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where advertisers adapt their bids smoothly over time, and prove convergence to the Nash equilibrium.
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1. INTRODUCTION
Ad-auctions lie at the heart of search markets, and provide a mechanism where adver-
tisers compete for their adverts to be shown to users of the search platform, by bidding
on search terms associated with queries. Successful adverts are allocated to different
positions on the search page (impressions), and if the user clicks on an ad, a payment
is made by the advertiser to the platform under the Pay-Per-Click model.

In current auctions, there is a fundamental information asymmetry between the
platform and an advertiser, in that the platform typically knows more than the ad-
vertiser about the searcher. Hence the platform can potentially choose prices and an
allocation that depends on the platform’s additional information. The advertiser has
to rely on more coarse-grained information, perhaps just the search terms of a query
together with a crude categorization of the user.

Neil Walton thanks The Netherlands Organization for Scientific Research (NWO) for funding through a
VENI fellowship.
Authors’ addresses: Frank Kelly, Statistical Laboratory, Centre for Mathematical Sciences, Wilberforce
Road, Cambridge, CB3 0WB, UK; Peter Key, Microsoft Research Cambridge, 21 Station Road, Cambridge
CB1 2FB, UK; Neil Walton, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0000-0000/2014/06-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

EC’14, June 8-12, 2014, Palo Alto, CA, Vol. X, No. X, Article X, Publication date: June 2014.



X:2 F. Kelly et al.

In this paper we develop a framework to address this information asymmetry di-
rectly. We use an optimization decomposition and a separation of time-scales to show
that it is possible to have the advertisers solve their individual utility maximization
problems and the platform solve an assignment problem is such as way that these dis-
tributed optimizations yield a solution which maximizes social welfare. Such a frame-
work is well known in the communication network community, where the phrase “Net-
work Utility Maximization” has been coined, but has only recently found its way into
Mechanism Design.

Randomness of search queries is an intrinsic aspect of our model. Much of the ex-
isting literature on Sponsored Search has needed to restrict attention to an isolated
instance of an auction (a single query) to make progress ([Varian 2007; Edelman et al.
2007]). Athey and Nekepolov [2012] introduce a specific distributional assumption
across the rank scores (weighted bids) to deal with randomness and provide a static
analysis, while others [Pin and Key 2011] assume that randomness arises both from
the number of bids in the auction and from randomness of the bids themselves.

Denote by pτil the click-through rate (CTR) to advertiser i if the query is of type τ and
her advert is shown in position l; we assume that the platform can predict or estimate
pτil, but advertiser i only receives aggregated feedback, namely the click-through rate
yi to its advert, averaged over time and over the distribution of queries. We model
advertisers as utility maximizers, who submit a bid λi and want to maximize their net
benefit, namely Ui(yi)− πiyi, where Ui is their private, concave, utility function and πi
the price they actually pay.

It is well known in the economic literature that market clearing prices that equate
to marginal utility will maximize aggregate utility. However, this does not guarantee
prices can be formulated and implemented on the time-scales relevant to sponsored
search: adverts must be assigned per impression and charged per click, while adver-
tisers maximize their long-run benefit. Further, the search space is vast, and the sup-
ply of search queries is unknown to all parties. But the contribution of our paper is
to show that in this sponsored search setting we can separate the welfare maximiza-
tion problem into relevant time-scales which can be solved, by using an optimization
decomposition approach.

In Section 3 we apply this decomposition argument which is based on techniques
from convex optimization and duality and show that if advertisers choose their bids λi
to match their marginal utility, and the platform then solves an assignment problem
to maximize revenue for each search instance τ using the submitted bids and the CTR
estimates {pτil}, then the resulting solution maximizes aggregate utility. The advertis-
ers are optimizing over a slower timescale than the platform, and the platform uses
the submitted bids to solve an on-line maximum-weighted assignment problem, a form
of generalized first price auction.

In Section 4 we make the connection with mechanism design and strategic advertis-
ers. In particular, we find a form of a rebate which incentivizes advertisers to truthfully
declare bids λi that equate to their marginal utility. This produces a unique Nash equi-
librium which implements our decomposition. The rebate takes a form familiar from
optimal tolls for traffic flow [Beckmann et al. 1956] or characterizations of truthful
mechanisms [Vickrey 1961] for single parameter agent types [Myerson 1981; Babaioff
et al. 2010], even though our advertisers are not described by a single parameter but
by a utility function. We show that the rebate can be computed by a simple random-
ized mechanism that requires a single additional computation, namely the solution
of an assignment problem, for each click-through. Hence assignment and pricing per
search query involves straightforward polynomial-time computations, solving (at most
two) assignment problems. For a simple example the prices paid for click-throughs are
those arising from an ascending price auction. In Section 5 we consider dynamics and
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convergence under adaptive bid updates by advertisers, and show that under smooth
updating of bids, bid trajectories converge to the unique Nash equilibrium, and hence
converge to the solution that maximizes aggregate utility.

In Section 6 we describe several extensions, intended to illustrate the flexibility and
tractability of our framework.

Related Work
In this paper we consider a problem where the aggregate utility of an auction sys-
tem is optimized subject to the capacity constraints of that system. The fundamental
result of Eisenberg and Gale relates the equilibrium price of goods for buyers with lin-
ear utilities to a convex optimization problem [Fisher 1892; Eisenberg and Gale 1959].
Further, aggregate utility optimization has long been an objective in the design of effec-
tive market mechanisms, Vickrey [1961]. However, only in the recent literature have
computationally efficient methods been considered for market and auction design, see
Birnbaum et al. [2011], Jain and Vazirani [2007], Vazirani [2010]. In the context of
electronic commerce and specifically Sponsored Search auctions, these computational
considerations are of critical importance given the increased diversity and competition
associated with online advertising.

We consider a decomposition approach to the task of optimizing advert allocation
over the vast distribution of searches that can be conducted. This enables us to anal-
yse the trade-off in objectives between the platform and advertiser. In recent work
investigating trade-offs in sponsored search, [Roberts et al. 2013] focus on ranking
algorithms, trading off revenue against welfare, while [Bachrach et al. 2014] also in-
clude the user as an additional stakeholder. In the decomposition applied in our work,
a large optimization taken over the entire advert space is decomposed into numer-
ous subproblems which can be implemented by each advertiser, and on each keyword
search. The decompositions of interest are familiar, and have been important in the
context of network design [Rockafellar 1984; Kelly 1997]. In particular, these decom-
positions suggest that current communication protocols converge to solutions of global
optimization problems [Srikant 2004; Kelly and Yudovina 2014]. However, in this set-
ting, agents are assumed to be price taking. Strategic formulations have since been
developed: Johari and Tsitsiklis [2009] show a price of anarchy of 75% at a Nash equi-
librium, and Yang and Hajek [2007] develop a single parameter VCG-mechanism to
yield efficient resource allocation. The work of Srikant and Tan [2010] considers a
queueing approach to optimizing average reward in an on-line advert campaign, using
optimization decomposition ideas and an approach related to scheduling in wireless
networks.

In our work, we first prove our decomposition result and then consider an adversar-
ial setting with strategic buyers. We consider strategic buyers who look to optimize
their long-run reward over a diverse set of auctions. This approach contrasts the one-
shot and sequential approaches to sponsored search auctions, see [Varian 2007; Edel-
man et al. 2007; Syrgkanis and Tardos 2012]. Indeed the diverse stochastic variability
found in sponsored search can make such approaches unrealistic [Pin and Key 2011].
Nonetheless, there are interpretations of the prices set in our framework in terms
of one-shot auctions. The textbook by Vohra [2011] treats mechanism design using
a linear programming (optimization) framework, making analogous connections with
network flow problems.

Finally, we consider the dynamics of our auction mechanism when advertisers are
allowed to slowly change their bids. We prove convergence to the unique Nash equilib-
rium, by exhibiting a Lyapunov function for the system. The work of Yang and Hajek
[2006] is close in spirit to our approach in this Section.
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2. THE ASSIGNMENT MODEL
We begin with notation that reflects a Sponsored Search setting, where a limited set of
adverts are shown in response to users submitting search queries. We let i ∈ I index
the large, finite set of advertisers. Each advertiser has an advert which they wish to
be shown on the pages of a variety of search results. An advert, when shown, is placed
in a slot l ∈ L. Let τ ∈ T index the type of a search conducted by a user. The set T is
an infinitely large set. It incorporates information such as the keywords of the search,
but also other factors such as the geographic region where the search is conducted, the
time of day, the gender of the searcher etc. All of these factors are combined to form a
probability of click-through pτil which is estimated by the search provider.

Over time, a large number of searches from the set T are made. We assume these
occur with distribution Pτ . Thus we view the click-through probability pil : T → [0, 1]
as a random variable defined on the type space T , with distribution Pτ . For example,
the random variables p = (pil : i ∈ I, l ∈ L) might admit a joint probability density
function, f(p). So, for c = (cil : i ∈ I, l ∈ L) ∈ [0, 1]I×L,

Pτ (p ≤ c) =

∫
[0,1]I×L

I[p ≤ c]f(p)dp.

Here I is the indicator function and vector inequalities, e.g. p ≤ c, are taken compo-
nentwise, pil ≤ cil ∀i ∈ I, l ∈ L.

We exploit the inherent randomness in pil for the optimal placement of adverts. We
shall assume that the platform has access to information about the query, knows τ , and
so can successfully predict the click-through probability pτil, whilst the advertiser does
not have access to such fine-grained search information. Later, in Sections 4 and 5, we
shall see that the platform can use this information asymmetry to guide the auction
towards an optimal outcome.

Next we describe a mechanism by which the platform may wish to assign adverts.
Suppose advertiser i submits a bid λi, which reflects what the advertiser is willing to
pay for a click-through. Let λ = (λi, i ∈ I). Given the information (τ, λ), the following
optimization maximizes the expected revenue from a single search.

ASSIGNMENT(τ, λ)

Maximize
∑
i∈I

λi
∑
l∈L

pτilx
τ
il (1a)

subject to
∑
i∈I

xτil ≤ 1, l ∈ L, (1b)∑
l∈L

xτil ≤ 1, i ∈ I, (1c)

over xτil ≥ 0, i ∈ I, l ∈ L. (1d)

The above optimization is an assignment problem, where the constraint (1b) pre-
vents a slot containing more than one advert, and the constraint (1c) prevents any sin-
gle advert being shown more than once on a search page. The solution is a maximum
weighted matching of advertisers I with slots L. This is highly appealing from a com-
putational perspective, firstly, because assignment problems can be solved efficiently
[Kuhn 1955; Bertsekas 1988] and, secondly, because there is no need to pre-compute
the assignment. The assignment problem can be solved on each occurrence of a search
of type τ ∈ T . We do not need to estimate the distribution of searches Pτ but we re-
quire an estimate of the click-through probability pτil, as is the case for the Generalized
Second Price (GSP) auctions currently used in sponsored search.
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We apply the convention that if λi = 0 then xτil = 0 for l ∈ L, so that a zero bid does
not receive clicks: this can be achieved by adding slots corresponding to adverts not
being shown. We make the mild assumption that a solution xτ to the above problem
is unique and is integral with probability one; this would follow, for example, if the
distribution of click-thoughs p admits a density.

