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Network Programming Methods for Loss Networks

R. J. Gibbens and F. P. Kelly

(Invited Paper)

Abstract—This paper describes how some of the insights avail-
able from the stochastic analysis of dynamic routing may be
incorporated into the classical mathematical programming ap-
proach to the design of networks. In particular, we present the
results of a number of numerical investigations into network
architectures for circuit-switched communication networks. Our
investigations use recent theoretical results integrating network
flow optimization and Markov decision processes to provide
performance bounds for dynamic routing strategies. Following
a tutorial introduction of the above mentioned topics we develop
a sequence of network examples. Our first examples are familiar
ones, such as symmetric fully connected networks and networks
with moderate amounts of asymmetry, and we describe how
network programming methods complement earlier work on
dynamic routing. We then consider a variety of example networks
which have a more sparse collection of links. These examples
indicate the potential applicability of the methods to a variety of
areas, including studies of the design, performance and resilience
of future communication networks.

[. INTRODUCTION

MATHEMATICAL programming and network flow ap-
proaches to the design of communication networks
have a long and distinguished history (for reviews and further
references see [3], [8], [14]). Typical problems include the
design at minimum cost of a network able to support a
given multicommodity flow, or a collection of nonsimul-
taneous multicommodity flows, perhaps after one or more
link or node failures within the network, and the design of
routing patterns to make best use of a given network. The
network programming approach is able to deal with large
and complex networks, and concepts such as a cut set and a
shadow price provide important insights. Deterministic flows
are often treated, or random flows are represented to a first
approximation by an assumption of a fixed pattern of routing
and the use of a simple formula, such as Erlang’s formula or
the M/M/1 delay formula, to assess loss or delay at resources
of the network [3]. [7]. [18].

Modern dynamic routing schemes [1] create more subtle
interactions between random traffic flows and the network
topology that may not be well modeled by the above first
approximation. For example dynamic routing schemes may
cause distinct resources within the network to act as a single
pooled resource, able to cope with the aggregate random

Manuscript received September 30, 1994; revised April 1, 1995. R. J.
Gibbens” work was supported by a Royal Society University Research
Fellowship. Computing work was supported by the EPSRC under Grant
GR/J371896.

The authors are with the Statistical Laboratory, University of Cambridge,
Cambridge CB2 1SB U.K.

IEEE Log Number 9413107.

fluctuation arising from several traffic flows [21], [22], [27].
There now exist several approximations and asymptotics for
the stochastic analysis of dynamic routing schemes (see, for
example, [16], [19], [26], [31], [34]) but these lose much of
the simplicity and generality of the network programming
approach. Our aim in this paper is to show that at least
some of the insights available from stochastic analysis may be
incorporated into the classical network programming approach,
without losing the latter’s tractability or conceptual simplicity.
Conversely we expect the network programming approach to
assist in the development of dynamic routing schemes for
sparse and irregular network topologies.

In Section II we describe our basic network model, and
review the performance bounds of [20]. These bounds are
obtained from a network flow synthesis of various Markov
decision processes, one for each resource of the network.
Following this we develop a sequence of network examples,
illustrating how with an appropriate choice of the resources
modeled it is possible to capture the essential aspects of good
dynamic routing schemes within the network programming
formalism.

Our first network examples, taken from [12], [33], are
familiar ones, such as symmetric fully connected networks
and networks with moderate amounts of asymmetry. Dynamic
routing in such networks is now well understood [10], [17],
[29], [30], and we show how known results are reflected in
the behavior of the dual variables of the extended network
programming approach. We also discuss a network where one
node is substantially overloaded, and how bounds may be
improved by including vertex constraints to model the limited
capacity emanating from each node.

Next, in Section IV, we consider a network where links
correspond to the edges of a cube. This example illustrates
how our methods extend to more sparsely connected networks,
where it becomes important to model the limited capacity of
certain cut sets. Finally, in Section V, we indicate how our
methodology extends to irregular network structures, through
a discussion of a network with random topology.

In this paper we concentrate on modeling loss networks
where the route of an accepted demand is fixed for the duration
of the demand. The network bounds of Section II may also be
developed for queueing networks or for loss networks where
demands may be rerouted while still in progress [20], but we
leave a closer examination to another study. Our examples
of loss networks are deliberately simplified, to expose the
fundamental arguments, but we believe the methods will
be of use in a variety of more realistic settings, including
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studies of the design, performance and resilience of future
networks [5], [15]. An early instance is the recent investigation
[13], where the joint use of bounds for any routing scheme
and simulations of particular routing schemes facilitated a
systematic comparison of the performance of different network
architectures under various overload and failure conditions.

A different approach to the integration over a network
of single resource Markov decision processes, based on an
application of the policy improvement lemma to an initial fixed
routing scheme, has been developed by Ott and Krishnan ([32];
see also [28], [36]). An overview, containing a discussion of
several points of contact between this and our approach, is
provided by Key [23], [24].

