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TNVARTANT MEASURES AND THE Q-MATRIX
F.P. Kelly

Abstract
This paper provides a necesgary and sufficient condition for a
measure to be invariant for a Markov process. The condition is expressed in

terms of the g-matrix assumed to generate the process.

L. Introduction

Let Q = (qij' i, 3 EdS) be a stable, conservative, regular and
irreducible g-matrix over a countable state space 5, and let
P{t) = (pij(t), i,j € 8) be the matrix of transition probabilities of the
Markov process determined by ©. If{the Markov process determined by} @

is recurrent then the relations

= 0
Ximiqij
Jes L)
m, > O
3
have a solution m = (mi,i € 5), unique up to constant multiples. call m
an invariant measure for P{t) if
t) = t > 0, J .
Zmipij() mj r J €8

When @ is positive recurrent it is known (Doob [5], Kendall and Reuter
[[13]} that a solution m +to (1) is an invariant measure for P(t}. This
ccnclusion also holds when € is null recurrent, but may not when ¢ is
transient. When ©§ is transient the set of solutions to (1) may be empty
or it may contain linearly independent elements: we obtain a necessary and
sufficient condition for a given element of the set to be an invariant measure

for P(t).
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The basic properties of Markov processes which will ke needed
are taken from Kendall 117 and are briefly stated in Section 2: they can
also be found in [37, [63, [1cl, [12], [13] and [17]. Section 3 contains the
main result of éhe present paper. Here it is shown that a solution to (1} is
an invariant measure for P(t) if and only if a time-reversed g-matrix .Q,
defined in terms of m and ¢, is regular. It is convenient to obtain the
result assuming only that Q0 is stable and conservative, with P(t) the
minimal (Feller) transition matrix determined by Q. The methed of preoof is
a straightforward generalization of an argument used by Kendall [12] in the
case ﬁhere 0 is symmetrically reversible. Section 4 is devoted to a cycle
criterion relating Q and é, modelled on the criteria discussed by
Kolmegorov {141, Reich [16], Kendall [10] and whittle [197].

My interest in the topic of this paper arcse from an observatiocn
in an applied probability context which is perhaps worth mentioning here. A
technique,useful in the study of certain forms of gueueing network involves
solving relations (1) for each of the g-matrices.corresponding to the
individual queues of the network operating in isclation and then combining
these soluticns appropriétely to obtain a solution to relatiens (1) for the
g-matrix corresponding.to the network [9]. Now the Markow process represent-—

ing the network may well be positive.recurrent even when some or all of the

processes representing individual queunes fail to be recurrent or even regular.

The solution for the network will then have a straightforward interpretation

as an invariant measure and it is of interest to ask when the individual

solutions from which it has been constructed have interpretations as invariant

measures for the individual queues,.

2. Preliminaries

Suppese that we are given a stable, qonservative g-matrix, that

is a collection of real numbers Q = (qij,i,j ¢ 8) where § is a countable
set and
= #
qij 0 + il
Yoa, =4, ies (2)
71 i3 ii
A
- = < oo e 8
9i3 . t

A Markov process with transition rates @ can be constructed by the .standard
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method, due to Feller and roughly indicated as follows. Starting from state
i allew the process to stay there for a period exponentially distributed
with parameter a0 and then move the process to state j with probability

qij/qi; let the process remain in state j for a period exponentially

distributed with parameter qj, and so on. This construction defines a

Markov process (X(t), O < t < T) with initial state X{0) = i1 and with

stationary transition rates

_lim 1 ) o
99 7 too ¢ Pij 113
(3)
g, = 'lim 1
Lo BY Ry (8]

where

pij(t) =Pt < T, X(t) = j|xX(0) = i}

The terminal time T 1is the sum of the (random) sequence of exponentially
distributed holding times, and may well be finite. The process will then
have made infinitely many jumps in a finite time, and will have “"run out of
instructions". A necessary and sufficient conditien for T to be infinite

with probability one, whatever the initial state i, is that the equations

j
have nc non~trivial non-negative bounded solution, and in this case @ is
sald to be regular. -

Occasionally it requires some effort to show that a matrix @
is regular, but there are a number of sufficient conditicns. If (qi, ie s
is bounded above then @ is reqular. Call the sequence of states occupied
by the process {(X(t), 0 < £ « T) the jump chain, and call the sequence
(X(rd), r = 0,1,...,T/8]) the §-skeleton. These are both Markov chains
and recurrence of either of them implies recurrence of the Markovrprocess,
and hence regularity of Q.

