NETWORKS OF QUASI-REVERSIBLE NODES

F. P. Kelly

Summary

Many analytical results are available for a network of queues
when the nodes in the network have a simplifying property. This
property, called here quasi-reversibility, was first identified by
Muntz and has since been investigated by a number of authors. A
closely related concept, partial balance, has been central to the
investigation of insensitivity begun by Matthes.

Here we describe the concept of quasi-reversibility, provide new
examples of quasi-reversible nodes, discuss the range of arrival rates
for which a node remains quasi-reversible, and analyse a model of a
communication network insensitive to patterns of dependence more general

than have previously been considered,

1. Introduction

A great number of analytical results are available concerning the
equilibrium behaviour of a queueing network when the nodes in the
network have a certain simplifying property. This property, called
here quasi-reversibility, was first identified by Muntz [17] and various
examples of quasi-reversible nodes have been presented by Baskett,
Chandy, Muntz and Palacios [2] and Kelly ([7], [81).

Important aspects of the equilibrium behaviour of some quasi-

reversible nodes are insensitive to the precise specification of the




nodes. For example the equilibrium distribution of the number of
customers in an M/G/K loss system depends on the service requirement
distribution G only through its mean. This form of insensitivity have
been extensively investigated by Matthes, Koenig, Nawrotski, Jansen and
Schassberger ([11], [12], [15], [18], [19]; see also [5]). Central to
this work is the feature of partial balance, a feature first observed
in queueing networks by Whittle [24].

Quasi-reversibility and partial balance are closely related
concepts, but it is perhaps worth pointing out that they direct
attention to rather different aspects of complex systems. To
illustrate their distinct emphases in a system amenable to analysis by
either approach consider a closed network of J symmetric queues
containing a total of N customers ([81, [20]). Quasi-reversibility
focuses attention on the J queues and partial balance on the N
customers. Both approaches lead to product form expressions for the
equilibrium distribution; the first [7] stresses J factors, one for
each queue, the second [11] stresses N factors, one for each customer.
There are also technical distinctions: the first approach lends itself
most easily to a treatment in terms of countable state space Markowv
processes, with results for systems involving arbitrary distributions
having to be obtained by weak convergence arguments [1]; the second
approach elegantly models various aspects of dependence using the theory
of stationary point processes, but requires limiting arguments to cope
with open systems. For further remarks on the relationship between the
two approaches see [8] and [20].

In Section 2 of this paper quasi-reversibility is defined and the
fundamental theorem for a network of quasi-reversible nodes is proved.
The development presented is an extension of that to be found in Muntz

[17] and Kelly [8], and has been much influenced by the ideas of

Melamed [16] and Walrand and Varaiya [23]. Section 3 describes a
simple example of a quasi-reversible node. In Section 4 conditions are
provided under which the arrival rates at a quasi-reversible node can be
varied independently without destroying the property of quasi-
reversibility. The linearity of the traffic equations arising in [2],
[3] and [6] is a consequence of the ability to manipulate nodes in this
manner. Not all quasi-reversible nodes can be so manipulated: Section
5 describes an example adapted from the work of Whittle on clustering
phenomena [25] and touches on some of the unusual features, including
non—-linearity of the traffic equations, which may arise when such nodes
form part of a network. Section 6 presents a clustering model
exhibiting a form of insensitivity. The model allows patterns of
dependence more general than have previously been considered and
provides an interesting example with which to investigate the framework
laid down in [11], [12], [15], [18] and [19]. A potential application

to the modelling of communication networks is discussed.
2, Networks of Quasi-reversible Nodes

Let S be a countable set and let Q = (q(x,x'),x,x' € §) be a
collection of non-negative real numbérs. Set q{x,x) = 0 for all x ¢ §,

and assume that

q(x)a I q(x,x')
il

is finite and positive for all x € S. 1In the usual manner we can use Q
to construct a continuous time Markowv process with countable state space
5: starting from state x allow the process to stay there for a period
exponentially distributed with parameter q(x), then move the process to
state x' with probability q(x,x')/q(x); allow the process to remain in
state x' for a further period independent and exponentially distributed

with parameter q(x'), and so on. The collection Q may be such that for



some initial states this procedure generates an infinite number of jumps
in a finite time with positive probability. When this is not so, i.e.,
in the non-explosive case, the procedure can be used to construct a
Markov process defined on [0,») with an arbitrary initial distribution.
In any event a discrete time Markov process defined on (0,1,2554%) can
be constructed by using the same procedure but with the holding periods
in each state set to one: call this process the jump chain associated
with Q.