Under Poisson and exponential modeling assumptions the
bound used in this paper becomes the solution to a lin-
ear program: successive refinements of the set of resources
modeled corresponds to the addition of further variables and
constraints. Other linear programs that bound the performance
of stochastic networks are developed in [4], [25] and the
papers referenced therein. Of course any Markov decision
process may be formulated as a linear program [35], even the
process capturing the full stochastic dynamic routing problem,
although the resulting linear program may be of vast size. To
clarify the relationship between these various linear programs
remains a challenge.

II. NETWORK BOUNDS

We begin by describing our model of a loss network. Let I
label the set of possible demands on a network, and also the
set of network resources. Assume that demands of type i arrive
at the network at rate v;, for i € I. Let C; be the capacity of
resource i. We shall refer to a resource as a link, interpret C; as
the number of circuits on link 4, and refer to a demand labeled
i as a call of type i. Suppose that an arriving call of type ¢
may potentially be routed directly, on link ¢, or alternatively,
on a route 7 € R(4). Here a route 7 identifies a subset of I,
and R(i) is the set of alternative routes potentially available
to a call of type i. Label routes so that the sets R(3),i € I,
are disjoint: let B = (J;¢; R(4), and let i(r) be the unique
element in I such that r € R(i(r)). If an arriving call of type
iis sent to route 7 € {{z} }UR(2) then it uses one circuit from
each link j € r for the holding period of the call. A call may
only be sent to a route 7 with at least one free circuit on each
link j € r. The call may also be discarded, and it must be
discarded if there are no routes with spare capacity available.
The holding period of a call is arbitrarily distributed with unit
mean, and is unaffected by the route used to carry the call.

Suppose that acceptance of a call of type 7 generates
a reward of w;. Then the average reward per unit time
is bounded above by the value attained in the following
maximum flow problem

Z w; fi
1

maximize

M

subject to

fi=wi+ Yy y<w i€l @

rER(3)
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Fig. 1. The “maxflow” bound is constraint (3), while the “Erlang” bound is
constraint (6). Two examples of the M function, defined by (9), are shown
with the choices 2 = 50 and v = oo: observe that there is little difference
between these two functions.
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The variables z;, y, represent mean flows along routes {4},
7, respectively, and thus, for example, inequality (3) follows
since the total mean flow on link ¢ cannot exceed the capacity
of that link. For a formal proof of this intuitively obvious
result see [10], [34]. The bound may sometimes be achieved
for deterministic arrivals and holding periods, although even
in this case certain integer and packing constraints must
be satisfied. When arrivals and holding periods are random
the constraint (3) may often be considerably tightened: for
example, if arrivals of calls of type ¢ form a Poisson process,
then necessarily

z; <vi(l - E(i, Ci))

(O]

where
-1

i
25

i=1

vC

E(@C)= el

O]

is Erlang’s formula for the proportion of lost calls at a link
of capacity C circuits, offered a single Poisson stream of calls
of rate v.

In Fig. 1 we illustrate the two constraints (3) and (6), labeled
“maxflow” and “Erlang”, respectively, where the horizontal
axis measures the direct flow z = =;, and the vertical axis
measures the net alternatively routed traffic y = 3 ,.5; Ur-
Observe that neither constraint dominates the other. The
two constraints may be tightened further, to yield a single
composite constraint dominating both, as follows.

Consider a single link, of capacity C circuits, offered two
streams of traffic. Suppose that acceptance of a type 1 call
generates a reward wi, and acceptance of a type 2 call
generates a reward wg, where wy,ws > 0. Suppose that
the two streams of arriving traffic form independent Poisson
processes of rates vy and vy, respectively, and that accepted
calls have holding times which are exponentially distributed




GIBBENS AND KELLY: NETWORK PROGRAMMING METHODS FOR LOSS NETWORKS

with unit mean, independently of earlier arrival and holding
times. When a call arrives a decision is made to accept or reject
the call, where the decision can depend on the type of the call.

Let W(vy,v,,C;w;, w2) be the maximal expected reward
per unit time over all policies. Observe that W is a convex
function of (wq,ws), since it can be expressed as a supremum
of linear functions of (wy,ws)

W vy, va, Ciwy, wa) = sup{wiz(w) + woy(m)} ®)

where z(7) and y(w) are the mean acceptance rates of calls
of types 1 and 2, respectively under a policy 7. Let

M(v1,v2.C;z) = sup{y(n) : z(7) > z} 9

the maximal mean acceptance rate of calls of type 2, subject
to the requirement that the mean acceptance rate of calls of
type 1 must be at least z. M is a concave function of = —
indeed W and M are conjugate functions [20].