From the construction of the process (X({t), O £t < T) it
follows that pij(t) is the limit of the non-decreasing sequence
(fij(t'n)' n=0,1,...) where fij(t,n) is the probability that the process

is in state j at time t after at mest n  Jjumps. Clearly




l4e

-q.t

f, . (t,Q) =6,, e J . (4)
13 1]

and the collection (fij(t,n)} can be generated using either the backward

integral recurrence

t
—qit . —qi(t—u)
£, {t,ntl) = §,.. e + ) q,. £ _.{unle du (5)
i3 ij X ik Tk
k#
or the forward integral recurrence
t
-q.t -g, {t-u) (8)
£, (t,n+l) =6 . e * + ] ff, (u,nq. e du
ij ij K#3 ik |
O
The transition probabilities P(£) = (Pij(t)' i,4 € 8) thus constructed
satisfy

¥ pij(t) =p{t < T[x(0) =i} =1
3

For each fixed t » O eguality holds in this relation for all i e 5 if
and only if @ is regular.

The matrix @ is irreducible if for each pair (i,3) of
distinct states there exists a finite sequence of states 1,k k. ,...,k , 3

172 i
satisfying

q. > 0 .

q., q B .
k k k
* 1 kl 2 r)

This is equivalent to the condition that for each pair (i,j} of distinct
states pij(t) >0 for t >0 ([10], proof of Thecrem IV (i); [3], Theorem
i8.4).

A collection of positive numbers m = (mi, i ¢ 8) is an invariant

measure for the transition probabilities P{t) if

Emipij(t):mj t>0, jes. 7

if ij =1 and @ is irreducible then the process is positive recurrent
(since its §-skeleton is) and the invariant probability distribution m has
an interpretation as either a stationafy or a limiting distribution. It also

has an ergodic interpretation: the ratio of the time spent in state i to
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that spent in state j over the interval [0,t] tends to mi/mj with
probability one as t + », If ij =» and @ is irreducible and the
process is recurrent then the measure m retains the ergodic interpretation.
In both these cases recurrence implies that @ is regular and the ergodic
interpretation shows that mw is esseﬁtially unigue.

The work of Derman [4] and Brown [ 2] provides an alternative
interpretation of an invariant measure m. This interpretation remains
available when § fails to be recurrent or even regular, and can be described
informally as follows. At time t = O place Ni particles at site i, i ¢ s,
where (Ni, i € 8) are independent randem variables and Ni has a Poisson
distribution with mean mi. From time + = 0O onwards allow particies to

move independently from site to site, each moving in accordance with a Markov

‘process constructed from the matrix Q. Then at any time t > O the number

of particles at site i, Ni(t), has a Poisson distribution with mean m
and (Ni(t), i € 8) are independent. Note that if @ is not regular then
it is possible for the Markov process describing a particle's motion to have
a finite terminal time - in this case the particle disappears from the set
of states S8 at the terminal time. It is quite possible that a g-matrix
might admit an invariant measure and yet not be regular: we shgll give an

example later.

3. The conditions for invariance

This section explores the connection between the relations (1) and

the invariance property (7). We begin with our main result.

Theorem., Let @ be a stable, conservative g-matrix and let m = (mi, ie 8}

be a collection of positive numbers., Then the following statements are
equivalent
(i) m is an invariant measure for the transition preobabilities P(t}
constructed from Q;

(ii} m satisfies

%miqij:O ies (8)

and the relations
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j e S (%)

1A

z m,
J ]
have no non-trivial nen-negative solutieon.
Proof. Suppose that m is an invariant measure. Then from equation (7)
p..(t) l—p,j(t)

1j - J i € 8
le mi . mj © ]
iz4

Relations {3) and Fatou's lemma thus imply

z m, ., “m. dq. jes (10)
i 1 1] J J
Define
~ mj
= i,j e 8 (11).
953 T, %1 o
i
Then
A _ - -
9 Bg T T ‘
and
Y4..<o0
s L
i 3

from inequality (1Q). Define aia by

- )
§ 9y F 9y 7O

and let

Iy = o) i e85 u{a}
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Then é = (g i, 3 e 5 v {3}) is a stable, conservative g-matrix on the

s d
ij N
state space S5 u {9}, Define (fij {t,n)) Dby the initial condition (4}

and the forward integral recurrence (6), and let

~ lim 7
€ = .
pij( } v fij {t,n) i, ¢ 8 u {3}
Clearly
m, £,.(£,00) =m, £, (,0) i,5 ¢8
i i3 i ‘

