that road, as a function of the

traffic y (number of cars per unit time) travelling along it.

Let us fix the total flow from S to N at six cars per unit time. Figure 4.4a

shows how the cars will distribute themselves. Note that all routes from S

to N have the same total delay of 83 time units, so no driver has an incentive

to switch route.
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Figure 4.3 A road network with delays.
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Figure 4.4 Braess’s paradox. (a) Equilibrium flow from S to N.
(b) Equilibrium when a new road is added.

In Figure 4.4b, we have introduced an extra road with its own delay

function, and found the new distribution of traffic such that no driver has

an incentive to switch route. Note that all routes again have the same total
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delay, but it is now 92 time units! That is, adding extra road capacity has

increased everyone’s delay. This is in sharp contrast to electrical networks,

where adding a link could only make it easier to traverse the network.

Next we define and analyze a general model of a road traffic network,

with a view to figuring out why the paradox occurs and how we might

avoid or fix it.

4.2.2 Wardrop equilibrium

We model the network as a set J of directed links. (If we want some of

the roads to be two-way, we can introduce two links, one going in each

direction.) The set of possible routes through the network is R ⊂ 2J ; each

route is a subset of links (we do not need to know in what order these are

traversed). Let A be the link-route incidence matrix, so A jr = 1 if j ∈ r, and

A jr = 0 otherwise.

Let xr be the flow on route r, and let x = (xr, r ∈ R) be the vector of

flows. Then the flow on link j is given by

y j =
∑

r∈R
A jr xr, j ∈ J .

We can equivalently write y = Ax.

0 y j

often, but not necessarily, D′j(0) = 0

but not necessarily,

possibly,

a vertical asymptote

D j(y j)

Figure 4.5 Possible delay as a function of traffic on a link.

The delay that is incurred on a single link j is given by a function D j(y j),

which we assume to be continuously differentiable and increasing. (We

might also expect it to be convex, but we will not be using this assumption.)

We will treat this delay as a steady-state quantity; it does not build up from
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one time period to another. The end-to-end delay along a route will simply

be the sum of the delays along each link.

The basic premise of our model is that the individual cars care about

getting from their origin to their destination, but don’t care about the route

they take. Let S be the set of source–destination pairs. For us, a source–

destination pair is simply a set of routes that serve it. We let H be the

incidence matrix with Hsr = 1 if the source–destination pair s is served by

route r, and Hsr = 0 otherwise. (Column sums of H are 1, i.e. each route

has a single source–destination pair that it serves. Let s(r) be that source–

destination pair for route r.) The flow fs on a source–destination pair s is

the sum of the flows along all the routes serving it:

fs =
∑

r∈R
Hsr xr, s ∈ S .

Equivalently, we write f = Hx.

We would like to answer the following question. Does there always exist

a stable routing pattern, where none of the drivers has any incentive to

switch routes? If so, can we characterize this routing pattern in a way that

provides some insight into the paradox?

To illustrate the concepts of the link-route and route-destination inci-

dence matrices, consider the network in Figure 4.6.

1 2
5

4

3

b

a

c

Figure 4.6 Links on an example network. Routes are ab = {1},
ac = {1, 3}, ba = {2}, bc = {3}, ca1 = {5}, ca2 = {4, 2}, cb1 = {4},
cb2 = {5, 1}.

We will take it to have the link-route incidence matrix

A =





ab ac ba bc ca1 ca2 cb1 cb2

1 1 1 0 0 0 0 0 1

2 0 0 1 0 0 1 0 0

3 0 1 0 1 0 0 0 0

4 0 0 0 0 0 1 1 0

5 0 0 0 0 1 0 0 1
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and the corresponding route-destination incidence matrix

H =





ab ac ba bc ca1 ca2 cb1 cb2

ab 1 0 0 0 0 0 0 0

ac 0 1 0 0 0 0 0 0

ba 0 0 1 0 0 0 0 0

bc 0 0 0 1 0 0 0 0

ca 0 0 0 0 1 1 0 0

cb 0 0 0 0 0 0 1 1





.

Note that we are omitting the potential two-link route serving ba and con-

sisting of links 3 and 5; our modelling assumptions allow us to consider

any set of routes, not necessarily all the physically possible ones.

Let us address what we mean by a stable routing pattern. Given a set of

flows xr, we can determine the delay of a driver on each of the routes. To

find the delay of a driver on route r, we find the traffic y j along each link

of the network, evaluate the associated delay D j(y j), and add up the delays

along all the links of a given route. A routing pattern will be stable if none

of the drivers has any incentive to switch: that is, for any route r serving a

given source–destination pair and carrying a positive amount of traffic, the

aggregate delay along all other routes serving the same source–destination

pair is at least as large. Put into our notation, this becomes

xr > 0 =⇒
∑

j∈J
D j(y j)A jr ≤

∑

j∈J
D j(y j)A jr′ , ∀ r′ ∈ s(r),

where recall that s(r) is the set of routes serving the same source–

destination pair as r. Such a stable pattern has a name.

Definition 4.2 A Wardrop equilibrium is a vector of flows along routes

x = (xr, r ∈ R) such that

xr > 0 =⇒
∑

j∈J
D j(y j)A jr = min

r′∈s(r)

∑

j∈J
D j(y j)A jr′ ,

where y = Ax.

From our definition, it is not clear that a Wardrop equilibrium exists and

how many of them there are. We will now show the existence of a Wardrop

equilibrium, by exhibiting an alternative characterization of it.

Theorem 4.3 A Wardrop equilibrium exists.
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Proof Consider the optimization problem

minimize
∑

j∈J

∫ y j

0

D j(u) du

subject to Hx = f , Ax = y,

over x ≥ 0, y.

(Note that we are leaving y unconstrained; we will obtain y ≥ 0 automati-

cally, because y = Ax.)

The feasible region is convex and compact, and the objective function

is differentiable and convex (because D j is an increasing, continuous func-

tion). Thus, an optimum exists and can be found by Lagrangian techniques.

The Lagrangian for the problem is

L(x, y; λ, µ) =
∑

j∈J

∫ y j

0

D j(u) du + λ · ( f − Hx) − µ · (y − Ax).

To minimize, we differentiate:

∂L

∂y j

= D j(y j) − µ j,
∂L

∂xr

= −λs(r) +
∑

j

µ jA jr.

We want to find a minimum over xr ≥ 0 and all y j ∈ R. This means that

at the minimum the derivative with respect to y j is equal to 0, i.e. we can

identify µ j = D j(y j) as the delay on link j. The derivative with respect to

xr must be non-negative, and 0 if xr > 0, so

λs(r)






=
∑

j µ jA jr, xr > 0,

≤ ∑

j, µ jA jr, xr = 0.

Therefore, we can interpret λs(r) as the minimal delay available to the

source–destination pair s(r).

Consequently, solutions of this optimization problem are in one-to-one

correspondence with Wardrop equilibria. �

Remark 4.4 Can we interpret the function
∫ y j

0
D j(u) du appearing in the

above optimization? Not that easily: the glib answer is that it is the func-

tion whose derivative is D j(y j). The reader with a well-developed physics

insight might recall the relationship between potential energy and force: if

the force acting on an object is a function of position only, then the object’s

potential energy is the function whose derivative is the (negative of the)

force. Despite this indirect definition, we have a well-developed intuition



98 Decentralized optimization

about energy, and of the tendency of physical systems to move to minimum

potential energy configurations.

Later, in Exercise 7.13, we touch on an economic parallel in which an

abstract concept, utility, is defined as a function whose derivative gives a

measurable quantity, demand.

Remark 4.5 Is the Wardrop equilibrium unique? Strictly speaking, no. If

we assume that all D j are strictly increasing, we can conclude that there is

a unique optimum for the link flows y in the optimization problem above,

since the objective function will be a strictly convex function of y. How-

ever, for a general link-route incidence matrix, there is no reason to expect

uniqueness in x. For example, in the network in Figure 4.7, we can clearly

shift traffic between the solid and the dashed routes while keeping the traf-

fic on each link the same.

Of course, as in Chapter 3, if we assume the existence of single-link

routes, the Wardrop equilibrium will be unique, but it is somewhat less

natural to assume the existence of single-link traffic here.

Figure 4.7 Network with four links: two two-link routes (solid)
and two three-link routes (dashed). This network has many traffic
patterns x giving the same link flows y.

In the course of showing the existence of the Wardrop equilibrium, we

have arrived at a certain extremal characterization of it: it is a set of traffic

flows that optimizes, subject to constraints, the quantity
∑

j∈J
∫ y j

0
D j(u) du.

If we add an extra link (and, therefore, extra possible routing options), this

quantity will decrease. However, this tells us nothing about the changes to

the average delay.

How might we design a network so that the choices of users would line

up with a societal goal of minimizing the average delay? Consider the ear-
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lier problem but with a different objective function:

minimize
∑

j∈J
y jD j(y j)

subject to Hx = f , Ax = y,

over x ≥ 0, y.

The quantity
∑

j y jD j(y j) is the rate at which the cumulative total delay of

users of the system increases. (In our model, which has a constant flow of

users through the system per unit time, this is the natural quantity to con-

sider.) Applying the same techniques to this new minimization problem,

we get the Lagrangian

L(x, y; λ, µ) =
∑

j∈J
y jD j(y j) + λ · ( f − Hx) − µ · (y − Ax).

When we differentiate it, we obtain

∂L

∂y j

= D j(y j) + y jD
′
j(y j) − µ j,

∂L

∂xr

= −λs(r) +
∑

j

µ jA jr.

At the optimum, we still have

λs(r)






=
∑

j µ jA jr, xr > 0,

≤ ∑

j µ jA jr, xr = 0,

i.e. λ is the minimal total “something” along the route. The quantity µ j,

however, now has an extra term:

µ j = D j(y j) + y jD
′
j(y j).

If we interpret T j(y j) = y jD
′
j(y j) as a congestion toll that the users of link

j must pay, then µ j is their total cost from both the delay and the toll, and

λs(r) is the minimal cost available to source–destination pair s(r).

This suggests that, by adding tolls on the links, we may be able to

encourage users towards collectively more desirable behaviour. It is, of

course, still a very simple model of a complex social problem. For exam-

ple, it assumes that delay and toll are weighted equally by each driver. But

the optimization formulations do give us insight into the original paradox.

The pattern of traffic in Figure 4.7 is optimizing a certain function, but it

is not the “right” one. So it should not surprise us that the solution has

counterintuitive properties.
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Exercises

Exercise 4.4 Calculate the toll T j(y) = yD′j(y) on each of the nine links

in Figure 4.4. Observe that, if this toll is applied just after the new road is

built (i.e. while nobody is using it), there is no incentive for any driver to

use the new road.

Exercise 4.5 In the definition of a Wardrop equilibrium, fs is the aggre-

gate flow for source–sink pair s, and is assumed fixed. Suppose now that

the aggregate flow between source–sink pair s is not fixed, but is a con-

tinuous, strictly decreasing function Bs(λs), where λs is the minimal delay

over all routes serving the source–sink pair s, for each s ∈ S. For the ex-

tended model, show that an equilibrium exists and solves the optimization

problem

minimize
∑

j∈J

∫ y j

0

D j(u) du −G( f )

subject to Hx = f , Ax = y,

over x ≥ 0, y, f ,

for a suitable choice of the function G( f ). Interpret your result in terms

of a fictitious additional one-link “stay-at-home” route for each source–

destination pair s, with appropriate delay characteristics.

[Hint: G( f ) =
∑

s∈S
∫ fs

B−1
s (u) du.]

Exercise 4.6 Recall the Dual optimization problem for loss networks:

minimize
∑

r

νre
−∑

j y jA jr

︸           ︷︷           ︸

carried traffic

+
∑

j

y jC j

subject to y ≥ 0.

Thus the function being minimized does not readily align with, for exam-

ple, the sum of carried traffic, which we might want to maximize. Consider

a three-link loss network with

A =





1 0 0 1

0 1 0 1

0 0 1 1




,

with ν j = C j = 100, j = 1, 2, 3. Show that if ν123 is large enough, reducing

the capacity of link 1 to zero will increase the carried traffic.
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4.3 Optimization of queueing and loss networks

Models similar to those of Section 4.2 have been used for traffic in commu-

nication networks: in this section we consider queueing networks, where

the ideas cross over easily, and also loss networks.

4.3.1 Queueing networks

Consider an open network of queues. As in the previous models, we assume

that there are routes through this network; a route is simply a set of queues

that the customer must traverse. Let φ j be the service rate at queue j, and

let νr be the arrival rate of customers on route r. We shall suppose the mean

sojourn time of customers in queue j is 1/(φ j − λ j), where λ j =
∑

r: j∈r νr.

(This model would arise from a network of ·/M/1 queues, an example of a

network with a product-form stationary distribution.)

Suppose that a unit delay of a customer on route r costs wr; then the

mean cost per unit time in the system is given by

W(ν; φ) =
∑

r

wr

∑

j: j∈r

νr

φ j −
∑

r′: j∈r′ νr′
,

where ν = (νr)r, φ = (φ j) j. There may be multiple routes r that serve the

same source–destination traffic, and we may be able to choose how we

divide the traffic across these routes. Can we tell if it would be desirable to

shift traffic from one such route to another?

Now consider increasing the arrival rate on route r slightly. The change

in total delay will be given by

dW

dνr

=
∑

j∈r

( wr

φ j − λ j
︸  ︷︷  ︸

extra delay at queue j
of another customer on route r

+
∑

r′: j∈r′

νr′wr′

(φ j − λ j)2

︸             ︷︷             ︸

knock-on cost, or externality,
to later customers on routes through j

of another customer on route r

)

.

The expression gives the exact derivative, and the annotation below the

expression gives an intuitively appealing interpretation: a single extra cus-

tomer on route r will incur delay itself at each queue along its route, and it

will additionally cause a knock-on cost to other customers passing through

these queues.

If two or more routes can substitute for each other, the objective function

W(ν; φ) can be improved by shifting traffic towards routes with smaller

derivatives. (Gallager (1977) describes an algorithm to implement this via

routing rules held at individual nodes of a data network.)
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4.3.2 Implied costs in loss networks

What happens if we explicitly attempt to align routing in a loss network,

so as to optimize a weighted sum of carried traffics? In this section, we use

the Erlang fixed point to conduct an analysis for a loss network similar to

that for the queueing network of Section 4.3.1. The calculations are more

involved for a loss network, since an increase in traffic on a route affects not

just the resources on that route: the knock-on effects spread out throughout

the network. Nevertheless, we shall see that the equations we derive still

have a local character.

Consider then the fixed point model described in Chapter 3. Let the

blocking probabilities B1, B2, . . . , BJ be a solution to the equations

B j = E(ρ j,C j), j = 1, 2, . . . , J, (4.1)

where

ρ j = (1 − B j)
−1

∑

r

A jrνr

∏

i

(1 − Bi)
Air , (4.2)

and the function E is Erlang’s formula,

E(ν,C) =
νC

C!





C∑

n=0

νn

n!





−1

. (4.3)

Then an approximation for the loss probability on route r is given by

1 − Lr =
∏

j

(1 − B j)
A jr . (4.4)

Suppose that each call carried on route r is worth wr. Then, under the

approximation (4.4), the rate of return from the network will be

W(ν; C) =
∑

r

wrλr, where λr = νr(1 − Lr)

corresponds to the traffic carried on route r. We emphasize the dependence

of W on the vectors of offered traffics ν = (νr, r ∈ R) and capacities

C = (C1,C2, . . . ,CJ), and we shall be interested in how W(ν; C) varies

with changes in traffic on different routes, or with changes in capacity at

different links. Erlang’s formula can be extended to non-integral values of

its second argument in various ways, but for our purpose there is definitely

a preference: we extend the definition (4.3) to non-integral values of the

scalar C by linear interpolation, and at integer values of C j we define the

derivative of W(ν; C) with respect to C j to be the left derivative. (These

definitions are explored in Exercise 4.8.)
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Let

δ j = ρ j(E(ρ j,C j − 1) − E(ρ j,C j)) .

(This is Erlang’s improvement formula – the increase in carried traffic that

comes from a unit increase in capacity.)

Theorem 4.6

d

dνr

W(ν; C) = (1 − Lr)sr (4.5)

and

d

dC j

W(ν; C) = c j, (4.6)

where s = (sr, r ∈ R) and c = (c1, c2, . . . , cJ) are the unique solution to the

linear equations

sr = wr −
∑

j

c jA jr, (4.7)

c j = δ j

∑

r A jrλr(sr + c j)
∑

r A jrλr

. (4.8)

Remark 4.7 We can interpret sr as the surplus value of a call on route r:

if such a call is accepted, it will earn wr directly, but at an implied cost of c j

for each circuit used from link j. The implied costs c measure the expected

knock-on effects of accepting a call upon later arrivals at the network. From

(4.6) it follows that c j is also a shadow price, measuring the sensitivity of

the rate of return to the capacity C j of link j. Note the local character

of equations (4.7) and (4.8): the right-hand side of (4.7) involves costs

c j only for links j on the route r, while (4.8) exhibits c j in terms of a

weighted average, over just those routes through link j, of sr + c j. We can

interpret (4.8) as follows: a circuit used for a call on link j will cause the

loss of an additional arriving call with probability δ j; given that it does, the

probability the additional lost call is on route r is proportional to A jrλr; and

this will lose wr directly, but have a positive knock-on impact elsewhere on

route r, captured by the term sr + c j.

Proof Note that in many ways this is not a complicated statement, as all

we are doing is differentiating an implicit function. However, we are going

to be somewhat clever about it.

We shall prove the theorem for the case where (A jr) is a 0–1 matrix.

Suppose, without loss of generality, that there exist marker routes { j} ∈ R
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for j = 1, 2, . . . , J, with ν{ j} = w{ j} = 0. For notational simplicity, we will

simply write ν j for ν{ j}.

Exercise 4.8 shows that, in order to compute dW/dC j, it is sufficient to

compute dW/dν j instead. The key observation is that if, when we change

ν j, we also appropriately change the values of all the other νk, we can keep

the loads ρk and blocking probabilities Bk on all links k , j unchanged.

This makes it easy to compute the resulting change in W. (To avoid triv-

ial complications with what it means to have ν j < 0, we can compute

the derivatives around some point where all ν j are positive; the algebraic

machinery will be exactly the same.)

We proceed as follows. Alter the offered traffic ν j. This will affect di-

rectly the blocking probability B j at link j, and hence the carried traffics λr

for routes r through link j. This in turn will have indirect effects upon other

links through which these routes pass. We can, however, cancel out these

indirect effects by judicious alterations to νk for k , j. The alterations to νk

have to be such as to leave the reduced load ρk constant for k , j, as then,

from (4.1), the blocking probability Bk will be left constant for k , j.

Let us begin by calculating the direct effect of the change in ν j on the

carried traffic λr, along a route through link j. From the relation

λr = νr

∏

k

(1 − Bk)Akr ,

assuming we can arrange for all Bk, k , j, to be unchanged, the direct effect

is

dλr = −A jr(1 − B j)
−1λr ·

∂B j

∂ν j

· dν j.

Here the partial derivative ∂B j/∂ν j is calculated by allowing ν j to vary, but

holding the other traffic offered to link j fixed. We can use Exercise 4.8 to

relate δ j to this partial derivative, and deduce that

∂B j

∂ν j

=
d

dρ j

E(ρ j,C j)

= (1 − B j)δ jρ
−1
j .

Thus

dλr = −A jrλrδ jρ
−1
j · dν j.

Next we calculate the necessary alterations to νk for k , j. In order that

ρk be left constant, for each route r passing through k we must compensate
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for the change dλr by a change

dνk = −Akr(1 − Bk)−1 · dλr.

Indeed, from (4.2), reduced load ρk receives a contribution Akr(1 − Bk)−1λr

from route r. Observe that, apart from marker routes, the only routes for

which λr changes are routes through link j. Therefore, we can calculate

the effect of this combination of changes of the ν j on W(ν; C), as we have

computed dλr for those routes already. Putting the various terms together,

we obtain
[

d

dν j

+
∑

r

A jrλrδ jρ
−1
j

∑

k, j

Akr(1 − Bk)−1 d

dνk

]

W(ν; C)

= −
∑

r

A jrλrδ jρ
−1
j wr . (4.9)

Further, using (4.6) and Exercise 4.8, we obtain

c j = −(1 − B j)
−1 d

dν j

W(ν; C). (4.10)

Substituting (4.10) into (4.9) gives (4.8), where we use (4.7) to define sr.

To calculate the derivative (4.5), compensate for the change in νr by

alterations to ν j that hold ρ j, and hence B j, constant; that is,

dν j = −A jr(1 − B j)
−1

∏

k

(1 − Bk)Akr · dνr.

The change in carried traffic on route r, worth wr, is (1 − Lr)dνr. Thus
[

d

dνr

−
∑

j

A jr(1 − B j)
−1

∏

k

(1 − Bk)Akr
d

dν j

]

W(ν; C)

= (1 − Lr)wr .

The derivative (4.5) now follows from the identity (4.10).

Finally, the uniqueness of the solution to equations (4.7) and (4.8) is

shown in Exercise 4.9. �

Remark 4.8 If traffic serving a source–sink pair can be spread over two

or more routes, the derivatives we have calculated for queueing and loss

networks can be used as the basis for a gradient descent algorithm to find

a local optimum of the function W. This form of routing optimization is

called quasi-static: it corresponds to probabilistically splitting traffic over

routes according to proportions that vary slowly, so that the traffic offered

to each route is approximately Poisson over short time periods. In contrast,



106 Decentralized optimization

dynamic schemes, such as the sticky random scheme of Section 3.7.2, route

calls according to the instantaneous state of the network.

The discussion of resource pooling in Section 3.7.3 showed that we

should in general expect dynamic schemes to achieve better performance

than quasi-static schemes, as a consequence of trunking efficiency. But we

saw, in the same discussion, that, in networks with efficient resource pool-

ing, there may be little warning that the system as a whole is close to ca-

pacity. Implied costs can be calculated for dynamic routing schemes, where

they can help anticipate the need for capacity expansion before it becomes

apparent through loss of traffic (see Key (1988)). Together with measure-

ments of load, these calculations can be very helpful with longer-term net-

work planning, since externalities, such as those that caused the difficulties

with Braess’s paradox, are taken into account.

Exercises

Exercise 4.7 Show that the function W(ν; φ) defined in Section 4.3.1 for

a queueing network is a strictly convex function of ν, and deduce that a

gradient descent algorithm will eventually find the minimum. Show that

when wr does not depend upon r, the queueing network can be recast in

terms of the final optimization in Section 4.2, and check that the toll T j(y)

defined there is just the externality identified in Section 4.3.1.

Exercise 4.8 For scalar ν,C recall from Exercise 1.8 that

d

dC
E(ν,C) ≡ E(ν,C) − E(ν,C − 1)

= −(1 − E(ν,C))−1 d

dν
E(ν,C) .

For vector ν,C show that

d

dC j

W(ν; C) = −(1 − B j)
−1 d

dν j

W(ν; C).

Exercise 4.9 Show that equations (4.7) and (4.8) may be rewritten in an

equivalent form as a matrix identity

c(I + AλATγ) = wλATγ,

where we define diagonal matrices

λ = diag(λr, r ∈ R), γ = diag

(
δ j

(1 − δ j)
∑

r A jrλr

, j ∈ J
)

.
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Note that (I + γ1/2AλATγ1/2) is positive definite and hence invertible. De-

duce that the equations have the unique solution

c = wλATγ1/2(I + γ1/2AλATγ1/2)−1γ1/2 .

4.4 Further reading

For the reader interested in the history of the subject, Erlang (1925) gives

an insight into the influence of Maxwell’s law (for the distribution of

molecular velocities) on Erlang’s thinking, and Doyle and Snell (2000)

give a beautifully written account of work on random walks and electric

networks going back to Lords Rayleigh and Kelvin. Whittle (2007) treats

the optimization of network design in a wide range of areas, with fascinat-

ing insights into many of the topics covered here.
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Random access networks

Consider the situation illustrated in Figure 5.1. We have multiple base sta-

tions which cannot talk to each other directly because the Earth is in the

way. (The diagram is not to scale.) Instead, they send messages to a satel-

lite. The satellite will broadcast the message (with its address) back to all

the stations.

Earth

Figure 5.1 Multiple base stations contacting a satellite.

If two stations attempt to transmit messages simultaneously, the mes-

sages will interfere with each other, and will need to be retransmitted. So

the fundamental question we will be addressing here is contention resolu-

tion, i.e. avoiding collisions in such a set-up.

Further examples of the same fundamental problem occur with mobile

telephones attempting connection to a base station, or wireless devices

communicating with each other. In all cases, if we could instantaneously

sense whether someone else is transmitting, there would be no collisions.

The problem arises because the finite speed of light causes a delay be-

tween the time when a station starts transmitting and the time when the

other stations sense this interference. As processing speeds increase, the

speed-of-light delays pose a problem over shorter and shorter distances.

One approach might be to use a token ring. Label the stations in a cycli-

cal order. One by one, each station will transmit its messages to the satel-

lite. When it is done, it will send a “token” message to indicate that it is

108
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finished; this lets the next station begin transmitting. If a station has no

messages to transmit, it will simply pass on the token. This approach has

difficulties if the token becomes corrupted, e.g. by ambient noise. But it

also does not work well in an important limiting regime where the number

of stations is large (and the total traffic is constant), since simply passing

on the token around all the stations will take a long time.