The policy achieving the supremum in (8) is a trunk
reservation policy which operates as follows. If w; > wy > 0,
accept type 1 calls provided the link is not full and accept
type 2 calls provided the number of spare circuits is above
a certain integer ¢, say, and reject type 2 calls whenever ¢
or fewer circuits are free. The parameter ¢ is called the trunk
reservation parameter. Restricting to trunk reservation policies
it is straightforward to analyze the resulting birth and death
process describing the performance of the single link system
to obtain the following expressions for the mean acceptance
rates of the two call types parameterized by the value of ¢

(v, v,Ct) = (10)
C—t—1 k
v + v
UIG(Vl.I/Q.C,t)I: Z (—11‘;'_2)4‘ (11)
k=0 :

c-1 ph—C+t

(1 +1p)°7 Y~ o (12)
k=C-t
and
C—-t—1 k
vy + v
y(lll, g, C, t) = VQG(Ul. Vo, C, t) [ Z (—l—k'—Z)
k=0

(13)

where the normalization constant is given by
G(I/17V2,07t) = (14)

C—t—1 k C k—C+t -1
vy +v _ v
Z (lk'2) +(U1+V2)Ctz lk' :I
k=0 k=C—t

(15)

These expressions may be numerically computed with little
difficulty under all practical choices of the parameters. Indeed,
efficient numerical expressions can nowadays be written in just
a few lines of a high level language such as S [2] or similar
languages. Hence, the maximal expected reward per unit time
is given by a maximization over the choice of parameter ¢

W{vi, v, Ciwy, we) = (16)
—clrllgatjéc{ww(yl’ ve, C,t) + way(v1, 10, Co 1)} (17)
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where negative values of ¢ refer to a parameter |¢| used against
type 1 calls, and will be appropriate if wo > wy > 0. Similarly,
M is a decreasing, piece-wise linear and concave function of
z (Fig. 1 shows examples of the function M) given by the
convex hull of the 2C + 1 points

{(z(v1,v9,C,t), y(11,10,C, 1)), t = =C,-C + 1,...,C}.

Throughout we let a maximum over an empty set be —oo;
thus M = —oo for z > 1n(1 — E(v1,0C)).

Return now to the network model, and suppose that the
different arrival streams of rate v; are independent Poisson
processes for ¢ € I. For each ¢ € I define

Mi(z) = M(vi, Y v;,Ci;x) (18)
JHi€R(j)

Wi(wi,wo) = W(vi, D v, Ciswy,wg).  (19)
JHER(F)

Here the expression ), jicR(j) Vi gives an upper bound on
the total amount of traffic that could possibly overflow onto
alternative routes which use link ¢. Then [20] the expected
reward per unit time is bounded above by the value attained
in the following maximum flow problem

maximize 2 w; f; (20)
subject to
fi=zi+ Y w<y i€l Q1)
TER(3)
Soue S Miw) i€l @)
1
over
yr >0 reR (24)

or, equivalently, the value attained in the dual minimum cost
problem

minimize Z[Wi(wi — 8i,Ci) + 8ivs) (25)
subject to
11)1(7,) - z Cj S Si(r) rE R (26)
JjEr
over
ci,8; >0 iel. 27

The primal problem is perhaps the easier to interpret:
inequality (22) captures the insight that link ¢ cannot achieve
higher acceptance rates as part of a network than it could
if the rest of the network were transparent. A derivation of
the dual problem is instructive. Consider a feasible choice of
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c. s; that is, a collection ¢;, s;,7 € I, satisfying (26) and (27).
Suppose that a call of type ¢ is charged an amount s; by the
network when it is offered to the network, and in addition is
charged an amount w; — s; by link ¢ if it is carried directly on
link 4, or an amount ¢; at each link j € r if it is carried on
alternative route . The maximum revenue that can possibly be
collected thus cannot exceed the objective function (25), for
any feasible choice of ¢,s. Since c, s satisfy (26) each routed
call of type ¢ pays at least w;, whether the call is routed directly
or alternatively, and the bound follows.

It is interesting to interpret the complementary slackness
conditions that interrelate the solutions to problems (20) and
(25) in terms of the charges used in the preceding derivation.
The main condition shows that if the charges along route
r are too high (that is Zjer €j > Wiy — 8i(ry) then the
route is not used (that is y, = 0). The interpretation of
the remaining complementary slackness conditions is more
familiar: the charge c; at link 7 is zero if there is spare capacity
at this link, as indicated by slackness in the constraint (22);
while the charge s; on an offered call of type ¢ is zero if calls of
type i are being lost, as indicated by slackness in the constraint
(21). We might term s; the surplus value of an additional call
of type 1, and c¢; the implied cost of using a circuit from link
j: if a call of type i is accepted on route r it will earn w;
directly but at an implied cost of c; for each circuit used from
link j, leaving a surplus value of s; = w; — 3¢, ¢;.