Let

yτi =
∑
l∈L

pτilx
τ
il, yi = Eτyτi , xil = Eτ [xτil] . (2)

Note that yτi is the click-through rate for advertiser i from a given search page, and yi
is the click-through rate averaged over T . (We shall not use yi for the random variable
yτi .) We assume that yτi is known to the platform, and yi is known to advertiser i.

For an optimal solution to the above assignment problem, we shall write xτil = xτil(λ)
to emphasize the dependence of xτil on the vector of bids λ and, similarly, we write
xil = xil(λ), yτi = yτi (λ), yi = yi(λ).

We shall assume the following strict monotonicity property of solutions of
ASSIGNMENT(τ, λ). We assume the function λi 7→ yi(λi, λ−i) is strictly increasing
and continuously differentiable over λi ≥ 0, for all values of λ−i = (λj : j 6= i, j ∈ I)
in the positive orthant. Without the regularity condition yi(λ) will be increasing in λi
but may not be strictly increasing, and this would complicate the statement of several
later results.

The strict monotonicity property is satisfied if p admits a density satisfying the fol-
lowing regularity condition. Suppose f(p) is continuous and bounded above by a con-
stant fmax < ∞ for all p ∈ C = [0, 1]I×L and bounded below by a constant fmin > 0 for
all p ∈ S = {p ∈ C : pil ≥ pik, l < k}. Observe that in the simplex S the click-through
probability for a given advert decreases as the slot it is shown in increases. We do not
require a lower bound on f(p) outside of this simplex. In Lemma C.3 and Proposition
5.2 it is shown that this regularity condition on f(p) implies that yi(λ) possesses our
assumed strict monotonicity property.

3. OPTIMIZATION PRELIMINARIES
In this section we present an optimization problem which can be motivated as the
maximization of social welfare; we use the problem to develop various decomposition
and duality results which we shall need in the next Section.

Suppose that if advertiser i achieves a click-through rate of yi this has a utility to
advertiser i of Ui(yi). We assume the function Ui(·) is non-negative, increasing, and
strictly concave, and that our objective is to place adverts so as to maximize the sum
of these utilities. To simplify the statement of results, we shall assume further that
Ui(·) is continuously differentiable, with U ′i(yi)→∞ as yi ↓ 0 and U ′i(yi)→ 0 as yi ↑ ∞.
The resulting optimization problem is as follows.
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SYSTEM(U ,I,Pτ )

Maximize
∑
i∈I

Ui(yi) (3a)

subject to yi = Eτ
[∑
l∈L

pτilx
τ
il

]
, i ∈ I, (3b)∑

i∈I
xτil ≤ 1, l ∈ L, τ ∈ T , (3c)∑

l∈L

xτil ≤ 1, i ∈ I, τ ∈ T , (3d)

over xτil ≥ 0, yi ≥ 0 i ∈ I, l ∈ L. (3e)

Inequalities (3c) and (3d) are just the scheduling constraints (1b) and (1c) that each
slot can show at most one advert and that each slot can show at most one advert, while
equality (3b) recaps the definition (2) of yi, the expected click-through rate.

Note the optimization assumes the system optimizer has knowledge of the utility
functions Ui(·), i ∈ I, the click-through probabilities pτil, i ∈ I, l ∈ L, τ ∈ T and the
distribution Pτ over these probabilities. In the next section, on mechanism design,
we consider the game theoretic aspects that arise when, instead of a single system
optimizer, the platform and advertisers have differing information and incentives.

Incorporate the constraint (3b) into the objective function (3a) to give the Lagrangian

Lsys(x, y;λ) =
∑
i∈I

Ui(yi) +
∑
i∈I

λiEτ

[∑
l∈L

pτilx
τ
il − yi

]
. (4)

Notice, we intentionally omit the scheduling constraints from our Lagrangian. Thus
we seek to maximize the Lagrangian subject to the constraints (3c-3d) as well as (3e).
Let A be the set of variables x = (xτil : i ∈ I, l ∈ L, τ ∈ T ) ≥ 0 satisfying the assignment
constraints (3c-3e). We see that our Lagrangian problem is separable in the following
sense

max
x∈A,y≥0

Lsys(x, y;λ) =
∑
i∈I

max
yi≥0
{Ui(yi)− λiyi} (5a)

+ Eτ

[
max
xτ∈A

∑
i∈I

∑
l∈L

λip
τ
ilx

τ
il

]
. (5b)

Define

U∗i (λi) = max
yi≥0
{Ui(yi)− λiyi} . (6)

The optimization over yi contained in the definition (6) would arise if advertiser i were
presented with a fixed price per click-through of λi, and allowed to choose freely her
click-through rate: she would then choose yi such that U ′i(yi) = λi. By our assumptions
on Ui(·), this equation has a unique solution for all λi ∈ (0,∞). Call Di(ξ) = {U ′i}−1(ξ)
the demand of advertiser i at price ξ. It follows that U∗i (λi) can be written in the form

U∗i (λi) =

∫ ∞
λi

Di(ξ)dξ; (7)

call this advertiser i’s consumer surplus at the price λi. From this expression we can
deduce that U∗i (λi) is positive, decreasing, strictly convex and continuously differen-
tiable.
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Observe that the maximization inside the expectation (35b) is simply the problem
ASSIGNMENT(τ, λ), and thus we can write

max
x∈A,y≥0

Lsys(x, y;λ) =
∑
i∈I

U∗i (λi) +
∑
i∈I

λiyi(λ).

The Lagrangian dual of the SYSTEM problem (3) can thus be written as follows.

DUAL(U∗,y, I)

Minimize
∑
i∈I

(U∗i (λi) + λiyi(λ)) (8a)

over λi ≥ 0, i ∈ I. (8b)

Owing to the size of the type space T , the optimization (3) has a potentially uncount-
able number of constraints. This presents certain technical difficulties, for instance
those associated with proving strong duality. These issues are dealt with in the ap-
pendix, where the proof of the following two propositions are presented.

We first show that the SYSTEM problem decomposes into optimizations relevant to
the advertisers and to the platform, for each search occurrence, τ .

PROPOSITION 3.1 (DECOMPOSITION). Feasible variables ỹ, x̃τ , τ ∈ T , (3b-3e), are
optimal for SYSTEM(U ,I,Pτ ) if and only if there exist λ̃i, i ∈ I, such that

A. λ̃i minimizes U∗i (λi) + λiỹi over λi ≥ 0, for each i ∈ I,
B. x̃τ solves ASSIGNMENT(τ, λ̃), with probability one under the distribution Eτ over

τ ∈ T .

In this Proposition, the optimization in Condition A does not naturally correspond
to the bidding behavior of strategic advertisers, at least in its present form. Hence we
need to examine the implications of Condition A in order to construct prices that do
give strategic advertisers the incentive to solve the SYSTEM problem, which we do in
the next section, Section 4. The optimal bids λ̃ can be further understood through the
following dual characterization.

PROPOSITION 3.2 (DUAL OPTIMALITY).
a) The dual of the SYSTEM problem is DUAL. The objective of the problem (8) is con-
tinuously differentiable for λ > 0 and is minimized by any λ̃ = (λ̃i : i ∈ I) satisfying,
for each i ∈ I,

dU∗i
dλi

(λ̃i) + yi(λ̃) = 0. (9)

b) If λ̃ is an optimal solution to the DUAL problem (8) then xτ (λ̃), y(λ̃) are optimal for
the SYSTEM problem (3).

Example 3.3. For concreteness, we consider a brief example. Three advertisers,
A,B and C compete for two advertisement slots shown in response to a specific search
query, “Palo Alto Pizza”. Two of the advertisers, A and B, are takeaway pizza com-
panies, one located in north Palo Alto and the other in south Palo Alto. Thus the click
through rate of these advertisers is sensitive to the location of the search. The platform
is aware of the location of the search whilst the advertisers are not. Thus the platform
can exploit this asymmetry. The third advertiser who, say, sells supermarket products
is not sensitive to the location but is sensitive to the advertisement slot position and
their ad will only be clicked on if it appears in the top slot. The platform observes that,
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given τ , the adverts receive click through probabilities

pτAl = τ, pτBl =
1

2
− τ, pτCl =

1

3
I[l = 1], for l = 1, 2, (10)

and where τ accounts for random distance of the search from the advertiser. We as-
sume τ is uniform random variable on [0, 1/2], although this is not know by the plat-
form or the advertisers. We suppose advertisers have the same logarithmic utilities
Ui(y) = log y for i = A,B,C. Note that without the decomposition result Proposi-
tion 3.1), determining an optimal solution to the SYSTEM optimization is a non-
obvious problem.

We suppose that λ = (λA, λB , λC) are the prices submitted by the advertisers, and
that these prices truthfully declare their marginal utilities λi = U ′i(yi). Notice that an
advert is only assigned a slot in the ASSIGNMENT problem if it is not the lowest bid.
For instance, for advertiser A, we can calculate the click-through rates

yA(λ) = Eτ
[
τ
(
1− I [τλA ≤ (1/2− τ)λ, τλA ≤ 1/3]

)]
=

1

4
−min

{
λA

2(λA + λB)
,
λC
3λA

}2

.

(11)
For a logarithmic utility, the demand function is given by DA(λA) = λ−1A . Thus, along
with similar conditions for advertisers B and C, the optimal condition for the dual
problem, (9), can be derived

1

λ∗A
=

1

4
−min

{
λ∗A

2(λ∗A + λ∗B)
,
λ∗C
3λ∗A

}2

. (12)

There exist parameters satisfying these above conditions, and the CTR y(λ∗) is then
optimal for the SYSTEM problem.

Notice, to assign adverts, the platform required correct click through probabilities
(10), search information τ with “Palo Alto Pizza” and prices λ, but did not require
information about advertisers utilities or the distribution of searches Pτ . Further, the
advertiser could determine λ∗A from its own advert average performance (11) and its
utility function UA, but did not require explicit knowledge of other advertisers utilities
or the precise search type conducted τ or the distribution of searches Pτ .

Finally, we remark that a much wider range of advertisers and search types can be
considered. For instance, within our framework it is reasonable to assume that adver-
tiser C will bid for search queries containing the word “Pizza” and thus will compete
with a much wider class of advertisers.