Our focus in this chapter will be on protocols that are useful when the

number of stations is large or unknown. These protocols use randomness

in an intrinsic manner in order to schedule access to the channel, hence the

title of the chapter.

5.1 The ALOHA protocol

The ALOHA protocol was developed for a radio broadcast network con-

necting terminals on the Hawaiian islands to a central computing facility,

hence its name.

We assume that time is divided into discrete slots, and that all trans-

mission attempts take up exactly one time slot. Let the channel state be

Zt ∈ {0, 1, ∗}, t ∈ Z+. We put Zt = 0 if no transmission attempts were made

during time slot t, Zt = 1 if exactly one transmission attempt was made,

and Zt = ∗ if more than one transmission attempt was made.

We suppose that new packets for transmission arrive in a Poisson stream

of rate ν, so that in each time slot the random number of newly arriving

packets has a Poisson distribution with mean ν. We model each packet as

corresponding to its own station; once the packet is successfully transmit-

ted, the station leaves the system. Thus, there is no queueing of packets at

a station in this model.

Let Yt be the number of new packets arriving during the time slot t − 1.

These are all at new stations, and we suppose each of them attempts trans-

mission during time slot t. In addition, stations that previously failed to

transmit their packets may attempt to retransmit them during the time slot.

A transmission attempt during time slot t is successful only if Zt = 1; if

Zt = ∗, there is a collision, and none of the packets involved are success-

fully transmitted in this slot.

We have so far not described the retransmission policy. We now define

it as follows. Let f ∈ (0, 1) be a fixed parameter.

Definition 5.1 (ALOHA protocol) After an unsuccessful transmission at-

tempt, a station attempts retransmission after a delay that is a geometrically

distributed random variable with mean f −1, independently of everything
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else. Equivalently, after its first attempt, a station independently retransmits

its packet with probability f in each following slot until it is successfully

transmitted.

Let Nt be the backlog of packets awaiting retransmission, i.e. packets

that arrived before time slot t − 1 and have not yet been successfully trans-

mitted. Then, under the ALOHA protocol, the number of packets that will

attempt retransmission during the tth slot is binomial with parameters Nt

and f . Consequently, the total number of transmission attempts during time

slot t is

At = Yt + Binom(Nt, f ).

The channel state Zt is 0, 1 or ∗ according to whether At is 0, 1 or >1. The

backlog evolves as

Nt+1 = Nt + Yt − I{Zt = 1},

and under our Poisson and geometric assumptions Nt is a Markov chain.

We will try to determine whether it is recurrent. First, let’s look at the drift

of the backlog, i.e. the conditional expectation of its change:

E[Nt+1 − Nt |Nt = n] = E[Yt − I{Zt = 1} |Nt = n]

= ν − P(Zt = 1 |Nt = n),

where the first term follows since Yt is an independent Poisson variable

with mean ν. To calculate the second term, note that Zt = 1 can occur only

if Yt = 1 and there are no retransmission attempts, or if Yt = 0 and there

is exactly one retransmission attempt. If Yt > 1, we are guaranteed that

Zt = ∗. Thus

P(Zt = 1 |Nt = n) = e−ν · n f (1 − f )n−1 + νe−ν · (1 − f )n.

We conclude that the drift is positive (i.e., backlog is “on average” grow-

ing) if

ν > e−ν(n f + (1 − f )ν)(1 − f )n−1.

For any fixed retransmission probability f , the quantity on the right-hand

side tends to 0 as n→ ∞. Consequently, for any positive arrival rate of mes-

sages ν, if the backlog is large enough, we expect it to grow even larger.

This strongly suggests that the backlog will be transient – not a good sys-

tem feature!

Remark 5.2 The drift condition does not prove that Nt is transient: there

are recurrent Markov chains with positive drift. For example, consider the
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Markov chain where from each state n there are two possible transitions:

to n + 2 with probability 1 − 1/n, and to 0 with probability 1/n. Then the

drift is 1 − 2/n → 1, but P(hit 0 eventually) = 1 so the chain is recurrent.

(The drift condition does show that the chain cannot be positive recurrent.)

For our process, the jumps are constrained, and it is thus easy to show

that E[(Nt+1 − Nt)
2 |Nt] is uniformly bounded; this, together with the drift

analysis, can lead to a proof of transience. We will not pursue this approach.

We shall see that the system has an even more clear failing than a grow-

ing backlog.

Proposition 5.3 Consider the ALOHA protocol, with arrival rate ν > 0

and retransmission probability f ∈ (0, 1). Almost surely, there exists a finite

(random) time after which we will always have Zt = ∗. That is, ALOHA

transmits only finitely many packets and then “jams” forever. Formally,

P(∃J < ∞ : Zt = ∗ ∀t ≥ J) = 1.

Remark 5.4 The time J is not a stopping time. That is, given the history

of the system up until time t, we cannot determine whether J < t and the

channel has jammed.

Proof For each size of the backlog, consider the probability that the chan-

nel will unjam before the backlog increases:

p(n) = P(channel unjams before backlog increases |N0 = n)

= P(∃T < ∞ : N1, . . . ,NT = n, ZT = 0 or 1 |N0 = n).

To compute p(n), let us think of this as a game. Suppose we reach time t

without either the channel unjamming or the backlog increasing. If at time

t, Zt = 0 or 1, then T = t and we “win”. If Zt = ∗ and Nt+1 > n, then no

such T exists and we “lose”. Otherwise, Zt = ∗ and Nt+1 = n, and we are

in the same situation at time t + 1; call this outcome “try again”. In such a

game, the probability of eventually winning is

p(n) =
P(win)

P(win) + P(lose)
=

P(Zt = 0 or 1 |Nt = n)

1 − P(Nt+1 = n, Zt = ∗ |Nt = n)

=
e−ν(1 + ν)(1 − f )n + e−νn f (1 − f )n−1

1 − e−ν(1 − (1 − f )n − n f (1 − f )n−1)

∼ n f (1 − f )n−1

eν − 1
as n→ ∞.
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As we expected, p(n)→ 0 as n→ ∞. Moreover, they are summable:

∞∑

n=0

p(n) < ∞.

Summable sequences of probabilities bring to mind the first Borel–Cantelli

lemma.

Theorem 5.5 (First Borel–Cantelli lemma) If (An) is a sequence of events

such that
∑∞

n=1 P(An) < ∞, then the probability that infinitely many of the

events occur is 0.

Proof

E[number of events occurring] = E





∑

n

I[An]





=
∑

n

E[I[An]] =
∑

n

P(An) < ∞.

Since the number of events occurring has finite expectation, it must be finite

with probability 1. �

We cannot apply the Borel–Cantelli lemma directly to the sequence p(n):

we need a sequence of events that occur once or not at all, whereas there

may be many times when the backlog reaches level n. Instead, we will

look at the record values hit at record times. Set R(1) = 1 and let R(r+1) =

inf{t > R(r) : Nt > NR(r)}.

N

t

Figure 5.2 A possible trajectory of Nt, and its record values and
record times.

By definition, we hit each record value only once. Moreover, with prob-

ability 1 the sequence of record values is infinite, i.e. the backlog is un-
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bounded. Finally, since we showed
∑∞

n=1 p(n) < ∞, we certainly have

∞∑

r=1

p(NR(r)) ≤
∞∑

n=0

p(n) < ∞.

Let A(r) be the event that the channel unjams after the backlog hits its

rth record value. By the first Borel–Cantelli lemma, only finitely many

of the events A(r) occur. However, since we hit the rth record value at

a finite time, this means that there will be only finitely many successful

transmissions:

P(∃J < ∞ : Zt = ∗ ∀t ≥ J) = 1,

for any arrival rate ν > 0. �
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P(Nt)

M Nt

Figure 5.3 Qualitative behaviour of the equilibrium distribution
of the backlog with a finite number of stations.

Remark 5.6 Suppose the number of stations is large but finite, say M,

and that stations that have a backlog do not generate new packets. In that

case, the natural assumption is that the number of new arrivals in a time slot

has a binomial distribution Yt ∼ Binom(M − Nt, q) rather than a Poisson

distribution.

Since Nt has a state space that is finite and irreducible, it can’t be tran-

sient. But M f may still be large, in which case the equilibrium distribution

of the backlog has the form sketched in Figure 5.3. While the backlog is

small, it tends to stay small. However, if the backlog grows large at some

point, it will tend to stay large for a really long time. This bistability for fi-

nite M corresponds to transience in the Poisson limit (M → ∞with Mq = ν

held fixed).
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It may take a very long time for the system to traverse from the left to

the right of Figure 5.3 (see the discussion of bistability in Section 3.7.1),

and the theoretical instability may not be a real problem for many sys-

tems. Nevertheless, motivated by large-scale systems where there may be

no apparent upper bound on the number of stations, the theoretical ques-

tion arises: is it possible to construct a random access scheme that has a

stable throughput (i.e. a long-run proportion of successfully occupied slots

that is positive) for some rate ν > 0? We address this in the following two

sections. And we return to consider a model of a finite number of stations

in Section 5.4.

Exercises

Exercise 5.1 In this exercise we show that if we can accomplish some

positive throughput, with longer messages we can accomplish a throughput

that is arbitrarily close to 1.

Suppose that a message comprises a single “random access” packet and

a random number K of data packets. A station that successfully transmits

a random access packet is able to reserve K available slots for the rest

of the message. (For example, the station might announce it will use the

next K slots to transmit the data packets, and all the other stations avoid

transmitting during those slots, as in Figure 5.4. Or the channel might be

time divided, so that every kth slot is used by random access packets, and

a successful random access packet reserves slots at times not divisible by

k.) Indicate why, if a random access scheme achieves a stable throughput

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Figure 5.4 A sequence of “random access” and “data” packets
from two stations. White transmits one random access packet
followed by the rest of the message; three random access packets
collide; grey successfully transmits; white transmits again.

η > 0 for the random access packets, a stable throughput of

EK

EK + η−1

should be expected in such a hybrid system.

Exercise 5.2 In this exercise we look briefly at a distributed model of

random access, with a finite number of stations. We have seen a model of
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this in continuous time, in Example 2.24. We now describe a variant of

this model in discrete time, to allow for delay in sensing a transmission.

Recall that the interference graph has as vertices the stations, and stations

i and j are joined by an edge if the two stations interfere with each other:

write i ∼ j in this case. First suppose there is an infinite backlog of packets

to transmit at each station, and suppose that station j transmits a packet

in a time slot with probability f j, independently over all time slots and

all stations. Deduce that successful transmissions from station j form a

Bernoulli sequence of rate

f j

∏

i∼ j

(1 − fi).

Hence deduce that if, for each j, packet arrivals at station j occur at a rate

less than this and station j transmits with probability f j if it has packets

queued, the system will be stable.

5.2 Estimating backlog

The problem with the ALOHA protocol is that when the backlog becomes

large, the probability of successfully transmitting a packet becomes very

small because packets almost invariably collide. Now, if the stations knew

the backlog (they don’t!), they could reduce their probability of retransmis-

sion when the backlog becomes large, thus reducing the number of colli-

sions.

Let us now not distinguish between old and new packets, and simply let

Nt be the number of packets that await to be transmitted. Suppose that each

of them will be transmitted or not with the same probability f , and let us

compute the optimal probability of retransmission for a given backlog size.

The probability of exactly one transmission attempt given that the backlog

is Nt = n is then n f (1 − f )n−1. If we maximize this with respect to f , we

obtain

0 =
∂

∂ f
= n(1 − f )n−1 − n(n − 1) f (1 − f )n−2 =⇒ f =

1

n
,

in which case the probability of a single retransmission attempt is given by

(

1 − 1

n

)n−1

→ e−1 as n→ ∞.

Thus, if the stations knew the size of the backlog, we would expect them

to be able to maintain a throughput of up to 1/e ≈ 0.368.
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Now suppose that stations don’t know the backlog size, but can observe

the channel state. We assume that all stations are observing the channel

from time 0, so they have access to the sequence Z1, Z2, . . . . They will

maintain a counter S t (which we hope to use as a proxy for Nt), the same

for all stations, even those with nothing to transmit. Once a station has a

packet to transmit, it will attempt transmission with probability 1/S t.

Intuitively, the estimate S t should go up if Zt = ∗, because a collision

means that stations are transmitting too aggressively. It should go down if

Zt = 0, because that means the stations are not being aggressive enough,

and have wasted a perfectly good time slot for transmissions. If Zt = 1, we

might let S t decrease (there was a successful transmission), or stay constant

(the transmission probability is about right). So, for example, we might try

S t+1 =






max(1, S t − 1), Zt = 0 or 1

S t + 1, Zt = ∗
(naı̈ve values). (5.1)

(We don’t want S t to fall below 1 because we are using 1/S t as the trans-

mission probability.) More generally, we will let

S t+1 = max(1, S t + aI{Zt = 0} + bI{Zt = 1} + cI{Zt = ∗}) (5.2)

for some triplet (a, b, c), where we expect a < 0 and c > 0.

Our hope is that, if S t can track Nt, we may be able to achieve a positive

throughput. Note that Nt alone and S t alone are not Markov chains, but the

pair (S t,Nt) is a Markov chain. (Why?) We next compute the drift of this

Markov chain.

Computing the probability of 0, 1, or greater than 1 transmission at-

tempts during a time slot, we have (check these!)

E[S t+1 − S t | S t = s,Nt = n] = a

(

1 − 1

s

)n

+ b

(
n

s

) (

1 − 1

s

)n−1

+ c



1 −
(

1 − 1

s

)n

−
(
n

s

) (

1 − 1

s

)n−1


and

E[Nt+1 − Nt | S t = s,Nt = n] = ν − n

s

(

1 − 1

s

)n−1

.

Consider now a deterministic approximation to our system by a pair of

coupled differential equations; i.e. trajectories (s(t), n(t)) with

ds

dt
= E[S t+1 − S t | S t = s,Nt = n],

dn

dt
= E[Nt+1 − Nt | S t = s,Nt = n].
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We shall investigate the drifts as a function of κ(t) = n(t)/s(t), for large

values of n, s when, in the limit,

ds

dt
= (a − c)e−κ + (b − c)κe−κ + c,

dn

dt
= ν − κe−κ. (5.3)

We aim to show that trajectories of solutions to these differential equations

converge towards the origin, as in Figure 5.5.

n
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Figure 5.5 Vector field of (s, n) when ν = 1/3 and (a, b, c) =
(1 − e/2, 1 − e/2, 1).

Suppose we choose (a, b, c) so that

(a − c)e−κ + (b − c)κe−κ + c






< 0, κ < 1,

> 0, κ > 1.
(5.4)

Then ds/dt < or > 0 according as κ(t) < or > 1, and trajectories cross the

diagonal κ = 1 vertically, and in a downwards direction provided ν < 1/e.

This looks promising, since once the trajectory is below κ = 1 we have

ds/dt < 0. But we need to know more when κ(t) > 1.

Suppose we insist that (a, b, c) also satisfy

ν − κe−κ < κ ((a − c)e−κ + (b − c)κe−κ + c
)

, for κ > 1. (5.5)
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Then (Exercise 5.3) the derivative dκ(t)/dt < 0 for κ(t) > 1, so that in the

region κ > 1 trajectories approach and cross the diagonal κ = 1.

For either of the choices

(a, b, c) = (2 − e, 0, 1) or (1 − e/2, 1 − e/2, 1) (5.6)

(or many other choices), and any value of ν < e−1, both of these condi-

tions are satisfied (Exercise 5.3), and we can deduce that all trajectories

approach the origin. In Figure 5.5, we plot the vector field when (a, b, c) =

(1 − e/2, 1 − e/2, 1) and ν = 1/3.

Remark 5.7 Suppose the triplet (a, b, c) satisfies the conditions (5.4) and

(5.5), and that ν < 1/e. Then, along a trajectory, κ(t) converges to a value

κν < 1, and κν ↑ 1 as ν ↑ 1/e.

The triplet (a, b, c) = (−1,−1, 1) suggested in (5.1) does not manage to

satisfy the conditions (5.4) and (5.5), and its maximal throughput is less

than 1/e (but still positive). In Figure 5.6, we show the vector field of the

equation for ν = 1/3 (now unstable) and ν = 1/6 (stable).

Note that the triplet (a, b, c) = (1 − e/2, 1 − e/2, 1) only requires the

stations to know whether a collision occurred – it does not require a station

to distinguish between channel states 0 and 1.
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(a) ν = 1/3 (now unstable).

x

n

10
20
30
40
50
60
70
80
90

100

20 40

60

80 100

(b) ν = 1/6 (stable).

Figure 5.6 Vector field of (s, n) with the “naı̈ve” parameters
(a, b, c) = (−1,−1, 1).

Just as in Remark 5.2 drift analysis did not conclusively prove tran-

sience, here we have not conclusively proven positive recurrence yet. Nega-

tive drift does mean that the chain will not be transient (Meyn and Tweedie

(1993) Theorem 8.4.3), but the expected return time may be infinite, as
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the following argument easily shows. Consider a Markov chain that jumps

from 0 to 2n − 1, for n ≥ 1, with probability 2−n, and for n > 1 transitions

deterministically n → n − 1. Then, starting from 0, the return time will be

2n with probability 2−n, and so the expected return time will be infinite.

We will prove positive recurrence of this system later, in Exercise D.3.

Rather than finding an explicit equilibrium distribution (which would be

quite hard in this case), we will use the Foster–Lyapunov criteria, a stricter

version of the drift conditions.

Exercises

Exercise 5.3 Show that condition (5.5) is sufficient to ensure that κ(t) is

decreasing when κ(t) > 1.

Show that either of the choices (5.6) satisfy both conditions (5.4) and

(5.5) provided ν < 1/e.

Exercise 5.4 Show that if c ≤ 0 then the conclusion of Proposition 5.3

holds – the channel jams after a finite time – for the scheme (5.1).

Exercise 5.5 Repeat the argument of this section with the “naı̈ve” values

a = −1, b = −1, c = 1 of (5.1). Check that the drift of S is negative if

Nt < κS t and positive if Nt > κS t, for κ ≈ 1.68. What throughput should

this system allow?

5.3 Acknowledgement-based schemes

Often, it is not possible for stations to observe the channel. For example, a

device using the Internet typically learns that a sent packet has been suc-

cessfully received when it receives an acknowledgement packet, or ACK.

We will now consider what happens when the only information a station

has concerning other stations or the use of the channel is the history of its

own transmission attempts.

Let us model the situation as follows. Packets arrive from time 0 onwards

in a Poisson stream of rate ν > 0. A packet arriving in slot t will attempt

transmission in slots t+ x0, t+ x1, t+ x2, . . . until the packet is successfully

transmitted, where 1 = x0 < x1 < x2 < . . . , and X = (x1, x2, . . . ) is a

random (increasing) sequence. Assume the choice of the sequence X is

independent from packet to packet and of the arrival process. (We could

imagine the packet arrives equipped with the set of times at which it will

attempt retransmission.) Write h(x) for the probability that x ∈ X, so that

h(1) = 1.
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Example 5.8 (ALOHA) For the ALOHA protocol of Section 5.1, h(x) =

f for all x > 1.

Example 5.9 (Ethernet) The Ethernet protocol is defined as follows. Af-

ter r unsuccessful attempts, a packet is retransmitted after a period of time

chosen uniformly from the set {1, 2, 3, . . . , 2r}. (This is called binary expo-

nential backoff.)

Here, there isn’t an easy expression for h(x), but we can enumerate the

first few values. As always, h(1) = 1; h(2) = 1/2; h(3) = 5/8; h(4) =

17/64; h(5) = 305/1024; and so on. (Check these.)

We are interested in the question of whether, like ALOHA, the channel

will eventually jam forever, or if we can guarantee an infinite number of

successful transmissions.

For the purpose of argument, suppose that the channel is externally

jammed from time 0 onwards, so that no packets are successfully trans-

mitted, and hence all potential packet retransmissions of the arriving pack-

ets occur. Let Yt be the number of newly arrived packets that arrive during

slot t − 1 and are first transmitted in slot t: then Y1, Y2, . . . are independent

Poisson random variables with mean ν.

Since the packets’ retransmission sequences X are independent, the

number of transmissions occurring in slot t will be Poisson with mean

(h(1) + . . . + h(t))ν. (The number of packets arriving in slot 0 and trans-

mitting in slot t is Poisson with mean νh(t), the number of packets arriving

in slot 1 and transmitting in slot t is Poisson with mean νh(t − 1), and so

on.)

The probability of fewer than two attempts in any given time slot t is

Pt = P
(

Poisson
(

(h(1) + . . . + h(t))ν
)

= 0 or 1
)

=



1 + ν

t∑

r=1

h(r)



 e−ν
∑t

r=1 h(r).

Let Φ be the set comprising those slots in which less than two attempts

are made in this externally jammed channel. Then the expected number of

such slots is

H(ν) ≡ E|Φ|=
∞∑

t=1

Pt.

(The numbers of attempts in different slots are not independent, but the

linearity of expectation is all we’ve used here.) The probabilities Pt, and

hence H(ν), are decreasing in ν. Let

νc = inf{ν : H(ν) < ∞}.
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Thus, if ν > νc then E|Φ|< ∞, and hence Φ is finite with probability 1.

We will first show that νc is the critical rate: i.e. for arrival rates below νc,

with probability 1 infinitely many packets are successfully transmitted; for

arrival rates above νc, only finitely many packets are. We will then compute

the value of νc for some schemes, including ALOHA and Ethernet.

To proceed with the argument, now remove the external jamming, and

let Φ be the set comprising those slots in which fewer than two attempts

are made. Then Φ ⊂ Φ, since any element of Φ is necessarily an element

of Φ. We will now show that, if ν > νc, then with positive probability the

containment is equality.

Consider an arrival rate ν > νc. Subject the system to an additional,

independent, Poisson arrival stream of rate ǫ. There is a positive probability

that the additional arrivals jam every slot in the set Φ, since Φ is finite with

probability 1. Thus there is positive probability, say p > 0, that in every

slot two or more transmissions are attempted, even without any external

jamming: you should convince yourself that in this case Φ = Φ = ∅.
Suppose that did not occur, and consider the situation just after the first

slot, say slot τ1, in which either 0 or 1 transmissions are attempted. It looks

just like time 0, except we likely have a backlog of packets already present.

These packets only create more collisions; so the probability that the chan-

nel will never unjam from time τ1 onwards is at least p.

Similarly, following each time slot in which either 0 or 1 transmissions

are attempted, the probability that the system jams forever from this time

onwards is ≥ p. Therefore, the number of successful packet transmissions

is bounded above by a geometric random variable with parameter 1 − p.

Since ν and ǫ are arbitrary subject to ν > νc, ǫ > 0, it follows that for a

system with arrival rate ν > νc the expected number of successful packet

transmissions is finite. In particular, the number of successful packet trans-

missions is finite with probability 1.

Remark 5.10 This style of argument is known as coupling: in order to

show that the jamming probability from time τ1 onwards is at least p, we

consider realizations of “system starting empty” and “system starting with

a backlog” where pathwise the backlog can only create more collisions.

Next we show that if νc > 0 and the arrival rate satisfies ν < νc, then

the set Φ is infinite with probability 1. Suppose otherwise: then there is

positive probability that the set Φ is finite. Now subject the system to an

additional, independent, Poisson arrival stream of rate ǫ, where ν + ǫ < νc.

Then there is a positive probability, say p > 0, that in every slot two or more

transmissions are attempted. Indeed, the earlier coupling argument shows
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that the number of such slots is bounded by a geometric random variable

with parameter 1− p. But this then implies that, for the system with arrival

rate ν+ǫ, E |Φ| < ∞ and hence E
∣
∣
∣Φ

∣
∣
∣ < ∞. But this contradicts the definition

of νc. Hence we deduce that the set Φ is infinite with probability 1 for any

arrival rate ν < νc.

We have shown that the channel will unjam infinitely many times for

ν < νc, but does this imply that there are infinitely many successful trans-

missions? To address this question, let Ψi be the set comprising those slots

where i retransmission attempts are made, for i = 0, 1. Then Φ ⊂ Ψ0 ∪ Ψ1

(the inclusion may be strict, since the definition of Ψ0,Ψ1 does not involve

first transmission attempts). Now,

|Φ| =
∞∑

t=1

(I[t ∈ Ψ1, Yt = 0] + I[t ∈ Ψ0, Yt = 1] + I[t ∈ Ψ0, Yt = 0]) .

But Yt is independent of I[t ∈ Ψ0], and so, with probability 1,

∞∑

t=1

(I[t ∈ Ψ0, Yt = 1] + I[t ∈ Ψ0, Yt = 0]) = ∞

=⇒
∞∑

t=1

I[t ∈ Ψ0, Yt = 1] = ∞.

Since |Φ| = ∞ with probability 1 we deduce that

∞∑

t=1

(I[t ∈ Ψ1, Yt = 0] + I[t ∈ Ψ0, Yt = 1]) = ∞

with probability 1.

We have thus shown the following result.

Theorem 5.11 If ν ∈ (0, νc) then with probability 1 an infinite number of

packets are successfully transmitted.

If ν > νc then with probability 1 only a finite number of packets are suc-

cessfully transmitted; further, the expected number of packets successfully

transmitted is finite.