The function M;(z;) is concave and piecewise linear in z;,
for + € I, and so both the primal and dual problems (20) and
(25) may be written as linear programming problems. Note
that if the constraint (22) is written as a collection of linear
constraints (see Fig. 1), then at most two of these constraints
can be satisfied with equality. Note also that constraint (22)
dominates both the “maxflow” constraint (3) and the “Erlang”
constraint (6). In our later examples the second argument of
the function (18) will usually be large. For simplicity we shall
often weaken the bound slightly, and substitute infinity for this
second argument. We see, in Fig. 1, that this relaxation mainly
affects the function M when z is small.

Finally we note that our formulation of the primal and dual
pair (20) and (25) has deliberately suppressed the dependence
of the function M; on the variables (v, k € I). This leads to
the simplicity of the above formulation and interpretation, and
of the numerical results to follow. To determine explicitly the
total dependence of the optimal value function, ¢, say, on the
parameter v;, we must calculate

Vg, E Vi, Cr; Wk — Sk, Ck

¢ j:k€R(F)

o 0
— = il 74
Jy; it ; Bu,-
(28)
This is not difficult, using for example the representation (17).

III. FuLLY CONNECTED NETWORKS

The first and simplest network architecture we consider is
the symmetric network on n nodes. This network has received
much attention and there is now a considerable literature and
understanding of the behavior of dynamic routing strategies
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Fig. 2. Symmetric network with C' = 120. The first panel shows the direct
flow z and alternative flow 2(n — 2)y through a typical link. The second
panel shows the bound on the proportion of lost calls. The third panel shows
the dual variables ¢; and s;, and their sudden change at around » = 108.

[10], [11], [30], [31]. Accordingly, it is a natural example to
investigate with the methodology reviewed in Section II.

A. Symmetric Network

Consider a symmetric network with n nodes where I is the
set of n(n — 1)/2 edges of the complete graph on n nodes,
vi =v,C; = C, w; = 1, i € I, and R(3) is the set of
(n—2) two-link paths connecting the node pair identified by :.
The primal problem (20) becomes the following optimization

problem
n
maximize (2) f (29)
subject to
f=z+(n-2)yy<v (30)
2(n —2)y < M(z) 3D
over
z,y>0. (32)

Here, by symmetry and convexity, we may take there to be
just two types of flows. The flow z is the traffic carried on a
direct route and the flow y is the traffic carried on a two link
alternative route. More fully the function M (z) might be

M(z) = M(v,2(n - 2,C;x) (33)

but for simplicity we shall relax the constraint slightly by using

M(z) = M(v,00,C;z). (34)

Fig. 2 presents the results of our numerical investigations for
the symmetric network when the offered traffic v is allowed
to vary and the link capacities are held fixed at C = 120 and
n = 12. The figure is divided into three panels. In the top
panel direct flow, z, and alternative flow, 2(n — 2)y, through
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Fig. 3. Overload node network.

a link are shown, while the second panel shows the bound
on the proportion of calls lost. When v is small the bound
on loss is zero. In this regime many solutions achieve the
optimum: for definiteness we shall here and henceforth select
from amongst such solutions one that maximizes the amount
of directly routed traffic. As v increases a smaller proportion
of the offered traffic should be carried directly and up to 4.7%
is carried alternatively. As v increases further y reduces, and
very little alternative routing is used. Above a threshold value
of around 108 loss starts to occur and the bound on the loss
probability becomes positive.

How well can dynamic routing schemes perform relative to
the bound of Fig. 2?7 This question is, for the symmetric net-
work, fairly well understood [10], [16], [17], [19], [29], [30],
[31]. In particular, Hunt and Laws [17] have established that
as the number of nodes n increases the proportion of calls lost
under an optimal dynamic routing scheme approaches the loss
rate shown in Fig. 2. This conclusion had been supported by
several simulation studies: analytical and simulation evidence
for particular routing schemes is discussed by [31] for the case
of 12 nodes and capacity 120 circuits.

It is interesting to note, from Fig. 2, that the implied costs
c; take the value 0 or % depending on whether the proportion
of flow lost, as shown in panel 1, is zero or positive. This is a
common feature of the solution of the dual problem (25)-(27)
for a fully connected network, and does not require that all
capacities, or all offered traffics, be identical. When a solution
to the primal problem (20)—(24) allows positive flow y, on all
routes r € R, the constraints (26) from the dual problem will
all be tight, implying ¢, = %, i €1, when w; =1,7i€ I. In
[13] a network is considered with n = 24 nodes and with C
of the order of 120 or 600 circuits. Several asymmetric traffic
patterns and failure conditions are considered, all of which
have ¢; = % ¢ € 1. Simulations of a dynamic routing scheme
are also considered, and compare reasonably well with the
bound [13, Figs. 4 and 6].

Next we consider a simple example where a solution to
(20)—(24) does not allow positive flows on all routes r € R,
and hence where implied costs may vary over different links.