4. MECHANISM DESIGN
In the last section we demonstrated how the global problem can be decomposed into
two types of sub-problem: one, where the platform finds an optimal assignment given
click-through probabilities; and the other, where the dual variables λ are each set to a
solve a certain single parameter dual problem. In this section we suppose the adver-
tisers act strategically, anticipating the result of the search provider’s assignment and
attempting to maximize their expected reward.

Henceforth we interpret λi as the bid submitted by advertiser i and, as a function
of these bids, we formulate prices that incentivize the advertisers to choose bids that
result in an assignment that optimizes the SYSTEM objective (3).

Consider a mechanism where, given the vector of bids λ = (λi : i ∈ I), each adver-
tiser, i, receives a click-through rate yi(λ), and from this derives a benefit Ui(yi(λ)) and
is charged a price πi(λ) per click. The reward to advertiser i arising from a vector of
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bids λ = (λi : i ∈ I) is then

ri(λ) = Ui(yi(λ))− πi(λ)yi(λ). (13)

A Nash equilibrium is a vector of bids λ∗ = (λ∗i : i ∈ I) such that, for i ∈ I and all λi
ri(λ

∗) ≥ ri(λi, λ∗−i). (14)

Here (λi, λ
∗
−i) is obtained from the vector λ∗ by replacing the ith component by λi.

The main result of this section is the following.

THEOREM 4.1. If prices are charged according to the price function

πi(λ) =
1

yi(λ)

∫ λi

0

(
yi(λ)− yi(µi, λ−i)

)
dµi (15)

then there exists a unique Nash equilibrium, and it is given by the vector of optimal
prices defined in the decomposition, Proposition 3.1.

Remark 4.2. The result states that, given adverts are assigned according to the as-
signment problem (1), the game theoretic equilibrium reached by advertisers attempt-
ing to maximize their respective rewards ri solves the problem SYSTEM(U ,I,Pτ ). Since
yi(µi, λ−i) is a strictly increasing function of the bid µi, the price πi(λ) must be strictly
lower than the bid λi. Setting a price lower than the submitted bid is a prevalent
feature of online auctions used by search engines.

Remark 4.3. The price function (15) can be readily implemented by the platform
at a computational cost of at most one additional instance of the assignment prob-
lem, as we now show. Suppose the platform solves ASSIGNMENT(τ, λ), and observes
a click-through on (i, l) — that is the solution has xτil = 1, and the user clicks
on the advert in position l, which is for advertiser i. If this happens the platform
chooses µi uniformly and randomly on the interval (0, λi) and additionally solves
ASSIGNMENT(τ, (µi, λ−i)). Let yτi (µi, λ−i) =

∑
l∈L p

τ
ilx

τ
il under a solution to this prob-

lem (the solution will be unique with probability one). The platform then charges ad-
vertiser i an amount

λi

(
1− yτi (µi, λ−i)

yτi (λ)

)
(16)

for the click-through. This charge does not depend on the distribution Pτ , and will lie
between 0 and λi. Taking expectations over τ and µi shows that the expected rate of
payment by advertiser i is

Eτ,µi

[∑
l∈L

pτilx
τ
ilλi

(
1− yτi (µi, λ−i)

yτi (λ)

)]
= λi (yi(λ)− Eµi [yi(µi, λ−i]) = πi(λ)yi(λ).

Thus the mechanism implements the reward function (13) where πi(λ) is given by
expression (15), as desired.

Observe that the additional instance of the assignment problem does not determine
the assignment, and thus will not slow down the page impression: rather, it used to
calculate the charge (16) for a click-through. Indeed, one could imagine a charge λi
on the click-through, followed by a later rebate of a proportion yτi (µi, λ−i)/y

τ
i (λ) of

the charge. The rebate depends on the uniform random variable µi. Of course one
could reduce the variance of the rebate on a particular click-through by averaging the
calculation over a number of independent replications of the uniform random variable
µi, but this would seem unnecessary, since there will remain a dependence on τ , which
is perceived by the advertiser as a random variable. For a recent discussion of integral
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estimation by random sampling in the context of truthful mechanisms, see [Babaioff
et al. 2010].

There are other ways the price function (15) can be implemented. Note that∫ λi

0

yi(µi, λ−i)dµi =
∑
j

λjyj(λ)−
∑
j 6=i

λjyj(0, λ−i)

since both expressions share the same derivative with respect to λi, from Proposi-
tion C.4, and both expressions take the value 0 when λi = 0. Thus the price func-
tion (15) can be also implemented by a charge λi on the click-through followed by a
later rebate of a proportion

1

yτi (λ)

(∑
j

λjy
τ
j (λ)−

∑
j 6=i

λjy
τ
j (0, λ−i)

)
of the charge. The rebate calculation again requires the solution of one additional in-
stance of the assignment problem, in a form familiar as the VCG mechanism when the
utility function for advertiser j, j ∈ I, is simply the linear function λjyj .

To establish Theorem 4.1 we will require Proposition 3.2 from the previous sec-
tion and an additional result, Proposition 4.4, which indicates how maximal rewards
achieved by each advertiser relate to the solution of the dual problem, Proposition 3.2.

PROPOSITION 4.4 (MECHANISM DUAL). For each choice of λ−i = (λj : j 6= i, j ∈ I),
the following equality holds

max
λi≥0

ri(λ) = min
λi≥0

{
U∗i (λi) +

∫ λi

0

yi(µi, λ−i)dµi

}
. (17)

Moreover, the optimizing λi for both expressions is the same, is unique and finite, and
satisfies

d

dλi
U∗i (λi) + yi(λ) = 0. (18)

PROOF. We calculate the dual of the reward function (13). Let Pi(yi) be the function
whose Legendre-Fenchel transform is

P ∗i (λi) =

∫ λi

0

yi(µi, λ−i)dµi.

We know from Fenchel’s Duality Theorem, [Borwein and Lewis 2006, Theorem 3.3.5],
that

max
yi≥0
{Ui(yi)− Pi(yi)} = min

λi≥0
{U∗i (λi) + P ∗i (λi)} . (19)

So what remains is to calculate the function Pi from the dual of the function P ∗i above.
By the Fenchel–Moreau Theorem [Borwein and Lewis 2006], we know this to be

Pi(yi) = min
λi≥0

{
λiyi −

∫ λi

0

yi(µi, λ−i)dµi

}
. (20)

The optimum in this expression occurs when yi(λ) = yi. Substituting this back, since
λi 7→ yi(λ) is strictly increasing, we have that

Pi(yi) =

∫ ∞
0

(yi − yi(µi, λ−i)) I[yi(µi, λ−i) ≤ yi]dµi. (21)
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Incentivized Optimal Advert Assignment via Utility Decomposition X:11

In other words, as expected with the Legendre-Fenchel transform, the area under the
curve yi(λi, λ−i) is converted to the area to the left of the curve yi(λi, λ−i). Further,
notice, if yi > maxλi yi(λi, λ−i) then Pi(yi) =∞, and thus the finite range of the function
yi 7→ Pi(yi) is exactly the same as that of λi 7→ Pi(yi(λ)). Noting (21) and this last
observation, the equality (19) now reads

min
λi≥0

{
U∗i (λi) +

∫ λi

0

y(µi, λ−i)dµi

}
= max
yi≥0
{Ui(yi)− Pi(yi)}

= max
λi≥0

{Ui(yi(λ))− Pi(yi(λ))}

= max
λi≥0

{Ui(yi(λ))− πi(λ)yi(λ)} .

In the final equality we note from the definition (15) of πi(λ) that

Pi(yi(λ)) = πi(λ)yi(λ). (22)

This gives the equality (17).
For both of the optimizations in (17), the optimum is determined by the derivative

of the objective with respect to λi ∈ (0,∞). In particular, we note that

U∗i
′(λi) + yi(λ) < 0 (23)

⇐⇒ U ′i(y(λ))− λi > 0 (24)

⇐⇒ ∂yi(λ)

∂λi
(U ′i(y(λ))− λi) > 0. (25)

In the first equivalence, we use the fact that the inverse of the strictly decreasing
function U ′i is U∗i

′. In the second equivalence, we note that yi(λ) is strictly increasing
as function of λi. See Lemma C.3 for a proof that yi(λ) is strictly increasing. Since (23)
gives the derivative of the objective on the right-hand side of (17) and (25) gives the
derivative of the objective on the left-hand side of (17), an optimal λi simultaneously
optimizes both expression in (17). Notice the optimal λi must be unique since the right-
hand side of (17) is strictly convex. Finally, we note that the value of λi optimizing
both expressions must be finite. Notice the inequality (24), which is satisfied at λi = 0,
cannot be sustained for all λi since U ′i(y(λ)) is a decreasing function of λi. Thus the
value of λi optimizing (17) must be finite. This completes the proof.

PROOF OF THEOREM 4.1. By Proposition 4.4 λ = (λi : i ∈ I) is a Nash equilibrium
if and only if condition (18) is satisfied for each i ∈ I. But by Proposition 3.2b), these
conditions hold if and only if the λ solves the dual to the SYSTEM problem. So, the set
of Nash equilibria are the optimal prices defined for the decomposition, Proposition 3.1.
By Proposition 3.2b), the assignment achieved by Nash equilibrium bids maximizes
the utilitarian objective SYSTEM(U ,I,Pτ ). Finally, by Strong Duality (Theorem B.2),
there exists λ∗ which optimizes the dual problem (8), and thus must also be a Nash
equilibrium.

Remark 4.5. The optimality condition (9) or (18) states that each advertiser’s de-
mand, Di(λi), and supply, yi(λi), should equate, and is a consequence of the envelope
theorem. A more familiar context for this form of result is Vickrey pricing [Vickrey
1961] and Myerson’s Lemma (or the Payoff Equivalence Theorem), see [Myerson 1981]
and [Milgrom 2004, Theorem 3.3], which are also consequences of the envelope the-
orem. But observe that we are using general utilities, which despite the single input
parameter λi, takes us out of a single parameter type space to which Myerson gener-
ally applies.
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We can also interpret the system optimization as an infinitely large bipartite conges-
tion game. The utility function of an advertiser gauges his sensitivity to different levels
of congestion in a network. As with an equilibrium for traffic in a network [Wardrop
1952], if we charge the advertisers their bids, this can lead to an inefficient allocation
of resources, a user equiibrium rather than a system optimum. However, by charging
prices (15), we are effectively internalizing the externalities so that the user equilib-
rium maximizes social welfare [Beckmann et al. 1956].

Finally, we give two settings where closed forms are available.