Thus, the question we would like to answer is: which back-off schemes

(equivalently, choices of the function h(x)) have νc > 0?

Example 5.12 (ALOHA) Recall that, for the ALOHA scheme, h(x) = f

for all x ≥ 2, and so Pt ∼ ν f te−ν f t. Hence H(ν) < ∞ for any ν > 0. Thus

νc = 0; as we have already seen, with any positive arrival rate the system
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will eventually jam. More generally, νc = 0 whenever

(log t)−1

t∑

x=1

h(x)→ ∞ as t → ∞, (5.7)

since this implies
∑∞

t=1 Pt < ∞ for any ν > 0 (Exercise 5.8). In this

sense, the expected number of successful transmissions is finite for any

acknowledgement-based scheme with slower than exponential backoff.

Example 5.13 (Ethernet) For the Ethernet protocol described above, as

t → ∞,
t∑

r=1

h(r) ∼ log2 t.

(The expected time for a packet to make k retransmission attempts is

roughly 2k.) Therefore,

e−ν
∑t

r=1 h(r) = t−ν/ log 2+o(1),

hence

Pt = νt
−ν/ log 2+o(1) log2 t,

and
∑∞

t=1 Pt < ∞ or = ∞ according as ν > or < log 2 ≈ 0.693. That is,

νc = log 2.

Remark 5.14 Note that this does not mean that the Markov chain de-

scribing the backlog of packets is positive recurrent. Indeed, suppose we

had a positive recurrent system, with π0 the equilibrium probability of 0

retransmissions, and π1 the equilibrium probability of 1 retransmission in

any given time slot. Then the expected number of (new and old) packet

transmissions in a slot is

π1e−ν + π0νe
−ν,

while the expected number of arrivals is ν. Now, π0 + π1 ≤ 1, and clearly

ν ≤ 1, so π1e−ν + π0νe
−ν ≤ e−ν, and we obtain

ν ≤ e−ν =⇒ ν ≤ 0.567.

Thus, for 0.567 < ν < 0.693, an acknowledgement-based scheme is most

definitely not positive recurrent, even though Ethernet will have an infinite

number of packets successfully transmitted in this range.

In fact, (a geometric version of) the Ethernet scheme will not be positive

recurrent for any positive arrival rate.
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Theorem 5.15 (Aldous (1987)) Suppose the backoff after r unsuccessful

attempts is distributed geometrically with mean 2r. (This will give the same

asymptotic behaviour of h(t), but a nicer Markov chain representation.)

Then the Markov chain describing the backlog of untransmitted packets is

transient for all ν > 0. Further, if N(t) is the number of packets successfully

transmitted by time t, then with probability 1 N(t)/t → 0 as t → ∞.

It is not known whether there exists any acknowledgement-based

scheme and arrival rate ν > 0 such that the scheme is positive recurrent.

Theorem 5.15 suggests not, and that some form of channel sensing or feed-

back, as in Section 5.2, is necessary for positive recurrence. (In practice,

acknowledgement-based schemes generally discard packets after a finite

number of attempts.)

Remark 5.16 The models of this chapter have assumed that the time axis

can be slotted. In view of the very limited amount of information available

to a station under an acknowledgement-based scheme, it is worth noting

what happens without this assumption. Suppose that a packet that arrives

at time t ∈ R+ is first transmitted in the interval (t, t+1); the transmission is

unsuccessful if any other station transmits for any part of the interval, and

otherwise the transmission is successful. Suppose that, after r unsuccessful

attempts, the packet is retransmitted after a period of time chosen uniformly

from the real interval (1, ⌊br⌋). Then it is known that the probability that

infinitely many packets are transmitted successfully is 1 or 0 according

as ν ≤ νc or ν > νc, where νc =
1
2

log b (Kelly and MacPhee (1987)).

Comparing this with Exercise 5.7, we see that moving from a slotted to a

continuous time model halves the critical value νc.

Exercises

Exercise 5.6 Theorem 5.11 left open the case ν = νc. Show that this case

can be decided according to whether H(νc) is finite or not.

[Hint: Is the additional Poisson arrival stream of rate ǫ really needed in the

proof of the theorem?]

Exercise 5.7 Consider the following generalization of the Ethernet pro-

tocol. Suppose that, after r unsuccessful attempts, a packet is retransmitted

after a period of time chosen uniformly from {1, 2, 3, . . . , ⌊br⌋}. Thus b = 2

corresponds to binary exponential backoff. Show that νc = log b.

Exercise 5.8 Check the claim that νc = 0 if condition (5.7) is satisfied.
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Show that if
∞∑

x=1

h(x) < ∞

a packet is transmitted at most a finite number of times (equivalently, it is

discarded after a finite number of attempts), and that νc = ∞.

[Hint: First Borel–Cantelli lemma.]

Suppose that a packet is retransmitted a time x after its first transmission

with probability h(x), independently for each x until it is successful. Show

that if

h(x) =
1

x log x
, x ≥ 2,

then no packets are discarded and νc = ∞.

Exercise 5.9 Any shared information between stations may aid coordi-

nation. For example, suppose that in an acknowledgement-based scheme a

station can distinguish even from odd slots, according to a universal clock,

after its first transmission. Show that, if a station transmits for the first time

as soon as it can, but confines retransmission attempts to even slots, then

the number of packets successfully transmitted grows at least at rate νe−ν/2.

5.4 Distributed random access

In this section we consider a finite number of stations attempting to share

a channel using the ALOHA protocol, where not all stations interfere with

each other. We begin by supposing stations form the vertex set of an in-

terference graph, with an edge between two stations if they interfere with

each other. This would be a natural representation of a wireless network

distributed over a geographical area.

We have seen already in Example 2.24 a simple model operating in con-

tinuous time. Recalling that model, let S ⊂ {0, 1}R be the set of vectors

n = (nr, r ∈ R) with the property that if i and j have an edge between them

then ni ·n j = 0. Let n be a Markov process with state space S and transition

rates

q(n, n − er) = 1 if nr = 1,

q(n, n + er) = exp(θr) if n + er ∈ S,

for r ∈ R, where er ∈ S is a unit vector with a 1 as its rth component and

0s elsewhere. We interpret nr = 1 as indicating that station r is transmit-

ting, and we assume that other stations within interference range of station
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r (i.e. stations that share an edge with station r) sense this and do not trans-

mit. Station r transmits for a time that is exponentially distributed with unit

mean. If nr = 0 and no station is already transmitting within interference

range of station r, then station r starts transmitting at rate exp(θr). We ig-

nore for the moment any delays in sensing, and thus any collisions.

The equilibrium distribution for n = (nr, r ∈ R) can, from Example 2.24

or Section 3.3, be written in the form

π(n) =
exp(n · θ)

∑

m∈S exp(m · θ) , n ∈ S, (5.8)

where θ = (θr, r ∈ R). The equilibrium probability that station r is trans-

mitting is then

Eθ[nr] =
∑

n∈S
nrπ(n) =

∑

n∈S nr exp(n · θ)
∑

m∈S exp(m · θ) . (5.9)

If we imagine that packets arrive at station r at a mean rate λr and are served

when station r is transmitting, we should expect the system to be stable

provided λr < Eθ[nr] for r ∈ R. By varying the parameters θ = (θr, r ∈ R),

what range of values for λ = (λr, r ∈ R) does this allow?

Let

Λ =





λ ≥ 0 : ∃p(n) ≥ 0,

∑

n∈S
p(n) = 1

such that
∑

n∈S
p(n)nr ≥ λr for r ∈ R





.

We now show we can allow any vector in the interior of Λ.

Theorem 5.17 (Jiang and Walrand (2010)) Provided λ lies in the interior

of the region Λ there exists a vector θ such that

Eθ[nr] > λr, r ∈ R,

where Eθ[nr] is given by equation (5.9).
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Proof Consider the optimization problem

minimize
∑

n∈S
p(n) log p(n) (5.10)

subject to
∑

n∈S
p(n)nr ≥ λr, r ∈ R,

and
∑

n∈S
p(n) = 1

over p(n) ≥ 0, n ∈ S.

Since λ lies in the interior of Λ, there exists a feasible solution to this prob-

lem, and indeed there exists a feasible solution for any sufficiently small

perturbation of the right-hand sides of the constraints. Further, the opti-

mum is attained, since the feasible region is compact. The objective func-

tion is convex and the constraints are linear, and so the strong Lagrangian

principle holds (Appendix C).

The Lagrangian for the problem is

L(p, z; θ, κ)

=
∑

n∈S
p(n) log p(n) +

∑

r∈R
θr



λr + zr −
∑

n∈S
p(n)nr



 + κ



1 −
∑

n∈S
p(n)



 ,

where zr, r ∈ R, are slack variables and κ, θr, r ∈ R, are Lagrange multipli-

ers for the constraints. We now attempt to minimize L over p(n) ≥ 0 and

zr ≥ 0. To obtain a finite minimum over zr ≥ 0, we require θr ≥ 0; and

given this we have at the optimum θr · zr = 0. Further, differentiating with

respect to p(n) gives

∂L

∂p(n)
= 1 + log p(n) −

∑

r∈R
θrnr − κ.

By the strong Lagrangian principle, we know there exist Lagrange multi-

pliers κ, θr, r ∈ R, such that the Lagrangian is maximized at p, z that are

feasible, and p, z are then optimal, for the original problem.

At a minimum over p(n),

p(n) = exp



κ − 1 +
∑

r∈R
θrnr



 .

Choose κ so that (p(n), n ∈ S) sum to 1: then

p(n) =
exp(

∑

r∈R θrnr)
∑

m∈S exp(
∑

r∈R θrmr)
,
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precisely of the form (5.8). Since zr ≥ 0, we have found a vector θ such

that
∑

n∈S
p(n)nr ≥ λr,

with equality if θr > 0. To obtain the strict inequality of the theorem, note

that, since λ lies in the interior of the region Λ, we can use a perturbation

of λ in the above construction.

�

Remark 5.18 If we had used the transition rates

q(n, n − er) = exp(−θr) if nr = 1,

q(n, n + er) = 1 if n + er ∈ S,

for r ∈ R, the equilibrium distribution (5.8) would be unaltered. Under the

first variant, stations transmit for a period with unit mean, whatever the

the value of θ, while under this second variant a station attempts to start

transmission at unit rate whatever the value of θ. A disadvantage of the

first variant is that if components of θ are large then collisions (caused by

a delay in sensing that a station within interference range has also started

transmitting) will become more frequent. The second variant avoids this,

and so, although transmissions may occasionally collide, there is no ten-

dency for this to increase as loads increase. But a disadvantage of the sec-

ond variant is that if components of θ are large then stations may hog the

system, blocking other stations, for long periods of time.

If we could scale up all the transition rates by the same factor, this would

reduce the hogging periods by the same factor; but of course speed-of-light

delays limit this.

Remark 5.19 The objective function (5.10) is (minus) the entropy of

the probability distribution (p(n), n ∈ S), and so the optimization problem

finds the distribution of maximum entropy subject to the constraints. This

functional form of objective produces the product-form (5.8) for p at an op-

timum. We observed something formally similar in Theorem 3.10, where

the solution to the Primal problem (3.4) had a product-form. In each case

there are dual variables for each constraint, although these constraints are

of very different forms. As in the earlier problem, there are many variations

on the objective function (5.10) that will leave the optimum of product-

form, and we consider one in Exercise 5.11.

Example 5.20 (Optical wavelength-routed networks) So far in this sec-

tion we have defined the state space S in terms of an interference graph,
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but all that is needed is that S be a subset of {0, 1}R, with the following

hierarchical property: n+ er ∈ S =⇒ n ∈ S. As an example we describe a

simple model of an optical wavelength-routed network. Such networks are

able to provide very substantial capacity in the core of a communication

network.

In optical networks each fibre is partitioned into a number of wave-

lengths, each capable of transmitting data. The fibres are connected by

switches (called optical cross-connects): the fibres are the edges and the

switches the nodes of the physical topology. A connection across the net-

work must be routed over the physical topology and must also be assigned

a wavelength. The combination of physical route and wavelength is known

as a lightpath. We consider an all-optical network, where the same wave-

length is used at each edge along the path (if the wavelength can be con-

verted at intermediate nodes, the model resembles a loss network, as in

Chapter 3).

Lightpaths carry data between endpoints of the physical topology, pro-

viding capacity between pairs of endpoints. But how should lightpaths be

provided, so that the capacity between endpoints is aligned with demand?

Suppose that on each fibre there are the same set of (scalar) C wave-

lengths, and let r label a lightpath. We suppose r identifies a source–sink

pair s(r), a set of fibres and a wavelength, and we let R be the set of light-

paths. It will be convenient to write r ∈ s if source–sink pair s is identified

by lightpath r. Note that we do not assume that all lightpaths r ∈ s iden-

tify the same set of fibres: a source–sink pair may be served by multiple

paths through the physical topology, as well as by multiple wavelengths on

a given path.

Let nr = 0 or 1 indicate that lightpath r is inactive or active, respectively,

and let n = (nr, r ∈ R). Then a state is feasible if active lightpaths using

the same wavelength have no fibres in common: let S(C) ⊂ {0, 1}R be the

set of feasible states. With a mild risk of confusion, we let S be the set of

source–sink pairs.

Suppose that each source–sink pair s maintains a parameter θs, and sup-

pose that n is a Markov process with state space S(C) and transition rates

q(n, n − er) = 1 if nr = 1,

q(n, n + er) = exp(θs(r)) if n + er ∈ S(C),

for r ∈ R, where we recall that er ∈ S(C) is a unit vector with a 1 as its rth

component and 0s elsewhere.

We recognize this model as just another example of a truncated re-
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versible process, and its stationary distribution is given by expression (5.8),

where θr = θs(r). But what range of loads λ = (λs, s ∈ S) does this allow?

Let

Λ =






λ ≥ 0 : ∃p(n) ≥ 0,
∑

n∈S(C)

p(n) = 1

such that
∑

r∈R

∑

n∈S(C)

p(n)nr ≥ λs for s ∈ S






.

In Exercise 5.14 it is shown that θ = (θs, s ∈ S) can be chosen to support

any vector in the interior of Λ.

Remark 5.21 If we imagine time is slotted, we can multiply wavelengths

in the above model by time as well as frequency division. This might help

if we want to increase the ratio of raw wavelengths to source–sink pairs.

We have used the properties of a wavelength-routed network to motivate

a particular model of routing, and such models may arise in a variety of

other contexts. We should note that wide-area optical wavelength-routed

networks may provide the basic link capacities in a loss network, and in this

role we would expect the allocation of lightpaths to source–sink pairs to

change rather slowly, perhaps over a daily cycle. But the above discussion

does suggest that simple decentralized algorithms driven by random local

choices have the potential to be remarkably effective.

Exercises

Exercise 5.10 By substituting the values of p and z optimizing the La-

grangian, show that the dual to problem (5.10) is

maximize V(θ) =
∑

r∈R
λrθr − log





∑

n∈S
exp





∑

r∈R
θrnr









over θr ≥ 0, r ∈ R.

Show that

∂V
∂θr
= λr − Eθ[nr],

where the expectation is calculated under the distribution (5.8). (We shall

use this result later, in Exercise 7.20.)
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Exercise 5.11 If we imagine station r as a server for the packets that ar-

rive there, then a very crude model for the mean number of packets queued

at station r is λr/(E[nr] − λr): this is the approximation we used in Ex-

ample 2.22, leading to Kleinrock’s square root assignment. Consider the

problem

minimize
∑

n∈S
p(n) log p(n) + D

∑

r∈R

λr

zr

subject to
∑

n∈S
p(n)nr = λr + zr, r ∈ R,

and
∑

n∈S
p(n) = 1

over p(n) ≥ 0, n ∈ S; zr ≥ 0, r ∈ R.

We have added to the objective function our crude representation of the

mean number of packets at stations, weighted by a positive constant D.

Show that, provided λ lies in the interior of the region Λ, the optimum is

again of the form (5.8).

Show that the dual to the optimization problem is

maximize V(θ) =
∑

r∈R

(

λrθr + 2(Dλrθr)
1/2

)

− log





∑

n∈S
exp





∑

r∈R
θrnr









over θr ≥ 0, r ∈ R,

and that

∂V
∂θr
= λr +

(

Dλr

θr

)1/2

− Eθ[nr].

Exercise 5.12 Consider the choice of the constant D in the model of

Exercise 5.11. Write θr = θr(D), r ∈ R, to emphasize the dependence of

the Lagrange multipliers on D. From the form of the optimizing variables

z, show that the mean number of packets at station r is
(

θr(D)λr

D

)1/2

.

Deduce that, as D → ∞, the form (5.8) concentrates probability mass on

vectors n that each identify a maximal independent vertex set (i.e. an inde-

pendent vertex set that is not a strict subset of any other independent vertex

set).

Exercise 5.13 Show that it is possible to view the state space S(C) of

Example 5.20 as derived from an interference graph, to be described.
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Exercise 5.14 Establish the claim in Example 5.20.

[Hint: Consider the optimization problem (5.10), but with the first con-

straint replaced by
∑

r∈R

∑

n∈S(C)

p(n)nr ≥ λs for s ∈ S. ]

5.5 Further reading

Our treatment, and use in Section 5.2, of the Foster–Lyapunov criteria fol-

lows Hajek (2006), which is an excellent text on several of the topics cov-

ered in this book. Goldberg et al. (2004) provide a review of early work

on acknowledgement-based schemes; Jiang and Walrand (2012) and Shah

and Shin (2012) discuss recent work on distributed random access.

The problem of decentralized communication becomes harder in a net-

work setting, particularly if packets need to be transmitted across multiple

links, or “hops”. Fixed point approximations for networks with random

access policies (in the spirit of the Erlang fixed point approximation) are

discussed in Marbach et al. (2011). A popular alternative to distributed

random access in the multihop setting is to use gossiping algorithms to

coordinate the communications; Modiano et al. (2006) discusses this ap-

proach.
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Effective bandwidth

Until now, our model of communication has assumed that an individual

connection requests some amount of bandwidth (measured, for example, in

circuits) and receives all or none of it. We then used this model to develop

Erlang’s formula and our analysis of loss networks. However, it is possible

that the bandwidth profile of a connection is different, and in particular it

might fluctuate. Thus, the peak rate required may be greater than the mean

rate achieved over the holding period of the connection, as illustrated in

Figure 6.1.

bandwidth

bandwidth

a telephone call

peak

mean

t

t

Figure 6.1 Possible bandwidth profiles; mean and peak rates.

Our goal in this chapter will be to understand how we might perform

133
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admission control for such a system, so as to achieve an acceptable balance

between utilizing the capacity of the resources and the probability that the

total required rate will exceed the capacity of a resource causing packets to

be lost.

There are two extreme strategies that we can identify immediately, each

of which reduces the problem to our earlier model of a loss network. At one

extreme, we could assume that each connection has its peak rate reserved

for it at each resource it passes through. This will mean that packets do not

get lost, but may require a lot of excess capacity at resources. At the other

extreme, we could reserve for each connection its mean rate and allow

packets to queue for resources if there are instantaneous overloads. With

intelligent management of queued packets, it may be possible to stabilize

the resulting queueing network, but at the cost of large delays in packets

being delivered. Our goal is to find a strategy between these two extremes.

Exercise

Exercise 6.1 Consider the following (over-)simplified model, based on

Example 2.22. Suppose that a connection on route r produces a Poisson

stream of packets at rate λr, and that a resource is well described as an

M/M/1 queue with arrival rate
∑

r: j∈r nrλr and service rate φ j. Suppose that

a new connection is accepted if and only if the resulting vector

n = (nr, r ∈ R) satisfies
∑

r: j∈r
nrλr < φ j − ǫ

for each j ∈ J . Show that, under the M/M/1 assumption, the mean packet

delay at each queue is held below 1/ǫ.

6.1 Chernoff bound and Cramér’s theorem

Our intuition for not wanting to use the peak rate for every user is based on

the fact that, if the bandwidth requirements of the different users are inde-

pendent, the total bandwidth requirement when we have many users should

scale approximately as the mean. We will now attempt to understand the

deviations: that is, with n independent users, how much larger can their

total bandwidth requirement get than the sum of the mean rates?

Let X1, . . . , Xn be independent identically distributed copies of a random

variable X. Define M(s) = logEesX , the log-moment generating function.

When we need to indicate dependence on the variable X, we write MX(s).
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We shall make the assumption that M(s) is finite for real s in an open

neighbourhood of the origin, and thus that the moments of X are finite.

Now, for any random variable Y and any s ≥ 0 we have the bound

P(Y > 0) = E[I[Y > 0]] ≤ E[esY]. (6.1)

This is illustrated in Figure 6.2.

esY

I[Y > 0]

Figure 6.2 I[Y > 0] ≤ esY .

Optimizing over s gives us the Chernoff bound:

log P(Y > 0) ≤ inf
s≥0

logE[esY].

Now MX1+...+Xn
(s) = nMX(s) and so

logP(X1 + . . . + Xn > 0) ≤ n inf
s≥0

M(s).

We can easily put a number other than 0 into the right-hand side:

logP(X1 + . . . + Xn > nc) = logP((X1 − c) + . . . + (Xn − c) > 0)

≤ n inf
s≥0

[MX(s) − cs],

since MX−c(s) = MX(s)−cs. This gives us an upper bound on the probability

that the sum X1 + . . . + Xn is large; we show next that this upper bound is

asymptotically exact as n→ ∞.

Remark 6.1 We have already assumed that M(s) is finite for real s in an

open neighbourhood of the origin. A consequence is that M(s) is differen-

tiable in the interior of the interval for which it is finite, with

M′(s) = E(XesX)/E(esX),

as we would expect, but we shall not prove this. (For a careful treatment,
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see Ganesh et al. (2004), Chapter 2.) We’ll assume that the infimum in

the following statement of Cramér’s theorem is attained at a point in the

interior of the interval for which M(s) is finite.

Theorem 6.2 (Cramér’s theorem) Let X1, . . . , Xn be independent identi-

cally distributed random variables with E[X1] < c, P(X1 > c) > 0, and

suppose the log-moment generating function M(s) satisfies the above as-

sumptions. Then

lim
n→∞

1

n
logP(X1 + . . . + Xn > nc) = inf

s≥0
[M(s) − cs].

Proof We have shown that the right-hand side is an upper bound; let us

now establish the lower bound. Let s∗ > 0 be the value that achieves the

infimum (it’s greater than 0, since M′(0) = E[X1] < c).

We now use tilting. We define a new set of independent identically dis-

tributed random variables, X̃1, . . . , X̃n, whose density is written in terms of

the density of X1. The tilted random variable X̃1 will have mean E[X̃1] = c

and finite non-zero variance (Exercise 6.3), and so by the central limit the-

orem

P

(

c <
1

n
(X̃1 + . . . + X̃n) < c + ǫ

)

→ 1

2
as n→ ∞.

Since the densities of X̃i and Xi are related, this will allow us to bound from

below the corresponding probability for Xi.

Let fX(·) be the density of X1. Define the density of the exponentially

tilted random variable X̃1 to be

fX̃(x) = e−M(s∗)es∗x fX1
(x).

We need to check two things: first, that this is a density function, i.e. that

it integrates to 1; and, second, that X̃1 has mean c, as advertised. We first

check that fX̃(·) is a density function:
∫

fX̃1
(x)dx = e−M(s∗)

∫

es∗x fX1
(x)dx = e−M(s∗)E[es∗X1 ] = 1

by the definition of M. We next check that X̃1 has mean c. To do this, we

recall that s∗ was chosen as the point that minimized M(s) − cs; therefore,

at s∗, the derivative of this function is 0, i.e. c = M′(s∗). We now consider

E[X̃1] =

∫

x fX̃1
(x)dx =

∫

xe−M(s∗)es∗x fX1
(x)dx

= E[X1es∗X1−M(s∗)] = M′(s∗) = c
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as required.

We now bound the probability that X1 + . . . + Xn > nc from below as

follows:

P(X1 + . . . + Xn > nc) > P(nc < X1 + . . . + Xn < n(c + ǫ))

=

(

nc<x1+...+xn<n(c+ǫ)

fX1
(x1)dx1 . . . fXn

(xn)dxn

=

(

nc<x1+...+xn<n(c+ǫ)

eM(s∗)e−s∗x1 fX̃1
(x1)dx1 . . . e

M(s∗)e−s∗xn fX̃n
(xn)dxn

= enM(s∗)

(

nc<x1+...+xn<n(c+ǫ)

e−s∗(x1+...+xn) fX̃1
(x1)dx1 . . . fX̃n

(xn)dxn

≥ enM(s∗)e−s∗n(c+ǫ)P(nc < X̃1 + . . . + X̃n < n(c + ǫ)).

The latter probability, as we discussed earlier, converges to 1/2; so we

conclude that

1

n
log P(X1 + . . . + Xn > nc) ≥ (M(s∗) − s∗c) − s∗ǫ − 1

n
log 2.

Letting n→ ∞ and ǫ → 0 gives us the result we wanted. �

Remark 6.3 An equivalent way of thinking about tilting is that we are

changing the underlying probability measure from P to Q,

with dQ/dP = e−M(s∗)es∗x. (This means that, for any measurable set S ,

Q(S ) =
∫

S
e−M(s∗)es∗x dP(x).) Under Q, we have EQX1 = c. The random

variable X̃1 is simply X1, and we compare P- and Q-probabilities of the

event 1
n
(X1 + . . .+Xn) ≥ c. This way of thinking about it doesn’t require X1

to have a density, which can be useful.