B. Overloaded Node Network

In this network one node has its traffic to all other nodes
multiplied by a factor (1 + ¢) relative to all the other traffics,
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Fig. 4. Overloaded node network with " = 120, n = 12, and ¢ = 1.
The top panel shows: the direct flow on an overload link, ry; the direct flow
on an nonoverloaded link, rs; the alternative flow for an overloaded stream,
(n—2)yo; and the alternative flow for a nonoverloaded stream, y1 +(n—3)y3.

which have a common value v. All link capacities are the same
with C; = C. Fig. 3 shows an illustration of an overloaded
node network for the case where n = 7. The solid circle
represents the overloaded node. We refer to the links from this
node, represented by dashed lines, as the overloaded links:
the dashed lines are direct routes for the overloaded traffic
streams. We refer to the other streams as nonoverloaded and
their direct routes are the links shown as solid lines. Again by
symmetry there are only a small number of distinct flow types
which we label z1. 22, y1, 92 and y3. Flows z; and x5 refer to
the traffics carried on direct routes which are overloaded and
nonoverloaded, respectively. The flows 31, y2 and y3 are the
traffics carried on two link alternative routes which contain 0,
1 or 2 nonoverloaded links, respectively.

There are two types of each of the dual variables s and
c. We label s; the surplus value for the overloaded streams
and so the surplus value for the nonoverloaded streams. The
implied cost ¢ refers to an overloaded link, while the implied
cost ¢y refers to a nonoverloaded link.

The primal problem (20) becomes the following [12], [33]
linear program

-1
maximize (n—1)f1 + (n 9 )fz (35)
subject to
fi=z1+ (=2 < (1 +e)v (36)
fo=aro+y+(n—3ys <v 37
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(n=2)y1 + (n ~ 2)yz < Mi(21) (38)
2y + 2(n — 3)ys < Ma(z2) 39)

over
1,72 2 0 (40)
Y1,%2,y3 > 0. 41)

Here
M (z1) = M{(1 + €)v,00,C; z1) 42)
MQ(IZ) :M(V,OO,C;.'E2). (43)

Fig. 4 shows our numerical results for the overloaded node
network when n = 12 and € = 1, so that overloaded streams
have double the offered load relative to the nonoverloaded
streams. The top panel shows several of the interesting flows.
Alternative routing can be seen to take place on routes through
one or two nonoverloaded links but not on routes through two
overloaded links. The lower panels show the existence of two
threshold values: one at 60 and another at 108.

The second panel shows the charges s; and s3. The charge
s drops to 0 at the threshold value of 60 when the overloaded
node first saturates and loss of traffic on the overloaded streams
first occurs. Note that ¢ = 1 so that when v = 60 each
overloaded stream has an offered traffic of 120 matching the
link capacity. The charge s behaves in a similar manner to
that shown in the symmetric network dropping to O at around
108 when loss first occurs from the nonoverloaded streams.

The third panel shows the link charges c¢; and cy. The
charge ¢; first increases from O to 1 and then drops back to
a value of % The charge ¢, increases directly from 0 to % in
an analogous manner to that of the symmetric network. The
intermediate traffic region between the two traffic thresholds
where c; is 1 while ¢5 is still % simultaneously achieves two
ends: it prevents alternative traffic from using two overloaded
links, while enabling alternative routing to continue amongst
routes through one or two nonoverloaded links.

At first sight the large flows y2, on alternative routes
from the overloaded node, may seem surprising. On further
consideration, however, this result is indicative of the behavior
of a good dynamic routing scheme. When links from the
overloaded node are nearly saturated, but links elsewhere have
spare capacity, then an arriving call involving the overloaded
node will probably not be able to be routed directly, but
should nevertheless be accepted if a free circuit can be found
anywhere out from the overloaded node.

In Fig. 5 we show how the bound varies with the choice
of the overload parameter e. Observe the existence of two
thresholds for positive values of e.

C. Vertex Constraints

When the number of nodes n is small, additional constraints
may have a pronounced effect on the performance of dynamic
routing schemes. In this section we illustrate this point by
extending the analysis of Section III-A to include constraints
corresponding to the total capacity into and out of each vertex.
First we develop further the general model of Section II.
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Fig. 6. Comparison of bounds with and without vertex constraint.