Example 4.6. If there is a single slot then the slot will be assigned to the bidder
i with the highest value of λipτi1 and if this results in a click-through then the charge
will be

max
j 6=i

λjp
τ
j1

pτi1
,

a second price auction on the products λjpτj1.
Suppose next there are L slots, more than L advertisers bidding, and suppose the

click-through probabilities are the same for each advertiser, pτil = pτl , i ∈ I, where
pτ1 > pτ2 > . . . > pτL, and the bids are λ1 > λ2 > . . .. Then advertisers 1, 2, . . . , L are
allocated slots 1, 2, . . . , L respectively. In this example it is possible to calculate the
expectation of the expression (16) explicitly, and thus to determine the charge without
the need for randomization over µi: a click-through on slot l is charged the amount

πτl = λl+1 −
1

pτl

L∑
m=l+1

pτm(λm − λm+1), l = 1, 2, . . . , L.

This implies

πτl = λl+1 −
pτl+1

pτl
(λl+1 − πτl+1), l = 1, 2, . . . , L,

where pτL+1 = 0, recovering the generalized English (or ascending price) auction
of [Edelman et al. 2007]. The revenue received is

L∑
m=1

πτmp
τ
m =

L∑
m=1

mλm+1(pτm − pτm+1),

where pτL+1 = 0; note the dependence on λL+1, the largest unsuccessful bid.
We note that as described (with click-through probabilities the same for all adver-

tisers) our assumption on y(λ), that yi(λ) is a strictly increasing function of λi, is not
satisfied. But if with arbitrarily small probability ε > 0 there exists another bidder
with a random click-through probability with support (0, 1), then our assumption on
y(λ) will be satisfied.

Example 4.7. If there is a single slot and advertisers CTRs are independent and
identically distributed, with density function f and distribution function F , then it is
a relatively straight forward calculation that yi(λ) and πi(λ) are
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yi(λ) =

∫ 1

0

∏
j 6=i

F
(
p
λi
λj

)
× pf(p)dp

πi(λ)yi(λ) =

∫ 1

0

λi∏
j 6=i

F
(
p
λi
λj

)
−
∫ λi

0

∏
j 6=i

F
(
p
µ

λj

)
dµ

 pf(p)dp.

5. DYNAMICS AND CONVERGENCE
In this section we consider whether advertisers will adapt their prices in order to con-
verge towards an assignment of adverts that is optimal when averaged across the
entire type space. The follow example illustrates a difficulty that may prevent conver-
gence of prices.

Example 5.1. Suppose there is a single search type τ , and two identical advertisers
compete over a single slot. Assuming their utilities identical and strictly concave, the
solution to the system problem results in both advertisers equally sharing the slot,
and equal prices: λ1 = λ2. This is consistent with Theorem 3.1, with both advertisers
submitting equal bids: λ1 = λ2. But as the advertisers update their prices one cannot
expect λ1 = λ2 to hold within the continuum of possible prices. Most simple price
update rules will not lead to equal bids, thus the solutions to the assignment problem
will fluctuate between assigning the slot to advertiser 1 and 2 depending which is
greater of λ1, λ2.

Essentially the difficulty occurs because the type space in this example is discrete.
The search engine does not have enough additional information from the search type
τ to fine tune its discrimination between the two advertisers. However, under our as-
sumption that the distribution Pτ over T admits a continuous bounded probability
density function, the allocation of clicks yi(λ) is a continuous function of prices and we
shall see that, under models of advertiser response, we are able to deduce convergence
towards a system optimum.

Recall that (xτil(λ) : i ∈ I, l ∈ L) defines an optimal solution to the assignment
problem ASSIGNMENT(τ, λ).

PROPOSITION 5.2. Under the assumption that the distribution Pτ over T admits a
continuous bounded probability density function then both

xil(λ) := Eτxτil(λ), yi(λ) := Eτ
∑
l

pτilx
τ
il(λ)

are differentiable functions of λ for λ > 0. Moreover, both functions x(λ) and y(λ) are
Lipschitz continuous on any set where λ is bounded away from zero.

The proof, given in Appendix C, is somewhat technical. However, from it we can
conclude that if click-through probabilities vary sufficiently with τ , then allocation
rates xil(λ) and click-through rates yi(λ) vary smoothly with λ.

Consider the objective function for the dual of the system problem as derived in
Proposition 3.2,

V(λ) =
∑
i∈I

(U∗i (λi) + λiyi(λ)) . (26)

This expression is the sum of the consumer surpluses and the revenue achieved by the
platform at prices λ and, when λ is optimal, it is equal to the maximal total welfare as
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defined by the SYSTEM problem (3). We note that
∂V
∂λi

= −Di(λi) + yi(λ).

This holds by the Envelope Theorem and is argued in Lemma C.4.
We next model advertisers’ responses to their observation of click-through rates. We

suppose advertiser i changes its price λi(t) smoothly (i.e. continuously and differen-
tiably) as a consequence of its observation of its current click-through rate yi(t) so that

d

dt
λi(t) ≷ 0 according as λi(t) ≶ U ′i(yi(t)).

This is a natural dynamical system representation of advertiser i varying λi smoothly
in order to track the optimum of her return ri(λ) under prices (15), from (24 - 25).

THEOREM 5.3 (CONVERGENCE OF DYNAMICS). Starting from any point λ(0) in
the interior of the positive orthant, the trajectory (λ(t) : t ≥ 0) of the above dynami-
cal system converges to a solution of the dual of the SYSTEM optimization, (8). Thus
y(λ(t)), the assignment achieved by the prices λ(t), converges to a solution of the SYS-
TEM optimization.

PROOF. We prove that the objective of the dual problem V(λ), defined above, is a
Lyapunov function for the dynamical system. Note that V(λ) is continuously differen-
tiable for λ strictly positive. Since Di(λi) → ∞ as λi → 0 and yi(λ) is bounded, there
exist δ > 0 such that for all yi ≤ δ

d

dt
λi(t) < 0.

We deduce that the paths of our dynamical system (λ(t) : t ≥ 0) are strictly positive and
V(λ) is continuously differentiable on these paths. Further, the level sets {λ : V(λ) ≤ κ}
are compact: this is an immediate consequence of the facts that the functions U∗i (λi)
are positive and decreasing, and, as proven in Lemma C.4, that

lim
||λ||→∞

∑
i∈I

λiyi(λ) =∞.

Observe that, from the definition of the demand function Di(·),
yi ≶ Di(λi) according as λi ≶ U ′i(yi).

Differentiating V(λ(t)) yields
d

dt
V(λ(t)) =

∑
i∈I

∂V
∂λi

d

dt
λi(t) = −

∑
i∈I

(Di(λi(t))− yi(λ(t)))
d

dt
λi(t) ≤ 0,

where the inequality is strict unless Di(λi(t)) = yi(λi(t)) for i ∈ I. Now recall dU∗i
dλi

=

−Di(λi). By Lyapunov’s Stability Theorem, see [Khalil 2002, Theorem 4.1], the process
(λ(t) : t ≥ 0) converges to the set of points λ∗ satisfying, for i ∈ I,

dU∗i (λ∗i )

dλi
+ yi(λ

∗) = 0.

Thus, by Proposition 3.2a), the price process λ(t) converges to an optimal solution to
the dual problem (8). Further, by Proposition 3.2c), we know that y(λ∗) is optimal for
the SYSTEM problem and, by Proposition 5.2, y(λ) is a continuous function. Thus the
process of click-through rates y(λ(t)) converges to an optimal solution for the SYSTEM
problem.
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In the above result we model advertisers that smoothly change their bids over time.
However, we remark that other convergence mechanisms could be considered. For
instance, since our dual optimization problem is convex, we can minimize the dual
through a coordinate descent algorithm, where each component λi is sequentially min-
imized. Such an algorithm could correspond to advertisers sequentially maximizing
over λi their reward function ri(λi, λ−i) as described by the Nash equilibrium (14).

6. EXTENSIONS
In this section we describe several straightforward extensions, intended to illustrate
the flexibility and tractability of our framework.

6.1. Advertiser weightings
Suppose that advertiser i receives some information on the type of a click-through,
and judges some types of click-through as more valuable than others. For example,
an advertiser may prefer click-throughs that come from one geographical area rather
than another or from one slot position rather than another if such click-throughs are
more likely to convert into sales.

In particular, let’s suppose that advertiser i assigns a weight wτil to click-throughs of
type τ from slot l, and has utility Ui(yi) where now

yi = Eτ

[∑
l∈L

pτilw
τ
ilx

τ
il

]
.

We expect wτil to be constant over regions of the type space T : even though adver-
tiser i receives some information on the type τ , the platform knows more. Further
the platform uses this additional information to solve the revised assignment problem
ASSIGNMENT(τ, λ, w) defined as problem (1) with the revised objective:

Maximize
∑
i∈I

λi
∑
l∈L

pτilw
τ
ilx

τ
il.

Assume that λi 7→ yi(λi, λ−i) is strictly increasing and continuously differentiable over
λi ≥ 0, for all values of λ−i = (λj : j 6= i, j ∈ I) in the interior of the positive orthant:
then we are again able to prove Theorems 4.1 and 5.3, and the proofs are similar.

We give a further illustration of this extension. Suppose that the assignment prob-
lem (1) is run on a stream of searches that contain either or both of the keywords A
and B, and the type τ contains information on this which is passed to the advertisers
on a click-through; and suppose that some advertisers are interested in searches for
keyword A, some in searches for keyword B, some in searches for either keyword, and
some in searches for both keywords. Then various preferences of advertiser i can be
expressed by allowing wτil to depend on whether τ lies in {A but not B}, {B but not A},
{A or B} or {A and B}, a partition into four of the type space T .

6.2. More complex page layouts
The platform may wish to allow adverts of different sizes: for example, an advertiser
may wish to offer an advert that occupies two adjacent slots. Or the platform may
have a more complex set of possible page layouts than simply an ordered list of slots
1, 2, . . . , L. Let σ ∈ S describe a possible layout of the adverts for advertisers i ∈ I, and
let pτiσ be the probability of a click-through to advertiser i under layout σ. Then the
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generalization of the assignment problem (1) becomes

Maximize
∑
i∈I

λip
τ
iσ

over σ ∈ S.

Indeed, this formulation allows the click-through probabilities for an advert to depend
not just on the advertiser and the slot position, but also on which other adverts are
shown on the page, provided only the probabilities pτiσ can be estimated.

The complexity of this optimization problem depends on the design of the page layout
through the structure of the set S, and may depend on any structural information on
the probabilities pτiσ, but for a variety of cases it will remain an assignment problem
with an efficient solution. If yi(λ) is again defined as the expected click-through rate for
advertiser i from a bid vector λ then Theorems 4.1 and 5.3 hold, with identical proofs.

6.3. Controlling the number of slots
The platform may wish to limit the number of slots filled, if it judges the available
adverts as not sufficiently interesting to searchers. (Ultimately showing the wrong or
poor quality ads can cause searchers to move platform and so hurt long-term platform
revenue.)

