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Exercises

1. Let x1, x2, . . . , xn be positive real numbers. Then the geometric mean lies between the harmonic
mean and the arithmetic mean:(

1

n

n∑
i=1

1

xi

)−1
≤

(
n∏
i=1

xi

) 1
n

≤ 1

n

n∑
i=1

xi.

The second inequality is the AM–GM inequality: establish the first inequality.

2. Let X be a positive random variable taking only finitely many values. Show that

E

(
1

X

)
≥ 1

EX

and that the inequality is strict unless P{X = EX} = 1.

3. Let X be a random variable for which EX = µ and E(X − µ)4 = β4. Prove that for t > 0,

P{|X − µ| ≥ t} ≤ β4
t4
.

4. Consider a random sample taken from a distribution. Use Chebyshev’s inequality to determine a
sample size that will be sufficient, whatever the distribution, for the probability to be at least 0.99
that the sample mean will be within two standard deviations of the mean of the distribution.

5. In a sequence of Bernoulli trials with success probability p ∈ (0, 1), X is the number of trials up
to and including the ath success. Show that

P{X = r} =

(
r − 1

a− 1

)
paqr−a, r = a, a+ 1, . . . .

Verify that the probability generating function for this distribution is pata(1 − qt)−a (for |t| < 1/q).
Show that EX = a/p and Var(X) = aq/p2. Show how X can be represented as the sum of a
independent random variables, all with the same distribution. Use this representation to derive again
the mean and variance of X.

6. For a random variable X with mean µ and variance σ2 define the function

V (x) = E(X − x)2 .

Express the random variable V (X) in terms of µ, σ2 and X, and hence show that

σ2 = 1
2
E(V (X)) .
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7. Suppose X is a real-valued random variable and f : R→ R and g : R→ R are two nondecreasing
functions. Prove the ‘Chebyshev order inequality’:

E[f(X)]E[g(X)] ≤ E[f(X)g(X)].

[Hint. Consider [f(X1)− f(X2)][g(X1)− g(X2)] where X1 and X2 are i.i.d.]

8. Let N be a non-negative integer-valued random variable with mean µ1 and variance σ2
1, and let

X1, X2, . . . be identically distributed random variables, each with mean µ2 and variance σ2
2; further-

more, assume that N,X1, X2, . . . are independent. Calculate the mean and variance of the random
variable SN = X1 + · · ·+XN .

9. At time 0, a blood culture starts with one red cell. At the end of one minute, the red cell dies and
is replaced by one of the following combinations with probabilities as indicated:

2 red cells 1
4
; 1 red, 1 white 2

3
; 2 white 1

12
.

Each red cell lives for one minute and gives birth to offspring in the same way as the parent cell.
Each white cell lives for one minute and dies without reproducing. Assume the individual cells behave
independently.

(a) At time n+ 1
2

minutes after the culture began, what is the probability that no white cells have
yet appeared?

(b) What is the probability that the entire culture dies out eventually?

10. (a) A mature individual produces offspring according to the probability-generating function F (s).
Suppose we start with a population of k immature individuals, each of which grows to maturity with
probability p and then reproduces, independently of the other individuals. Find the probability
generating function of the number of (immature) individuals at the next generation.

(b) Find the probability generating function of the number of mature individuals at the next genera-
tion, given that there are k mature individuals in the parent generation.

Show that the distributions in (a) and (b) have the same mean, but not necessarily the same variance.

11. A slot machine operates so that at the first turn the probability for the player to win is 1
2
.

Thereafter the probability for the player to win is 1
2

if he lost at the last turn, but is p(< 1
2
) if he won

at the last turn. If un is the probability that the player wins at the nth turn, show that, provided
n > 1,

un + (1
2
− p)un−1 = 1

2
.

Observe that this equation also holds for n = 1, if u0 is suitably defined. Solve the equation, showing
that

un =
1 + (−1)n−1(1

2
− p)n

3− 2p
.