Assume for the moment the inductive hypothesis that

m, fij(t,n) = mj fji {t,n) i,i ¢ 8 {12}
for some n 2 0. Then from the backward integral recurrence ({5)

t

—qit —qi(t—u)
m, £, (t,n+tl) =m, § . e + ) m.q, . £ . {u,n)e du .
i i3 i ij \ i7ik kj
k#zi
(o]
But
mooq, fkj(u,n) =mody fkj{u,n)
= q . f
my Gy £y lwen)

from equation (11} and the inductive hypothecis (12). The definition of

Eji (t,ntl} by means of the forward integral recurrence (&) thus shows that

m, £, {t,n+l) = m, £.. (t,n+d) i,j e s.
h 1} J 11

The additional state d causes no difficulty, since Gy, 0. The inductive
i

hypothesis {12} is established, and so, on letting n tend to infinity,
m,p, (£) =m, p,. (t) i,j ¢s

The assumed invariance of m thus implies
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) p. (&) =1 (13)
ieg 4

and so
EDjB (t) = o jes

But (f,  (t,n), n = 0,1,...)
ja

{t} : thus

is a non-decreasing seguence whose limit is

Piy

£ (t,n) =0 ie 8
jo

and so, from the case n =1 of the recurrence (6},

Thus
a = ies
Lagy=o© ©
b

and so equations (8) follow from the definition (11}. The equality in
relation (13) implies that the stable conservative g-matrix (iij' i, 3 ¢ 8)
is regular, and sc the equations

oA v. ey, ies
jes Ll .
have no nen-trivial non-negative bounded solution. These equations can be

rewritten as

= €8
Z mj ¥ qji mn yl *
J
and the substitution zj = mj yj then shows that relations {9) can have

no non-trivial non-negative solution.
The converse is established similarly. Suppose that statement

{ii) holds. Once again define

=4

i7 ji
] i J

a :fq i, j €8 (14).

Then Q = (qij' i, j e 8

the hypothesis (8). The transition prohabilities P(t) = (éij(t)'i'j ¢ 8)

is stable, and is conservative also, by virtue of

constructed from O satisfy
i,3 ¢ 8 (15}

by ‘he inductive argument used earlier. Thus, summing over i, the ceollection
m,, 1 € §8) is an invariant measure if
X

t = 0, i e S

This is eguivalent to the regularity of é, which follows from the assumption

that relations (9) have nc non-trivial non-negative solution.

Tt is perhaps worth noting that the proof of the theorem makes
no use of the assumption that @ is conservative: the conclusions of the

theorem remain wvalid when the conservation cenditicn (2) is relaxed to

< - i € s
jzi 95 % T34 tE y

with the appropriately extended definition of the transition probabilities
p{t} ([6], Section 5.6). Note also that eguations {8} above imply that m
is subinvariant,

) L it) £ . t Q ' S
Z m, plj( ) mJ >0, 3 ¢ '

1

from relation {15).

If @ is transient equations (8) may not have a non-trivial
solution. A collection of positive numbers (mi, i € 8) satisfies equaticns
(8) if and only if (mi Uy i ¢ 5} 1is an invariant measure for the jump
chain associated with ¢, and the work of Harris [7] and Veetch [18]
provides a necessary and sufficient condition for the existence of such a

measure when ©Q 1is irreducible,

Call the matrix é defined by relaticn (14) the time-reverse
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of @ with respect to m. This terminclogy is suggested by the observation
that if {X{t), -» < t < «) is a stationary Markov process with g-matrix

0 and stationary distribution m thenl é is the g-matrix of the Markow
process {(X(-t}, -= < t < «). The particle system interpretation discussed
in the previcus section provides a further insight. If © and Q are
stable, conservative and regular then m will be an invariant measure for
both P{t} and ﬁ(t), and a stationary particle system constructed fro

m and © and then reversed in time will have the same distributional law
as a stationary particle system constructed from mw and é.

Suppose now that ¢ 1is stable and coﬁservative and that the
positive collection m = (mi, i ¢ 8) satisfies equations (8) but is not
necessarily invariant. Consider a particle system in which at time t 2 O
the number of particles at site 1 is Ni(t): as before suppose that
(Ni(O), i € 8) are independent random variables, Ni(O) Peoisson with mean
mo and that from time + = O onwards particles move independently from
site to site, each in accordance with a Markov process constructed from the
matrix Q. If é is not regular then (Ni(t), i e 8) will be a cellection
of independent Poisson random varisbles but ENi(t) may well be less than
m.. From the work of Reuter (1771, Section 5.3) it is possible to deduce

that relations (9} have a maximal non-negative solution 2z, and that
. -t
[ Lm op (0] e at =m, -z,
oly 3 J ]

For the particle system this implies that

EN,{8) =m, - 2
J 3

where 0 is an expcnential random variable with unit mean. The vector =z
thus indicates the extent to which the measure m is subinvariant.