Suppose the platform judges there is a benefit (positive or negative) qτil to a searcher
for an impression of the advert from advertiser i in slot l for a search of type τ , whether
or not the user clicks through, so that the system objective function (3a) becomes

∑
i∈I

Ui(yi) + Eτ

[∑
i∈I

∑
l∈L

qτilx
τ
il

]
.

Then the assignment objective function (1a) becomes∑
i∈I

∑
l∈L

(λip
τ
il + qτil)x

τ
il

and our results hold with minor amendments. In particular, equation (15) for the price
function and equation (26) for the Lyapunov function are unaltered, although of course
the functions yi(λ) will now be defined in terms of solutions to the new assignment
problem.

An important special case is when qτil ≡ −R, where R is a reserve price. We next give
an alternative interpretation of this case. Let the platform include in the assignment
problem a collection of fictitious advertisers whose adverts are realised as empty slots,
and for whom λk = R, pτkl = 1. Then a (non-fictitious) advert will be shown in a slot
only if its expected contribution to the objective function of the assignment problem
meets at least the reserve R.

Of course a reserve R may also have a favourable effect on the revenue received by
the platform [Ostrovsky and Schwarz 2011; Bachrach et al. 2014]. As an illustration,
consider the generalized English auction of Example 4.6. A reserve of R will reduce the
number of slots filled if R > λLp

τ
L, and may well increase the revenue. Nevertheless

our framework is one of utility maximization: we assume the platform is trying to
assure its long-term revenue by producing as much benefit as possible for its users, its
advertisers and itself. There are, of course, several ways in which the platform could
increase its own revenue within the utility maximization framework: in the absence
of competition from other platforms, it could for example charge an advertiser a fixed
fee, less than the advertiser’s consumer surplus, to participate.
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As yet a further example of the flexibility of the framework, instead of a fixed reserve
price we could allow an organic search result k to compete for a slot, with a positive
benefit qτkl, but with λk = 0.

6.4. Multivariate utility functions
In this subsection we suppose the platform divides the stream of search queries into
several distinct streams, and runs separate auctions for each stream. For our expo-
sition we suppose the distinction between streams is defined in terms of keywords,
but it could involve additional or other characteristics of search queries observable to
advertisers.

An advertiser may well be interested in several quite different keywords: for ex-
ample, a manufacturer may be able to shift production from haute couture to casual
clothes, products that are advertised to quite different audiences. This example sug-
gests we need a utility function more general than considered so far.

Suppose that advertiser i’s utility Ui(·) is a strictly concave, continuously differen-
tiable function of the vector yi = (yik, k ∈ Ki), where Ki is the set of keywords of
interest to advertiser i and yik is the click-through rate to advertiser i from searches
on the keyword k. Assume that the partial derivative ∂Ui/∂yik decreases from ∞ to 0
as yik increases from 0 to∞.

Let λik be the bid of advertiser i for keyword k, and let λi = (λik : k ∈ Ki) and
λ = (λik : i ∈ I, k ∈ Ki). Let K = ∪i∈IKi, the set of keywords, set λik = 0 for k /∈ Ki. Let

U∗i (λi) = max
yi≥0

(
Ui(yi)−

∑
k∈Ki

λikyik

)
,

the Legendre-Fenchel transform of Ui(yi), interpretable as the consumer surplus of
advertiser i at prices λi. Our conditions on Ui and its partial derivatives ensure there
is a unique maximum, interior to the positive orthant, for any price vector λi in the
positive orthant. Let (Dik(λi), k ∈ Ki) be the argument yi that attains this maximum:
it is the demand vector of advertiser i at prices λi. Further

∂

∂λik
U∗i (λi) = Dik(λi). (27)

We assume the platform runs separate assignment problems for each keyword, so
that the auction for keyword k, k ∈ K, depends on λ only through λ∗k = (λik : i ∈ I);
and we assume the platform charges according to the price function (15), that is

πik(λ∗k) =
1

yik(λ∗k)

∫ λik

0

(
yik(λ∗k)− yik(µik;λjk, j 6= i)

)
dµik,

where (µik;λjk, j 6= i) is the vector obtained from the vector λ∗k by replacing the ith
component, λik, by µik.

Then the question for advertiser i is how to balance her bids (λik, k ∈ Ki) over the
keywords Ki that are of interest to her. The reward to advertiser i arising from a vector
of bids λ = (λi : i ∈ I) = (λik : i ∈ I, k ∈ Ki) is then

ri(λ) = Ui(yi(λ))−
∑
k∈Ki

πik(λ∗k)yik(λ∗k), (28)

and the condition for a Nash equilibrium is again (14) where now λi is a vector.
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Assume, as usual, that λik 7→ yik(λi, λ−i) is strictly increasing and continuously
differentiable. Then from the form (28)

∂

∂λik
ri(λ) =

(
∂Ui
∂yik

− λik
)
∂yik
∂λik

. (29)

Thus there is a unique Nash equilibrium, identified by equating the bid λik with adver-
tiser i’s marginal utility for click-throughs on keyword k for each i ∈ I, k ∈ Ki. These
conditions also identify the unique system optimum.

Next suppose that for each k ∈ Ki advertiser i changes her bid λik(t) smoothly (i.e.
continuously and differentiably) as a consequence of her observation of her current
click-through rate yik(λi(t)) so that

d

dt
λik(t) ≷ 0 according as yik(λ(t)) ≶ Dik(λi(t)). (30)

This is a dynamical system representation of advertiser i varying λik smoothly in or-
der to increase or decrease her bid for keyword k according to whether the currently
observed click-through rate yik(t) seems too low or too high for her current bid. Then
trajectories converge to the solution of the system problem, by essentially the same
Lyapunov argument as used to prove Theorem 5.3, as we now sketch.

Let
V(λ) =

∑
i∈I

U∗i (λi) +
∑
i∈I

∑
k∈Ki

λikyik(λ).

Differentiating V(λ(t)) yields, from (27), Proposition C.4 and (30),
d

dt
V(λ(t)) =

∑
i∈I

∑
k∈Ki

∂V
∂λik

d

dt
λik(t) = −

∑
i∈I

∑
k∈Ki

(Dik(λi(t))− yik(λ(t)))
d

dt
λik(t) ≤ 0

where the inequality is strict unless Dik(λi(t)) = yik(λ(t)) for i ∈ I, k ∈ Ki. But this
holds if and only if y solves the system problem.

In view of the derivative (29) a possibly more natural dynamical system representa-
tion of advertiser i’s response would be that she changes her bid λik(t) smoothly as a
consequence of her observation of her current click-through rate yik(t) so that

d

dt
λik(t) ≷ 0 according as λik(t) ≶

∂Ui
∂yik

(yi(t)).

This could be viewed as a myopic attempt to improve the return (28) in the immedi-
ate future. In a single dimension, where the set Ki is a singleton, this is equivalent
to (30) by the concavity of Ui, but in higher dimensions this is not the same condition
and global convergence of trajectories under this response is not assured. For small
perturbations from the Nash equilibrium the conditions are equivalent.

6.5. Budget constraints
In this subsection we consider advertisers who have budget constraints on what they
can spend across different types of search, for example, in an advertising campaign.
We begin with an example.

Example 6.1. A simple approach to a budget constraint would be to use a utility
function which directly captures the constraint within the framework of Section 6.4.
We illustrate this as follows.

Suppose

Ui(yi) =
bi
q

log
∑
k∈Ki

(wikyik)q
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for 0 < q < 1. Then

∂Ui
∂yik

=
biw

q
ikyik

q−1∑
j∈Ki(wijyij)

q

and so at the unique Nash equilibrium found in Section 6.4, where ∂Ui/∂yik = λik, the
budget constraint ∑

k∈Ki

λikyik = bi

is automatically satisfied, provided the constraint is on the rate of bidding rather than
expenditure – not taking into account rebates.

We require q < 1 to ensure the strict concavity of Ui(·). As q → 1, maximizing Ui(yi)
subject to the budget constraint becomes equivalent to maximizing

∑
k∈Ki wikyik sub-

ject to the same budget constraint, and we recover the early model for the equilibrium
price of goods for buyers with linear utilities [Fisher 1892; Eisenberg and Gale 1959].
The allocations yik may not be unique when q = 1, which complicates discussions of
convergence.

Next we consider more general utilities, and suppose that advertiser i ∈ IB ⊂ I
has a scalar constraint bi on her rate of bidding. Consider the following optimization
problem:

Maximize Ui(yi)−
∑
k∈Ki

λikyik

subject to
∑
k∈Ki

λikyik ≤ bi,

over yik ≥ 0, k ∈ Ki.

The Lagrangian for this problem is

L(yi, zi;λi, µi) = Ui(yi)− λi · yi + µi(bi − λi · yi − zi)
= Ui(yi)− (1 + µi)λi · yi + µibi − µizi

where µi, bi, zi are scalars and λi, yi are vectors. This is straightforwardly maximized
over zi ≥ 0 by µizi = 0 provided µi ≥ 0, and by

yik = Dik((1 + µi)λi). (31)

Note that if µi is positive then the budget constraint is tight and advertiser i’s demand
is reduced, via the form (31), to meet the constraint. Such a choice of µi is possible,
and is unique, since

∑
k∈Ki λikDik((1 + µi)λi) is a strictly decreasing and continuous

function of µi approaching zero as µi →∞.
Let

U∗i (λi, µi) = max
yi,zi≥0

L(yi, zi;λi, µi).

Then, by the envelope theorem,

∂

∂λik
U∗i (λi, µi) = −(1 + µi)Dik((1 + µi))λi), (32a)

∂

∂µi
U∗i (λi, µi) = bi −

∑
k∈Ki

λikDik((1 + µi))λi). (32b)
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Next we consider a dynamical system where advertiser i smoothly varies her bids
λi(t) and a further parameter µi(t) as a function of her realised rates yi(t), in an at-
tempt to solve equation (31) and to satisfy her budget constraint. Suppose for i ∈ IB

d

dt
λik(t) ≷ 0 according as yik(λi(t)) ≶ Dik ((1 + µi(t))λi(t)) (33a)

d

dt
µi(t) ≷ 0 according as

∑
k∈Ki

λik(t) (yik(λi(t))−Dik ((1 + µi(t))λi(t))) ≶ 0, (33b)

while for i ∈ I \ IB relation (30) holds. Let µ = (µi, i ∈ IB) and define

V(λ, µ) =
∑
i∈IB

(
U∗i (λi, µi) + (1 + µi)

∑
k∈Ki

λikyik(λ)− µibi

)

+
∑

i∈I\IB

(
U∗i (λi) +

∑
k∈Ki

λikyik(λ)

)
.