Suppose now that the transition rates ( admit a positive invariant
measure (n(x),x € S), taken here to mean that (m(x), x € 5} is a

collection of positive numbers satisfying

w(x)q(x) = I w(x")q',x) xe S . (1)
x'e§

Define q' (x,x') by

(=) q'(x,x') = n(x') qx',x), (2)
let

Q' = (q' (xx"), xx' e8)
and let

q'(x) = I q'(xx'),
X €S

Observe that equation (1) implies

q(x) = q'(x®). (3)
1f (x(t), t € R) is a non-explosive stationary Markov process with
transition rates Q and stationary distribution m then the tramsition
rates Q' are precisely those of the reversed process (x(-t), t e R).

Assume now that certain transitions are identified with arrivals or
departures of customers (or items) of class ¢ e G, for C a finite or

countable collection of possible customer classes. Specifically suppose

d
that for each {(c,x) € C ® § there are subsets Sa(c,x),_s (e, x)S:5

7t
satisfying
s%(c. ,x) N s¥(c x)=¢ Sd(c x)ﬂSd(c X)=¢ Ve #c (4)
12 22 1’ 22 SRR
flxyxt)is = SSa(cl,X), and(cz.X')}=¢ Veq,e, (5)

with the interpretation that a transition from x to x' & Sa(c,x) signals
the arrival of a customer of class ¢, and a transition from x' an(c,x)
to x signals the departure of a customer of class c¢. Condition (4)
ensures that customers arrive singly and that they depart singly. This
condition is essential in what follows. Condition (5) rules out the
possibility that a single transition may signal both an arrival and a
departure, and is made for convenience of exposition (cf. [8]). Since
customer classes are essentially defined in terms of subsets of the
state space S5 it will be natural in what follows to suppose that the

symbol C fixes the family
a d
((87(c,x),8 (c,x)): (c,x) e C x 8).

Call the node (Q,m,C) quasi-reversible if there exists a collection

(a(e), B(e), ¢ & C) such that

3 A -
x'ESa(c.x)q(x A iR

x'ESd(c,x)q o T R y 28

for all (e,x) e C x §. If (x(t), t € R) is a non-explosive stationary
Markov process with transition rates Q and equilibrium distribution =
then quasi-reversibility reduces to the property that the state of the
process at time t,x(t), is independent of:
(1) the arrival times of class ¢ customers, ¢ £ C, subsequent
to time t;
(ii) the departure times of class c customers, ¢ & C, prior to

time t.



This property in turn implies that:
(i) arrival times of class c customers, for c € C, form
independent Poisson processes;
(ii) departure times of class ¢ customers, for c £ €, form
independent Poisson processes.
An especially simple example of a quasi-reversible node is the

following system:

s = {0,1,2} c= {1}

q(x,x') = o x' = x+ 1 (mod 3)
= B x' = x- 1 (mod 3)
m(x) = 1 x eS8
$%(1,%) = x+1(mod 3) s9(1,%) = x~1 (mod 3).

This node can be viewed as acting as a source of rate o and a sink of
rate B.

We shall now discuss how a number of quasi-reversible nodes can be
linked together to form a network. Let ((Qj, ﬁj’ Gy, 7= do2gae i he
a finite collection of quasi-reversible nodes, and use the subscript j
generally to identify entities associated with the jth node. Thus

arrivals and departures are defined for node j in terms of the family
((s2(e,x.), S(.l(c,x.}): (i ac0) & G 8,3
i | ] | ] A 4
and the collection of customer classes C is the same for each node. Let
o 2 ) R o L et ) T o SR T s SR iy
be a bijection, with the interpretation that when a customer of class ¢

departs from node j he transmutes into a customer of class £(c,j) who

then arrives at node k(c,j). Assume that

o

K(c, i) (8(e, 1)) = Bj(C). (8)

a requirement that will emerge as necessary to match departures of class

¢ customers from node j with arrivals of class E£(c,j) customers at node
k(e,i).
Now define a collection of transition rates Q = (q(x,x"), x,x' € 8)