Write v € r if route 7 passes through vertex v using this
vertex as a tandem, but v is not an end vertex of the path 7.
Write v € 1 if vertex v is at an end of link ¢. Consider the
flow of traffic into and out of vertex v. The amount of tandem

traffic is
2>

T3V

(44)

since each call that uses vertex v as a tandem vertex occupies
a circuit into, and a circuit out of, vertex v. Hence under any
dynamic routing scheme

22% < Mo(fy) veV (45)
=1
where
Y fi=t (46)
FEL]
and
M, (z)=M Zl/j,oo,ZCj;:L‘ CH)

YED FELY

We can improve the bound provided by problem (20) by
appending to that problem the additional constraints (45) and
(46). The corresponding dual problem can be written in the
form
minimize

ST Wildises) + sivil+ Y Woldyseu) (48)
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subject to
wi=3i+di+zdv el (49)
vEL
diry <Y cj+2Y e, TER (50)
JET vEr
over
¢i,8;, 20, d;, tel (51)
c, >0, d,, vEeEV, (52)

It is as if the vertex v charges an amount d,, for the use of a
single circuit out of vertex v by a call terminating at vertex
v, and an amount 2c¢, for the use of two circuits out of the
vertex v by a call using vertex v as a tandem node.

Consider again the symmetric networks of Section III-A.
Let n = 5, C' = 20 and add the constraints (45) and (46) to
the primal problem, to give

maximize 10f (53)

subject to
f=z+3y<v 54
6y < M(x) (55)
12y < M,(f,) (56)
Af = fu 57

over

z,y>0. (58)

Here M is again given by equation (34), while the vertex
constraint has
M (fs) = M(4v,00,4C; f,). (59)

In Fig. 6 we compare bounds of problem (53)—(58) with
the bound produced if the vertex constraints (56) and (57) are
omitted. The vertex constraint produces a loss of 0.1% or more
for v > 14.4, while the model without the vertex constraint
produces no loss until v > 15.7.

The dual variables c;, s; and d,, are illustrated in Fig. 7. Note
that as v increases through v = 9 the surplus value s; drops
to zero, and the charge d, jumps to %: as v further increases
through v = 15 the charge d, drops back to zero, while the
charge c; jumps to % Over the range v € (9, 15) the dominant
dual variable is d,,, representing the impact of stochastic effects
on the limited total capacity out of each vertex. For v > 16,
dominance reverts to the link constraints (54) and (55), as in
Section III-A.

The reader will have noted that our vertex constraint
(45)—(46) corresponds to the identification of a node on a
route as just another resource of the network: sometimes a
more severe constraint than (45)—(46) may be appropriate, if,
for example, the processing power of a node imposes a tighter
constraint on traffic through the node than that implied by the
total link capacity emanating from the node.
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Fig. 7. Vertex constraints. Over the range v € (9, 15) the dominant dual

variable is d.: the total capacity out of a vertex is the major constraint on
performance.

Fig. 8. Cube network. Each link has capacity C' and the offered traffic
between each pair of nodes is v.

IV. CUBE NETWORK

" Next we indicate how our methods extend to more sparsely

connected networks. Note that the analysis of Section II applies
directly when the network is not fully connected: we simply
set C; = 0 for the missing links. For instance, in the cube
network illustrated in Fig. 8, we may let C; = C as i ranges
over the twelve edges of the cube, and C; = 0 for all other
node pairs. In contrast we may set w; = 1, v; = v for all
28 possible node pairs, so that calls arrive at rate v between
any two of the 8 nodes. Next we must identify those routes
which are allowed. We allow the shortest routes, and, if that
identifies a unique route (perhaps the direct route), then all the
next shortest routes. Thus if ¢ identifies an edge of the cube,
we let R(i) be the set of two routes, each of length 3, that may
serve as alternatives. If 4 labels two nodes a distance 2 apart,
let R(2) be the set of two routes each of length 2, that connect
these two nodes. Finally if ¢ labels two nodes a distance 3
apart, let R(7) be the set of six routes, each of length 3, that
connect these two nodes.

When a network is sparsely connected then certain cut
constraints may dominate, for example the cut set of four edges
separating one face of the cube from the opposite face. Before
considering this example in more detail, we develop further
the general model of Section II.
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Let J C I be such that
jedJ,reR@G =>rnJ =1

where |r N J| is the number of links from .J on route r. Thus
J forms a cut, in that every call from the set J requires to use
a single resource from J however it is routed. Let

My(z)=M Zuj,oo,ZCj;z

jE€J JjEJ

(60)

and consider the flow of traffic across the cut J. Under any
dynamic routing scheme

SN Il < My(fy)

kgJ reR(k)

(61)

where

dofi=1 (62)
i€d

We can improve the bound provided by problem (20) by
appending to that problem the additional constraints (61) and
(62).