Differentiating V(λ(t), µ(t)) yields, from Proposition C.4 and from either (32) and (33)
or (27) and (30),

d

dt
V(λ(t), µ(t)) =

∑
i∈I

∑
k∈Ki

∂V
∂λik

d

dt
λik(t) +

∑
i∈IB

∂V
∂µi

d

dt
µi(t) ≤ 0,

where the inequality is strict except at the unique minimum of V(λ, µ).
In this subsection we have assumed budgets constrain the advertisers’ rates of bid-

ding rather than expenditure. We might assume that the existence of rebates broadly
encourages truthful behaviour, and that rebates in one time period allow a larger bud-
get in the next time period.

7. CONCLUDING REMARKS
The framework we describe attempts to capture the system architecture of Ad-
auctions. The assignment problem must be solved rapidly, for each search; while an
advertiser is primarily interested in aggregates over longer periods of time. Thus we
model in detail each random instance of the assignment problem, while we describe
an advertiser’s behaviour in terms of averages evolving in time. The platform knows
more about search types and thus more about click-through probabilities, while an ad-
vertiser knows more about the value to her of additional click-throughs and is incen-
tivised to communicate this information via her bids. On a slow time-scale the platform
may decide which search types to pool in distinct auctions, across which the advertisers
will have different preferences they are able to communicate.

Our formal framework is one of utility maximization, as in the seminal work of Vick-
rey (1961), and the form of charging we describe to induce truthful declarations from
advertisers is familiar from that paper. Within our framework it is possible to study
the platform’s revenue as a function of, for example, reserve price; and one special case
of our framework recovers an equilibrium of the generalized second price auction with
reserve familiar from studies of revenue maximization [Ostrovsky and Schwarz 2011].

We have used sponsored search auctions as the motivation, and our model reflects
current practice in sponsored search, where platforms such as BingAds or Google Ad-
words use a variant of the generalized second price auction to solve the assignment
problem for every search query, while advertisers alter bids on timescales measured in
hours or days. However, our results apply much more widely, to display ads and other
online settings where time-scale asymmetry coexists with information asymmetry.
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Under the assumption of strategic advertisers, we showed that a Nash equilibrium
exists for the advertisers which produces the system optimum, provided prices are set
appropriately. We gave a simple way to implement such prices: namely, by giving ad-
vertisers a rebate, constructed by solving a second assignment problem using uniform
sampling between zero and the submitted bid for advertisers rather than the bid itself.
Note that the solution to this second assignment problem is not used for the allocation
but only for pricing, and hence could be adapted for use in current Ad-auctions.
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A. PROOF OF PROPOSITIONS 3.1 AND 3.2
PROOF OF PROPOSITION 3.1. A Lagrangian of the system problem can be written

as follows

Lsys(x, y;λ) =
∑
i∈I

Ui(yi) +
∑
i∈I

λiEτ

[∑
l∈L

pτilx
τ
il − yi

]
. (34)

Notice, we intentionally decide not to include the scheduling constraints in our La-
grangian. Thus we must maximize subject to these constraints when optimizing our
Lagrangian (3c-3d). Let A be the set variables x = (xτil : i ∈ I, l ∈ L, τ ∈ T ) ≥ 0 satisfy-
ing the assignment constraints, (3c-3d) for all i ∈ I, l ∈ L and τ ∈ T . We see that our
Lagrangian problem is separable in the following sense

max
x∈A

y,z∈RI+;

Lsys(x, y;λ) =
∑
i∈I

max
yi≥0
{Ui(yi)− λiyi} (35a)

+ Eτ

[
max
xτ∈X

∑
i∈I

∑
l∈L

λip
τ
ilx

τ
il

]
(35b)

Here X denotes the set of x ∈ RI×L+ such that for each i ∈ I and l ∈ L∑
l′∈L

xil′ ≤ 1, and
∑
i′∈I

xi′l ≤ 1. (36)

As we will now discuss, we can see that solutions x̃, ỹ and λ̃ satisfying the Conditions
A and B of our Theorem are optimal for Lagrangian (35a) and (35b) when λ = λ̃.

Firstly, if λ̃i a solution to for the optimization

minimizes U∗i (λi) + λiỹi over λi ≥ 0, (37)

then the solution is achieved when Di(λ̃i) = ỹi or equivalently when U ′i(ỹi) = λi. Thus
it is clear that ỹi solves the optimization

max
yi≥0
{Ui(yi)− λ̃iyi}. (38)

Thus, if Condition A, is satisfied, then ỹi optimizes (35a) when we choose λi = λ̃i.
Secondly if x̃τ solves ASSIGMENT(τ ,λ̃) for each τ , since each maximization ex-

pressed inside the expectation (35b) is an assignment problem, (35b) is maximized
when we take λ = λ̃.

These two conditions, Condition A and B, show that the Lagrangian, (34), is maxi-
mized by x̃ and ỹ with Lagrange multipliers λ̃. In addition x̃ and ỹ are feasible for the
system optimization (3). So, we have a feasible optimal solution for this Lagrangian
problem. As we demonstrate in Proposition B.1 in the appendix, the Lagrangian suffi-
ciency still holds for the system problem (3) – even though it has an infinite number of
constraints. Thus, we have shown a solution to conditions A and B is optimal for the
system problem.

Conversely, we know that strong duality holds for the system optimization (3) –
once again, this is despite the infinite number of constraints for this optimization. See
Theorem B.2 in the appendix for a proof. In otherwords, there exists a vector λ̃ such
that an optimal solution to the system problem is also an optimal solution to the La-
grangian problem when we chose lagrange multipliers λ̃. Thus, an optimal solution to
the SYSTEM(U, I,Pτ ) problem must optimize (35a) and (35b), and as discussed these
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solutions correspond to Conditions A and B. In otherwords, an optimal solution to the
system problem satisfies Conditions A and B with this choice of λ̃.

PROOF OF PROPOSITION 3.2. a) As found in Theorem 3.1, the Lagrangian of the
system problem can be written as follows

Lsys(x, y;λ) =
∑
i∈I

Ui(yi) +
∑
i∈I

λiEτ

[∑
l∈L

pτilx
τ
il − yi

]
. (39)

As we recall from (35), this Lagrangian is separable and is maximized as

max
x∈A

y,z∈RI+;

Lsys(x, y;λ) =
∑
i∈I

max
yi≥0
{Ui(yi)− λiyi}

+ Eτ

[
max
xτ∈X

∑
i∈I

∑
l∈L

λip
τ
ilx

τ
il

]

=
∑
i∈I

U∗i (λi) + Eτ

[∑
i∈I

λi
∑
l∈L

pτilx
τ
il(λ)

]
=
∑
i∈I

U∗i (λi) + λiyi(λ).

In the second equality above, we rearrange the assignment optimization in terms of
the click-through rate of each advertiser, yi(λ).

Thus the dual of this optimization problem is as required:

Minimize
∑
i∈I

[U∗i (λi) + λiyi(λ)] over λi ≥ 0, i ∈ I.

Now analyze the objective of this dual problem. We first show that optimization (8)
is minimized when 0 < λi <∞ for each i ∈ I. We consider the function∑

i∈I
λiyi(λ). (40)

With technical lemma, Lemma C.4, we see that we this function is continuously differ-
entiable with ith partial derivative given by the continuous function yi(λ). In addition,
by definition Di(λ) = (U∗i )′(λ) = (U ′i)

−1(λ). Thus the objective of (8) is continuously
differentiable for λ > 0.

Further it is positive for λ 6= 0 and increases by a constant factor when we multiply
λi by a constant. Thus,

lim
||λ||→∞

∑
i∈I

λiyi(λ) =∞. (41)

Thus since U∗i (λi) is a positive function, we see that the dual minimization (8) must be
achieved by a finite solution λ∗. Since in expression (7) the surplus demand satisfies
Di(0) = ∞, the minimum of the dual problem (8) must be achieved by λ∗i > 0 for each
i ∈ I. Now, as objective of (8) is continuously differentiable for λ strictly positive, it is
minimized iff for each i ∈ I

dU∗i
dλi

(λ∗i ) + yi(λ
∗) = 0. (42)

b) For the Lagrangian for the system problem, (39), Strong Duality holds by Theorem
B.2. So, there exist Lagrange multipliers λ∗, such that∑

i∈I

[
U∗i (λ∗i ) + λ∗i yi(λ

∗)
]

= max
x∈A

y,z∈RI+;

Lsys(x, y, z;λ
∗) = max

x∈A
y,z∈RI+;

∑
i∈I

Ui(yi)
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where there are feasible vectors x∗, y∗, z∗ achieving the optimum of both maximiza-
tions above. By weak duality it is clear that λ∗ must be optimal for the dual problem
(8). Further, since x∗ optimizes the Lagrangian Lsys with Lagrange multipliers λ∗, it
solves the assignment problem, x∗τ = xτ (λ∗).

B. LAGRANGIAN OPTIMIZATION
In this paper, we consider optimization problems that have a potentially infinite num-
ber of constraints, in particular, for the system wide optimization (3). Thus it is not
immediately clear that the Lagrangian approach – ordinarily applied with a finite
number of constraints – immediately applies to our setting. We demonstrate that cer-
tain principle results, namely weak duality and the Lagrangian Sufficiency Theorem,
apply to our setting.

We consider an optimization of the form

Maximize g(y) (43a)
subject to yi ≤ Eµ[xi], i = 1, ..., n, (43b)

fj(x(τ)) ≤ cj , τ ∈ T , j = 1, ...,m, (43c)
over y ∈ Rn, x ∈ B(T ,Rn). (43d)

In the above optimization, we consider probability space (T ,Pµ) and measurable ran-
dom variable x : T → Rn. We let B(T ,Rn) index the set of Borel measurable functions
form T to Rn. We assume that g : Rn → R is a concave function and that fj : Rn → R is
a convex function, for each j = 1, ..., d. We assume the solution to this optimization is
bounded above.

Although there are an infinite number of constraints in this optimization, we can
define a Lagrangian for this optimization as follows

L(x, y, z;λ) = g(y) +

n∑
i=1

λiEµ[xi − yi − zi]

Here the Lagrange multipliers λi, i = 1, ...n, can be assumed to be positive, slack
variables zi are added for each constraint (43b) and the optimization of the Lagrangian
is taken over yi real, zi positive and real, and xi a Borel measurable random variable
for i ∈ I. We let F be the set of (x, y) feasible for the optimization (43).

Weak duality and Lagrangian Sufficiency both hold for this Lagrangian problem.