on the state space S = §, X 52 SRR S SJ as follows. If

ik
x = (xl,xz,...,xé,...,xk,...,xJ) (9)
and
x' = (Xl'xz"."xj’-“’xi"-.’XJ) (10)
where
1 d = . 1 a B
xjeSj(c,xj), k=k(e,3), x €8 (E(c,3)>x) (11)
put
. . a4y, (x53)
PRI E A e
if
55 = (xl,xz,...,xj,...,xJ) (12)
and
x' = (xl,xz,...,xﬁ,...,xJ) (13)
where
¢ U s3e,x,), x, de,x! 14
% icecbj (e xJ) %y F5 cECSJ (c XJ) ) (14)
put

q(x,x') = qj(xj,xg);
otherwise put q(x,x') = 0. The transition rates Q are thus defined in
the obvious way: a node behaves as it would in isolation except that
arrivals are triggered exogenously, by departures from other nodes,

rather than by an endogenous mechanism.

Theorem. The transition rates () admit a positive invariant measure



10
J
m(x) = M w.(x,) =x¢e8
=1 4 3
Proof. Define a collection of transition rates Q' in terms of

(Q', 4 =1,2,...,J) as follows. If relations (9), (10) and (11) hold
il

put
qliGe %)
q' (x', %) = qp (%) —153%551— ]

if relations (12), (13} and (14) hold put
1 1 — 1 I,X‘ .
q' (x",x) qj(xj J),
otherwise put q'(x',x) = 0. The definition (2) of Qi, | e S R

and the equalities (8) imply that
m(x)q(x,x") = m(x')q' (x',x) xpx! ElS S (15)
Since

J
= I =
q(x) j=l[qj(x.j) cﬁc aj(c)]

J
V() = B lqtiimadi= LB B Cciid
q' (%) j=1[qj( j 25 By
it follows from equations (3) and (8) that
q(x) = q'(x) =x¢eS8§
This and equation (15) establish the result:

I mx)qGx') = mx")gx') =xesS O
XeS

The generality of our approach has resulted in some simplicity in

the statement and proof of the Theorem, since we have been able to

postpone asking whether Q is explosive, reducible or positive recurrent.

In applications, however, we usually seek a unique stationary distribu-
tion rather than just a particular invariant measure. This final step

must be justified by appeal to specific properties of the network under
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consideration, but the general line of argument usually proceeds as
follows ([9], [10]). If S*C S is a closed communicating class then
(m(x), x & 8%) is a positive invariant measure for the transition rates
Q* = (g(x,x'), x,x"'" £ S%¥). 1If the Markov process constructed from Q%
is non-explosive then it has a stationary distribution if and only if

Bla 2 om(m) <w, (16)
= xe8%

and when this condition is satisfied (Bw(x), x e S%) is the unique
stationary distribution. Observe that condition (16) may be satisfied
even if some or all of the measures (wj, j=1,2,...,J) are not summable.

Sometimes interest is focused not directly on the Markov process
constructed from Q or Q%, but on chains embedded in this process - for
example we may be interested in the state observed at times immediately
following a particular sort of transition. To obtain results for such
chains it is useful to consider the transition probabilities

P = (p((x,¥), (¥.2)), X,¥,2 € §) where
p((x,¥), (v,2)) = q(y,z)/q(y).

These are just the transition probabilities of the Markowv chain
((x(n), x(n+1)), n =0,1,...) formed by taking each successive pair of
states of the jump chain (x(n), n = 0,1,...). It is immediately
verified that an invariant measure for P is (m(x)q(x,y), (x,¥) € 52),
and from this invariant measures for chains embedded in the sequence
((x(n), x(n+1)), n =0,1,...) can be readily deduced. If (x(t), teRR)
is a non-explosive, irreducible stationary Markov process with
transition rates Q* and stationary distribution (w(x), x £ 5%) then
essentially invacigat measure
(m(x)q(x,y), X,y & 5%) is thelynique-s%&éieﬂa;y—dia&sihu&ianLﬁor the
chain ((x(n), x(n+1)), n = 0,1,...) with state space §*% x S*, In this

case m(x)q(x,y) has an interpretation as the probability flux from state

x to state y [8].
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Often the embedded chain of interest has itself an invariant
measure of product form but the appropriate closed communicating class
to which the measure should be restricted differs in some respect from
the state space S% of the original process. TFor example, results
contained in [4], [8], [14] and [21] are concerned with a chain
embedded at certain arrival times in a closed network and the
appropriate class is isomorphic to the state space of a closed network
with one less customer. As another example [4] if a closed network
with homogenous customers is observed at just the times when the
number in a particular queue increases from n-1 to n and if the state
of the particular queue is deleted from the observation then the
appropriate class for the resulting chain is isomorphic to the state