We now illustrate the theorem with a simpie example.

Example 1 Take the state space § to be the integers % and let

= j = + 1
qij qi J 1

= -q 3=1

=0 ctherwise
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where q; >0 for all i € Z. The (essentially unique) soluticn to egua-

ticns (8) is

A soluticn to the equations Qv = y {using the usual matrix abbreviation)

must have the form

jHl 1
v. =y, T (L+gq, ) j>o0
30 *
._j 1 -1
=y, T (1 + q—i) j<o ,
i=1

and a, solution to the equations zQ = z mnust have the form

i
- -1 ~1,-1 .
zj Z, 9, qj -f (1 + a; ) 3> 0
i=1
- - T -1 .
= 7y 4 qj .n (1 + q_i) 31 <0
i=0
Thus if (and cnly if)
b gt < (16)
i=g *

there exists a non-trivial non-negative bounded solution to the equations

Oy = y. On the other hand if (and conly if}

§q,<m . (17

there exists a non-trivial non-negative sclution to the equaticns zQ = =z
which is bounded abowve by m.. When condition {16) fails and conditicn (17}
holds we have an example of a g-matrix which is not regular and vet admits

an invariant measure m. When condition (16} holds and condition (17) fails
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we have an example of a regular g-matrix which does not admit an invariant
measure, even though equations (8) admit a positive Solution.'Nofe that if
conditicns (16) and {17) both hold the sclution m to equations {8) is
summable, although the g-matrix is not regular. This possibility has been
pointed out by Miller [15 1

The second condition for invariance, that there exist no non-
trivial non-negative wector =z satisfying (9), should be compared with the
condition arising in the investigation by Reuter ([17], Secticn 6) of the
unigqueness of the solution to the forward equations asscclated with Q.
Reuter's condition is that there exist no non-trivial non-negative vector

z satisfying -

zZ, L. = 2, j e 8
Pz, a

In Example 1 the two conditions are eguivalent, but in general the relation-
ship does not appear to be this straightforwaxd. Note that Reuter's condition
is expressed solely in terms of the matrix ¢, whereas relations (9) invelve
both Q and m. When ¢ is transient there may exist linearly independent
positive solutions to eguations (8): some of these may be invariant measures

while others may not, as the next example illustrates.

Example 2 Let S = #Z and set

= A j =1+ 1
qij qi J 1
= -, j=1
+ {18)
= =4 -1
qu J L
=0 otherwise

where XA + 1w =1, A > u and qi > 0 for i € %. Consider the Markov

process constructed from this g-matrix. From the form of the jump chain it

is apparent that with probability one the process will
{-1,-2,...} for just a finite time. If these sections
are deleted the result is equivalent to reflecting the

the origin, and so the g-matrix (18) is regqular if and

remain in the set
of the sample path

Markov process at

only if the g-matrix
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corresponding to the reflected process is regular. Thus, from the analysis

of Reuter ([17], Section 8.4}, the g-matrix (1i8) is regular if and only if

Jal= = (19}.

NEL ! .
m, =] 9 ie2 (20)

and with this choice of m the matrix O defined by (14) is identical to
0. Thus m, given by expression (20), is an invariant measure for ¢ if

and only if condition {19) holds. Another solution to equations (8) is

m, = q, ieZ (21)

and with this choice of m the matrix ¢ 1is given by

iy M I=4d
= -q 3 =i
= Aqi 9 =1-1
=0 otherwise

This é is regular if and only if
0
-1
Z q . == (22)

and so condition (22) is necessary and sufficient for the measure {21) to

be invariant.

The methods cf this section provide an alternative procof of
results, stated in the next Corollary, which are of some use in applied

probabllity contexts. Part (i) 1s contained in, and part (ii) can be readily
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deduced from, Theorem 8 of Xendall and Reuter 713]; these statements also
follow from the work of Miller [15]. They differ from a number of more widely
available results in that the recurrence of @ is not required as a premise.
part (iii) is given for completeness but is harély surprising: when Q 1is
null recurrent relations (1) have an essentially unigue solution, gince the
jump chain is recurrent, and it is known that P(t) has an essentially

unigque invariant measuxe [11.