We know more from the proof than we have stated. Suppose the event

X1 + . . . + Xn > nc occurs. If n is large, then conditional on that event we

can be reasonably certain of two things. First, the inequality is very close to

equality. Second, the conditional distribution of X1, . . . , Xn is very close to

the distribution of n independent identically distributed random variables

sampled from the distribution of X̃1. That is, when the rare event occurs,

we know rather precisely how it occurs; results from the theory of large

deviations often have this flavour.



138 Effective bandwidth

Exercises

Exercise 6.2 In this exercise, we establish some properties of the log-

moment generating function, MX(s) = logE[esX]. Check the following.

(1) If X and Y are independent random variables, MX+Y (s) = MX(s) +

MY(s).

(2) MX(s) is convex. [Hint: Check its derivative is increasing.]

(3) If X is a normal variable with mean λ and variance σ2, then MX(s) =

λs + (σs)2/2.

Exercise 6.3 We assumed that the infimum in the statement of Theo-

rem 6.2 is attained in the interior of the interval for which M(s) is finite.

Check that this implies the tilted random variable X̃1 has finite variance.

6.2 Effective bandwidth

Consider a single resource of capacity C, which is being shared by J types

of connection. (For example, connections might be real-time audio or real-

time video conference calls). Let n j be the number of connections of type

j = 1, . . . , J. Let

S =

J∑

j=1

n j∑

i=1

X ji,

where X ji are independent random variables, and where the distribution of

X ji can depend on j but not on i. Let

M j(s) = logE[esX ji ].

We view X ji as the bandwidth requirement of the ith connection of type j.

We should clearly expect to have ES < C, and we will investigate what

it takes to assure a small value for P(S > C).

Given C and information about the number and type of connections, the

bound (6.1) implies that, for any s ≥ 0,

logP(S > C) ≤ logE[es(S−C)] =

J∑

j=1

n jM j(s) − sC.

In particular,

inf
s≥0





J∑

j=1

n jM j(s) − sC




≤ −γ =⇒ P(S > C) ≤ e−γ. (6.2)
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This is useful for deciding whether we can add another call of class k

and still retain a service quality guarantee. Let

A =





n ∈ RJ

+ :

J∑

j=1

n jM j(s) − sC ≤ −γ for some s ≥ 0





.

From the implication (6.2)

(n1, · · · , nJ) ∈ A =⇒ P(S > C) ≤ e−γ.

Call A the acceptance region: a new connection can be accepted, without

violating the service quality guarantee that P(S > C) ≤ e−γ, if it leaves the

vector n inside A.

Remark 6.4 The acceptance region A is conservative, since the implica-

tions are in one direction. Cramér’s theorem shows that, for large values

of C, n and γ, the converse holds, i.e. P(S > C) ≤ e−γ is approximately

equivalent to n ∈ A (Exercise 6.4).

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

n1

A

n2

Figure 6.3 The convex complement of the acceptance region.

What does the acceptance region A look like? For each s, the inequality

J∑

j=1

n jM j(s) − sC ≤ −γ

defines a half-space of RJ , and as s varies it indexes a family of half-spaces.

The region A has a convex complement in RJ
+ since this complement is just

the intersection RJ
+ with this family of half-spaces. Figure 6.3 illustrates

the case J = 2. (As s varies, the boundary of the half-space rolls over the

boundary of A, typically forming a tangent plane.)
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Define

α j(s) =
M j(s)

s
=

1

s
logE[esX ji ].

Rewriting the inequality, we see that if

J∑

j=1

n jα j(s) ≤ C − γ
s

(6.3)

we are guaranteed to have P(S > C) ≤ e−γ. But how should we choose s?

If we know the typical operating region, the natural choice is to look for

a point n∗ on the boundary of A corresponding to the typical traffic mix,

and then choose s to attain the infimum in (6.2) for n = n∗, as illustrated in

Figure 6.4.

Boundary of acceptance region

Typical operating region

Linear approximation

n∗

n1

n2

Figure 6.4 Approximating the acceptance region by a half-space
bounded by the tangent at n∗.

We thus have a simple admission control: accept a new connection if it

leaves the inequality (6.3) satisfied. We call α j(s) the effective bandwidth of

a source of class j. The admission control simply adds the effective band-

width of a new request to the effective bandwidths of connections already

in progress and accepts the new request if the sum satisfies a bound.

If a similar admission control is enforced at each resource of a network,

the network will behave as a loss network. Note that the effective band-

width of a connection may vary over the resources of the network (since

different resources may choose different values of s, depending on their

mix of traffic), just as in our earlier model of a loss network the require-

ments A jr may vary over resources j for a given route r. Techniques fa-

miliar from loss networks can be used, for example trunk reservation to

control relative priorities for different types of connection (Exercise 3.12).
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Remark 6.5 The admission criterion (6.3) is conservative for two rea-

sons. First, the acceptance region A is conservative, as noted in Remark 6.4.

Second, the boundary of A may not be well approximated by a tangent

plane; we explore this next.

Example 6.6 (Gaussian case) How well approximated is the acceptance

region A by the linear constraint (6.3)? Some insight can be obtained from

the Gaussian case, where explicit calculations are easy. Suppose that

α j(s) = λ j +
sσ2

j

2
,

corresponding to a normally distributed load with mean λ j and variance

σ2
j . Then (Exercise 6.7) the acceptance region is given by

A =






n :
∑

j

n jλ j +




2γ

∑

j

n jσ
2
j





1/2

≤ C






,

and the tangent plane at a point n∗ on the boundary of A is of the form (6.3),

with

α j(s) = λ j + γ
σ2

j

C(1 − ρ∗) ,

where ρ∗ =
∑

j n∗jλ j/C, the traffic intensity associated with the point n∗.

Thus the effective bandwidths α j(s) will be relatively insensitive to the

traffic mix n∗ provided (1−ρ∗)−1 does not vary too much with n∗, or, equiv-

alently, provided the traffic intensity is not too close to 1 on the boundary

of A. Now, traffic intensity very close to 1 is only sustainable if the variance

of the load is very small: this might arise near the nk axis if traffic type k is

nearly deterministic.

Exercises

Exercise 6.4 Use Cramér’s theorem to show that

lim
N→∞

1

N
logP





J∑

j=1

n jN∑

i=1

X ji > CN




= inf

s≥0





J∑

j=1

n jM j(s) − sC




.

In this sense, the converse to the implication (6.2) holds as the number of

sources increases and the tail probability decreases.
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Exercise 6.5 In this exercise, we explore properties of the effective band-

width formula

α(s) =
1

s
logE[esX].

Show that α(s) is increasing in s over the range s ∈ (0,∞) and that it lies

between the mean and the peak:

EX ≤ α(s) ≤ sup{x : P(X > x) > 0}.

[Hint: Jensen’s inequality.]

Further, show that

lim
s→0
α(s) = EX and lim

s→∞
α(s) = ess sup X.

Exercise 6.6 If X is a random variable with P(X = h) = p = 1−P(X = 0),

show that its effective bandwidth is given by

1

s
log(pesh + 1 − p).

Exercise 6.7 Consider the Gaussian case, Example 6.6. Show that the

infimum in relation (6.2) with n = n∗ is attained at

s =
C −∑

j n∗jλ j

∑

j n∗
j
σ2

j

,

and hence deduce the expressions for A and for a tangent plane given in

Example 6.6.

Check that, with this value of s, the right-hand side of inequality (6.3)

can be written as

C − γ
∑

j n∗jσ
2
j

C(1 − ρ∗) = C − γ variance of load

mean free capacity
.

For the Gaussian case, we can compute a necessary and sufficient con-

dition on n such that P(S > C) ≤ e−γ; show that it takes the form

∑

j

n jλ j + φ





∑

j

n jσ
2
j





1/2

≤ C,

where φ = Φ−1(1− e−γ) and Φ is the standard normal distribution function.
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6.3 Large deviations for a queue with many sources

Next we consider a model that includes a buffer: this allows the total band-

width requirements of all the connections to exceed the capacity for a

while. The challenge is to work out for how long!

B
C

⊕

Figure 6.5 Three users (of three different types) feeding through
a buffer.

We consider the following model. There is a potentially infinite queue in

which unprocessed work resides. As long as the queue is positive, the work

is removed from it at rate C; when the queue is empty, work is processed at

rate C or as quickly as it arrives. The system experiences “pain” (packets

dropped, or held up at earlier queues, etc.) when the queue level exceeds

B; this event is called buffer overflow. We would like to give a description

of the set of vectors n (giving the number of connections of each type) for

which the probability of buffer overflow is small.

Because the queue introduces a time component into the picture, we

need slightly more notation. Let X ji[t1, t2] be the workload arriving from the

ith source of type j during the interval [t1, t2]. We assume that the random

processes (X ji) are independent, that the distributions may depend upon the

type j but not upon i, and that each process has stationary increments, i.e.

the distribution of X ji[t1, t2] depends on t1, t2 only through t2 − t1.

Next, we give some simple examples of processes with stationary incre-

ments.

Example 6.7 (Constant-rate sources) Suppose X ji[t1, t2] = (t2 − t1)X ji,

where X ji is a non-negative random variable. That is, each connection has a

constant (but random) bandwidth requirement, whose distribution depends

on the user type j. This essentially reproduces the bufferless model of Sec-

tion 6.2: if
∑

X ji < C, buffer overflow never occurs; if
∑

X ji > C, buffer

overflow will definitely occur from a finite time onwards, no matter how

large the buffer.
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Example 6.8 (M/G/1 queue) Suppose X ji[0, t] =
∑N(t)

k=1
Zk, where N(t) is

a Poisson process and Zk are independent identically distributed random

variables. This models the arrival of work at an M/G/1 queue: the interar-

rival times are exponential (hence the first M), and the service requirements

of different “customers” are independent but have a general, not necessarily

exponential, distribution (hence the G).

Remark 6.9 We might be more interested in the case of a truly finite

buffer, in which work that arrives when the buffer is full is never processed.

We might expect that buffer overflow would occur more rarely in this sys-

tem, as its queue should be shorter. In the regime where the buffer rarely

overflows (this is the regime we would like to be in!), the overflows that do

occur will be small; so there is not much difference between dropping this

work and keeping it. This can be made precise; see Ganesh et al. (2004),

Chapter 7.

Suppose the number of connections of type j is n j, let n = (n1, · · · , nJ),

and let the workload arriving at the queue over the interval [t1, t2] be

S [t1, t2] =

J∑

j=1

n j∑

i=1

X ji[t1, t2].

We suppose the queue has been evolving from time −∞ and look at the

queue size at time 0; because the arrival processes X ji are time homoge-

nous, this will have the same distribution as the queue size at any other

time t. The queue size at time 0 is the random variable

Q(0) = sup
0≤τ<∞

(S [−τ, 0] −Cτ) . (6.4)

To see this, note that the queue at time 0 must be at least S [−τ, 0] −Cτ for

any τ, because it cannot clear work any faster than that; that the queue size

is indeed given by (6.4) is shown in Exercise 6.8. There we shall also see

that the random variable −τ is the time the queue was last empty before

time 0 (more exactly, in the case of non-uniqueness, the random variable

−τ is such that Q(−τ) = 0 and the queue drains at the full rate C over

(−τ, 0)).

The random variable Q(0) may be infinite. For example with constant-

rate sources of total rate S the queue size is infinite with probability

P(S > C), precisely the object of study in Section 6.2, as we noted in Ex-

ample 6.7.

Let L(C, B, n) = P(Q(0) > B); this is the probability we would like to

control. We are going to look at this in the regime where capacity, number
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of connections, and buffer size are all large, while the number of connection

types is fixed.

Theorem 6.10

lim
N→∞

1

N
log L(CN, BN, nN) = sup

t≥0

inf
s≥0




st

∑

j∈J

n jα j(s, t) − s(B +Ct)




,

where

α j(s, t) =
1

st
logEesX ji[0,t]. (6.5)

Sketch of proof The probability

P(QN(0) > BN) = P
(

S N[−t, 0] > (B +Ct)N for some t
)

is bounded from below by P(S N[−t, 0] > (B + Ct)N), for any fixed t, and

from above by
∑

t≥0 P(S
N[−t, 0] > (B +Ct)N) (at least in discrete time).

For any fixed t, Cramér’s theorem gives

1

N
logP





J∑

j=1

n jN∑

i=1

X ji[−t, 0] > (B +Ct)N





→ inf
s




st

J∑

j=1

n jα j(s, t) − s(B +Ct)




.

This gives us the lower bound directly.

The upper bound can be derived by noting that the terms decay expo-

nentially in N, and therefore we can ignore all but the largest term. Making

this precise takes some work, but see Exercise 6.9 for a start. �

Suppose that s∗ and t∗ are the extremizing parameter values in Theo-

rem 6.10. The sketched proof allows an interpretation of these values. We

see that if buffer overflow occurs, then with high probability this happens

because, over a time period t∗, the total work that arrived into the sys-

tem was greater than B + Ct∗. Thus, t∗ is the typical time scale for buffer

overflow. The most likely trajectory for the amount of work in the buffer

over the time scale [−t∗, 0] (where t = 0 is the time of the buffer overflow

event) depends on the temporal correlation structure of the processes X ji.

Figure 6.6 sketches some possibilities.

The parameter s∗ is the exponential tilt for the distribution of S, and for

each of the X ji, that makes the sum S over the time period t∗ likely to be

B +Ct∗.
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Q/N

t∗

B

t

(a)

t∗

B

t

Q/N

(b)

Figure 6.6 Most likely trajectories leading to buffer overflow.
The thick lines show the limit as N → ∞; the thin lines depict
possible instances for finite N. (a) If S has independent
increments, the most likely trajectory is linear. (b) Shown is the
most likely trajectory if traffic is described by a fractional
Brownian motion with Hurst parameter > 1/2; this is a process
exhibiting positive correlations over time and long-range
dependence.

An acceptance region can be defined as in Section 6.2. Although its com-

plement may no longer be convex, the expressions (6.5) do define the tan-

gent plane at a typical boundary point, and hence have interpretations as

effective bandwidths.

Remark 6.11 The notion of an effective bandwidth can be developed in

various other frameworks. For example, Exercise 6.10 develops a linearly

bounded acceptance region for a model where the log-moment generat-

ing function may not be defined (other than at 0). But the large deviations

framework sketched in this section does give a broad concept of effective

bandwidth that takes into account the statistical characteristics of a connec-

tion over different time and space scales.

Exercises

Exercise 6.8 In this exercise we derive equation (6.4) for the queue size.

We suppose the queue has been evolving from time −∞. If the queue is

draining at the full rate C for the entire period (−∞, 0), there may be an

ambiguity in the definition of the queue size. This might occur, for exam-

ple, with constant-rate sources such that S = C, since then the queue size is

a fixed constant for all t, which we can interpret as the initial queue size at



6.3 Large deviations for a queue with many sources 147

time −∞. We assume the queue size is 0 at least once in the past, possibly

in the limit as t → −∞.

Suppose that τ < ∞ achieves the supremum in equation (6.4).

• Show that S [−τ,−t] ≥ C(τ − t) for all 0 ≤ t ≤ τ, and deduce that the

queue must be draining at the full rate C for the entire period [−τ, 0].

• Show that S [−t,−τ] ≤ C(t − τ) for all t ≥ τ, and deduce that Q(−t) ≥
Q(−τ) for all t ≥ τ.

• Deduce that Q(−τ) = 0, and hence equation (6.4).

Finally obtain equation (6.4) in the case where the supremum attained is

finite, but is only approached as τ→ ∞.

Exercise 6.9 (Principle of the largest term) Consider two sequences aN ,

bN , with

1

N
log aN → a,

1

N
log bN → b.

If a ≥ b, show that

1

N
log(aN + bN)→ a.

Conclude that, for finitely many sequences pN(0), . . . , pN(T ) with limits

p(0), . . . , p(T ),

1

N
log





T∑

t=0

pN(t)



→ max
0≤t≤T

p(t) as N → ∞.

That is, the growth of a finite sum is governed by the largest growth rate of

any term in it; this is known as the principle of the largest term.

In the proof of Theorem 6.10, we need to bound
∑

t≥0 P(X
N[−t, 0] >

(B +Ct)N), which involves extending this argument to a countable sum.

Exercise 6.10 The expected amount of work in an M/G/1 queue, Exam-

ple 6.8, is

EQ =
ν(µ2 + σ2)

2(C − νµ) ,

where ν is the rate of the Poisson arrival process and µ and σ2 are the

mean and variance, respectively, of the distribution G (from the Pollaczek–

Khinchine formula). Now suppose that

G(x) =

J∑

j=1

p jG j(x), ν =

J∑

j=1

ν jn j, p j =
ν jn j

ν
,
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corresponding to n j sources of type j, with ν j the arrival rate and G j the

service requirement distribution of type j. Let µ j and σ2
j be the mean and

variance, respectively, of the distribution G j. Show that the service quality

guarantee EQ ≤ B is satisfied if and only if

J∑

j=1

α jn j ≤ C,

where

α j = ν j

[

µ j +
1

2B
(µ2

j + σ
2
j)

]

.

6.4 Further reading

Ganesh et al. (2004) give a systematic account of how large deviations the-

ory can be applied to queueing problems, and give extensive references to

the earlier papers. For a more detailed development of the examples given

in this chapter, the reader is referred to Kelly (1996) and to Courcoubetis

and Weber (2003). For a treatment of effective bandwidths within a more

general setting of performance guarantees, see Chang (2000). Mazum-

dar (2010) emphasizes the role of effective bandwidths as mappings from

queueing level phenomena to loss network models, and provides a concise

mathematical treatment of a number of topics from this book.

The effective bandwidth of a connection is a measure of the connection’s

consumption of network resources, and we might expect it to be relevant in

the calculation of a charge: see Songhurst (1999) for a detailed discussion

of usage-based charging schemes, and Courcoubetis and Weber (2003) for

a broad overview of the complex subject of pricing communication net-

works.

After a flow has passed through a resource, its characteristics may

change: Wischik (1999) considers a model where the relevant statistical

characteristics of a flow of traffic are preserved by passage through a re-

source, in the limit where the number of inputs to that resource increases.
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7

Internet congestion control

In Chapter 6 we looked at organizing a network of users with time-varying

bandwidth requirements into something that resembles a loss network, by

finding a notion of effective bandwidth. In this chapter we consider an al-

ternative approach, where the users actively participate in the sharing of

the network resources.

7.1 Control of elastic network flows

How should available resources be shared between competing streams of

elastic traffic? There are at least two aspects to this question. First, why

would one allocation of resources be preferred to another? Second, what

control mechanisms could be implemented in a network to achieve any

preferred allocation? To make progress with these questions, we need to

fix some notation and define some terms.

Consider a network with a set J of resources, and let C j be the finite

capacity of resource j. (We occasionally refer to the resources as links.)

Let a route r be a non-empty subset of J , and write R for the set of possi-

ble routes. As before, we use the link-route incidence matrix A to indicate

which resources belong to which routes. A is a |J|×|R|matrix with A jr = 1

if j ∈ r, and A jr = 0 otherwise.

We will identify a user with a route. For example, when Elena at the

University of Michigan downloads the web page at www.google.com, the

corresponding “user” (route) is sending data along 16 links, including the

link from Elena’s laptop to the nearest wireless access point. If Elena also

downloads the web page www.cam.ac.uk, this (different!) “user” is using

18 links; five of the links are common with the route to Google.

Suppose that, if a rate xr is allocated to user r, this has a utility Ur(xr). We

formalize the notion of elastic traffic by assuming that the utility function

Ur(·) is increasing and concave, and that our objective is to maximize the

sum of user utilities. For convenience, we also assume that Ur(·) is strictly

151
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concave, continuously differentiable on (0,∞), and satisfies U′r(0) = ∞ and

U′r(∞) = 0.

Remark 7.1 Elastic traffic, i.e. concave utility functions, captures the no-

tion of users preferring to share. The aggregate utility of two users both

experiencing a medium download rate is higher than if one of them got a

very high rate and the other a very low one. If more users come into the

system, it is better for existing users to decrease their rates, so that everyone

has a chance to use the network. This is not true of all types of traffic. For

real-time voice communication, the utility function might have the form

shown on the right in Figure 7.1 if speech becomes unintelligible at low

rates. In this case, users may require a certain set of resources in order to

proceed, and attempting to share would decrease aggregate utility. If there

are too many users then some should be served and some not; in a loss

network the implicit randomization is effected by the admission control

mechanism.

utility, U(x)

rate, x

(a)

utility, U(x)

rate, x

(b)

Figure 7.1 Elastic and inelastic demand. (a) Elastic traffic,
prefers to share; (b) inelastic traffic, prefers to randomize.

Let C = (C j, j ∈ J) be the vector of capacities, let U = (Ur(·), r ∈ R)

be the collection of user utilities, and let x = (xr, r ∈ R) be an allocation of

flow rates. The feasible region is then given by x ≥ 0, Ax ≤ C, and under

the model we have described the system optimal rates solve the following

problem.
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system(U, A,C):

maximize
∑

r∈R
Ur(xr)

subject to Ax ≤ C (7.1)

over x ≥ 0.

While this optimization problem is mathematically tractable (with an

objective function that is strictly concave and a convex feasible region),

it involves utilities U that are unlikely to be known by the network; fur-

ther, even the matrix A describing the network topology is not likely to be

known in its entirety at any single point in the network. We address the

issue of unknown utilities first, by decomposing the optimization problem

into simpler problems. We leave the second issue for later sections.

Suppose that user r may choose an amount to pay per unit time, wr, and

will then receive in return a flow rate xr proportional to wr, where 1/λr is

the known constant of proportionality. Then the utility maximization prob-

lem for user r is as follows.

userr(Ur; λr):

maximize Ur

(

wr

λr

)

− wr

over wr ≥ 0.

(7.2)

Here we could interpret wr as user r’s budget and λr as the price per unit of

flow; note that no capacity constraints are involved.

Suppose next that the network knows the vector w = (wr, r ∈ R) and

solves a variant of the system problem using a particular set of utility func-

tions, Ur(xr) = wr log xr, r ∈ R.

network(A,C; w):

maximize
∑

r∈R
wr log xr

subject to Ax ≤ C (7.3)

over x ≥ 0.

We can find a pleasing relationship between these various problems, sum-

marized in the following theorem.
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Theorem 7.2 (Problem decomposition) There exist vectors λ = (λr, r ∈
R), w = (wr, r ∈ R) and x = (xr, r ∈ R) such that

• wr = λr xr for all r ∈ R,

• wr solves userr(Ur; λr) for all r ∈ R,

• x solves network(A,C; w).

Moreover, the vector x then also solves system(U, A,C).

Remark 7.3 Thus the system problem can be solved by simultaneously

solving the network and user problems. (In later sections, we shall address

the issue of how to solve the problems simultaneously, but you might an-

ticipate that some form of iterative procedure will be involved.)

There are many other ways to decompose the system problem. For ex-

ample, we might pick a version of the network problem that uses a dif-

ferent set of “placeholder” utilities, instead of the family wr log(·); we con-

sider a more general class in Section 8.2. As we shall see, the logarithmic

utility function occupies a privileged position within a natural family of

scale-invariant utility functions, and it corresponds to a particular notion of

fairness.

Proof Note first of all that there exists a unique optimum for the sys-

tem problem, because we are optimizing a strictly concave function over a

closed convex set; and the optimum is interior to the positive orthant since

U′r(0) = ∞. Our goal is to show that this optimum is aligned with an opti-

mum for each of the network and the user problems.

The Lagrangian for system is

Lsystem(x, z; µ) =
∑

r∈R
Ur(xr) + µ

T (C − Ax − z),

where z = (z j, j ∈ J) is a vector of slack variables, and µ = (µ j, j ∈ J)

is a vector of Lagrange multipliers, for the inequality constraints. By the

strong Lagrangian principle (Appendix C), there exists a vector µ such that

the Lagrangian is maximized at a pair x, z that solve the original problem,

system.

In order to maximize the Lagrangian over xr, we differentiate:

∂

∂xr

Lsystem(x, z; µ) = U′r(xr) −
∑

j∈r
µ j,

since differentiating the term µT Ax will leave only those µ j with j ∈ r.
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The Lagrangian for network is

Lnetwork(x, z; µ̃) =
∑

r∈R
wr log xr + µ̃

T (C − Ax − z),

and on differentiating with respect to xr we obtain

∂

∂xr

Lnetwork(x, z; µ̃) =
wr

xr

−
∑

j∈r
µ̃ j.

(There’s no reason at this point to believe that µ and µ̃ have anything to do

with each other; they are simply the Lagrange multipliers for two different

optimization problems.)

Finally, for user the objective function is Ur (wr/λr) − wr, and

∂

∂wr

[

Ur

(

wr

λr

)

− wr

]

=
1

λr

U′r

(

wr

λr

)

− 1.

Suppose now that user r always picks her budget wr to optimize the user

objective function. Then we must have

U′r

(

wr

λr

)

= λr.