’

space of a closed network with n less customers and one less queue.
3. A Many Server Queue

The examples of quasi-reversible nodes presented by Baskett,
Chandy, Muntz and Palacios [2] and Kelly [7] are widely known. Here and
in Section 5 we describe two simple examples not covered in those
papers.

The first example is a queue with s servers at which customers of
a single class arrive in a Poisson stream of rate o«. The servers may
differ in efficiency: specifically, a customer's service time at server
i is exponentially distributed with parameter Bys Eoriis= Nl i i
Define the state of the queue to be the vector x = (n, il,iz,...,is_ﬂ),
read as (n) when n > s, where n is the number of customers at the queue
l,iz,...,is_n is a list of the free servers arranged in order

according to the length of time they have been free. Suppose that if a

and i

customer arrives to find the queue in state x = (n, il’iZ""’is—n) with

n < s he is allocated to server ir with probability p(r,s-n),
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r=1,2,...,8-n. For example if p(l,m) = 1 for m = 1,2,...,8 then a
customer is always allocated to the server who has been idle for the
longest time. If the customer arrives to find n > s he waits in line.
It is elementary to check that an invariant measure for the resulting

transition rates Q is

He
s-n Ty
mlx) =L —— n<s
e ST
n-s
ol
= n>s
= 2
H
i=1%4

The transition rates Q' defined by equation (2) are easily calculated
and can be regarded as describing a similar s—server queue with a
slightly different method of handling idle servers. It then follows
that, with the obvious transitions signalling arrivals and departures
of customers of the single class, the queue is quasi-reversible, with
a(l) = (1) = a. If Epi < g the invariant measure 7 can be normalized
to give the unique stationary distribution. TIn equilibrium the service
time of a customer is distributed as a mixture of exponential
distributions. The convex combination defining the mixture depends on
the arrival rate o as well as on ul,uz,...,pn, and the service times of
successive customers are dependent. i

Note that if customers leaving the queue who have been served by

server i are assigned class i then the queue is not quasi-reversible.

In constrast if customers of class ¢, ¢ & C; arrive in independent
Poisson streams of rate a(c), where o = Zu(c), and if a customer's class
neither changes nor affects his progress as he passes through the queue
then the queue is quasi-reversible. To show this the state of the
process must be expanded from x to (x,¢) where c = (cl,cz,...,cn)
determines the class of each customer in each possible position in the

system: an invariant measure is then
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5 a(ci)
n(x,c) = v(x) T
=1

a

and the conditions for quasi-reversibility are readily verified with
B(e) = ale) for all e = C.

The above discussion shows that the queue is quasi-reversible for
all values of the arrival rates of(c), c £ C, satisfying Zua(c) < =.
Chandy, Howard and Towsley [5] have observed that symmetric queues also
have this property. The next Section derives the property in a more

general setting.
4. Varied Arrival Rates

Consider a quasi-reversible node (Q,w,C) with arrival and departure
rates a(c), B(e), ¢ € C. Define a new collection of tramnsition' rates
+ +
Q" = (q (x,x"), x,x' € 8) by

+
q+(x,x') = t(;? qx,x") if x' € Sa(c,x)

= q(x,x") otherwise

where u+(c) = 0 if and only if a(ec) = 0, and Ea+(c) < w , The
interpretation here is that the arrival rate of class c customers has
been altered from a(c) to u+(c). for ¢ € C. The next result gives
sufficient conditions for the altered node to be quasi-reversible.