PROPOSITION B.1 (WEAK DUALITY).
a) [Weak Duality] For g∗ the optimal value of the optimization (43),

sup
y∈Rn,

x∈B(T ,Rn)

L(x, y, z;λ) ≥ g∗.

b) [Lagrangian Sufficiency] If there exists x∗ ∈ B(T ,Rn) and y∗ ∈ Rn that is both
feasible for the optimization (43) and maximizes the Lagrangian L(x, y, z;λ) with z∗i :=
y∗i − Eµx∗i then x∗, y∗, z∗ is optimal for (43).

PROOF. a) Because F is a subset of B(T ,Rn)× Rn, we have

sup
y∈Rn, z∈Rn+,
x∈B(T ,Rn)

L(x, y, z;λ) ≥ sup
(x,y)∈F
z∈Rn+

L(x, y, z;λ) = sup
(x,y)∈F
z∈Rn+

L(x, y, z;λ) = g∗.

This proves weak duality.
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b) Now applying this inequality, if a feasible solution optimizes the Lagrangian

g(y∗) = L(x∗, y∗, z∗;λ, α) = sup
y∈Rn, z∈Rn+,
x∈B(T ,Rn)

L(x, y, z;λ) ≥ g∗. (44)

Thus, (x∗, y∗) is optimal for (43).

For z ∈ RI , we use F(z) to denote the set of (x, y) satisfying constraints (43c-43d)
and satisfying constraints

zi + yi ≤ Eµ[xi], i = 1, ..., n. (45)

Note, F = F(0). We now show that there exists a Lagrange multiplier λ∗ where the
optimized Lagrangian function also optimizes (43).

THEOREM B.2 (STRONG DUALITY). There exists a λ∗ ∈ Rn+ such that

max
(x,y)∈F

g(y) = max
y∈Rn

x∈B(T ,Rn)

g(y) +
∑
i∈I

λ∗iE [xi − yi] . (46)

In particular, if there exist (x∗, y∗) ∈ F maximizing (43) then it maximizes (46).

PROOF. Firstly, since F ⊂ B(T ,Rn)× Rn, we proved the weak duality expression

max
(x,y)∈F

g(y) = max
(x,y)∈F

g(y) +
∑
i∈I

λ∗iE [xi − yi] ≤ max
y∈RI

x∈B(T ,Rn)

g(y) +
∑
i∈I

λ∗iE [xi − yi] . (47)

It remains to show the reverse inequality. We consider the following set

C = {(z, γ) ∈ RI × R : there exists (x, y) ∈ F(z) with g(y) ≥ γ}.

We claim that C is convex. Take (z0, γ0), (z1, γ1) ∈ C and take (x0, y0) ∈ F(z0), (x1, y1) ∈
F(z1) respectively achieving bounds g(y0) ≥ γ0 and g(y1) ≥ γ1. For each term u =
x, y, z, γ just defined, we correspondingly define uq = (1− q)u0 + qu1, for q ∈ [0, 1].

By concavity of g, convexity of fj , j = 1, ...,m, and linearity, we have

g(yq) ≥ (1− q)g(y0) + qg(y1) ≥ γq,
fj(x

q(τ)) ≤ (1− q)fj(x0(τ)) + qfj(x
1(τ)) ≤ cj ,

Eµ[xqi − y
q
i ] ≥ (1− q)z0i + qz1i = zqi ,

for τ ∈ T , j = 1, ...,m and i = 1, ..., n. These above inequalities show that (zq, γq) ∈ C
and thus our claim is holds: C is convex.

Let γ∗ = max(x,y)∈F g(y). Here we are optimizing over F(z) with z = 0. So, it is clear
that (0, γ∗) does not belong to the interior of C. Thus by the Supporting Hyperplane
Theorem [Rockafellar 1997], there exists a hyperplane through (0, γ∗) supporting C. In
other words, there exists a non-zero vector (λ, φ) ∈ RI × R such that

φγ∗ ≥ φγ + λTz,

for all (z, γ) ∈ C. Firstly, it is clear that φ ≥ 0, otherwise γ∗ is not maximal for (x, y) ∈ F .
We now claim φ 6= 0. We proceed by contradiction. If φ = 0, then 0 ≥ λTz for all

(z, γ) ∈ C. But notice, for any x ∈ B(T ,Rn+), we can choose yi ∈ R such that yi−Eµ[xi] =

λi, thus for this choice of (x, y) we have z = λ. Thus, λTz = λTλ > 0, and so we have a
contradiction. It must be that φ > 0.
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As φ > 0, we can define λ∗ = (λi/φ : i ∈ I). Since for each (x, y) ∈ B(T ,Rn) × RI , if
we set zi = Eµ [xi − yi] and γ = g(y) then we have (z, γ) ∈ C. With this we have

max
(x′,y′)∈F

g(y′) = γ∗ ≥ γ + λ∗Tz = g(y) +
∑
i∈I

λ∗iE [xi − yi]

Thus, maximizing over x ∈ B(T ,Rn) y ∈ RI , we have

max
(x,y)∈F

g(y) ≥ max
y∈Rn

x∈B(T ,Rn)

g(y) +
∑
i∈I

λ∗iE [xi − yi] . (48)

Together (47) and (48) give the required equality (46). In addition, given (43) has a
finite optimum, inequality (48) can only hold when λ∗ ≥ 0.

Finally, if (x∗, y∗) ∈ F are optimal for (43) then equality (46) implies

g(y∗) ≥ g(y∗) +
∑
i∈I

λ∗iE [x∗i − y∗i ] . (49)

However, the feasibility of (x∗, y∗) and positivity of λ∗ implies∑
i∈I

λ∗iE [x∗i − y∗i ] ≥ 0. (50)

So we see these two inequalities imply complementary slackness λ∗iE [x∗i − y∗i ] = 0 and
that (x∗, y∗) ∈ F maximizing (43) also maximizes (46).

C. ADDITIONAL LEMMAS AND PROPOSITIONS
This section gives proofs of Proposition 5.2 and Proposition C.4. These propositions
characterize the continuity and differentiability of the functions

x̄il(λ) = Eτx∗τil (λ), yiλ) = Eτ
∑
l

pτilx
∗τ
il (λ),

∑
i∈I

λiyi(λ).

Proposition 5.2 requires two technical lemmas, Lemma C.1 and Lemma C.2, which
give the differentiability of a random point belonging to a polytope as we smoothly
change the boundary condition. Proposition C.4 employs the Envelope Theorem [Mil-
grom 2004, Chap. 3], as is commonly applied in auction theory.

LEMMA C.1. 1) If U is a random vector uniformly distributed inside the unit sphere,
Sn = {u ∈ Rn : ||u|| ≤ 1}, then there exist a constant K1 such that for any two non-zero
vectors λ, λ̃ ∈ Rn\{0}

P(λTU ≥ 0 > λ̃TU) ≤ K1

||λ|| ∧ ||λ̃||
||λ− λ̃||. (51)

2) If X is a random variable with density fX continuous on the interior of its support
P, a polytope P ⊂ [−1, 1]n. The function P(µT

1X ≥ 0, ..., µT
kX ≥ 0) is Lipschitz continuous

provided ||µ1||, ..., ||µk|| are bounded away from zero.

PROOF. 1) We give a geometric proof of the result. We assume, wlog, that ||λ|| ≥ ||λ̃||,
and we let Vn be the volume of S. For every u satisfying λTu ≥ 0 > λ̃Tu, there exists
a θ ∈ [0, 1] such that λTu + θ(λ̃T − λT)u = 0. Let λθ be the unit vector proportional to
λ+θ(λ̃−λ). By continuity there exist a θ̃ such the λT

θ̃
u = 0. We note three facts: 1) Each

cross section {u ∈ S : λT
θu = 0} has the same volume Vn−1 in its Rn−1 subspace; 2) the

EC’14, June 8-12, 2014, Palo Alto, CA, Vol. X, No. X, Article X, Publication date: June 2014.



X:28 F. Kelly et al.

path P = {λθ : θ ∈ [0, 1]} is a circular path and thus has length bounded above by the
terms

2π

∣∣∣∣∣∣∣∣ λ||λ|| − λ̃

||λ̃||

∣∣∣∣∣∣∣∣ ≤ 2π

||λ||
∣∣∣∣λ− λ̃∣∣∣∣; (52)

and, 3) {u ∈ S : λTu ≥ 0 > λ̃Tu} = {u ∈ S : λT
θu = 0, θ ∈ [0, 1]}. Thus, we see we can

bound the probability P(λTU ≥ 0 > λ̃TU) by the length of the path P times the volume
of cross sections {u ∈ S : λT

θu = 0}. In other words,

P(λTU ≥ 0 > λ̃TU) ≤ 2πVn−1
||λ||

||λ− λ̃||, (53)

as required.
2) Let’s first deal with the case where k = 1. Observe∣∣∣∣∣∣P(µTX ≥ 0

)
− P

(
µ̃TX ≥ 0

) ∣∣∣∣∣∣
=
∣∣∣∣∣∣P(µTX ≥ 0 > µ̃TX

)
− P

(
µ̃TX ≥ 0 > µTX

) ∣∣∣∣∣∣
≤P
(
µTX ≥ 0 > µ̃TX

)
+ P

(
µ̃TX ≥ 0 > µTX

)
(54)

Also since f has a density that is bounded by a constant, we can bound the above
probabilities with uniform random variables:

P
(
µTX ≥ 0 > µ̃TX

)
≤ K2P

(
µTU ≥ 0 > µ̃TU

)
for a constant K2 and for U is a uniform random variable on the unit sphere in Rn.
Now applying part 1) of this Lemma

P
(
µTX ≥ 0 > µ̃TX

)
≤ K1K2

||µ|| ∧ ||µ̃||
||µ− µ̃||

≤K1K2

K3
||µ− µ̃||.

whereK3 is the constant by which µ and µ̃ are bounded away from zero. Thus, applying
this inequality to (54). We have that P

(
µTX ≥ 0

)
is Lipschitz continuous. For the case

k ≥ 1, we know that from the k = 1 case that the function

P(µT
1X ≥ 0|µT

2X ≥ 0, ..., µT
kX ≥ 0) (55)

is Lipschitz as a function of µ1. Here, if P(µT
2X ≥ 0, ..., µT

kX ≥ 0) = 0, we apply the
convention that (55) is zero – which is certainly a Lipschitz function. Thus, since

P(µT
1X ≥ 0, µT

2X ≥ 0, ..., µT
kX ≥ 0)

=P(µT
1X ≥ 0|µT

2X ≥ 0, ..., µT
kX ≥ 0)

× P(µT
2X ≥ 0, ..., µT

kX ≥ 0).

This function is Lipschitz continuous component-wise and thus must also be Lipschitz
continuous.