Therefore, if we pick

µ̃ j = µ j, λr =
∑

j∈r
µ j, wr = λr(U

′
r)
−1(λr), xr =

wr

λr

,

the network and system Lagrangians will have the same derivatives. Thus,

if µ j are optimal dual variables for the system problem, this choice of the

remaining variables simultaneously solves all three problems and estab-

lishes the existence of the vectors λ,w and x satisfying conditions 1, 2 and

3 of the theorem. Conversely, suppose vectors λ,w and x satisfy conditions

1, 2 and 3: then x solves the network problem, and so can be written in

terms of µ̃, and setting µ = µ̃ shows that x also solves the system problem.

�

We can identify µ j as the shadow price per unit flow through resource j.

The price for a unit of flow along route r is λr, and it decomposes as a sum

over the resources involved.

Next we determine the dual problem. The value of the network La-

grangian is

max
x,z≥0

Lnetwork(x, z; µ) =
∑

r∈R
wr log

wr
∑

j∈r µ j

+ µTC.
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If we subtract the constant
∑

r wr log wr, and change sign, we obtain the

following optimization problem.

Dual(A,C; w):

maximize
∑

r∈R
wr log





∑

j∈r
µ j




−

∑

j∈J

µ jC j

over µ ≥ 0.

This rephrases the network problem as a problem of setting up prices µ j

per unit of flow through each resource so as to optimize a certain revenue

function.

The treatment in this section suggests that one way to solve the resource

allocation problem system without knowing the individual user utilities

would be to charge the users for access to the network, and allow users

to choose the amounts they pay. But, at least in the early days of the Inter-

net, charging was both impractical and likely to ossify a rapidly developing

technology. In Section 7.2 we discuss how one might compare alternative

resource allocations using the ideas in this section, but without resorting to

charging.

Exercises

Exercise 7.1 In the user problem, user r acts as a price-taker: she does

not anticipate the consequences of her choice of wr upon the price λr. In

this exercise, we explore the effect of more strategic behaviour.

Consider a single link of capacity C, shared between users in R. Suppose

that user r chooses wr: show that, under the solution to network, user r

receives a rate
wr

∑

s∈R ws

C.

Now suppose user r anticipates that this will be the outcome of the

choices w = (ws, s ∈ R) and attempts to choose wr to maximize

Ur

(

wr
∑

s∈R ws

C

)

− wr

over wr > 0, for given values of ws, s , r. Show that there exists a vector

w that solves this problem simultaneously for each r ∈ R, and that it is the
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unique solution to the problem

maximize
∑

r∈R
Ûr(xr)

subject to
∑

r∈R
xr ≤ C

over xr ≥ 0,

where

Ûr(xr) =

(

1 − xr

C

)

Ur(xr) +
xr

C

(

1

xr

∫ xr

0

Ur(y)dy

)

.

Thus the choices of price-anticipating users will not in general maximize

the sum of user utilities, although, if many users share a link and xr ≪ C,

the effect is likely to be small.

Exercise 7.2 In this exercise, we extend the model of this section to in-

clude routing.

Let s ∈ S now label a user (perhaps a source–destination pair), and

suppose s is identified with a subset of R, namely the routes available to

serve the user s. Define an incidence matrix H as in Section 4.2.2, by setting

Hsr = 1 if r ∈ s and Hsr = 0 otherwise. Thus if yr is the flow on route r and

y = (yr, r ∈ R), then x = Hy gives the aggregate flows achieved by each

user s ∈ S . Let system(U,H, A,C) be the problem

maximize
∑

s∈S
Us(xs)

subject to x = Hy, Ay ≤ C,

over x, y ≥ 0,

and let network(H, A,C; w) be the problem

maximize
∑

r∈R
ws log xs

subject to x = Hy, Ay ≤ C,

over x, y ≥ 0.

Show that there exist vectors λ = (λs, s ∈ S), w = (ws, s ∈ S) and x =

(xs, s ∈ S) satisfying ws = λsxs for s ∈ S, such that ws solves users(Us; λs)

for s ∈ S and x solves network(H, A,C; w); show further that x is then the

unique vector with the property that there exists a vector y such that (x, y)

solves system(U,H, A,C).
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Exercise 7.3 Requests to view a web page arrive as a Poisson process

of rate C. Each time a page is viewed, an advert is displayed within the

page. The advert is selected randomly from a pool of R adverts; advert

r ∈ R is selected with probability wr/
∑

s∈R ws, where wr is the payment per

unit time (e.g. per day) made by advertiser r. Advert r, when displayed, is

clicked upon by a viewer of the page with probability 1/Ar. Advertiser r

does not observe C, As for s ∈ R, or ws for s , r. Assume that advertiser r

does observe

xr ≡
wr

∑

s∈R ws

· C

Ar

;

this is a reasonable assumption, since the number of clicks on advert r has

mean xr under the above model. Advertiser r can thus deduce

λr ≡
wr

xr

,

the amount she has paid per click.

Show that, under the usual assumptions on Ur(·), r ∈ R, there exist vec-

tors λ = (λr, r ∈ R), w = (wr, r ∈ R) and x = (xr, r ∈ R) such that the above

two identities are satisfied and such that, for each r ∈ R, wr maximizes

Ur(wr/λr) − wr. Show that the vector x then also maximizes
∑

r∈R Ur(xr)

over all x satisfying
∑

r∈R Ar xr = C.

7.2 Notions of fairness

We would like the allocation of flow rates to the users to be fair in some

sense, but what do we mean by this? There are several widely used no-

tions of fairness; we will formulate a few here. Later, in Section 8.2, we

encounter a generalized notion of fairness that encompasses all of these as

special cases.

Max-min fairness. We say that an allocation x = (xr, r ∈ R) is max-min

fair if it is feasible (i.e. x ≥ 0 and Ax ≤ C) and, for any other feasible

allocation y,

∃r : yr > xr =⇒ ∃s : ys < xs ≤ xr.

That is, in order for user r to benefit, someone else (user s) who was worse

off than r needs to get hurt. The compactness and convexity of the feasible

region imply that such a vector x exists and is unique (check this!). The

term “max-min” comes from the fact that we’re maximizing the minimal

amount that anyone is getting: i.e. the max-min fair allocation will give a
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solution to

max
x feasible

(min
r

xr).

Actually, the max-min fair allocation will give more: once we’ve fixed

the smallest amount that anyone is getting, we then maximize the second-

smallest, then the third-smallest, and so on.

The concept of max-min fairness has been much discussed by political

philosophers. In A Theory of Justice, Rawls (1971) proposes that, if one

were to design society from scratch, without knowing where in it one might

end up, one would want it to be max-min fair. However, for our purposes,

it seems a bit extreme, because it places such overwhelming emphasis on

maximizing the lowest rate.

Proportional fairness. We say an allocation x = (xr, r ∈ R) is propor-

tionally fair if it is feasible, and if for any other feasible allocation y the

aggregate of proportional changes is non-positive:

∑

r

yr − xr

xr

≤ 0.

This still places importance on increasing small flows (for which the de-

nominator is smaller), but it is not quite as overwhelming.

There may be a priori reasons why some users should be given more

weight than others: perhaps a route is providing a flow of value to a number

of individuals (these lecture notes are being downloaded to a class), or

different users invested different amounts initially to construct the network.

Let w = (wr, r ∈ R) be a vector of weights: then x = (xr, r ∈ R) is weighted

proportionally fair if it is feasible, and if for any other feasible vector y

∑

r

wr

yr − xr

xr

≤ 0. (7.4)

C = 1 C = 1

proportionally fair

C = 1 C = 1

max-min fair

1/2 1/2 2/3 2/3

1/2 1/3

Figure 7.2 The difference between max-min and proportional
fairness. Note that the allocation maximizing total throughput is
(1,1,0).
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In Figure 7.2 we show the max-min and the proportionally fair alloca-

tions for a particular network example with two resources, each of unit

capacity, and three routes. The throughput-optimal allocation is simply

to award all the capacity to the single-resource routes; this will have a

throughput of 2. The proportionally fair allocation has a total throughput

of 1.67, and the max-min fair one has a total throughput of 1.5.

There is a relationship between the notion of (weighted) proportional

fairness and the network problem we introduced in Section 7.1.

Proposition 7.4 A vector x solves network(A,C; w) if and only if it is

weighted proportionally fair.

Proof The objective function of network is strictly concave and continu-

ously differentiable, the feasible region is compact and convex, and the vec-

tor x that solves network is unique. Consider a perturbation of x, y = x+δx

(so yr = xr + δxr). The objective function
∑

r∈R wr log xr of network will

change by an amount
∑

r∈R
wr

δxr

xr

+ o(δx).

But the first term is simply the expression (7.4). The result follows, using

the concavity of the objective function to deduce the inequality (7.4) for

non-infinitesimal variations from x. �

Remark 7.5 The proportionally fair allocation has various other related

interpretations, including as a solution to Nash’s bargaining problem and

as a market clearing equilibrium.

Bargaining problem, Nash (1950). Consider the problem of several

players bargaining among a set of possible choices. The Nash bargaining

solution is the unique vector satisfying the following axioms:

• Invariance under scaling. If we rescale the feasible region, the bargaining

solution should simply rescale.

• Pareto efficiency. An allocation is Pareto inefficient if there exists an

alternative allocation that improves the amount allocated to at least one

player without reducing the amount allocated to any other players.

• Symmetry. If the feasible region is symmetric, then the players should

be allocated an equal amount.

• Independence of Irrelevant Alternatives. If we restrict the set of feasible

allocations to some subset that contains the original maximum, then the

maximum should not change.
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A general set of weights w corresponds to a situation with unequal bargain-

ing power; this will modify the notion of symmetry.

Market clearing equilibrium, (Gale (1960) sect. 8.5). A market-

clearing equilibrium is a set of resource prices p = (p j, j ∈ J) and an

allocation x = (xr, r ∈ R) such that

• p ≥ 0, Ax ≤ C (feasibility);

• pT (C − Ax) = 0 (complementary slackness): if the price of a resource is

positive then the resource is used up;

• wr = xr

∑

j∈r p j, r ∈ R: if user r has an endowment wr, then all endow-

ments are spent.

Exercises

Exercise 7.4 In this exercise, we show that the Nash bargaining solution

associated with the problem of assigning flows xr subject to the constraints

x ≥ 0, Ax ≤ C is the solution of network(A,C; w) with wr = 1 for all

r ∈ R.

(1) Show that the feasible region can be rescaled by a linear transformation

so that the maximum of
∏

r xr is located at the point (1, . . . , 1).

(2) Argue that this implies that the reparametrized region must lie entirely

below the hyperplane
∑

r xr = |R|, and hence that (1, . . . , 1) is a Pareto-

efficient point.

(3) By considering a suitable symmetric set that contains the feasible re-

gion, and applying Independence of Irrelevant Alternatives, argue that

the bargaining solution to the reparametrized problem must be equal to

(1, . . . , 1).

(4) Conclude that the bargaining solution to the original problem must have

been the point that maximizes
∏

r xr, or, equivalently, the point that

maximizes
∑

r log xr.

Exercise 7.5 Show that a market-clearing equilibrium (p, x) can be found

by solving network(A,C; w) for x, with p identified as the vector of La-

grange multipliers (or shadow prices) associated with the resource con-

straints.
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7.3 A primal algorithm

We now look at an algorithm that can accomplish fair sharing of resources

in a distributed manner. We begin by describing the mechanics of data

transfer over the Internet.

server

device

Figure 7.3 A schematic diagram of the Internet. Squares
correspond to sources and destinations, the network contains
resources with buffers, and many flows traverse the network.

The transfer of a file (for example, a web page) over the Internet begins

when the device wanting the file sends a packet with a request to the server

that has the file stored. The file is broken up into packets, and the first

packet is sent back to the device. If the packet is received successfully, an

acknowledgement packet is sent back to the server, and this prompts fur-

ther packets to be sent. This process is controlled by TCP, the transmission

control protocol of the Internet. TCP is part of the software of the machines

that are the source and destination of the data (the server and the device in

our example). The general approach is as follows. When a resource within

the network becomes heavily loaded, one or more packets is lost or marked.

The lost or marked packet is taken as an indication of congestion, the desti-

nation informs the source, and the source slows down. TCP then gradually

increases the sending rate until it receives another indication of congestion.

This cycle of increase and decrease serves to discover and utilize available

capacity, and to share it between flows.

A consequence of this approach is that “intelligence” and control are

end-to-end rather than hidden in the network: the machines within the net-

work forward packets, but the machines that are the source and destination

regulate the rate. We will now describe a model that attempts to capture

this notion of end-to-end control.

Consider a network with parameters A,C,w as before, but now suppose

the flow rate xr(t) on route r is time varying. We define the primal algorithm
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to be the system of differential equations

d

dt
xr(t) = κr




wr − xr(t)

∑

j∈r
µ j(t)




, r ∈ R, (7.5)

where

µ j(t) = p j





∑

s: j∈s

xs(t)




, j ∈ J , (7.6)

wr, κr > 0 for r ∈ R and the function p j(·) is a non-negative, continuous

and increasing function, not identically zero, for j ∈ J .

The primal algorithm is a useful caricature of end-to-end control: con-

gestion indication signals are generated at resource j at rate µ j(t); these

signals reach each user r whose route passes through resource j; and the

response to this feedback by the user r is a decrease at a rate proportional

to the stream of feedback signals received together with a steady increase

at rate proportional to the weight wr. We could imagine that the function

p j(·) measures the “pain” of resource j as a function of the total traffic go-

ing through it. (For example, it could be the probability of a packet being

dropped or marked at resource j.)

Note the local nature of the primal algorithm: the summation in equation

(7.5) concerns only resources j that are used by route r, and the summa-

tion in equation (7.6) concerns only routes s that pass through resource

j. Nowhere in the network is there a need to know the entire link-route

incidence matrix A.

Starting from an initial state x(0), the dynamical system (7.5)–(7.6) de-

fines a trajectory (x(t), t ≥ 0). We next show that, whatever the initial state,

the trajectory converges to a limit, and that the limit solves a certain opti-

mization problem. We shall establish this by exhibiting a Lyapunov func-

tion for the system of differential equations. (A Lyapunov function is a

scalar function of the state of the system, x(t), that is monotone in time t

along trajectories.)

Theorem 7.6 (Global stability) The strictly concave function

U(x) =
∑

r∈R
wr log xr −

∑

j∈J

∫ ∑

s: j∈s xs

0

p j(y)dy

is a Lyapunov function for the primal algorithm. The unique value maxi-

mizingU(x) is an equilibrium point of the system, to which all trajectories

converge.
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Proof The assumptions on wr > 0, r ∈ R, and p j(·), j ∈ J , ensure that

U(·) is strictly concave with a maximum that is interior to the positive

orthant; the maximizing value of x is thus unique. Moreover,U(x) is con-

tinuously differentiable with

∂

∂xr

U(x) =
wr

xr

−
∑

j∈r
p j





∑

s: j∈s

xs




,

and setting these derivatives to zero identifies the maximum, x say. The

derivative (7.5) is zero at x, and hence x is an equilibrium point.

Further,

d

dt
U(x(t)) =

∑

r∈R

∂U
∂xr

d

dt
xr(t)

=
∑

r∈R

κr

xr(t)




wr − xr(t)

∑

j∈r
p j





∑

s: j∈s

xs(t)









2

≥ 0,

(7.7)

with equality only at x. This almost, but not quite, proves the desired con-

vergence to x: we need to make sure that the derivative (7.7) isn’t so small

that the system grinds to a halt far away from x. However, this is easy to

show.

Consider an initial state x(0) in the interior of the positive orthant. The

trajectory (x(t), t ≥ 0) cannot leave the compact set {x : U(x) ≥ U(x(0))}.
Consider the complement, C, within this compact set of an open ǫ-ball

centred on x. Then C is compact, and so the continuous derivative (7.7) is

bounded away from zero on C. Hence the trajectory can only spend a finite

time in C before entering the ǫ-ball. Thus, x(t)→ x. �

We have shown that the primal algorithm optimizes the function U(x).

Now we can view

C j





∑

s: j∈s

xs




=

∫ ∑

s: j∈s xs

0

p j(y)dy

as a cost function penalizing use of resource j. If we take

p j(y) =






∞, y > C j,

0, y ≤ C j,

then maximizing the Lyapunov functionU(x) becomes precisely the prob-

lem network(A,C; w). While this choice of p j violates the continuity as-

sumption on p j, we could approximate it arbitrarily closely by smooth
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functions, and so it would seem that this approach will generate arbitrar-

ily good approximations of the network problem. However, we shall see

later that, in the presence of propagation delays in the network, large val-

ues of p′j(·) compromise stability, so there is a limit to how closely we can

approximate the network problem using this approach.

Exercises

Exercise 7.6 Suppose that the parameter κr in the primal algorithm is

replaced by a function κr(xr(t)), for r ∈ R. Check that Theorem 7.6 remains

valid, with an unaltered proof, for any initial state x(0) in the interior of the

positive orthant provided the functions κr(·), r ∈ R, are continuous and

positive on the interior of the positive orthant.

(In Section 7.7 we shall be interested in the choice κr(xr(t)) = κr xr(t)/wr.)

Exercise 7.7 Suppose there really is a cost C j(z) = z/(C j − z) to carrying

a load z through resource j, and that it is possible to choose the functions

p j(·). (Assume C j(z) = ∞ if z ≥ C j.) Show that the sum of user utilities

minus costs is maximized by the primal algorithm with the choices p j(z) =

C j/(C j − z)2, j ∈ J .

The above function C j(·) arises from a simple queueing model of a re-

source (see Section 4.3.1). Next we consider a simple time-slotted model

of a resource.

Suppose we model the number of packets arriving at resource j in a time

slot as a Poisson random variable with mean z, and that if the number is

above a limit N j there is some cost to dealing with the excess, so that

C j(z) = e−z
∑

n>N j

(n − N j)
zn

n!
.

Show that the sum of user utilities minus costs is maximized by the primal

algorithm with the choices

p j(z) = e−z
∑

n≥N j

zn

n!
.

Observe that p j will be the proportion of packets marked at resource j if

the following mechanism is adopted: mark every packet in any time slot in

which N j or more packets arrive.

Exercise 7.8 In this exercise, we generalize the primal algorithm to the

case where s ∈ S labels a source–destination pair served by routes r ∈ s,

as in Exercise 7.2.
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Let s(r) identify the unique source–destination pair served by route r.

Suppose that the flow along route r evolves according to

d

dt
yr(t) = κr




ws(r) −





∑

a∈s(r)

ya(t)





∑

j∈r
µ j(t)





(or zero if this expression is negative and yr(t) = 0), where

µ j(t) = p j





∑

r: j∈r
yr(t)




,

and let

U(y) =
∑

s∈S
ws log





∑

r∈s

yr



 −
∑

j∈J

∫ ∑

r: j∈r yr

0

p j(z)dz.

Show that
d

dt
U(y(t)) > 0

unless y solves the problem network(H, A,C; w) from Exercise 7.2.

7.4 Modelling TCP

Next we describe in slightly more detail the congestion avoidance algo-

rithm of TCP, due to Jacobson (1988). Let T , the round-trip time, be the

time between a source sending a packet and the source receiving an ac-

knowledgement. The source attempts to maintain a window (of size cwnd)

of packets that have been sent but not yet acknowledged. The rate x of our

model represents the ratio cwnd/T . If the acknowledgement is positive,

cwnd is increased by 1/cwnd, while if the acknowledgement is negative (a

packet was lost or marked), cwnd is halved.

Remark 7.7 Even our more detailed description of TCP is simplified,

omitting discussion of timeouts (which trigger retransmissions, with bi-

nary exponential backoff) and the slow start phase (during which the send-

ing rate grows exponentially). But the above description is sufficient for

us to develop a system of differential equations to compare with those of

Section 7.3.

Figure 7.4 shows the typical evolution of window size, in increments

of the round-trip time, for TCP. Modelling this behaviour by a differential

equation is at first sight implausible: the rate x is very clearly not smooth.

It is helpful to think first of a weighted version of TCP, MulTCP, due
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Figure 7.4 Typical window size for TCP.

to Crowcroft and Oechslin (1998), which is in general smoother. Let w

be a weight parameter, and suppose:

• the rate of additive increase is multiplied by w, so that each acknowl-

edgement increases cwnd by w/cwnd; and

• the multiplicative decrease factor becomes 1 − 1/(2w), so that after a

congestion indication the window size becomes (1 − 1/(2w))cwnd.

The weight parameter w is designed to imitate the user sending traffic via

w distinct TCP streams; the original algorithm corresponds to w = 1. This

modification results in a smoother trajectory for the rate x for larger values

of w. It is also a crude model for the aggregate of w distinct TCP flows over

the same route. (Observe that if a congestion indication is received by one

of w distinct TCP flows then only one flow will halve its window.)

Let us try to approximate the rate obtained by MulTCP by a differen-

tial equation. Let p be the probability of a congestion indication being re-

ceived during an update step. The expected change in the congestion win-

dow cwnd per update step is approximately

w

cwnd
(1 − p) − cwnd

2w
p. (7.8)

Since the time between update steps is approximately T/cwnd, the ex-
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pected change in the rate x per unit time is approximately
(

w
cwnd

(1 − p) − cwnd
2w

p
)

/T

T/cwnd
=

w

T 2
−

(

w

T 2
+

x2

2w

)

p.

Motivated by this calculation, we model MulTCP by the system of dif-

ferential equations

d

dt
xr(t) =

wr

T 2
r

−
(

wr

T 2
r

+
x2

r

2wr

)

pr(t),

where

pr(t) =
∑

j∈r
µ j(t)

and µ j(t) is given by (7.6). Here, Tr is the round-trip time and wr is the

weight parameter for route r. If congestion indication is provided by drop-

ping a packet then pr(t) approximates the probability of a packet drop along

a route by the sum of the packet drop probabilities at each of the resources

along the route.

Theorem 7.8 (Global stability)

U(x) =
∑

r∈R

√
2wr

Tr

arctan

(

xrTr√
2wr

)

−
∑

j∈J

∫ ∑

s: j∈s xs

0

p j(y)dy

is a Lyapunov function for the above system of differential equations. The

unique value x maximizing U(x) is an equilibrium point of the system, to

which all trajectories converge.

Proof Observe that

∂

∂xr

U(x) =
wr

T 2
r

(

wr

T 2
r

+
x2

r

2wr

)−1

−
∑

j∈r
p j





∑

s: j∈s

xs





and so

d

dt
U(x(t)) =

∑

r∈R

∂U
∂xr

d

dt
xr(t) =

∑

r∈R

(

wr

T 2
r

+
x2

r

2wr

)−1 (

d

dt
xr(t)

)2

≥ 0.

The proof proceeds as before. �

At the stable point,

xr =
wr

Tr

(

2
1 − pr

pr

)1/2

.
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If we think of xr as the aggregate of wr distinct TCP flows on the same

route, then each of these flows has an average throughput that is given by

this expression with wr = 1.

The constant 21/2 appearing in this expression is sensitive to the dif-

ference between MulTCP and w distinct TCP flows. With w distinct TCP

flows, the flow affected by a congestion indication is more likely to be one

with a larger window. This bias towards the larger of the w windows in-

creases the final term of the expectation (7.8) and decreases the constant,

but to prove this would require a more sophisticated analysis, such as in Ott

(2006).

Remark 7.9 It is instructive to compare our modelling approach in this

chapter with that of earlier chapters. Our models of a loss network in

Chapter 3, and of an electrical network in Chapter 4, began with detailed

probabilistic descriptions of call acceptance and electron motion, respec-

tively, and we derived macroscopic relationships for blocking probabilities

and currents such as the Erlang fixed point and Ohm’s law. In this chap-

ter we have not developed a detailed probabilistic description of queueing

behaviour at resources within the network: instead we have crudely sum-

marized this behaviour with the functions p j(·). We have adopted this ap-

proach since the control exerted by end-systems, the additive increase and

multiplicative decrease rules for window sizes, is the overwhelming influ-

ence at the packet level on flow rates. It is these rules that lead to the par-

ticular form of a flow rate’s dependence on Tr and pr, which we’ll explore

in more detail in the next section.

Exercise

Exercise 7.9 Check that if pr is small, corresponding to a low end-to-end

loss probability, then at the stable point

xr =
wr

Tr

√

2

pr

+ o(pr).

Check that if xr is large, again corresponding to a low end-to-end loss prob-

ability, then

Ur(xr) =

√
2wr

Tr

arctan

(

xrTr√
2wr

)

= const. − 2w2
r

T 2
r xr

+ o

(

1

xr

)

.
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7.5 What is being optimized?

From Theorem 7.4 we see that TCP (or at least our differential equation

model of it) is behaving as if it is maximizing the sum of user utilities,

subject to a cost function penalizing proximity to the capacity constraints.

The user utility for a single TCP flow (wr = 1) is, from Exercise 7.9, of the

form

Ur(xr) ≈ const. − 2

T 2
r xr

.

Further, the rate allocated to a single flow on route r is approximately pro-

portional to

1

Tr p
1/2
r

, (7.9)

so that the rate achieved is inversely proportional to the round-trip time Tr

and to the square root of the packet loss probability pr.

The proportionally fair allocation of rates would be inversely propor-

tional to pr and would have no dependence on Tr. Relative to proportional

fairness, the above rate penalizes Tr and under-penalizes pr: it penalizes

distance and under-penalizes congestion.