Proposition. If

(a) there exists a function n: C x § +Z such that
(¥ euther @(3,%) 20 ov o x' ¥) 30 Hien
x' € 5%(c,x) U S%(c,x) = n(c,x') = nle,x) +1
d
x! *Sa(c,x) U S (c,x) <= n(ec,x') = n(c,x)

(b) a(e) = B(c) ceC

e T ; 5 ’
then the node (Q ,w ,C) is quasi-reversible, where

ec | ale)

- n(c,x)
1T+(x) = q(x) I [U«_ﬂ_gl:l
c
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Remark. The integer n(c,x) can be regarded as the number of class
¢ customers in the node when its state is x. Conditions (a) and (b) can
then be interpreted as a requirement that the node be customer
conserving for each class ¢ € C. Condition (b) can be deduced from
condition (a) when the Markov process constructed from Q is positive
recurrent., All the nodes considered in [2] and [7] and the networks
formed from these nodes can be formulated so that they satisfy condi-
tions (a) and (b).

Proof. Let n = (n(c), c e C) ¢ KC. Consider a collection of
transition rates Q, defined on the state space {n: In(c) < =} by

W(TCE)
q(m, Tn) = a(c) W@

T = (nfc) + Ile=¢c"], c e €)

o
with all other transition rates zero. An invariant measure for Q‘*l is
clearly ¥. 1If we identify a transition from n to TCE as a departure

of a customer of class ¢ and a transition from TcE to n as an arrival of
a customer of class ¢ then the node (QW,?,C) is quasi-reversible, with
Blc) = ale) for.all ¢ & C.

Now form a network from the nodes (Q,m,C) and (QV,W,C) by having a
departure of a class c customer from one node trigger the arrival of a
class ¢ customer at the other node, for each ¢ € C. Observe that those
network states in which the state of the second node (n(c), ¢ e C)
corresponds precisely to the list (n(e,x), ¢ € C) derived from the state
% of the first node form a closed class and so an invariant measure over

this class is
¥in(e,x), ¢ & C)m(x)

The choice
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niec)

‘F(E) = 1 (Cl'v (C)) (l?)

cec \ ale)

and the bijection
({n(csx), c e C), %) < x

establish that n+ is a positive invariant measure for Q+. Substitution
into equations (6) and (7) then shows that (Q+,w+,C) is quasi-
reversible, with arrival and departure rates u+(c) for customers of
class c, ¢ & C. =]

Choices more general than expression (17) can be made for the
function ¥, and some of these produce nodes quasi-reversible with
respect to customer classifications less fine than C ([8], see also
[22]). Indeed any quasi-reversible node with state space {n, Eh(c) <w}
and arrival and departures rates afe), ¢ € C, can be joined with the
node (Q,m,C) to form a network, and the outcome viewed as a variation of
the arrival rates at the node (Q,m,C). The result of Lam [13] can be
interpreted in this way.

Examples of quasi-reversible nodes which do not satisfy condition
(a) can be constructed from the reversible migration processes
introduced by Kingman [10] (see [8]). While these nodes do not conserve
customers of each class c, ¢ € C, they can be regarded as conserving
customers unidentified by class., It is possible to show that if the
arrival rates a(c), ¢ & C, at such a node are all multiplied by the
same factor the resulting node is quasi-reversible. In the next Section
we shall discuss a node which does not conserve even unclassified
customers, but first we shall desecribe an example at the other extreme
where the arrival rates can depend on more than the information
contained in (n(c,x), c & C).

Iet % be the state of a series of first come first served M/M/L
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queues at which arrivals of customers of class ¢ form a Poisson process
of unit rate for c € C, where C is a finite set. Suppose that a
customer's class neither changes nor affects his progress as he moves
through the series of queues. The resulting node (Q,m,C) is guasi-

reversible. Let c(x) = (c ,cn) be the classes of the n

12892 e
customers in the series of queues arranged in order of their arrival at
the first queue in the series so that, for example, ¢y is the class of
the customer who has been in the node the least time. Observe that if
at some point in time c(x) is given, its future evolution can be
tracked by a simple updating procedure applied whenever an arrival at
or departure from the node occurs. By joining the node (Q,w,C) to

another quasi-reversible node it is possible to show that if the arrival

rate of class c customers is altered to

¥(c,e(x))

¥le(x))
when the state of the node is x then an invariant measure for the
resulting system is