12. A fair coin is tossed n times. Let Un be the probability that the sequence of tosses never has
‘head’ followed by ‘head’. Show that

Un = 1
2
Un−1 + 1

4
Un−2 .

Find Un, using the condition U0 = U1 = 1. Check that the value for U2 is correct.
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Problems

Some of these are more challenging. I hope you will learn and have fun by attempting them.

13. Let b1, b2, . . . , bn be a rearrangement of the positive real numbers a1, a2, . . . , an. Prove that

n∑
i=1

ai
bi
≥ n .

14. Let F (s) = 1 − p(1 − s)β, where p and β are constants and 0 < p < 1, 0 < β < 1. Prove that
F (s) is a probability generating function and that its iterates are

Fn(s) = 1− p1+β+···+βn−1

(1− s)βn

for n = 1, 2, . . . .

Find the mean m of the associated distribution and the extinction probability, q = limn→∞ Fn(0), for
a branching process with offspring distribution determined by F .

15. Let (Xn)n≥0 be a branching process such that X0 = 1, EX1 ≡ µ. If Yn = X0 + X1 + · · · + Xn,
and for 0 ≤ s ≤ 1

Ψn(s) ≡ EsYn ,

prove that
Ψn+1(s) = sφ(Ψn(s)) ,

where φ(s) ≡ EsX1 . Deduce that, if Y =
∑

n≥0Xn, then Ψ(s) ≡ EsY satisfies

Ψ(s) = sφ(Ψ(s)), 0 ≤ s ≤ 1 ,

where s∞ ≡ 0. If µ < 1, prove that EY = (1− µ)−1.

16. A particle moves at each step two units in the positive direction, with probability p, or one
unit in the negative direction, with probability q = 1 − p. If the starting position is z > 0, find the
probability az that the particle will ever reach the origin. Deduce that if a fair coin is tossed repeatedly
the probability that the number of heads ever exceeds twice the number of tails is (

√
5− 1)/2.

17. Let (Xk) be a sequence of independent, identically distributed random variables, each with mean
µ and variance σ2. Show that

n∑
k=1

(Xk − X̄)2 =
n∑
k=1

(Xk − µ)2 − n(X̄ − µ)2 ,

where X̄ = 1
n

∑n
1 Xk. Prove that, if E(X1 − µ)4 <∞, then for every ε > 0

P

{∣∣∣∣∣ 1n
n∑
k=1

(Xk − X̄)2 − σ2

∣∣∣∣∣ > ε

}
→ 0

as n→∞.
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Puzzles

These are for enthusiasts, or to discuss in supervision when you have done everything else.

18. (a) Show that it is impossible to load a die so that the sum of two rolls of this die will take all
values {2, 3, . . . , 12} with equal probability.

(b) Could you load the die so that the totals {2, 3, 4, 5, 6, 7} are obtained with equal probabilities?

(c) Can you construct a distribution whose support is the nonnegative integers and is such that if X1

and X2 are independent r.v.s with this distribution then X1 + X2 has a geometric distribution with
parameter p, i.e. P (X1 +X2 = i) = p(1− p)i. i = 0, 1, . . . ?

[Hint. (1− x)−1/2 = 1 + 1
2
x+ 3

8
x2 + 5

16
x3 + 35

128
x4 + 63

256
x5 + 231

1024
x6 + · · · .]

19. £X is placed in an envelope, according to the probability distribution P (X = 2n) = (1/3)(2/3)n,
n = 0, 1, 2, . . . . In a second identical envelope is placed £Y , where Y = 2X. You select an envelope
at random and open it. Let Ei be the event you find it contains £2i, where i > 0. You now know
that either (X, Y ) = (2i, 2i+1) or (X, Y ) = (2i−1, 2i).

Show that P ((X, Y ) = (2i, 2i+1) | Ei) = 2/5.

Show that, conditional on Ei, the expected amount of money in the unopened envelope is greater
than the amount of money in the opened envelope. Is this surprising?

Having made these calculations, you may like to look at
http://en.wikipedia.org/wiki/Two_envelopes_problem and
http://en.wikipedia.org/wiki/St._Petersburg_paradox.
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