For many files downloaded over the Internet, the round-trip times are

negligible compared to the time it takes to download the file: the round-trip

time is essentially a speed-of-light delay, and is of the order of 50 ms for

a transatlantic connection, but may be much smaller. If limited capacity is

causing delay in downloading a file, it would be reasonable to expect that

the user would not care very much whether the round-trip time is in fact

1 ms or 50 ms – and we would not expect a big difference in user utility.

Another way to illustrate the relative impact of distance and conges-

tion is the problem of cache location. Consider the network in Figure 7.5.

On the short route, from a user to cache location A, the round-trip time is

T = 2T1, and the probability of congestion indication is p ≈ 2p1 (we are

assuming p1 and p2 are small). On the long route, from the user to cache

location B, we have T = T1 + T2 and p ≈ p1 + p2.

Suppose now that link 2 is a high-capacity long-distance optical fibre.

Plausible parameters for it are p2 = 0 (resource 2 is underused), but T2 =

100T1. Then the ratio of TCP throughputs along the two routes is

T1 + T2

2T1

√
p1 + p2
√

2p1

=
101

2
√

2
≈ 36.

That is, the throughput along the short route is much higher than that along
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user

T2, p2

cache location BT1, p1

T1, p1

cache location A

Figure 7.5 A network with three links and two routes: long
(solid) and short (dotted). The round-trip times and packet drop
probabilities are indicated on the links.

the long one, even though the short route is using two congested resource-

sand the long route uses only one.

Suppose that we want to place a cache with lots of storage space some-

where in the network, and must choose between putting it at A or at B.

The cache will appear more effective if we put it at A, further loading

the already-congested resources. This is an interesting insight into conse-

quences of the implicit optimization inherent in the form (7.9) – the depen-

dence of throughput on round-trip times means that decentralized decisions

on caching will tend to overload the congested edges of the network and

underload the high-capacity long-distance core.

Exercises

Exercise 7.10 What is the ratio of throughputs along the two routes in

Figure 7.5 under proportional fairness?

Exercise 7.11 Our models of congestion control assume file sizes are

large, so that there is time to control the flow rate while the file is in the

process of being transferred. Many files transferred by TCP have only one

or a few packets, and are essentially uncontrolled (mice rather than ele-

phants). Suppose the uncontrolled traffic through resource j is u j, and p j(y)

is replaced by p j(y + u j) in our systems of differential equations. Find the

functionU that is being implicitly optimized.

(Note: There will be good reasons for placing mice, if not elephants, in

a cache within a short round-trip time of users.)
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7.6 A dual algorithm

Recall the optimization problem Dual(A,C; w):

maximize
∑

r∈R
wr log





∑

j∈r
µ j




−

∑

j∈J

µ jC j

over µ ≥ 0.

Define the dual algorithm

d

dt
µ j(t) = κ jµ j(t)





∑

r: j∈r
xr(t) −C j




, j ∈ J ,

where

xr(t) =
wr

∑

k∈r µk(t)
, r ∈ R,

and κ j > 0, j ∈ J . That is, the rate of change of µ j is proportional to µ j

and to the excess demand for link j. In economics, such a process is known

as a “tâtonnement process” (“tâtonnement” is French for “groping”). It is

a natural model for a process that attempts to balance supply and demand.

For the dual algorithm, the intelligence of the system is at the resources

j ∈ J , rather than at the users r ∈ R. That is, the end systems simply

maintain xr(t) = 1/
∑

k∈r µk(t) and it is the resources that have the trickier

task of adjusting µ j(t). In the primal algorithm, by contrast, the intelligence

was placed with the end systems.

Let us check that the dual algorithm solves the Dual problem. We do

this by showing the objective function of Dual is a Lyapunov function. Let

V(µ) =
∑

r∈R
wr log





∑

j∈r
µ j




−

∑

j∈J
µ jC j,

and let µ(0) be an initial state in the interior of the positive orthant. Then

d

dt
V(µ(t)) =

∑

j∈J

∂V
∂µ j

d

dt
µ j(t) =

∑

j∈J
κ jµ j(t)





∑

r: j∈r
xr(t) −C j





2

≥ 0,

with equality only at a point which is both an equilibrium point of the dual

algorithm and a maximum of the concave functionV(µ). If the matrix A is

of full rank then the functionV(µ) is strictly concave and there is a unique

optimum, to which trajectories necessarily converge.
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Exercises

Exercise 7.12 Suppose that the matrix A is not of full rank. Show that,

whereas the value of µ maximizing the concave functionV(µ) may not be

unique, the vector µT A is unique, and hence the optimal flow pattern x is

unique. Prove that, along any trajectory (µ(t), t ≥ 0) of the dual algorithm

starting from an initial state µ(0) in the interior of the positive orthant, x(t)

converges to x.

[Hint: Consider the set of points µmaximizing the functionV(µ), and show

that µ(t) approaches this set.]

Exercise 7.13 Consider a generalized model of the dual algorithm, where

the flow rate is given by

xr(t) = Dr





∑

j∈r
µ j(t)




.

The function Dr(·) can be interpreted as the demand for traffic on route

r: assume it is a positive, strictly decreasing function of the total price on

route r.

Let

V(µ) =
∑

r∈R

∫ ∑

j∈r µ j

Dr(ξ)dξ −
∑

j∈J
µ jC j.

By considering ∂V/∂µ j, show that dV(µ(t))/dt will be non-negative pro-

vided we set

d

dt
µ j(t) ≷ 0 according as

∑

r: j∈r
xr(t) ≷ C j.

This suggests we can choose from a large family of price update mecha-

nisms, provided we increase the price of those resources where the capacity

constraint is binding, and decrease the price of those resources where it is

not. We shall see that in the presence of time delays this freedom is actually

somewhat limited.

7.7 Time delays

In earlier sections, the parameters κr, r ∈ R, or κ j, j ∈ J , were assumed to

be positive, but were otherwise arbitrary. This freedom was possible since

the feedback of information between resources and sources was assumed

to be instantaneous. In this section, we briefly explore what happens when
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feedback is assumed to be fast, e.g. at the speed of light, but nonetheless

finite.

Consider first a very simple, single-resource model of the primal algo-

rithm, but one where the change in flow rate at time t depends on congestion

information from a time T units earlier.

d

dt
x(t) = κ

(

w − x(t − T )p
(

x(t − T )
))

.

In the Internet, a natural value for T is the round-trip time; information

about the fate of packets on route r takes approximately that long to reach

the source.

This system has an equilibrium point x(t) = xe, which solves

w = xe p(xe).

Our interest is in how the system behaves if we introduce a small fluctua-

tion about this rate. Write x(t) = xe + u(t). Let pe = p(xe) and p′e = p′(xe).

Linearizing the time-delayed equation about xe, by neglecting second-order

terms in u(·), we obtain

d

dt
u(t) ≈ κ

(

w − (

xe + u(t − T )
)(

pe + p′eu(t − T )
))

≈ −κ(pe + xe p′e)u(t − T ).

Now, the solutions to a single-variable linear differential equation with

delay,

d

dt
u(t) = −αu(t − T ), (7.10)

are quite easy to find. Figure 7.6 plots the qualitative behaviour of the so-

lutions, as the gain α increases from 0 to∞.

α small α large
t t t t

u(t) u(t) u(t) u(t)

Figure 7.6 Solutions of the differential equation for different
values of α.

To find the value αc that corresponds to the periodic solution, try using

u(t) = sin(λt). Then

λ cos λt = −αc sin λ(t − T ) = −αc (sin λt cos λT − cos λt sin λT ),
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which gives cos λT = 0 and

αc = λ =
π

2

1

T
.

The periodic solution marks the boundary between stability and instability

of equation (7.10), and hence local stability and instability of the earlier

non-linear system.

Remark 7.10 Note that we could have concluded αc ∝ 1/T from di-

mensional analysis alone: given that the critical value for α exists, it has

dimension of inverse time, and T is the only time parameter in the prob-

lem. For our single-resource model, the condition for local stability about

the equilibrium point becomes

κT (pe + xe p′e) <
π

2
.

Thus a larger derivative p′e requires a smaller gain κ.

The argument suggests that the gain κ in the update mechanism should

be limited by the fact that the product κT should not get too large. Of

course, in the absence of time delays, a larger value for κ corresponds to

faster convergence to equilibrium, so we would like κ to be as large as

possible.

We briefly comment, without proofs, on the extension of these ideas to a

network. For each j, r such that j ∈ r, let Tr j be the time delay for packets

from the source for route r to reach the resource j, and let T jr be the return

delay for information from the resource j to reach the source. We suppose

these delays satisfy

Tr j + T jr = Tr, j ∈ r, r ∈ R,

where Tr is the round-trip time on route r.

Consider the time-delayed dynamical system

d

dt
xr(t) = κr xr(t − Tr)

(

1 − pr(t) − pr(t)
xr(t)

wr

)

(7.11)

where

pr(t) = 1 −
∏

j∈r

(

1 − µ j(t − T jr)
)

and

µ j(t) = p j





∑

s: j∈s

xs(t − Ts j)




,
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and κr > 0, r ∈ R. (This model arises in connection with variants of TCP:

comparing the right-hand side of equation (7.11) with expression (7.8), we

see that xr(t − Tr)(1 − pr(t)) and xr(t − Tr)pr(t) represent the stream of re-

turning positive and negative acknowledgements.) If packets are dropped

or marked at resource j with probability p j independently from other re-

sources, then pr measures the probability that a packet traverses the entire

route r intact. To see where the delays enter, note that the feedback seen at

the source for route r at time t is carried on a flow that passed through the

resource j a time T jr previously, and the flow rate on route s that is seen at

resource j at time t left the source for route s a time Ts j previously.

A plausible choice for the marking probability p j(·) is

p j(y j) =

(
y j

C j

)B

;

this is the probability of finding a queue of size ≥ B in an M/M/1 queue

with arrival rate y j and service rate C j. (While we don’t expect the indi-

vidual resources to behave precisely like independent M/M/1 queues with

fixed arrival rates, this is a sensible heuristic.) It can be shown that the

system of differential equations with delay will be locally stable about its

equilibrium point provided

κrTrB <
π

2
, ∀r ∈ R.

This is a strikingly simple result: the gain parameter for route r is limited

only by the round-trip time Tr, and not by the round-trip times of other

routes. As B increases, and thus as the function p j(·) approaches a sharp

transition at the capacity C j, the gain parameters must decrease.

For the dual algorithm of Section 7.6, the time-delayed dynamical sys-

tem becomes

d

dt
µ j(t) = κ jµ j(t)





∑

r: j∈r
xr(t − Tr j) −C j




,

where

xr(t) =
wr

∑

k∈r µk(t − Tkr)

and κ j > 0, j ∈ J . It can be shown that this system will be locally stable

about its equilibrium point provided

κ jC jT j <
π

2
, ∀ j ∈ J , (7.12)
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where

T j =

∑

r: j∈r xrTr
∑

r: j∈r xr

,

the average round-trip time of packets through resource j. Again we see a

strikingly simple result, where the gain parameter at resource j is limited

by characteristics local to resource j.

Exercises

Exercise 7.14 In the single-resource model of delay (7.10), find the value

of α that corresponds to the transition from the first to the second graph in

Figure 7.6.

[Hint: Look for solutions of the form u(t) = e−λt with λ real. Answer:

α = 1/(eT ).]

Exercise 7.15 Check that at an equilibrium point for the system (7.11)

xr = wr

1 − pr

pr

,

and is thus independent of Tr.

Exercise 7.16 The simple, single-resource model of the dual algorithm

becomes

d

dt
µ(t) = κµ(t)

(

w

µ(t − T )
−C

)

.

Linearize this equation about its equilibrium point, to obtain an equation

of the form (7.10): what is α? Check that the condition αT < π/2 for local

stability is a special case of equation (7.12).

7.8 Modelling a switch

In this chapter we have described packet-level algorithms implemented at

end-points, for example in our discussion of TCP. Our model of resources

within the network has been very simple, captured by linear constraints

of the form Ax ≤ C. In this section, we shall look briefly at a more de-

veloped model of an Internet router, and see how these linear constraints

could emerge.

Consider then the following model. There is a set of queues indexed

by R. Packets arrive into queues as independent Poisson processes with

rates λr. There are certain constraints on the sets of queues that can be
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served simultaneously. Assume that at each discrete time slot there is a

finite set S of possible schedules, only one of which can be chosen. A

schedule σ is a vector of non-negative integers (σr)r∈R, which describes

the number of packets to be served from each queue. We assume that the

schedule provides an upper bound; that is, if σ is a schedule, and π ≤ σ
componentwise, then π is also a schedule.

We are interested in when this system may be stable. Write λ ∈ Λ if λ is

non-negative and if there exist constants cσ, σ ∈ S, with cσ ≥ 0,
∑

cσ = 1,

such that λ ≤ ∑

cσσ. Call Λ the admissible region.

We would not expect the system to be stable if the arrival rate vector λ

lies outside of Λ, since then there is a weighted combination of workloads

in the different queues whose drift is upwards whatever scheduling strategy

is used (Exercise 7.17).

Example 7.11 (An input-queued switch) An Internet router has N input

ports and N output ports. A data transmission cable is attached to each of

these ports. Packets arrive at the input ports. The function of the router is

to work out which output port each packet should go to, and to transfer

packets to the correct output ports. This last function is called switching.

There are a number of possible switch architectures; in this example, we

will describe the common input-queued switch architecture.

A queue r is held for each pair of an input port and an output port. In

each time slot, the switch fabric can transmit a number of packets from

input ports to output ports, subject to the constraints that each input can

transmit at most one packet and that each output can receive at most one

packet. In other words, at each time slot the switch can choose a matching

from inputs to outputs. Therefore, the set S of possible schedules is the

set of all possible matchings between inputs and outputs (Figure 7.7). The

indexing set R is the set of all input–output pairs.

A matching identifies a permutation of the set {1, 2, . . . ,N}, and so for

this example we can identify S with the set of permutation matrices.The

Birkhoff–von Neumann theorem states that the convex hull of S is the set

of doubly stochastic matrices (i.e. matrices with non-negative entries such

that all row and column sums are 1). We deduce that for an input-queued

switch

Λ =





λ ∈ [0, 1]NxN :

N∑

i=1

λi j ≤ 1, j = 1, 2, . . . ,N,

N∑

j=1

λi j ≤ 1, i = 1, 2, . . . ,N





.

(7.13)
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output 1 output 2 output 3

input 3

input 2

input 1

Input
ports

Figure 7.7 Input-queued switch with three input and three output
ports, and thus nine queues. One possible matching is highlighted
in bold. The figure is from Shah and Wischik (2012), with
permission.

Example 7.12 (A wireless network) K stations share a wireless medium:

the stations form the vertex set of an interference graph, and there is an

edge between two stations if they interfere with each other’s transmissions.

A schedule σ ∈ S ⊂ {0, 1}K is a vector σ = (σ1, σ2, . . . , σK) with the

property that if i and j have an edge between them then σi · σ j = 0.

We’ve looked at similar networks previously, in Example 2.24 and Ex-

ercise 5.2, without explicit coordination between nodes. In this section, we

suppose there is some centralized form of scheduling, so that σ can be

chosen as a function of queue sizes at the stations.

We return now to the more general model, with queues indexed by R and

schedules indexed byS. We look at a family of algorithms, the MaxWeight-

α family, which we shall show stabilizes the system for all arrival rates in

the interior of Λ.

Fix α ∈ (0,∞). At time t, pick a schedule σ ∈ S to solve

maximize
∑

r∈R
σrqr(t)

α

subject to σ ∈ S,

where qr(t) is the number of packets in queue r at time t. If the maximizing

σ is not unique, pick a schedule at random from amongst the set of sched-

ules that attain the maximum. Note the myopic nature of the algorithm: the

schedule chosen at time t depends only on the current queue size vector

q(t) = (qr(t), r ∈ R), which is thus a Markov process under the assumption

of Poisson arrivals.
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As α→ 0, the strategy aims to maximize the number of packets served,

corresponding to throughput maximization. If α = 1, the schedule σ max-

imizes a weighted sum of the number of packets served, with weights the

queue lengths (a maximum weight schedule). When α→ ∞, the schedule σ

aims to maximize service to the longest queue, then to the second longest,

and so on, reminiscent of max-min fairness.

Theorem 7.13 For any α ∈ (0,∞), and Poisson arrivals with rates λ =

(λr, r ∈ R) that lie in the interior of Λ, the MaxWeight-α algorithm stabi-

lizes the system. That is, the Markov chain q(t) = (qr(t), r ∈ R) describing

the evolution of queue sizes is positive recurrent.

Sketch of proof Consider the Lyapunov function

L(q) =
∑ qα+1

r

α + 1
.

This is a non-negative function. We argue that the drift of L should be

negative provided ‖q(t)‖ is large:

E[L(q(t + 1)) − L(q(t)) | q(t) large] < 0.

(This suggests that L(q(t)) should stay fairly small, and hence that q(t)

should be positive recurrent. However, as we have seen in Section 5.2,

simply having negative drift is insufficient to conclude positive recurrence

of a Markov chain, so to turn the sketch into a proof we need to do more

work, later.)

Let us approximate the drift of L by a quantity that is easier to estimate.

When q(t) is large, we can write

L(q(t + 1)) ≈ L(q(t)) +
∑

r

∂L(q(t))

∂qr

(qr(t + 1) − qr(t)) .

Therefore

E[L(q(t + 1)) − L(q(t)) | q(t)] ≈
∑

r

qr(t)
αE[qr(t + 1) − qr(t) | q(t)], (7.14)

provided q(t) is large.

Let σ∗(t) be the MaxWeight-α schedule selected at time t. Then

qr(t)
αE[qr(t + 1) − qr(t) | q(t)] = qr(t)

α(λr − σ∗r (t)).

(If qr(t) = 0 then E[qr(t + 1) − qr(t) | q(t)] may not be λr − σ∗r (t), but the

product is still zero.)
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Now, the definition of σ∗(t) means that
∑

r

σ∗r (t)qr(t)
α ≥

∑

r

∑

σ

cσσrqr(t)
α

for any other convex combination of feasible schedules. Since we know

there is a convex combination of feasible schedules that dominates λ, we

must have
∑

r

σ∗r (t)qr(t)
α >

∑

r

λrqr(t)
α,

provided at least one of the queues is non-zero. This means

E[L(q(t + 1)) − L(q(t)) | q(t) large] < 0, under (7.14). (7.15)

In order to make the above argument rigorous, we require somewhat

stronger conditions on the drift of L. Specifically, we need to check that

there exist constants K > 0, ǫ > 0, and b for which the following holds.

First, if ‖q(t)‖ > K, then L has downward drift that is bounded away from

0:

E[L(q(t + 1)) − L(q(t)) | ‖q(t)‖ > K] < −ǫ < 0.

Second, if ‖q(t) ≤ K‖, then the upward jumps of L need to be uniformly

bounded:

E[L(q(t + 1)) − L(q(t)) | ‖q(t)‖ ≤ K] < b.

Foster–Lyapunov criteria (Proposition D.1) then assert that the Markov

chain q(t) is positive recurrent.

You will check in Exercise 7.18 that these inequalities hold for the quan-

tity appearing on the right-hand side of (7.14). Showing that the approxi-

mation made in (7.14) doesn’t destroy the inequalities requires controlling

the tail of the distribution of the arrivals and services happening over a

single time step; see Example D.4 and Exercise D.1. �

Remark 7.14 We have shown that when the queues q(t) are large, the

MaxWeight-α algorithm chooses the schedule that will maximize the one-

step downward drift of L(q(t)). Thus, it belongs to a class of greedy, or

myopic, policies, which optimize some quantity over a single step. It may

be surprising that we don’t need to think about what happens on subsequent

steps, but it certainly makes the algorithm easier to implement!

Remark 7.15 Thus arrival rates λ can be supported by a scheduling al-

gorithm if λ is in the interior of the admissible region Λ. Since the set of

schedules S is finite, the admissable region Λ is a polytope that can be
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written in the form Λ = {λ ≥ 0 : Aλ ≤ C} for some A,C with non-negative

components. For the input-queued switch, Example 7.11, the linear con-

straints Aλ ≤ C represent the 2N constraints identified in the representa-

tion (7.13). For this example, each constraint corresponds to the capacity

of a data transmission cable connected to a port.

Note that the relevant time scales for switch scheduling are much shorter

than round-trip times in a wide area network, by the ratio of the distances

concerned (centimetres, rather than kilometres or thousands of kilometres).

TCP’s congestion control will change arrival rates at a router as a response

to congestion, but this occurs over a slower time scale than that relevant for

the model of this section.

Exercises

Exercise 7.17 If the arrival rate vector λ lies outside the admissible region

Λ, find a vector w such that the weighted combination of workloads in the

different queues, w · q, has upwards drift whatever scheduling strategy is

used.

[Hint: Since Λ is closed and convex, the separating hyperplane theorem

shows that there is a pair of parallel hyperplanes separated by a gap in

between Λ and λ.]

Exercise 7.18 Show that the right-hand side of (7.14) satisfies
∑

r

qr(t)
αE[qr(t + 1) − qr(t) | ‖q(t)‖ > K] < −ǫ‖q(t)‖α

for some ǫ > 0 and an appropriately large constant K.

[Hint: MaxWeight-α is invariant under rescaling all queue sizes by a con-

stant factor, so reduce to the case ‖q(t)‖ = 1, and use the finiteness of the

set S.]

Show also that
∑

r

qr(t)
αE[qr(t + 1) − qr(t) | ‖q(t)‖ ≤ K] < b

for some constant b.

Example D.4 and Exercise D.1 derive similar bounds for the quantity

on the left-hand side of (7.14), which are needed to apply the Foster–

Lyapunov criteria.

Exercise 7.19 Suppose a wireless network is serving the seven cells illus-

trated in Figure 3.5, where there is a single radio channel which cannot be
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simultaneously used in two adjacent cells. Show that the admissible region

is

Λ = {λ ∈ [0, 1]7 : λα + λβ + λγ ≤ 1 for all α, β, γ that meet at a vertex}.

Exercise 7.20 In this section we assumed a centralized form of schedul-

ing, so that the schedule σ can be chosen as a function of queue sizes at

the stations. But this is often a quite difficult computational task: to select

a maximum weight schedule is in general an NP-hard problem. In this and

the following exercises we’ll explore a rather different approach, based on

a randomized and decentralized approximation algorithm.

Recall that we have seen a continuous time version of the wireless net-

work of Example 7.12 in Section 5.4, operating under a simple decentral-

ized policy. In this exercise we shall see that it is possible to tune this earlier

model so that it slowly adapts its parameters to meet any arrival rate vector

λ in the interior of admissible region Λ.

Suppose the state σ ∈ S ⊂ {0, 1}K evolves as a Markov process with

transition rates as in Section 5.4, and with equilibrium distribution (5.8)

determined by the vector of parameters θ. Then the proportion of time that

station r is transmitting is given by expression (5.9) as

xr(θ) ≡
∑

σ∈S σr exp(σ · θ)
∑

m∈S exp(m · θ) .

Suppose now that for r ∈ R station r varies θr = θr(t), but so slowly that

xr(θ) is still given by the above expression. If V(θ) is defined as in Exer-

cise 5.10, show that dV(µ(t))/dt will be non-negative provided we set

d

dt
θr(t) ≷ 0 according as λr ≷ xr(θ(t)).

Exercise 7.21 Consider the following variant of the optimization prob-

lem (5.10):

maximize
∑

r∈R
wr log xr −

∑

n∈S
p(n) log p(n)

subject to
∑

n∈S
p(n)nr = xr, r ∈ R,

and
∑

n∈S
p(n) = 1

over p(n) ≥ 0, n ∈ S; xr, r ∈ R.

The first term of the objective function is the usual weighted proportionally

fair utility function, and the second term is, as in Section 5.4, the entropy
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of the probability distribution (p(n), n ∈ S). Show that the Lagrangian dual

can be written (after omitting constant terms) in the form

maximize V(θ) =
∑

r∈R
wr log θr − log





∑

n∈S
exp





∑

r∈R
θrnr









over θr ≥ 0, r ∈ R.

Exercise 7.22 We continue with the model of Exercise 7.20. Again sup-

pose that for r ∈ R station r can vary θr, but slowly so that xr(θ) tracks

its value under the equilibrium distribution determined by θ. Specifically,

suppose that

d

dt
θr(t) = κr (wr − θr(t)xr(θ(t))) ,

where κr > 0, for r ∈ R. Show that the strictly concave function V(θ) of

Exercise 7.21 is a Lyapunov function for this system, and that the unique

value maximizing this function is an equilibrium point of the system, to

which all trajectories converge.

Exercise 7.23 Consider again Example 5.20, of wavelength routing. Sup-

pose source–sink s varies θr = θr(t), for r ∈ s, but so slowly that xr(θ) tracks

its value under the equilibrium distribution determined by θ, given by the

expression

xr(θ) ≡
∑

n∈S(C) nr exp(n · θ)
∑

m∈S(C) exp(m · θ) .

Specifically, suppose that θr(t) = θs(t) for r ∈ s, and that

d

dt
θs(t) = κs



ws − θs(t)
∑

r∈s

xr(θ(t))



 ,

where κs > 0, for s ∈ S.