¥(c(x)) m(x) X €S

provided

L. feye) = B ¥legc) .
ceC ceC

For example if

Yie) = pM )

where

M(c) = #{i: ¢ 1 <i <n-1}

R

then an arriving customer of class e¢ is lost with probability p when
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5. A Clustering Node

We shall now discuss in detail a quasi-reversible node at which the
arrival rates afc), ¢ € C, cannot be varied independently without
loosing quasi-reversibility. Let § = Nz and let the non-zero

transition rates from the collection Q be given by

q((nl,nz), (nl + l,nz)) = a(l)

a((ny5ny), (p,n, + 1)) = a(2)

al(ngsmy)s (2 = 1,n,)) = wyny

a((m5ny), (agm, = 1)) = womn,

al(@sny), (g = 2,my + 1)) = lenl(nl— 1)
q((my5n,), (n; + 2,0, = 1)) = yyyn,

Provided that

2 =

6) Yo T S Moy

where (18)
a(l) = Glul a(2) = 62”2

the rates { admit an invariant measure

il 2
w(nl,nz) -

With C = {1,2} and

[}

sf@, @) =85, @,n) = (@ + Lny)
%2, @p.n)) = 5%°@, @;m,)) = @,m, + 1)

the node (Q,w,C) is quasi-reversible. It is not difficult to show that
if the arrival rates o(l),c(2) are altered to nq a(l), n, a(2)

respectively the resulting system is quasi-reversible if and only if

n, ni. Condition (a) of the preceding Section does not hold: all that
is conserved is the sum ny + 2n2.
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The presence in a network of a quasi-reversible node without
property (a) can give rise to interesting phenomena not observed in the
networks considered in [2] and [7]. For example, suppose we form a
network from the above node labelled 1, and two single-class quasi-
reversible nodes, labelled 2 and 3, satisfying conditions (a) and (b).
Link the nodes as indicated in Figure 1: the important point to notice
here is that an item leaving node 1 will eventually return as an item

of a different class.

o (1) o (2)

B1(2) B, (1)

Figure 1. Network With Clustering Node

In addition to equations (8) we must now satisfy the non-linear
constraint (18): a solution exists, given by

UZY

121
5i) =)= B =BG
21112
The resulting network has, then, an invariant measure given by the
fundamental theorem as a product of the invariant measures for each

node. The invariant measure for node 1 will be summable if 61 < 1 and

62 < 1, that Is if

¥1¥si. S YaYyp And ”iY2l 3 u%le
If in addition the invariant measures for nodes 2 and 3 are summable,
then the product form is proportional to a stationary distribution for
the Markov process, and in equilibrium the states of the three nodes
are independent. Independence may thus be obtained in an irreducible

network with no identifiable exogenous arrival streams. If the process
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is observed at, say, those instants when two class 1 items in node 1 are
uniting to form a class 2 item and if the units so involved are left
out of the description of the system, then the resulting Markov chain
has a stationary distribution identical to that of the process.
6. An Insensitive Clustering Network {
We begin this Section with another example of a clustering node. A
Let D be a countable set of unit types, and let
8. = {n=(n(d), deD: I n(d) <=},
1 il deD
Define the operator Td d.a.’ Sl -+ bl by
1:2-3
+
Td d.d (n(d), d € D) = (n(d) - I[de {dl’dz’dB}]’d e D)
=259 '
¢
and let the non-zero transition rates of the collection Ql be given by
3 l(di)
q,(n, T 1) moogldapdaedy) I l——==| nld.) (19)
1 dldzd3 Aleti b T = o(di) 2
9 (Ty 4 q, 2o 2 = 0,(dy5d55dq) (20)
1523
 »

An invariant measure for Ql is

) p(@] P 3
) = [J\(d)] n(d) !

Set C = D3 and identify transitions (19) and (20) as signalling
respectively the departure or arrival of an item of class (dl’d2’d3)'
The system (Ql,nl,c) is then quasi-reversible with al(dl,dz,d3) =
Bl(dl’dz’d3)‘

Consider now a second node which operates as follows. Items of

class (dl,d ) e C arrive in a Poisson stream of rate az(dl,dz,d3).