Consider now the cube network of Fig. 8, and introduce a
cut constraint for each of the three cut sets separating a face
of the cube from the opposite face. Then

M;(fs) = M(16v,00,4C; fy) (63)

since the cut J separating a face of the cube from the oppposite
face separates 16 node pairs each offering traffic at rate v, and
has a total capacity of 4C circuits. Let fy, fa, f3, respectively
represent the carried flow between a pair of end-points a
distance 1, 2 or 3 apart. Then the primal problem becomes

maximize 12f1 +12f2 +4f5 (64)

subject to
h=m+2y <v (65)
fa=2y2<wv (66)
fa=6ya<v 67
6y1 + 4dy2 + 6y3 < M(z1) (68)
16y < My (fJ) (69)
4fri+8f2+4fs=fs (70)

over

T1,%1,Y2,43 > 0. ()

In Fig. 9 we describe some aspects of the solution to the
linear program (64), as v varies. The dual variables s;, s,
83, ¢, ¢, dj correspond to constraints (65)—(70), respectively.
Observe that the dual variable d; is significant over the range
v € (2.2,4.8), which we deduce is the range of traffic over
which the cut constraints (69)—(70) force some loss.

Observe that over the range v € (2.2, 4.8) the surplus value
sy is greater than so, while for v € (4.8,6.3) the order is
interchanged. Calls of type 1 can be carried directly on single-
linked routes, but require 3-link routes if they are routed
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Fig. 9. Cube network (C' = 20). Over the range v € (2.2,4.8) the dual

variable d is significant, and the additional cut constraints are a constraint
on performance.

1 2 3

alternatively. In contrast calls of type 2 have no direct route,
but have a choice of 2-link alternative routes. The network
finds the former type of call easier to carry when v € (2.2,4.8)
but not when v € (4.8,6.3).

For the cube network we have used the three cut constraints
whose inclusion has most effect on the performance bound. For
a general network it may not be clear in advance which are
the important cut constraints. In [9], [10] all of the possible
cut constraints in a particular network are included as Erlang
bounds: these bounds correspond to the vertical line in Fig. 1.
In [9], [10] max-flow bounds were also used, corresponding
to the diagonal line in Fig. 1. It was found that neither
type of bound dominated uniformly over networks or traffic
conditions, an observation explained by Fig. 1. Of course since
M is bounded by both the diagonal and vertical lines of Fig. 1,
the bound of this paper dominates both the Erlang and the
max-flow bounds of [9], [10].

V. RANDOM NETWORK

In our earlier network examples we have used symmetries
to reduce the number of distinct flows and dual variables
that are needed to describe solutions. This has simplified the
presentation of examples, but our methodology extends readily
to irregular network structures, as we illustrate in this Section.
Indeed a major part of our motivation is the expectation
that the network programming approach will assist in the
development of dynamic routing schemes for more sparse and
irregular network architectures.
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Fig. 10. Random network. Links are labeled with their capacity. The offered
traffic between each pair of nodes is v.
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Fig. 11. Dual variables c¢; for each link 7 and d; for the DH cut in the
random network of Fig. 10. The dual variable d; for the DH cut has a
significant effect as v increases up to 5.5.

The topology we consider in this Section, illustrated in
Fig. 10, was constructed by selecting a random graph with
eight nodes and twelve edges, conditional on each node being
the endpoint of at least two edges, and the graph being
connected. We let w; = 1, v; = v for all 28 possible node
pairs. Allowed routes are constructed as follows. Between any
node pair we allow the shortest routes, and, if that identifies
a unique route (perhaps the direct route), we also allow all
the next shortest routes. Thus between nodes D and H we
allow the route D-C-G-H as well as the direct route D-H
and between nodes C and H we allow the routes C-D-H
and C-G-H. Capacities are constructed as follows. Nominally
assign traffic to routes by splitting a flow v between two nodes
equally over all the shortest routes between these two nodes;
repeat this for each pair of nodes. Let the capacity of a link
be such that it equals the aggregate traffic nominally assigned
to it when v = 6. (Note that if this procedure were applied to
the cube network of Section IV, then the capacity of each link
would be C = 24.) The capacities thus assigned to the links
of the random network are shown in Fig. 10.

There are three cuts in this network whose capacity equals
the nominal traffic when v = 6, the cuts isolating the node
pairs (A, E), (E,F) and (D, H), respectively. In Fig. 11 we
show the results obtained by augmenting the problem (20)
with the additional contraints (61){62) for each of these three

cuts. The bound on overall loss increases to about 2% as v
increases to 5.5. The dual variable dp g is significant over this
range of traffic, while the dual variables d4 g and dgF remain
at zero: thus the cut D H has a significant effect on the overall
loss probability, while the cuts AE and E'F are dominated by
the cut DH and the various single link constraints (21)—(22).
As v increases above 5.4, the effect of the cut DH begins to
diminish, while the implied costs ¢; corresponding to the single
link constraints (22) continue to increase, behavior familiar
from the analysis of the cube network in Section IV.

The important constraints are, of course, a consequence
of the particular topology and traffic patterns used in this
example. In a general network we might find the dominant
constraints to be some combination of single link, vertex and
cut constraints, depending on the network’s size, connectivity,
asymmetry and degree of overload.