Show that the strictly concave function of (θs, s ∈ S)

V(θ) =
∑

s∈S
ws log θs − log





∑

n∈S(C)

exp





∑

s∈S
θs

∑

r∈s

nr









is a Lyapunov function for this system, and that the unique value maximiz-

ing this function is an equilibrium point, to which all trajectories converge.

Observe that this model gives throughputs on source–sink pairs s that

are weighted proportionally fair, with weights (ws, s ∈ S).
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7.9 Further reading

Srikant (2004) and Shakkottai and Srikant (2007) provide a more exten-

sive introduction to the mathematics of Internet congestion control, and

survey work up until their dates of publication. The review by Chiang et al.

(2007) develops implications for network architecture (i.e. which functions

are performed where in a network). Johari and Tsitsiklis (2004) treat the

strategic behaviour of price-anticipating users, a topic touched upon in Ex-

ercise 7.1, and Berry and Johari (2013) is a recent monograph on economic

models of engineered networks.

For more on the particular primal and dual models with delays of Sec-

tion 7.7, see Kelly (2003a); a recent text on delay stability for networks

is Tian (2012). There is much interest in the engineering and implemen-

tation of congestion control algorithms: see Vinnicombe (2002) and Kelly

(2003b) for the TCP variant of Section 7.7, Kelly and Raina (2011) for a

dual algorithm using the local stability condition (7.12), and Wischik et al.

(2011) for an account of recent work on multipath algorithms.

Tassiulas and Ephremides (1992) established the stability of the maxi-

mum weight scheduling algorithm. Shah and Wischik (2012) is a recent

paper on MaxWeight-α scheduling, which discusses the interesting con-

jecture that for the switch of Example 7.11 the average queueing delay

decreases as α decreases. Our assumption, in Theorem 7.13, of Poisson ar-

rivals is stronger than needed: Bramson (2006) shows that when a carefully

defined fluid model of a queueing network is stable, the queueing network

is positive recurrent.

Research proceeds apace on randomized and decentralized approxima-

tion algorithms for hard scheduling problems. For recent reviews, see Jiang

and Walrand (2012), Shah and Shin (2012) and Chen et al. (2013): a key

issue concerns the separation of time scales implicit in these algorithms.
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Flow level Internet models

In the previous chapter, we considered a network with a fixed number of

users sending packets. In this chapter, we look over longer time scales,

where the users may leave because their files have been transferred, and

new users may arrive into the system. We shall develop a stochastic model

to represent the randomly varying number of flows present in a network

where bandwidth is dynamically shared between flows, where each flow

corresponds to the continuous transfer of an individual file or document.

We assume that the rate control mechanisms we discussed in Chapter 7

work on a much faster time scale than these changes occur, so that the

system reaches its equilibrium rate allocation very quickly.

8.1 Evolution of flows

We suppose that a flow is transferring a file. For example, when Elena on

her home computer is downloading files from her office computer, each

file corresponds to a separate flow. In this chapter, we allow the number

of flows using a given route to fluctuate. Let nr be the number of active

flows along route r. Let xr be the rate allocated to each flow along route

r (we assume that it is the same for each flow on the same route); then

the capacity allocated to route r is nr xr at each resource j ∈ r. The vector

x = (xr, r ∈ R) will be a function of n = (nr, r ∈ R); for example, it may be

the equilibrium rate allocated by TCP, when there are nr users on route r.

We assume that new flows arrive on route r as a Poisson process of rate

νr, and that files transferred over route r have a size that is exponentially

distributed with parameter µr. Assume file sizes are independent of each

other and of arrivals. Thus, the number of flows evolves as follows:

nr → nr + 1 at rate νr, nr → nr − 1 at rate µrnr xr(n),

for each r ∈ R. With this definition, n is a Markov process.

The ratio ρr := νr/µr is the load on route r.

186
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Remark 8.1 This model corresponds to a time-scale separation: given

the number of flows n, we assume the rate control mechanism instantly

achieves rates xr(n). The assumption that file sizes are exponentially dis-

tributed is not an assumption likely to be satisfied in practice, but fortu-

nately the model is not very sensitive to this assumption.

Exercises

Exercise 8.1 Suppose the network comprises a single resource, of capac-

ity C, and that xr(n) = C/N, where N =
∑

r nr, so that the capacity is shared

equally over all file transfers in progress. Show that, provided

ρ :=
∑

r∈R
ρr < C,

the Markov process n = (nr, r ∈ R) has equilibrium distribution

π(n) =

(

1 − ρ
C

) (

N

n1, n2, . . . , n|R|

)
∏

r∈R

(
ρr

C

)nr

,

and deduce that in equilibrium N has a geometric distribution with mean

C/ρ. Observe that if ρ ≥ C, then omitting the term (1 − ρ/C) in the above

expression for π still gives a solution to the equilibrium equations, but now

its sum is infinite and so no equilibrium distribution exists (if ρ = C the

process is null recurrent, and if ρ > C the process is transient).

Show that the mean file size over all files arriving to be transferred is

ρ/
∑

r νr. Deduce that when file sizes arriving at the resource are distributed

as a mixture of exponential random variables, the distribution of N depends

only on the mean file size, and not otherwise on the distribution of file sizes.

Exercise 8.2 Suppose the shared part of the network comprises a single

resource of capacity C, but that each flow has to pass through its own access

link of capacity L as well, so that xr(n) = max{L,C/N}, where N is the

number of flows present. Suppose flows arrive as a Poisson process and

files are exponentially distributed. Show that if C = sL then the number of

flows in the system evolves as an M/M/s queue.

8.2 α-fair rate allocations

Next we define the rate allocation x = x(n). We define a family of allocation

policies that includes as special cases several examples that we have seen

earlier.
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Let wr > 0, r ∈ R, be a set of weights, and let α ∈ (0,∞) be a fixed

constant. The weighted α-fair allocation x = (xr, r ∈ R) is, for α , 1, the

solution of the following optimization problem:

maximize
∑

r

wrnr

x1−α
r

1 − α

subject to
∑

r: j∈r
nr xr ≤ C j, j ∈ J , (8.1)

over xr ≥ 0, r ∈ R.

For α = 1, it is the solution of the same optimization problem but with

objective function
∑

r wrnr log xr; Exercise 8.3 shows why this is the natural

continuation of the objective function through α = 1.

For all α ∈ (0,∞) and all n, the objective function is a strictly con-

cave function of (xr : r ∈ R, nr > 0); the problem is a generalization of

network(A,C; w), from Section 7.1.

We can characterize the solutions of the problem (8.1) as follows. Let

(p j, j ∈ J) be Lagrange multipliers for the constraints. Then, at the opti-

mum, x = x(n) and p = p(n) satisfy

xr =

(

wr
∑

j∈r p j

)1/α

, r ∈ R,

where

xr ≥ 0, r ∈ R,
∑

r: j∈r
nr xr ≤ C j, j ∈ J (primal feasibility);

p j ≥ 0, j ∈ J (dual feasibility);

p j ·



C j −

∑

r: j∈r
nr xr




= 0, j ∈ J (complementary slackness).

The form of an α-fair rate allocation captures several of the fairness

definitions we have seen earlier.

• As α → 0 and with wr ≡ 1 the total throughput,
∑

r nr xr, approaches its

maximum.

• If α = 1 then, from Proposition 7.4, the rates xr are weighted propor-

tionally fair.

• If α = 2 and wr = 1/T 2
r then the rates xr are TCP fair, i.e. they are of the

form (7.9).

• As α→ ∞ and with wr ≡ 1 the rates xr approach max-min fairness.
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Exercises

Exercise 8.3 Check that the objective function of the problem (8.1) is

concave for each of the three cases 0 < α < 1, α = 1 and 1 < α < ∞. Show

that the derivative of the objective function with respect to xr has the same

form, namely wrnr x−αr , for all α ∈ (0,∞).

Exercise 8.4 Check the claimed characterization of the solutions to the

problem (8.1).

Exercise 8.5 Consider the α-fair allocation as α→ 0, the allocation max-

imizing the total throughput. Show that however large the number of dis-

tinct routes |R|, typically only |J| of them are allocated a non-zero rate.

[Hint: Show that as α→ 0 the problem (8.1) approaches a linear program,

and consider basic feasible solutions.]

8.3 Stability of α-fair rate allocations

Consider now the behaviour of the Markov process n under an α-fair allo-

cation. Is it stable? This will clearly depend on the parameters νr, µr, and we

show next that the condition is as simple as it could be: all that is needed is

that the load arriving at the network for resource j is less than the capacity

of resource j, for every resource j.

Theorem 8.2 The Markov process n is positive recurrent (i.e. has an equi-

librium distribution) if and only if
∑

r: j∈r
ρr < C j for all j ∈ J. (8.2)

Sketch of proof If condition (8.2) is violated for some j then the system is

not stable, by the following coupling argument. Suppose that j is the only

resource with finite capacity in the network, with all the other resources

given infinite capacity. This cannot increase the work that has been pro-

cessed at resource j before time t, for any t ≥ 0. But the resulting system

would be the single server queue considered in Exercise 8.1, which is tran-

sient or at best null recurrent.

Our approach to showing that under condition (8.2) n is positive

recurrent will be the same as in the proof of Theorem 7.13. We shall write

down a Lyapunov function, approximate its drift, and show that the approx-

imation is negative when n is large, and bounded when n is small. This is

almost enough to apply the Foster–Lyapunov criteria (Proposition D.3);

you will check the remaining details in Exercise D.2.
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We begin by calculating the drift of n.

E[nr(t + δt) − nr(t) | n(t)] ≈
(

νr − µrnr xr(n(t))
)

δt.

This would be an equality if we could guarantee that not all of the nr(t)

flows depart by time t + δt. As nr(t)→ ∞, the approximation improves.

Next, we consider the Lyapunov function

L(n) =
∑

r

wr

µr

ρ−αr

nα+1
r

α + 1
.

This is a non-negative function. We argue that the drift of L should be

negative provided n(t) is large. We can approximate the change of L over

a small time period by

1

δt
E[L(n(t + δt)) − L(n(t)) | n(t)] ≈

∑

r∈R

(

∂L
∂nr

)

· 1

δt
E[nr(t + δt) − nr(t) | n(t)]

=
∑

r

wr

µr

ρ−αr nαr

(

νr − µrnr xr(n(t))
)

=
∑

r

wrρ
−α
r nαr

(

ρr − nr xr(n(t))
)

. (8.3)

Our goal is to show that this is negative.

At this point it is helpful to rewrite the optimization problem (8.1) in

terms of Xr = nr xr, r ∈ R, as follows:

maximize G(X) =
∑

r

wrn
α
r

X1−α
r

1 − α

subject to
∑

r: j∈r
Xr ≤ C j, j ∈ J , (8.4)

over Xr ≥ 0, r ∈ R.

Since G is concave, for every U inside the feasible region of (8.4)

G′(U) · (U − X) ≤ G(U) −G(X) ≤ 0, (8.5)

where X is the optimum (Figure 8.1 illustrates this).

Now, if the stability conditions (8.2) are satisfied, then ∃ǫ > 0 such that

u = (ρr(1 + ǫ), r ∈ R) is also inside the region (8.2). Therefore, by (8.5),
∑

r

wrn
α
r (ρr(1 + ǫ))

−α(ρr(1 + ǫ) − Xr) ≤ 0.

Combining this with (8.3), we see that, for large n, the drift of L(n) is
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XU

Figure 8.1 Let X be the optimum and let U be another point in
the feasible region of (8.4). Since G(·) is concave, the tangent
plane at U lies above G(·), so G(X) ≤ G(U) +G′(U) · (X − U).

negative:

1

δt
E[L(n(t + δt)) − L(n(t)) | n(t)] ≤ −ǫ

∑

r

wrn
α
r ρ
−α+1
r .

In order to apply the Foster–Lyapunov criteria (Proposition D.1), we

also need to bound the drift of L(n) from above. You will do this (for the

quantity on the right-hand side of (8.3)) in Exercise 8.6. This can be done

using the fact that flows arrive as Poisson processes, and depart at most as

quickly as a Poisson process. �

Remark 8.3 It is interesting to compare the model of an α-fair rate allo-

cation with the earlier model of a MaxWeight-α queue schedule. The mod-

els are operating on very different time scales (the time taken for a packet

to pass through a router, versus the time taken for a file to pass across a

network), but nevertheless the stability results established are of the same

form.

If we view nr as the size of the queue of files that are being transmitted

along route r, then an α-fair rate allocation chooses the rates Xr allocated

to these queues to solve the optimization problem (8.4). A MaxWeight-α

schedule would instead choose the rates Xr allocated to these queues to

solve the problem

maximize
∑

r

nαr Xr

subject to
∑

r: j∈r
Xr ≤ C j, j ∈ J ,

over Xr ≥ 0, r ∈ R.

In either case we observe that if a queue nr grows to infinity while other
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queues are bounded, then this must eventually cause the rate Xr allocated

to this queue to increase towards its largest feasible value. In Section 8.4

we consider a rate allocation scheme for which this is not the case.

Exercise

Exercise 8.6 Show that the right-hand side of (8.3) satisfies

∑

r

wr

µr

ρ−αr nαr
1

δt
E[nr(t + δt) − nr(t) | ‖n(t)‖ ≤ K] ≤ b

for some constant b. Why does that not follow immediately from the cal-

culation in the proof of Theorem 8.2?

Exercise D.2 in the Appendix asks you to prove a similar inequality for

the quantity on the left-hand side of (8.3), which is needed to apply the

Foster–Lyapunov criteria (Proposition D.3).

8.4 What can go wrong?

The stability condition (8.2) is so natural that it might be thought that it

would apply to most rate allocation schemes. In this section we show oth-

erwise.

C = 1 C = 1

n0

ρ0

ρ1

n1 n2

ρ2

Figure 8.2 A system with three flows and two resources.

Consider the network illustrated in Figure 8.2 with just two resources

and three routes: two single-resource routes and one route using both re-

sources. With any α-fair allocation of the traffic rates, as we saw in Sec-

tion 8.3, the stability condition is ρ0 + ρ1 < 1, ρ0 + ρ2 < 1. Provided this
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condition is satisfied, the Markov process describing the number of files on

each route is positive recurrent.

Let us consider a different way of allocating the available capacity. Sup-

pose that streams 1 and 2 are given absolute priority at their resources: that

is, if n1 > 0 then n1x1 = 1 (and hence n0x0 = 0), and if n2 > 0 then n2x2 = 1

(and again n0x0 = 0). Then stream 0 will only get served if n1 = n2 = 0,

i.e. if there is no work in any of the high-priority streams.

What is the new stability condition? Resource 1 is occupied by stream

1 a proportion ρ1 of the time; independently, resource 2 is occupied by

stream 2 a proportion ρ2 of the time. (Because of the absolute priority,

neither stream 1 nor stream 2 “sees” stream 0.) Therefore, both of these

resources are free for stream 0 to use a proportion (1 − ρ1)(1 − ρ2) of the

time, and the stability condition is thus

ρ0 < (1 − ρ1)(1 − ρ2).

This is a strictly smaller stability region than before. Figure 8.3 shows a

slice of the stability region for a fixed value of ρ0.
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1 − ρ0

1 − ρ0

ρ2

ρ1

Figure 8.3 Stability regions under α-fair and priority schemes.

The system is failing to realize its capacity because there is starvation

of resources: the high-priority flows prevent work from reaching some of

the available resources.

Remark 8.4 Suppose that we put a very large buffer between resources 1

and 2, allowing jobs on route 0 to be served by resource 1 and then wait for

service at resource 2. This would increase the stability region, and might be

an adequate solution in some contexts. However, in the Internet the buffer

sizes required at internal nodes would be unrealistically large, and addi-

tional buffering between resources would increase round-trip times.

Another way of giving priority to customers on routes 1 and 2 would be

to use the weighted α-fair scheme and assign these flows very high weight;
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as we know, any weighted α-fair scheme results in a positive recurrent

Markov process within the larger stability region. Why are the results for

the two schemes so different? In both schemes, the number of files on route

0, n0, will eventually become very large. In an α-fair scheme, that means

that route 0 will eventually receive service; in the strict priority setting, n0

doesn’t matter at all.

Strict priority rules often cause starvation of network resources and a

reduction in the stability region. Exercise 8.7 gives a queueing network

example.

Exercise

Exercise 8.7 Consider the network in Figure 8.4. Jobs in the network

need to go through stations 1–4 in order, but a single server is working at

stations 1 and 4, and another single server is working at stations 2 and 3.

Consequently, at any time, either jobs at station 1, or jobs at station 4, but

not both, may be served; similarly for jobs at stations 2 and 3.

1 2

34

Figure 8.4 The Lu–Kumar network. Jobs go through stations 1–4
in order, but a single server is working at stations 1 and 4, and at 2
and 3.

We will assume that jobs at station 4 have strict priority over station 1,

and that jobs at station 2 have strict priority over station 3. That is, if the

server at stations 1 and 4 can choose a job at station 1 or at station 4, she

will process the job at station 4 first, letting the jobs at station 1 queue.

Assume that jobs enter the system deterministically, at times 0, 1, 2, and

so on. We also assume that the service times of all the jobs are determin-

istic: a job requires time 0 at the low-priority stations 1 and 3, and time

2/3 at the high-priority stations 2 and 4. The zero-time jobs are, of course,

an idealization, but we’ll see that they still make a difference due to the

priority rules.

Assume that service completions happen “just before schedule”. In par-

ticular, a job completing service at station 3 at time n will arrive at station

4 before the external arrival at time n comes to station 1.
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(1) Check that each of the two servers individually is not overloaded, i.e.

work is arriving at the system for each of them at a rate smaller than 1.

(2) Let M be a large integer divisible by 3, and consider this system starting

at time 0 with M jobs waiting to be processed by station 1, and no jobs

anywhere else. At time 0, these jobs all move to station 2. What is the

state of the system at time 2M/3? At time M? When will the system

first start processing jobs at station 3?

(3) Once the jobs are processed through station 3, they move on to station

4, which has priority over station 1. When will jobs be processed next

through station 1? What is the queue at station 1 at that time?

This example shows that, if we start the system at time 0 with a queue

of M jobs waiting for service at station 1, then at time 4M there will be a

queue of 2M jobs there. That is, the system is not stable. This is happening

because the priority rules cause starvation of some of the servers, forcing

them to be idle for a large portion of the time.

8.5 Linear network with proportional fairness

In this section, we analyse an example of a simple network with a pro-

portionally fair rate allocation. A linear network (illustrated in Figure 8.5)

is in some respects what a more complicated network looks like from the

point of view of a single file; consequently, it is an important model to un-

derstand. We shall see that it is possible to find its equilibrium distribution

explicitly, at least for certain parameter values.

n1, x1 n2, x2 nL, xL

C1 = C2 = . . . = CL = 1

n0, x0

Figure 8.5 Linear network with L resources and L + 1 flows.

Take α = 1 and wi = 1 for all i, i.e. proportional fairness. Let us compute

the proportionally fair rate allocation by maximizing
∑

ni log xi over the

feasible region for x. Clearly, if nl > 0 then n0x0 + nlxl = 1, as otherwise
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we can increase xl. Therefore, the optimization problem requires that we

maximize

n0 log x0 +

L∑

l=1

nl log

(

1 − n0x0

nl

)

,

where the summation runs over l for which nl > 0. Differentiating, at the

optimum we have

n0

x0

=

L∑

l=1

nln0

1 − n0x0

=⇒ 1 − n0x0 = x0

L∑

l=1

nl

or

x0 =
1

n0 +
∑L

l=1 nl

; n0x0 =
n0

n0 +
∑L

l=1 nl

= 1 − nlxl.

We now compute the equilibrium distribution for this system explicitly.

The general formulae for transition rates are

q(n, n + er) = νr, q(n, n − er) = xr(n)nrµr,

and thus in this example

q(n, n − e0) = µ0

n0

n0 +
∑L

l=1 nl

, n0 > 0,

and

q(n, n − ei) = µi

∑L
l=1 nl

n0 +
∑L

l=1 nl

, ni > 0, i = 1, . . . , L.

Theorem 8.5 The stationary distribution for the above network is

π(n) =

∏L
l=1(1 − ρ0 − ρl)

(1 − ρ0)L−1

(∑L
l=0 nl

n0

) L∏

l=0

ρ
nl

l

provided ρ0 + ρl < 1 for l = 1, 2, . . . , L.

Proof We check the detailed balance equations,

π(n) q(n, n + e0)
︸       ︷︷       ︸

ν0

= π(n + e0)
︸    ︷︷    ︸

π(n)
n0+

∑L
l=1

nl+1

n0+1

ν0
µ0

q(n + e0, n)
︸       ︷︷       ︸

µ0
n0+1

n0+
∑L

l=1
nl+1

and

π(n) q(n, n + ei)
︸       ︷︷       ︸

νi

= π(n + ei)
︸    ︷︷    ︸

π(n)
n0+

∑L
l=1

nl+1
∑L

l=1
nl+1

νi
µi

q(n + ei, n)
︸       ︷︷       ︸

µi

∑L
l=1

nl+1

n0+
∑L

l=1
nl+1

,
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as required.

It remains only to check that π sums to 1. But

∑

n0,n1,...,nL

(

n0 + n1 + . . . + nL

n0

)

ρ
n0

0
ρ

n1

1
. . . ρ

nL

L

=
∑

n1,...,nL

ρ
n1

1
. . . ρ

nL

L

∑

n0

(

n0 + . . . + nL

n0

)

ρ
n0

0

=
∑

n1,...,nL

ρ
n1

1
. . . ρ

nL

L

1

(1 − ρ0)n1+...+nL+1
(negative binomial expansion)

=
1

1 − ρ0

∑

n1,...,nL

(

ρ1

1 − ρ0

)n1
(

ρ2

1 − ρ0

)n2

. . .

(

ρL

1 − ρ0

)nL

if ρi < 1 − ρ0, ∀i

=
(1 − ρ0)L−1

∏L
l=1(1 − ρ0 − ρl)

,

and thus π does indeed sum to 1, provided the stability conditions are sat-

isfied. �

Remark 8.6 The above network is an example of a quasi-reversible

queue. That is, if we draw a large box around the linear network, then

arrivals of each file type will be Poisson processes by assumption, and the

departures will be Poisson as well. (We saw this for a sequence of M/M/1

queues in Chapter 2.) This lets us embed the linear network into a larger

network as a unit, in the same way we did with M/M/1 queues. We could,

for example, replace the simple processor sharing queue 0 in Figure 2.9 by

the above linear network and retain a product form. It also can be used to

show insensitivity, i.e. that the stationary distribution depends only on the

mean file sizes, and not otherwise on their distributions.

Remark 8.7 We can compute the average time to transfer a file on route r

but, as files on different routes may have very different sizes, a more useful

measure is the flow throughput on route r, defined as

average file size on route r

average time required to transfer a file on route r
.

We know that the average file size is 1/µr. The average transfer time can

be derived from Little’s law, L = λW, which tells us

E(nr) = νr · average time required to transfer a file on route r.
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Combining these, and recalling ρr = νr/µr, we obtain

flow throughput =
ρr

Enr

.

Since we know π(n), we can calculate this throughput, at least for the par-

ticular model of this section: see Exercise 8.8.

Exercises

Exercise 8.8 Show that the flow throughput, ρr/Enr, for the linear net-

work is given by






1 − ρ0 − ρl, l = 1, . . . , L,

(1 − ρ0)



1 +

L∑

l=1

ρ0

1 − ρ0 − ρl





−1

, l = 0.

Note that 1 − ρ0 − ρl is the proportion of time that resource l is idle. Thus,

the flow throughput on route l = 1, . . . , L is as if a file on this route gets a

proportion 1 − ρ0 − ρl of resource l to itself.

Exercise 8.9 Use the stationary distribution found in Theorem 8.5 to

show that under this distribution n1, n2, . . . , nL are independent, and nl is

geometrically distributed with mean ρl/(1 − ρ0 − ρl).

[Hint: Sum π(n) over n0, and use the negative binomial expansion.]

Exercise 8.10 Consider a network with resources J = {1, 2, 3, 4}, each

of unit capacity, and routes R = {12, 23, 34, 41}, where we use i j as a

convenient shorthand for {i, j}. Given n = (nr, r ∈ R), find the rate xr

of each flow on route r, for each r ∈ R, under a proportionally fair rate

allocation. Show, in particular, that if n12 > 0 then

x12n12 =
n12 + n34

n12 + n23 + n34 + n41

.

Suppose now that flows describe the transfer of files through a network, that

new flows originate as independent Poisson processes of rates νr, r ∈ R,

and that file sizes are independent and exponentially distributed with mean

µr on route r ∈ R. Determine the transition rates of the resulting Markov

process n = (nr, r ∈ R). Show that the stationary distribution of the Markov

process n = (nr, r ∈ R) takes the form

π(n) = B

(

n12 + n23 + n34 + n41

n12 + n34

)
∏

r

(

νr

µr

)nr

,
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provided it exists.

8.6 Further reading

Theorem 8.2 and the examples of Sections 8.4 and 8.5 are from Bonald and

Massoulié (2001); for further background to the general approach of this

chapter see BenFredj et al. (2001).

The network in Exercise 8.7 was introduced by Lu and Kumar (1991).

Analyzing the set of arrival rates for which a given queueing network with a

given scheduling discipline will be stable turns out to be a surprisingly non-

trivial problem. The book by Bramson (2006) discusses in detail a method

of showing stability using fluid models, which generalize the drift analysis

we have seen in several chapters.