2’d3
They pass independently through the node, an item labelled (dl’dz’d3) on

arrival taking a random period of time whose distribution is
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determined by (dl,d d3) and which can be represented by a passage time

2°
in a countable state space Markov process. Let the mean of this random
period be m(dl’dZ’dB)' Upon arrival at the node an item of class
(dl’dz’dj) is allocated a second label (d',dé,dé) with probability
P(dl’di)P(d2’dé)P(d3’da)’ where P: D2 -+ [0,1] is a transition
probability matrix, and on departure it leaves as an item of class
(d‘,dé,dé). Without difficulty (although not without tedium) it is
possible to define formally the node (QZ,ﬂE,C) corresponding to this

description and to show that it is quasi-reversible with arrival and

departure rates az(dl,dz,dB), Sz(dl,dz,d3) where

By (d;sdy,d ) =2

» 1 1
& 3 ay(dy,d),di)P(d],d )P(d),d))P(dY,dg).  (21)

1 3'
5 d:
We now intend teo link the nodes (Ql,ﬂl,C) and (Qz,ﬂz,C) together.

To satisfy condition (8) we must ensure that

oy (d],dy,d) = B (d),d,,d3) =0y (d) ,dy,ds) = B, (d; 5 dy,dy) (22)
Suppose that the transition matrix P admits a positive invariant
measure (p(d), d € D), and use the symbol &= to indicate the
communication relation induced by P. From the equality (21) it follows
that condition (22) is met when

for any function f: D3 + [0,«) satisfying

dlﬁag di, dzknq dls d3£~7 dg — f(dl’dZ’d3)= f(di,dé,dé)
The resulting network will then have invariant measure given by the
fundamental theorem.

As an application of the above discussion, consider a communication
network as illustrated in Figure 2. A collection of centres are

connected by channels. Two centres may be in communication via a

joining channel, in which case the triple so formed must be disjoint
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channel

T~
centre

Figure 2. Communication Network

from all other such triples. If a centre or channel is not a member of
a triple call it idle. To relate this communication network to the
preceding discussion identify centres and channels as the basic units,
so that each centre or channel is labelled with an element d € D. The
idle units then correspond to the occupants of node 1, and a linked
triple corresponds to an item in node 2. Each time a centre or channel
takes part in linked triple its state d changes in accordance ;ith the
transition probabilities P, but independently of the states of the units
to which it is linked. To model the fact that centres and channels
retain their geographical identify assume the transition matrix P has a
number of closed communicating classes, one for each centre and one for
each channel. To indicate which triples are geographically feasible
let f(dl’dz’d3) = 1 when the triple (dl,dz,d3) identifies two centres
and a channel which physically joins them, and let f(dl,dz,d3) =0
otherwise.

The requirements that there be exactly one unit associated with
each of the closed communicating classes determined by P and that linked
triples be geographically feasible identifies a closed communicating
class 8% for the overall network Q. If Ep(d) < « then the invariant
measure for Q will be summable over S*, and so its restriction to
S* will be the unique stationary distribution. Various consequences
follow from the form of this distribution. For example, the

equilibrium probability that ((di,d;,d;), i =1,2,,..,I) gives the
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list of linked triples (with their current states) and that

(a%,a2 a2

125500 N—3I) gives the list of idle units (with their current

states) is
a
N-37 P(d.) I ; : i ;
B0 —I ) 1 e(dDe(dy)e(dyin(d;,dp,dy) (23)
=1 a2y J i=1
3
when B is a normalizing constant, obtainable by summation. Observe the
influence on this probability of A(d), the propensity of a node in state

d to link, and m(dl,d d3)’ the mean link time of a triple (dl,dz,d3).

2!
Various possibilities for the link time distributions are available.
For example suppose that for each d € D we have a distribution Fd‘ If
Xd is a random variable with distribution Fd the link time of the

triple (dl’dz’d3) could be distributed as, say,

min(Xd ’Xd ,Xd ) (24)

11 o
or

R o R S L (25)

The technical restriction to passage times prevents the choice

X but observe that when we can write m(dl’dZ’dB) =

dlxdzxd3’
m(dl}m(dz)m(d3) the product form (23) separates further.

Now focus attention on a single unit. The sequence of states
taken by the unit is easily described, forming a Markowv chain with
transition matrix P. However the sequence of link times associated
with the unit has a much more complicated structure depending not only
on the unit's own state but also on the states of the units to which it
happens to be linked. The resulting pattern of dependence in the
sequences of link times associated with the various units is markedly

more complex than occurs, for example, in the dependent sequences of

service requirements associated with the various customers in a closed
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network of symmetric queues.