VI. CONCLUSION

We have described how the classical network programming
approach to the design and analysis of communication net-
works may be extended to represent some of the resource
pooling features of dynamic routing schemes. Conversely the
extended network programming approach gives insight into the
qualitative behavior that should be expected of good dynamic
routing schemes.

We have restricted attention in this paper to relatively
simple examples of loss networks, where the route of an
accepted demand is fixed for the duration of the demand,
but the methodology developed in [20] is fairly robust to
the precise model specification. In particular, it is described
there how performance bounds may be calculated for networks
where demands may be rerouted while in progress, and have
differing holding periods and relative worths. We believe that
such generalizations may be useful in the analysis of future
multiservice networks.
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A New Degree of Freedom in ATM Network
Dimensioning: Optimizing the Logical Configuration

Andrds Faragd, Sgren Blaabjerg, Laszlé Ast, Géza Gordos, and Tamds Henk

Abstract— A mathematical model is presented that provides
a well-defined formulation of the logical configuration problem
of ATM networks with the objective of maximizing the total
expected network revenue, given the physical network param-
eters and the traffic requirements of each virtual subnetwork. A
two-phase solution procedure is developed in which the decision
variables are the logical link capacities that specify the logical
decomposition into virtual subnetworks, and the load sharing
parameters. The first phase of the solution finds a global optimum
in a rougher model. The second phase uses this as an initial
point for a gradient-based hill climbing that applies the partial
derivatives of the network revenue function obtained in a more
refined model.

I. INTRODUCTION

T is expected that in large ATM networks, the carriers

of future B-ISDN, a new degree of freedom appears in
the design, dimensioning and management of the network:
On top of the physical infrastructure a number of logical
or virtual subnetworks can coexist, sharing the same physical
transmission and switching capacities.

The simplest and most well-known example is the stan-
dardized concept of the virtual path that can be regarded as a
very special virtual subnetwork. More complex examples arise,
however, when virtual leased networks and virtual LAN's are
considered.

Another reason for configuring virtual subnetworks comes
from the fact. gradually recognized in the last couple of
years, that it is not at all easy to integrate services with very
different demands to e.g., bandwidth, grade of service (GoS)
or congestion control functions. In some cases it turns out
to be easier to support different services by offering separate
logical networks, and limiting the degree of integration to only
partial, rather than complete, sharing of physical transmission
and switching resources. For example, delay sensitive and loss
sensitive service classes can be managed and switched easier
if the two groups are handled separately in different logical
subnetworks, rather than all mixed on a complete sharing basis.
Moreover. in this way they can be safely handled on call level
without going down to cell level, as e.g., in priority queues.
Of course, within a virtual subnetwork statistical multiplexing,
priority queuing and other mechanisms can still be apptied
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among service classes that already have not too different
nature.

Since the virtual subnetworks share the same given physical
capacities, therefore, there is a trade-off between their quality:
GoS parameters, call blocking probabilities, etc., in one of the
subnetworks can be improved only at the price of degrading
some others. Moreover, the overall quality is also affected by
the distribution of traffic among different routes even within
a single subnetwork. It is a highly nontrivial task how to
find the logical configuration, that is, the partition into virtual
subnetworks along with the appropriate load sharing, such that
given demands and constraints are satisfied and the overall
network performance is optimized.

At first glance it might appear that partitioning, as opposed
to complete sharing, is a serious reduction of the full flexibility
of ATM. This is, however, not necessarily the case if the
“partitioning” is viewed on a more general level. To explain
this, let us mention the elegant and simple complete sharing
multiplexing scheme of J. Roberts [10], called virtual spacing.
In this queuing discipline various rates are assigned to different
“streams” of traffic (a stream is like a logical link in our treat-
ment) and it is guaranteed that each stream can forward cells
at least at the specified rate. Thus, this discipline can realize
complete resource sharing on the cell level with attractive
simplicity. On the other hand, the scheme assumes that the
assigned rates are already given and nothing is told about how
to set these rates, beyond the requirement that their sum cannot
exceed the physical capacity on any given link. Our approach
can be applied to the problem of setting these rates, as well,
if the blocking measures are chosen appropriately.

Thus, on a conceptual level, we can say: the complete shar-
ing schemes, e.g., priority queuing, virtual spacing, etc., tell us
how to implement resource sharing at the cell level, while our
approach seeks for the call scale characteristics (e.g., how to
assign rates to various streams) that is then to be realized on
the cell level. In this sense our approach complements, rather
than excludes, the complete sharing approaches.

In this paper a mathematical model is presented to provide
a well-defined formulation of the above problem. The chosen
objective is to maximize the rotal network revenue, i.e., the
weighted version of the total expected carried traffic, given
the physical network parameters and the traffic requirements
of each virtual subnetwork. The decision variables are the
logical link capacities that specify the decomposition into
virtual subnetworks, and the load sharing parameters. The
latter tell us how to share the load among routes that connect
the same endpoints.
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