Corollary TLet Q be stable, conservative, regular and irreducible, and

suppese that m = (mi, i€ 8 is a collection of positive numbers satisfying

L 9,. =0 )
§ ™ qu ]

(i) If Z mi = 1 then Q is positive recurrent and m 1is the invariant
i

probability distributicon for P(t}.

(ii}y If E m, = then @ is null recurrent or transient.
i

(iii) If @ is null recurrent then m 1is the essentially unigue invariant

measure for P(t).

procf. Since @ is reqular m is an invariant measure for the stable,
conservative and irreducible matriz @ defined by relation (14). Thus n

is an invariant measure for the &-skeleton of the Markov process constructed

from @.

If zmi = 1 then this 6-skeleton is positive recurrent.. Thus
é is regular and sc¢ m is an invariant measure for @ also. Since Emi =1
the 6-skeleton of the Markov process constructed from @ is positive
recurrent, and hence so is é.

if Emi = « then the é-skeleton of the Markov process censtructed

from © is mull recurrent or transient. In either case

lim =~ \ .
e pji(t) =0 i, 3._76 s
where (ﬁji(t)) are the transition probabilities of the Markov process

constructed from 0. But these probabilities satisfy relation (15), and so
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lim

oo Py lEl =0 i, jes

Thus Q must be either null recurrent or transient.

The null recurrence of @ is equivalent to

p,.{t)dt = =,
JO 11

But, from relation (15},

f
—
3
e
"
o
it

p,, {t)dt
JO ii

Thus if ©Q is null recurrent then so is é, and this in turn implies that

¢ is regular and m 4is invariant for P(t).

4. A cycle criterion
Recall that a matrix ( is the time-reverse of the matrix Q

with respect to a collection of positive numbers (m,, i ¢ §) if
i A

m, . = m, q
3 Tk 1

& ir ke S8 (23).

kj
Say that O is a time-reverse of (¢ if there exists a collection of

positive numbers (mi, i ¢ 8} satisfying (23).

Theorem Let © and § be stable and conservative, and supposgse that Q is

irreducible. Then @ is a time-reverse of ¢ if and only if

q, g, el L = g . RN S
k] ik k k
ik1 Tkaikp 3 ik, krkr_1 i {24)

for each positive integer r and for all j,kl,kz,...,k ¢ 5. When this
r

condition holds the measure m determined up to scalar multiples by

m, g,, =m

j ]k quj ]:kCS

is an invariant measure for the transition probabilities p{t) constructed

from ©Q  if and only if é is regular.
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Proof. If é is a time-reverse of § then (24) follows immediately from
(23). Converselv suppose that (24} is satisfied. This condition and the
assumed irreducibility of ¢ imply that é is irreducible. Choose a base

state, labelled © say, from the state space 8. Set m, = 1 and define

I, 9 o --- 9
Rt o T (25)
J
4, q q.
k k.0
jkw kw w—1 1
where the path (4, k , k 4-+-+X.,0) 1is chosen s¢ that the denominator

w' Tw-1l 1!
in expression (25} is positive. By virtue of the cycle condition (24) mj

alzo satisfies

Ion I
v

. 1
mJ 12 (26)

P a . a
jhv hvhv~1 h,y

for any path (j,h ,h ,...,hl,O) chosen so that the denominator in
vy

-1
expressicn (26) is positive. Since Q is irreducible there is at least one

such path. The representation (26) together with the cycle condition (24)

then imply that every path (j,kw,kwg ,...,kl,o) which produces a positive

1
denominator in expression (25) defines the same value for mj.

We now show that mj is positive., Since ¢ 1is irreducible there
exists a cycle (j,kw,kw_l,.
denominator of expression {(25) and the numerator of expression (26) are

"’kl’o'hl'hz""’hv)/ such that both the

positive: the cycle condition (24} then implies that both the numerator of
expression (25} and the denominator of expression (26) are positive.
Now consider twe states 1i,j € 8, and suppose qij > 0. Then,

using the path {i,j,kw,kw ...k _,0}) to define m we have that

~1'""" 1

Similarly when aij > O expressicn {26} shows that
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If i = 7] then the choice k| = 3j in relation (24) implies qjj = é'j'
. J
Thus
mj qjk =y qkj ir kes , (27)
and so é is the time-reverse of ¢ with respect to m.

Since é is assumed conservative eguations (27} imply that m
satisfies m@ = 0, and so the final part of the theorem fcllows from the

results of the previous section. [3

The above method can be used to establish a similar cycle

criterion for discrete time Markov chains (ecf. [8], p.32).
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