We shall now attempt to formulate the model of this Section within
the framework provided by Matthes, Koenig, Nawrotski, Jansen and
Schassberger ([11], [12], [15], [18], [19]). Using the terminology of
[19], units can be identified as the elements of a generalized semi-
Markov scheme provided link times of distinct triples have a common
distribution, and the partial balance conditions are then found to be
satisfied. However the scheme is not disconnected, since more than one
element can be activated at the same time. If link times are generated
from the forms (24) or (25) units can again be identified as elements,
but the resulting formulation violates conditions imposed by the
framework of a generalized semi-Markov scheme. Of course the correct
formulation arises when we identify the set of elements with tﬁe set
of possible linked triples - the items of the network formulation.

Various generalizations of the model of this Section can be carried
through without disturbing its tractability: for example units can link
to form larger clusters, and the linear factor n(d) in transition rate
(19) can be generalized to reflect, perhaps, duplicate channels
responding passively to link demands from centres. The guiding
principle in the exploration of such generalizations is that they must

leave node 1 quasi-reversible,
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Discussant's Report on
"Networks of Quasi-reversible Nodes,"
by F. P. Kelly

This elegant presentation contains some important results. The
proof of the product form theorem given in Section 2 is a nice illustra-
tion of the technique which consists in guessing Q' to verify some
invariant measure. The idea of considering invariant measures instead
of invariant probability measures pays off in Section 4.

It is probably useful to complement the algebraic aspects of the
theory emphasized in that presentation with some comments on the
probabilistic interpretation of the concepts and results.

Notice that, in the stationary case, equations (6) [resp. (7)] say
that the rates of the arrival processes [resp. the reversed departure
processes] at time t are independent of L Hence the equivalence with
the conclusions (i), (dii).

The product form theorem relates independence properties: quasi-
reversibility and product form. To explain why the calculations of
Section 2 of [23] go through, T would like to sketch a probabilistic
argument which isolates the role of gquasi-reversibility and hopefully

contributes to the intuitive understanding of those results.

Consider J nodes which are quasi-reversible under an invariant

distribution 7 corresponding to a Poisson arrival process At of rate A

(all the counting processes are vector valued and indexed by Cx{dyasingd
where C is the set of classes). (See figure, with d=0 for the time
being.) The exogeneous arrival process Et is Poisson with rate y; after
leaving the nodes the customers are possibly fed back by an independent
Touting. Assume that A is a possible vector of average rates for the
flows through the nodes. The claim is that w is invariant for the
States of the nodes in that network.

This is the argument. For d>0, introduce a pure delay d in the
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links between nodes (see figure). Denote by X the resulting state

process for the nodes, by At [resp. Dt] the total number of arrivals

[resp. departures] at the nodes. Let Ft be the output of the delay box.

Assume that x. has distribution w and that F = {F_, O<t<d} (the
0 (0,d] t =

contents of the delay box at t=0) is Poisson with rate A - vy and

independent of % and of (E_, t>0), Then A(D,d] = F(O,d] + E(O,d] is

£
Poisson with rate A and independent of x,. Thus (xt,At,Dt) will behave
for t in (0,d] as if the nodes were in isolation. By quasi-reversibil-
ity, it follows that D(O,d] is Poisson and independent of Xy By
independence of the routing, the same is true of F(d,Zd]' Also, X, has
distribution 7 for t in (0,d]. By induction, this proves that x has
distribution m for all t. By letting d go to zero, one can then show
that 7 must be an invariant distribution for the original network.,
(This is easy if the original network is a regular Markov chain.)
Notice also that the argument for d >0 shows that the exit process
B(O,t] is Poisson and independent of x, and of F(t,t+d]' This leads to

the quasi-reversibility of the network. It is also clear that At is

and A are generally not

not Poisson in general: A(t
E]

t+d] (t+d, t+2d]

independent. The same argument shows that an invariant distribution for

the open network remains invariant for the associated closed network.

B

Dt t
><> e
Touting

delay

2.9

Discussant: Dr. J. Walrand, Cornell University, 1434 Hanshaw
Road, Ithaca, New York 14850.
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