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Exercises

1. Let x1, x2, . . . , xn be positive real numbers. Then the geometric mean lies between the
harmonic mean and the arithmetic mean:
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The second inequality is the AM-GM inequality: establish the first inequality.

2. Let X be a positive random variable taking only finitely many values. Show that

E

(

1

X

)

≥ 1

EX
,

and that the inequality is strict unless P{X = EX} = 1.

3. Let X be a random variable for which EX = µ and E(X − µ)4 = β4. Prove that

P{|X − µ| ≥ t} ≤ β4

t4
.

4. How large a random sample should be taken from a distribution in order for the probability
to be at least 0.99 that the sample mean will be within two standard deviations of the mean of the
distribution? Use Chebychev’s inequality to determine a sample size that will be sufficient, whatever
the distribution.

5. In a sequence of Bernoulli trials, X is the number of trials up to and including the ath success.
Show that

P{X = r} =

(

r − 1

a − 1

)

paqr−a, r = a, a + 1, . . . .

Verify that the probability generating function for this distribution is pata(1 − qt)−a. Show that
EX = a/p and V arX = aq/p2. Show how X can be represented as the sum of a independent
random variables, all with the same distribution. Use this representation to derive again the mean
and variance of X.

6. For a random variable X with mean µ and variance σ2 define the function V (x) = E(X−x)2.
Express the random variable V (X) in terms of µ, σ2 and X, and hence show that σ2 = 1

2E(V (X)).

7. Let N be a non-negative integer-valued random variable with mean µ1 and variance σ2
1 ,

and let X1, X2, . . . be identically distributed random variables, each with mean µ2 and variance σ2
2 ;

furthermore, assume that N, X1, X2, . . . are independent. Calculate the mean and variance of the
random variable SN = X1 + · · · + XN .

8. At time 0, a blood culture starts with one red cell. At the end of one minute, the red cell dies
and is replaced by one of the following combinations with probabilities as indicated:

2 red cells 1

4 ; 1 red, 1 white 2

3 ; 2 white 1

12 .

Each red cell lives for one minute and gives birth to offspring in the same way as the parent cell.
Each white cell lives for one minute and dies without reproducing. Assume the individual cells behave
independently.
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(a) At time n+ 1

2 minutes after the culture began, what is the probability that no white cells have
yet appeared?

(b) What is the probability that the entire culture dies out eventually?

9. (a) A mature individual produces offspring according to the probability-genera- ting function
F (s). Suppose we start with a population of k immature individuals, each of which grows to maturity
with probability p and then reproduces, independently of the other individuals. Find the probability
generating function of the number of (immature) individuals at the next generation.

(b) Find the probability generating function of the number of mature individuals at the next
generation, given that there are k mature individuals in the parent generation.

10. Show that the distributions in (a) and (b) of (question 9) have the same mean, but not
necessarily the same variance.

11. A slot machine operates so that at the first turn the probability for the player to win is 1

2 .
Thereafter the probability for the player to win is 1

2 if he lost at the last turn, but is p(< 1

2 ) if he won
at the last turn. If un is the probability that the player wins at the nth turn, show that, provided
n > 1,

un + ( 1

2 − p)un−1 = 1

2 .

Observe that this equation also holds for n = 1, if u0 is suitably defined. Solve the equation, showing
that

un =
1 + (−1)n−1( 1

2 − p)n

3 − 2p
.

12. A fair coin is tossed n times. Let Un be the probability that the sequence of tosses never has
‘head’ followed by ‘head’. Show that

Un = 1

2Un−1 + 1

4Un−2 .

Find Un, using the condition U0 = U1 = 1. Check that the value for U2 is correct.

Problems

13. Let b1, b2, . . . , bn be a rearrangement of the positive real numbers a1, a2, . . . , an. Prove that
n
∑

i=1

ai

bi

≥ n .

14. Let F (s) = 1 − p(1 − s)β , where p and β are constants and 0 < p < 1, 0 < β < 1. Prove that
F (s) is a probability generating function and that its iterates are

Fn(s) = 1 − p1+β...+βn−1

(1 − s)βn

for n = 1, 2, . . . .

Find the mean m of the associated distribution and the extinction probability, q = limn→∞ Fn(0),
for a branching process with offspring distribution determined by F .

15. A particle moves at each step two units in the positive direction, with probability p, or one
unit in the negative direction, with probability q = 1 − p. If the starting position is z > 0, find the
probability az that the particle will ever reach the origin. Deduce that if a fair coin is tossed repeatedly
the probability that the number of heads ever exceeds twice the number of tails is (

√
5 − 1)/2.

16. Let (Xk) be a sequence of independent, identically distributed random variables, each with
mean µ and variance σ2. Show that
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Xk. Prove that, if E(X1 − µ)4 < ∞, then for every ε > 0
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