LEMMA C.2. Given µ ∈ (0,∞)n, X is a random variable with density fX continuous
on the interior of its support P, a polytope P ⊂ [−1, 1]n.
1) Provided the plane µTx = 0 is not a boundary of this polytopes then P(µX ≥ 0) is a
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differentiable function of µ.
2) Given distinct vectors µ1, ..., µk ∈ (0,∞) satisfy

P(µT
1X ≥ 0, ..., µT

kX ≥ 0) > 0, (56)

the function P(µT
1X ≥ 0, ..., µT

kX ≥ 0) is differentiable.

PROOF. 1) If the plane µTx = 0 does not intersect P then the derivative of P(µTX ≥
0) must be zero. Similarly, if the plane µTx = 0 intersects the boundary of P, the
derivative of P(µTX ≥ 0) has magnitude that is proportional to is the area of the
intersection of µTx = 0 in P. But since µTx = 0 is not a boundary surface this area is
zero and so the derivative of P(µTX ≥ 0) is zero.

Now, we suppose µTx = 0 is intersects the interior of P. Since there are negligible
boundary effects, we can apply standard calculus arguments to differentiate P(µTX ≥
0). Given, X = (X1, ..., XI) has density fX(x1, ..., xI) then µX = (µ1X1, ..., µIXI) has
density

fµX(y1, ..., yI) = fX

( y1
µ1
, ...,

yI
µI

) n∏
i=1

µ−1i . (57)

Thus µTX is a convolution and so its density is given by

fµTX(z) =∫
fX

( y1
µ1
, ...,

z −
∑I−1
i=1 µiyi
µI

) n∏
i=1

µ−1i dy1...dyI−1.

And thus differentiating inside the integral, [Williams 1991, §A16] we have

∂fµTX

∂µi
(z) = (58)∫

∂

∂µi

{
fX

( y1
µ1
, ...,

z −
∑I−1
k=1 µiyi
µI

) n∏
i=1

µ−1i

}
dy1...dyI−1.

Finally, since again we can differentiate inside the integral, we see that

∂

∂µi
P(µTX ≥ 0) =

∫ ∞
0

∂fµTX

∂µi
(z)dz, (59)

where the derivative
∂f
µTX
∂µi

(z) is given above.
2) Suppose we wish to differentiate with respect to one of the components of µ1. The
conditional distribution

P(·|µT
2X ≥ 0, ..., µT

kX ≥ 0) (60)

has a continuous density defined on polytope P = {x : µT
2x ≥ 0, ..., µT

kx ≥ 0}. Provided
the vectors are distinct then {x : µT1 x = 0} is not a boundary to this polytope. Thus we
can apply the first part of this lemma and the chain rule to give the result.

So provided there is a certain amount of variability in pτij then we can expect the
average performance of a advertise to be a continuous function of the declared prices
λ. This will be useful for achieving convergence.
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PROOF OF PROPOSITION 5.2. We let P index the of assignments from I to L. No-
tice, provide there is a unique maximal assignment,

xτil(λ) =
∑

π∈P:π(i)=l

I

[∑
k

λkp
τ
kπ(k) ≥

∑
k

λkp
τ
kπ̃(k), ∀π̃ 6= π

]

=
∑

π∈P:π(i)=l

∏
π̃ 6=π

I

[∑
k

λkp
τ
kπ(k) ≥

∑
k

λkp
τ
kπ̃(k)

]
(61)

Here I is the indicator function.
Notice, since Eτ admits a density, f(pτ ), then with probability one, there is a unique

maximizer to the assignment problem ASSIGNMENT(τ, λ): The probability two as-
signments have the same value is

Pτ

(∑
k

λkp
τ
kπ(k) =

∑
k

λkp
τ
kπ̃(k)

)
(62)

=

∫
I

[∑
k

λkp
τ
kπ(k) =

∑
k

λkp
τ
kπ̃(k)

]
f(p)dp = 0. (63)

In other words, because we integrate of over a set of one dimension less than the
dimension of the space of p, the integral is zero. Thus the probability that there are
two maximal assignments is zero. So the equality (61) holds almost surely for all λ 6= 0.

For two assignments π and π̃, we define the vector
µππ̃ := (λiI[π(i) = l]− λiI[π̃(i) = l] : i ∈ I, l ∈ L) .

Notice for any two distinct permutations the non-zero components of I[π̃(i) = l] are
distinct. So the vectors µππ̃ are distinct over π̃ 6= π. Since the maximal assignment is
almost surely unique, we have

x̄il(λ) =
∑

π∈P:π(i)=l

E

∏
π̃ 6=π

I

[∑
k

λkp
τ
kπ(k) ≥

∑
k

λkp
τ
kπ̃(k)

]
=

∑
π∈P:π(i)=l

P
(
µT
ππ̃p ≥ 0, ∀π̃ 6= π

)
. (64)

Thus if the function P
(
µT
ππ̃p ≥ 0, ∀π̃ 6= π

)
is differentiable and Lipschitz continuous

then we have same properties for functions x̄jl(λ). The Lipschitz continuity and differ-
entiability of P

(
µT
ππ̃p ≥ 0, ∀π̃ 6= π

)
is proven in Lemmas C.1 and C.2 respectively.

We now have the differentiability and Lipschitz property for x̄. As we shall explain,
the differentiability and Lipschitz properties of y are a consequence of that holding for
x̄, after a change of measure. The summands used to calculate are

Eτpilxτil(λ) =

∫
xτil(λ)pilf(p)dp

= Eτ [pil]×
∫
xτil(λ)f̃il(p)dp

where f̃il is the continuous bounded density function

f̃il(p) =

{
pilf(p)
Eτpil , if Eτpil > 0,

0, otherwise.
(65)
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In other words, Eτpilxτil(λ) is exactly Ẽτxτil but the expectation is calculated with a
different continuous density function. Thus, differentiability and Lipschitz continuity
follow for the summands of y for exactly the same reason as they did for x̄il. Thus y is
differentiable and Lipschitz continuous.

LEMMA C.3. The function λi 7→ yi(λi, λ−i) is strictly increasing.

PROOF. Given prices λ let xτil(λ) is an optimal solution to the assignment problem
(1) and define

yτi (λ) :=
∑
l

pτilx
τ
il.

Clearly, yi(λ) = Eτyτi (λ). Thus, if we can prove yτi (λ) is increasing then so is yil(λ).
Further note ∑

i

λiy
τ
i (λ) =

∑
il

λip
τ
ilx

τ
il(λ) (66)

which is the optimal objective for the assignment problem (1).
Define λ′ with λ′i < λi and λ′j = λj for each j 6= i. We now proceed by contradiction.

Suppose that yi(λ′) > y(λ), then the following equalities and inequalities hold∑
j

λjy
τ
j (λ) = (λi − λ′i)yτi (λ) +

∑
j

λ′jy
τ
j (λ) (67)

≤ (λi − λ′i)yτi (λ) +
∑
j

λ′jy
τ
j (λ′) (68)

< (λi − λ′i)yτi (λ′) +
∑
j

λ′jy
τ
j (λ′) =

∑
j

λjy
τ
j (λ′). (69)

Here the first equality holds by the optimality of yτ (λ′) and the second holds by as-
sumption. But notice the resulting equality above contradicts the optimality of yτ (λ).
Thus by contradiction, yτi (λ) is increasing in λi and thus taking expectations so is yi(λ).

We now prove that λi 7→ yi(λ) is strictly increasing. Let λ′ be such that λ′i > λi and
λ′j = λi for all j 6= i. The result proceeds by showing that

P(yτi (λ′) > yτi (λ)|E) > 0 (70)

where we condition on an event E with non-zero probability. Notice, after taking ex-
pectations, this implies that yi(λ′) > yi(λ).

Now since f(p) > fmin, p = (pil : i ∈ I, l ∈ L) stochastically dominates a uniform
random variable on the set of increasing click-through rates, S. Thus it is sufficient
to prove the result for u = (uil : i ∈ I, l ∈ L) uniform on S. Now, for instance, there
is positive probability that advertiser i and j, with λj > 0, compete over the top two
slots, l = 1, 2. This occurs under on the event, when i and j have click-through rate
over one half and all other advertisers have expected revenue that half of this, namely,
the event

E :=

max
k=i,j
l∈L

λkukl ≥
1

2
, 2 max

k 6=i,j
l∈L

{ukl} ≤
1

2
min{λi, λj}

 . (71)

Given this event, advertiser i achieves the top position with bid λ′i and the second
position with bid λi with on condition

λ′i(ui1 − ui2) > λj(uj1 − uj2) > λi(ui1 − ui2). (72)
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Since ui1, ui2, uj1, uj2 remain uniformly distributed (on [1, 1/2]) it is a straightforward
calculation that

P (λ′i(ui1 − ui2) > λj(uj1 − uj2) > λi(ui1 − ui2)‖E) > 0, (73)

which, since yi(λ) is increasing, implies

P(yτi (λ′) > yτi (λ)|E) > 0, (74)

and thus yi(λ) < yi(λ
′), as required.

PROPOSITION C.4. The function λ 7→
∑
i∈I λiyi(λ) is a continuous convex and is

differentiable function for λ 6= 0 with derivatives given by

d

dλi

{∑
i′∈I

λi′yi′(λ)

}
= yi(λ). (75)

Further,

lim
||λ||→∞

∑
i∈I

λiyi(λ) =∞. (76)

PROOF. From Proposition 5.2, we know that the function λ 7→ yi(λ) is continuously
differentiable for λ 6= 0. Also, since the function yi(λ) is bounded λiyi(λ) is continuous
at zero. Thus the function λ 7→

∑
i∈I λiyi(λ) is a continuous and is differentiable for

λ 6= 0 .
Next we can see that the function

λ 7→
∑
i∈I

λiyi(λ)

is convex. Taking λ0, λ1 ∈ RI and defining λp = pλ1 + (1 − p)λ0, the argument for this
is as follows ∑

i∈I
λpi yi(λ

p)

=Eτ

[
max
xτ∈X

∑
i∈I

∑
l∈L

λpi p
τ
ilx

τ
il

]

=Eτ

[
max
xτ∈X

{
p
∑
i∈I

∑
l∈L

λ1i p
τ
ilx

τ
il + (1− p)

∑
i∈I

∑
l∈L

λ0i p
τ
ilx

τ
il

}]

≤pEτ

[
max
xτ∈X

∑
i∈I

∑
l∈L

λ1i p
τ
ilx

τ
il

]

+(1− p)Eτ

[
max
xτ∈X

∑
i∈I

∑
l∈L

λ0i p
τ
ilx

τ
il

]
=p
∑
i∈I

λ1i yi(λ
1) + (1− p)

∑
i∈I

λ0i yi(λ
0).

The differentiability result (75) follows according the Envelope Theorem as follows
– for further details see [Milgrom 2004, Chap. 3]. Since by definition, xτ (λ) is optimal
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