Kang et al. (2009) show that a generalization of the independence result

of Exercise 8.9 holds approximately for a wide class of networks operating

under proportional fairness.

In this chapter we have assumed a time-scale separation of packet-level

dynamics, such as those described in Section 7.8 for MaxWeight schedul-

ing, and flow-level dynamics, such as those described in Section 8.1. See

Walton (2009) and Moallemi and Shah (2010) for more on the joint dynam-

ics of these two time scales. Shah et al. (2012) is a recent paper exploring

connections between scheduling strategies, such as those in Section 7.8,

and rate allocations, such as those in Section 8.2.





Appendix A

Continuous time Markov processes

Let T be a subset of R. A collection of random variables (X(t), t ∈ T )

defined on a common probability space and taking values in a countable

set S has the Markov property if, for t0 < t1 < . . . < tn < tn+1 all in T ,

P(X(tn+1) = xn+1 | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0)

= P(X(tn+1 = xn+1 | X(tn) = xn)

whenever the event {X(tn) = xn} has positive probability. This is equivalent

to the property that, for t0 < t1 < . . . < tn all in T and for 0 < p < n,

P(X(ti) = xi, 0 ≤ i ≤ n | X(tp) = xp)

= P(X(ti) = xi, 0 ≤ i ≤ p | X(tp) = xp)P(X(ti) = xi, p ≤ i ≤ n | X(tp) = xp)

whenever the event {X(tp) = xp} has positive probability. Note that this

statement has no preferred direction of time: it states that, conditional on

X(tp) (the present), (X(ti), 0 ≤ i ≤ p) (the past) and (X(ti), p ≤ i ≤ n) (the

future) are independent.

Our definition in Chapter 1 of a Markov chain corresponds to the case

where T is Z+ or Z, and where the transition probabilities are time homo-

geneous. Our definition of a Markov process corresponds to the case where

T is R+ or R, where the process is time homogeneous, and where there is

an additional assumption which we now explore.

A possibility that arises in continuous, but not in discrete, time is explo-

sion. Consider a Markov process that spends an exponentially distributed

time, with mean (1/2)k, in state k before moving to state k+1, and suppose

the process starts at time 0 in state 0. Since
∑

k(1/2)k = 2, we expect the

process to have run out instructions by time 2. The trajectories will look

something like Figure A.1. In particular, there will be an infinite number of

transitions during a finite time period.

A related possibility is a process “returning from∞”: consider a process

that just before time 0 is in state 0, then “jumps to ∞”, and then runs a

201
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X(t)

t
0 1 2 3 4

0

1

2

3

4

5

6

7

Figure A.1 Trajectories of an explosive process. On average, the
time when the process “runs out of instructions” is 2.

time-reversed version of the above explosion. Then, at any time t > 0, the

process is (with probability 1) in a finite state; but, as t → 0 from above,

P(X(t) = j) → 0 for any finite j. In particular, this process spends a finite

time in state 0, but “goes nowhere” once it leaves state 0 (in this example,

q(0, j) = 0 for all j > 0). Such a process is known as non-conservative.

Throughout this book we assume that any Markov process with which

we deal remains in each state for a positive period of time and is incapable

of passing through an infinite number of states in a finite time. This as-

sumption excludes both of the above phenomena and ensures the process

can be constructed as in Chapter 1 (from a jump chain and a sequence

of independent exponential random variables) with q(i) ≡ ∑

j∈S q(i, j) the

transition rate out of state i. It will usually be clear that the assumption

holds for particular processes, for example from the definition of the pro-

cess in terms of arrival and service times.

In Chapter 1, we defined an equilibrium distribution for a chain or pro-

cess to be a collection π = (π( j)), j ∈ S) of positive numbers summing to

unity that satisfy the equilibrium equations (1.1) or (1.2). An equilibrium

distribution exists if and only if the chain or process is positive recurrent,

i.e. from any state the mean time to return to that state after leaving it is fi-

nite. If an equilibrium distribution does not exist, the chain or process may

be either null recurrent, i.e. the time to return to a state is finite but has infi-

nite mean, or transient, i.e. on leaving a state there is a positive probability

that the state will never be visited again.

When an equilibrium distribution exists, the process can be explicitly
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constructed for t < 0 by constructing the reversed process (X(−t), t ≥ 0),

using the transition rates (q′( j, k), j, k ∈ S) given in Proposition 1.1. For

example, in Figure 2.1, given the number in the queue at time t = 0, we

can use the Poisson point processes A and D to construct the process both

before and after time 0. This provides an alternative to starting the process

with the equilibrium distribution at time t0, and letting t0 → −∞.

Consider a Markov process (X(t), t ∈ T ), where T is R+ or R. A ran-

dom variable T is a stopping time (for the process) if for each t ∈ T the

event {T ≤ t} depends only on (X(s), s ≤ t); that is, it is possible to de-

termine whether T ≤ t based only on observing the sample path of X up

through time t. A fundamental result is the strong Markov property: if T

is a stopping time then conditional on T < ∞ and X(T ) = xp, the past

(X(t), t ≤ T ) and the future (X(t), t ≥ T ) are independent. If T is determin-

istic, this becomes our earlier restatement of the Markov property: for fixed

t0 the distribution of (X(t), t ≥ t0) is determined by and determines the fi-

nite dimensional distributions, i.e. the distributions of (X(ti), 0 ≤ i ≤ n) for

all t0 < t1 < . . . < tn, and any finite n (Norris (1998), Section 6). Finally,

we note that our construction of a Markov process from a jump chain fol-

lowed the usual convention and made the process right continuous, but this

was arbitrary, and is a distinction not detected by the finite-dimensional

distributions.
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Little’s law

Let X1, X2, . . . be independent identically distributed non-negative random

variables. These will represent times between successive renewals. Let

N(t) = max{n : X1 + . . . + Xn ≤ t}

be the number of renewals that have occurred by time t; N(t) is called a

renewal process.

Suppose that a reward Yn is earned at the time of the nth renewal. The

reward Yn will usually depend on Xn, but we suppose the pairs (Xn, Yn), n =

1, 2, . . . , are independent and identically distributed, and that Yn, as well as

Xn, is non-negative. The renewal reward process

Y(t) =

N(t)∑

n=1

Yn

is the total reward earned by time t.

Theorem B.1 (Renewal reward theorem) If both EXn and EYn are finite,

then

lim
t→∞

Y(t)

t

w.p.1
=
EYn

EXn

= lim
t→∞
E

Y(t)

t
.

Remark B.2 In some applications, the reward may be earned over the

course of the cycle, rather than at the end. Provided the partial reward

earned over any interval is non-negative, the theorem still holds. The the-

orem also holds if the initial pair (X1, Y1) has a different distribution from

later pairs, provided its components have finite mean. For example, if the

system under study is a Markov process with an equilibrium distribution,

the system might start in equilibrium.

The reader will note the similarity of the “with probability 1” part of the

theorem to the ergodic property of an equilibrium distribution for a Markov

process: both results are consequences of the strong law of large numbers.

204
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Let’s prove just this part of the renewal reward theorem (the “expectation”

part needs a little more renewal theory).

Proof (of the w. p. 1 part) Write (X, Y) for a typical pair (Xn, Yn); we allow

(X1, Y1) to have a different distribution. With probability 1, N(t) → ∞ as

t → ∞, since the Xs have finite mean and are therefore proper random

variables. Now
N(t)∑

n=1

Xn ≤ t <

N(t)+1∑

n=1

Xn

by the definition of N(t), and so

∑N(t)

n=1
Xn

N(t)
︸   ︷︷   ︸

→EX

≤ t

N(t)
<

∑N(t)+1

n=1
Xn

N(t) + 1
︸      ︷︷      ︸

→EX

· N(t) + 1

N(t)
︸    ︷︷    ︸

→1

where the convergences indicated are with probability 1. Thus t/N(t) →
EX with probability 1, and so N(t)/t → 1/EX with probability 1. But

N(t)∑

n=1

Yn ≤ Y(t) ≤
N(t)+1∑

n=1

Yn,

and so
∑N(t)

n=1
Yn

N(t)
︸   ︷︷   ︸

→EY

· N(t)

t
︸︷︷︸

→1/EX

≤ Y(t)

t
≤

∑N(t)+1

n=1
Yn

N(t) + 1
︸      ︷︷      ︸

→EY

· N(t) + 1

N(t)
︸    ︷︷    ︸

→1

· N(t)

t
︸︷︷︸

→1/EX

,

and thus Y(t)/t → EY/EX with probability 1. �

To deduce Little’s law in Section 2.5, we needed to make three applica-

tions of the renewal reward theorem. Consider first a renewal reward pro-

cess in which each customer generates unit reward per unit of time it spends

in the system. Then we used this process, together with the above theorem,

to define L in terms of the mean rewards earned over, and the mean length

of, a regenerative cycle. Our definition of the mean arrival rate λ used a

different reward structure, in which each customer generates unit reward

when it enters the system. Finally, to define W we construct a discrete time

renewal process, as follows. Observe the number of customers in the sys-

tem at the time of each customer arrival and of each customer departure.

The first customer to enter the system following a regeneration point of the

system marks a regeneration point on this discrete time scale. If each cus-

tomer generates a reward on leaving the system equal to its time spent in
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the system, we define W in terms of the mean reward earned over, and the

mean length of, a regenerative cycle on the discrete time scale.



Appendix C

Lagrange multipliers

Let P(b) be the optimization problem

minimize f (x)

subject to h(x) = b

over x ∈ X.

Let X(b) = {x ∈ X : h(x) = b}. Say that x is feasible for P(b) if x ∈ X(b).

Define the Lagrangian

L(x; y) = f (x) + yT (b − h(x)).

Typically X ⊂ Rn, h : Rn → Rm, with b, y ∈ Rm. The components of y are

called Lagrange multipliers.

Theorem C.1 (Lagrange sufficiency theorem) If x̄ and ȳ exist such that x̄

is feasible for P(b) and

L(x̄; ȳ) ≤ L(x; ȳ), ∀x ∈ X,

then x̄ is optimal for P(b).

Proof For all x ∈ X(b) and y we have

f (x) = f (x) + yT (b − h(x)) = L(x; y).

Now x̄ ∈ X(b) ⊂ X, and thus

f (x̄) = L(x̄; ȳ) ≤ L(x; ȳ) = f (x), ∀x ∈ X(b).

�

Section 2.7 gives an example of the use of a Lagrange multiplier, and of

the application of the above Theorem.

Let

φ(b) = inf
x∈X(b)

f (x) and g(y) = inf
x∈X

L(x; y).

207
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Then, for all y,

φ(b) = inf
x∈X(b)

L(x; y) ≥ inf
x∈X

L(x; y) = g(y). (C.1)

Let Y = {y : g(y) > −∞}. From inequality (C.1), we immediately have the

following.

Theorem C.2 (Weak duality theorem)

inf
x∈X(b)

f (x) ≥ sup
y∈Y

g(y).

The left-hand side of this inequality, that is P(b), is called the primal

problem, and the right-hand side is called the dual problem. The Lagrange

multipliers y appearing in the dual problem are also known as dual vari-

ables. In general, the inequality in Theorem C.2 may be strict: in this case

there is no ȳ that allows the Lagrange sufficiency theorem to be applied.

Say that the strong Lagrangian principle holds for P(b) if there exists ȳ

such that

φ(b) = inf
x∈X

L(x; ȳ);

equality then holds in Theorem C.2, from (C.1), and we say there is strong

duality.

What are sufficient conditions for the strong Lagrangian principle to

hold? We’ll state, but not prove, some sufficient conditions that are satisfied

for the various optimization problems we have seen in earlier chapters (for

more, see Whittle (1971); Boyd and Vandenberghe (2004)).

Theorem C.3 (Supporting hyperplane theorem) Suppose φ is convex and

b lies in the interior of the set of points where φ is finite. Then there exists

a (non-vertical) supporting hyperplane to φ at b.

Theorem C.4 The following are equivalent for the problem P(b):

• there exists a (non-vertical) supporting hyperplane to φ at b;

• the strong Lagrangian principle holds.

Corollary C.5 If the strong Lagrangian principle holds, and if φ(·) is

differentiable at b, then ȳ = φ′(b).

Remark C.6 The optimal value achieved in problem P(b) is φ(b), and

thus Corollary C.5 shows that the Lagrange multipliers ȳ measure the sen-

sitivity of the optimal value to changes in the constraint vector b. For this

reason, Lagrange multipliers are sometimes called shadow prices.
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Sometimes our constraints are of the form h(x) ≤ b rather than h(x) = b.

In this case, we can write the problem in the form P(b) as

minimize f (x)

subject to h(x) + z = b (C.2)

over x ∈ X, z ≥ 0,

where z is a vector of slack variables. Note that x, z now replaces x, and we

look to minimize

L(x, z; y) = f (x) + yT (b − h(x) − z)

over x ∈ X and z ≥ 0. For this minimization to give a finite value, it is

necessary that y ≥ 0, which is thus a constraint on the feasible region Y of

the dual problem; and given this, any minimizing z satisfies yT z = 0, a con-

dition termed complementary slackness. Section 3.4 uses this formulation.

Theorem C.7 For a problem P(b) of the form (C.2), if X is a convex set,

and f and h are convex, then φ is convex.

Thus, if X is a convex set, f and h are convex functions, and b lies in the

interior of the set of points where φ is finite, we conclude that the strong

Lagrangian principle holds.



Appendix D

Foster–Lyapunov criteria

Our interest here is to be able to prove that certain Markov chains are pos-

itive recurrent without explicitly deriving the equilibrium distribution for

them. We borrow an idea from the analysis of ordinary differential equa-

tions.

In Section 7.3, we studied the long-term behaviour of the trajectories

of systems of ordinary differential equations. We were able to establish

convergence without explicitly computing the trajectories themselves by

exhibiting a Lyapunov function, i.e. a scalar function of the state of the

system that was monotone in time.

A similar argument works for Markov chains. Consider an irreducible

countable state space Markov chain (Xn)n≥0. Analogous to the differential

equation case, a Lyapunov function for a Markov chain is a function of the

state X whose expectation is monotone in time: E[L(X(n + 1)) | X(n)] ≤
L(X(n)). However, as we noted in Chapter 5 (Remark 5.2), a simple drift

condition is not enough to show positive recurrence; we need some further

constraints bounding the upward jumps of L.

Proposition D.1 (Foster–Lyapunov stability criterion for Markov chains)

Let (X(n))n≥0 be an irreducible Markov chain with state space S and tran-

sition matrix P = (p(i, j)). Suppose L : S → R+ is a function such that, for

some constants ǫ > 0 and b, some finite exception set K ⊂ S, and all i ∈ S,

E[L(X(n + 1)) − L(X(n)) | X(n) = i] ≤





−ǫ, i < K,

b − ǫ, i ∈ K.

Then the expected return time to K is finite, and X is a positive recurrent

Markov chain.

Proof Let τ = min{n ≥ 1 : X(n) ∈ K} be the first time after t = 0 of

entering the exception set. We show that E[τ | X(0) = i] is finite for all

i ∈ S.

210
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Consider the inequality

E[L(X(t + 1)) | X(t)] + ǫ ≤ L(X(t)) + bI{X(t) ∈ K},

which holds for all times t. Add this up over all t : 0 ≤ t ≤ τ − 1 and take

expectations to obtain

τ∑

t=1

E[L(X(t))] + ǫE[τ] ≤
τ−1∑

t=0

E[L(X(t))] + b. (D.1)

We would like to cancel like terms in the sums to get a bound on E[τ], but

the sums may be infinite. We get around this difficulty as follows. Let τn be

the first time when L(X(t)) ≥ n, and let

τn = min(τ, n, τn).

Then we have

τn∑

t=1

E[L(X(t))] + ǫE[τn] ≤
τn−1∑

t=0

E[L(X(t))] + b, (D.2)

and here everything is finite, so we may indeed cancel like terms:

ǫE[τn] ≤ L(X(0)) − L(X(τn)) + b ≤ L(X(0)) + b. (D.3)

Increasing n → ∞ will increase τn → ∞, hence τn → τ. Monotone

convergence now implies

E[τ] ≤ L(X(0)) + b

ǫ
.

We have thus shown that the mean return time to the exception set K is

finite. This implies (and is equivalent to) positive recurrence (Asmussen

(2003) lemma I.3.10). �

Remark D.2 This technique for proving stability of Markov chains was

introduced in Foster (1953). Many variants of the Foster–Lyapunov criteria

exist; this version has been adapted from Hajek (2006).

Often we want to work with (continuous time) Markov processes, rather

than (discrete time) Markov chains. The Foster–Lyapunov stability crite-

rion is very similar, once we have defined the drift appropriately. Looking
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over a small time interval of length δ, we have

E[L(X(t + δ)) − L(X(t)) | X(t) = i]

δ

=
∑

j

P(X(t + δ) = j | X(t) = i))

δ
︸                           ︷︷                           ︸

→q(i, j)

(L( j) − L(i))

as δ → 0, where (q(i, j)) is the matrix of transition rates for the Markov

process. Thus, we expect the drift condition for Markov processes to use

the quantity
∑

j q(i, j)(L( j) − L(i)).

Proposition D.3 (Foster–Lyapunov stability criteria for Markov processes)

Let (X(t))t≥0 be a (time-homogeneous, irreducible, non-explosive, conser-

vative) continuous time Markov process with countable state space S and

matrix of transition rates (q(i, j)). Suppose L : S → R+ is a function such

that, for some constants ǫ > 0 and b, some finite exception set K ⊂ S, and

all i ∈ S,

∑

j

q(i, j)(L( j) − L(i)) ≤





−ǫ, i < K,

b − ǫ, i ∈ K.
(D.4)

Then the expected return time to K is finite, and X is positive recurrent.

Proof Let XJ be the jump chain of X. This is the Markov chain obtained

by looking at X just after it has jumped to a new state. Recall, from Chapter

1, that the transition probabilities of the jump chain are p(i, j) = q(i, j)/q(i),

where q(i) =
∑

j q(i, j). Let N = min{n ≥ 1 : XJ(n) ∈ K}, and let τ be the

time of the Nth jump. Equivalently, τ is the first time after leaving state

X(0) that the process X(t) is in the set K.

Now, we can rewrite the condition (D.4) as

∑

j

p(i, j)(L( j) − L(i)) ≤





−ǫ̃(i) = −ǫq(i)−1, i < K,

b̃(i) − ǫ̃(i) = (b − ǫ)q(i)−1, i ∈ K.

The argument for discrete time chains gives

E





N−1∑

n=0

ǫ̃(XJ(n))



 ≤ L(X(0)) + b̃(X(0)).

Recall that q(i)−1 is the expected time it takes the Markov process X to

jump from state i, so the above inequality can be rewritten as

ǫE[τ] ≤ L(X(0)) + b̃(X(0)),
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and hence E[τ] < ∞. A continuous time version of (Asmussen (2003)

lemma I.3.10) then implies that X is positive recurrent. �

Foster–Lyapunov criteria provide a powerful technique for showing pos-

itive recurrence of Markov chains, because constructing a Lyapunov func-

tion is often easier than constructing an explicit, summable equilibrium dis-

tribution. However, verifying the conditions of the criteria can be a lengthy

process. An example computation from Section 7.7.8 appears in Exam-

ple D.4 and Exercise D.1.

The question of determining when queueing systems are stable is an

active area of research. Lyapunov functions offer one technique, but they

come with limitations, both because of the Markovian assumptions re-

quired, and because writing down an explicit Lyapunov function can be

tricky – see Exercise D.3. One commonly adapted approach involves con-

structing fluid limits, which describe the limiting trajectories of the system

under a certain rescaling. Analyzing properties of these trajectories is often

simpler than constructing an explicit Lyapunov function, and can also be

used to show positive recurrence. To read about this technique, see Bram-

son (2006).

Example D.4 (MaxWeight-α) Recall the model of a switched network

running the MaxWeight-α algorithm. There is a set of queues indexed by

R. Packets arrive into queues as independent Poisson processes with rates

λr. Due to constraints on simultaneous activation of multiple queues, at

each discrete time slot there is a finite set S of possible schedules, only

one of which can be chosen. A schedule σ is a vector of non-negative

integers (σr)r∈R, which describes the number of packets to be served from

each queue. (If qr < σr, i.e. there aren’t enough packets in queue r, the

policy will serve all the packets in queue r.) The MaxWeight-α policy will,

at every time slot, pick a schedule σ that solves

maximize
∑

r∈R
σrqr(t)

α

subject to σ ∈ S.

Note that this is a Markovian system, since the scheduling decision depends

only on the current state of the system. We would like to know for what

arrival rate vectors λ the Markov chain is positive recurrent. Theorem 7.13

asserts that this is true for all λ in the interior of the admissible region Λ,
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given by

Λ =





λ ≥ 0 : ∃cσ ≥ 0, σ ∈ S,

∑

σ

cσ = 1 such that λ ≤
∑

σ

cσσ





.

In our sketch of the proof of this result, we considered the Lyapunov

function

L(q) =
∑ qα+1

r

α + 1
.

In our analysis in Chapter 7, we approximated its true drift by a quantity

that was easier to work with; see (7.14). Let us now show rigorously that

this function L satisfies the conditions of Proposition D.1.

We will show that the drift of L(q(t)) can be bounded as follows:

E[L(q(t + 1)) − L(q(t)) | q(t)] ≤
∑

r

qr(t)
αE[qr(t + 1) − qr(t) | qr(t)]

︸                                       ︷︷                                       ︸

main term

+ δ
∑

r

qr(t)
α +

∑

r

br

︸                  ︷︷                  ︸

error

,

(D.5)

where we can take constants δr > 0 to be arbitrarily small, and then pick

constants br to be sufficiently large. The main term can be bounded above

by −ǫ‖q(t)‖r as in Exercise 7.18, for some ǫ > 0. Clearly, if δr are small

enough, the main term will dominate for large enough queues. Thus, we

can pick a constant K > 0 for which the conditions of Proposition D.1 are

satisfied.

It remains to show the bound (D.5). You will do this in Exercise D.1.

Exercises

Exercise D.1 Write E[qr(t + 1)α+1 − qr(t)
α+1 | q(t)] as

qr(t)
α+1E









(

1 +
qr(t + 1) − qr(t)

qr(t)

)α+1

− 1



 | q(t)



 .

The (random) increment |qr(t + 1) − qr(t)| is bounded above, using the

maximum of a Poisson random variable of rate λr (the arrivals) and the

finite set of values σr (the services). Call this maximum Yr, and note that

Yr is independent of qr(t).
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(1) Show that we can bound the drift above by

qr(t)
α+1E









(

1 +
Yr

qr(t)

)α+1

− 1



 | qr(t)



 .

(2) Let Kr be a large constant, let δ > 0 be small, and suppose qr(t) > Kr.

By splitting the expectation (over Y) into the cases of Y > δKr and

Y ≤ δKr, show that

E









(

1 +
Yr

qr(t)

)α+1

− 1



 | qr(t)





≤
∣
∣
∣(1 + δ)α+1 − 1

∣
∣
∣ + E





∣
∣
∣
∣
∣
∣
∣

(

1 +
Yr

Kr

)α+1
∣
∣
∣
∣
∣
∣
∣

+ 1 |Yr > δKr



 P(Yr > δKr).

(3) Show that all moments of Yr are finite. Conclude that the second term

tends to zero as Kr → ∞.

(4) If qr(t) ≤ Kr, show that the right-hand side is bounded by a constant br

(which may depend on Kr).

(5) Show that

E

[

1

α + 1

(

qr(t + 1)α+1 − qr(t)
α+1

)

| q(t)

]

≤ qr(t)
αE[qr(t + 1) − qr(t) | qr(t)] + 2δ

∑

r

qr(t)
α +

∑

r

br,

provided δ is chosen small enough, then Kr large enough, then br large

enough.

Exercise D.2 Perform a similar analysis to that in Exercise D.1 for the

α-fair allocation of Section 8.3. The Lyapunov function is defined in the

proof of Theorem 8.2.

Exercise D.3 In this exercise, we revisit the backlog estimation scheme

considered in Section 5.2, and show that it is positive recurrent for ν < e−1

and a choice of parameters (a, b, c) = (2 − e, 0, 1). Finding the Lyapunov

function is quite tricky here; the suggestion below is adapted from (Hajek

(2006) proof of prop. 4.2.1).

Recall that κν < 1 was defined as the limiting value of κ(t) = n(t)/s(t)

for a trajectory of the system of differential equations approximating the

Markov chain (N(t), S (t)) (see equations (5.3)). To construct the Lyapunov

function, we observe that for the differential equation either n(t) ≈ κνs(t),
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and then n(t) is decreasing, or else the deviation |n(t) − κνs(t)| tends to de-

crease. Thus, the Lyapunov function below includes contributions from

both of those quantities.

Define

L(N, S ) = N + φ(|κνS − N |), φ(u) =






u2/M, 0 ≤ u ≤ M2,

M(2u − M2), u > M2,

(D.6)

for some sufficiently large constant M.

Show that L(n(t), s(t)) is monotonic when (n(t), s(t)) solve (5.3). Then

use the techniques in this appendix to argue that L satisfies the conditions

of the Foster–Lyapunov criteria for the Markov chain (Nt, S t).
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