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Abstract

We use flow-level models to study the integration of two types of Internet traffic, elastic file transfers and
streaming traffic. Previous studies have concentrated on just one type of traffic, such as the flow level models
of Internet congestion control, where network capacity is dynamically shared between elastic file transfers,
with a randomly varying number of such flows. We consider the addition of streaming traffic in two cases,
under a fairness assumption that includes TCP-friendliness as a special case, and under certain admission
control schemes. We establish sufficient conditions for stability, using a fluid model of the system. We
also assess the impact of each traffic type on the other: file transfers are seen by streaming traffic as reduc-
ing the available capacity, whereas for file transfers the presence of streaming traffic amounts to replacing
sharp capacity constraints by relaxed constraints. Simulation results suggest that the integration of streaming
traffic and file transfers has a stabilizing effect on the variability of the number of flows present in the system.

Keywords: Internet, Quality of Service, Fairness, Elastic Traffic, Streaming Traffic, Fluid
Models, Flow Level
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Intégration équitable du trafic dans l’Internet:
modèles fluides de flots et leur analyse.

Résumé

Nous proposons des modèles de flots représentant l’intégration de deux types de trafic Internet: les transferts
de données, ou trafic élastique, et le trafic temps-réel. Les travaux antérieurs ont principalement traité un seul
type de trafic, comme les modèles de flots du contrôle de congestion dans l’Internet, où la capacité du réseau
est partagée dynamiquement entre les transferts de données en cours, dont le nombre évolue dans le temps.
Nous considérons deux scénarios d’intégration, l’un reposant sur une hypothèse d’équité générale, dont un
cas particulier est la compatibilité avec TCP (ou “TCP-friendliness”), et l’autre reposant sur une politique
de contrôle d’admission des flots temps-réel. Nous considérons une renormalisation des processus décrivant
l’état du réseau. Nous donnons des conditions suffisantes de stabilité pour ces processus renormalisés. Nous
évaluons aussi l’impact qu’a chaque type de trafic sur l’autre: le trafic élastique a pour seul effet de réduire la
capacité offerte au trafic temps-réel, alors que l’effet du trafic temps-réel sur le trafic élastique est de changer
des contraintes strictes de capacité en des contraintes pénalisées. Des résultats de simulation suggèrent que
l’intégration des deux types de trafic réduit la variabilité du nombre de flots présents dans le système.

Mots clés: Internet, Qualité de Service, Equité, Trafic élastique, Trafic temps-réel, Modèles
fluides, modèles de flots.

I INTRODUCTION

The motivation for this paper arises from the need to understand and model the integration of
different types of traffic within the Internet. At the transport layer, the current Internet is dominated
by flows which use TCP. The percentage of TCP traffic is variable, and may depend on time of
day and the particular route chosen; however typical measurements on a backbone [17] show that
upwards of 70% of flows use TCP, rising to over 90% by volume, with UDP the main alternative
protocol (up to 20% of packets, or 10% of bytes). Prevailing applications can change rapidly:
whereas Web traffic used to be the dominant application type for TCP traffic, at the time of writing
file-sharing applications can dominate and may account for 40% of the traffic on backbone links.
The current volume of streaming traffic carried by UDP is small (less than 10%), but the rapid
increase in peer-to-peer traffic illustrates how quickly the status-quo can change, and we would
like to predict behaviour in different scenarios.

How TCP and UDP should co-exist is a vexed question, and many regard UDP-related traffic as
inherently problematic. Some authors have proposed that streaming traffic should be TCP-friendly,
so that it can share network resources fairly with the dominant form of existing traffic [11]. Indeed
some streaming applications use TCP as the transport protocol. Applications that use UDP often
need some form of quality of service to function adequately, which has led some researchers to
consider distributed or end-point admission control [14, 6, 3, 16].
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The need to model such situations requires modelling the heterogeneous traffic streams, with
their different characteristics. Previous work in this area has focused on analysing occupancy distri-
butions of single resource systems, via either exact or approximate techniques, see e.g. [2],[1],[21]
and [23]. In contrast we look at arbitrary network topologies. We consider two types of traffic,
which we label ‘file transfers’ and ‘streaming’ traffic. A flow carrying a file transfer must transfer
a given volume: the volume may be random, but is independent of the level of congestion experi-
enced. An admitted flow carrying streaming traffic remains present for a holding time: the holding
time may be random, but is independent of the level of congestion experienced.

Our analysis is a flow-level analysis, that generalises the flow level model of Internet conges-
tion control of Massoulié and Roberts [18] by incorporating streaming traffic. They considered a
network where a randomly varying number of flows is present, and capacity is dynamically shared
between elastic file transfers using different sharing mechanisms.

The analysis of streaming traffic on its own gives rise to a product-form solution under certain
reasonable assumptions, a form which is preserved under certain types of call admission con-
trol [14]. Moreover the limiting behaviour as the size of the system grows leads naturally to a
non-degenerate limit for the (scaled) number of connections. In contrast, a similar scaling applied
to just file transfer traffic results in numbers of competing flows either increasing to infinity or
decreasing to zero; it has been suggested [8] that such a model is flawed, lacking any self-limiting
behaviour. We shall see that this criticism is avoided when the two types of traffic are mixed, and
that the presence of even a small amount of streaming traffic has a stabilising effect.

The organization of this paper is as follows. In Section 2 we describe the sharing policy be-
tween flows where we assume a generalized form of TCP-friendliness for the streaming traffic. The
generalisation is based on the so-called α-fair allocations [20]. In Section 3 we describe the flow
level stochastic model of a network, a generalization of [18]. File transfers are characterized by a
random Poisson arrival process, with exponentially distributed file sizes, whereas streaming traffic
has Poisson arrival rates but an exponentially distributed holding time. In Section 4 we establish
appropriate stability conditions, for a fluid model of the system, through the construction of an ap-
propriate Lyapunov function. We also characterize and interpret the network state in equilibrium.
In Section 5 we consider extensions where we relax the sharing assumptions between the two types
of traffic. In particular, we discuss admission control strategies for the case where the streaming
traffic enters at a fixed rate, and show how a particular admission control strategy previously con-
sidered in [13] can be considered TCP-fair. In Section 6 we discuss simulations of the flow level
model for a star network, and explore the impact of streaming traffic on the variability of flow
alloctions. We conclude in Section 7.

II FAIRNESS ASSUMPTIONS

Consider a network with resources labelled by j ∈ J . Let a route r identify a non-empty subset
of J (interpreted as the set of resources used by a flow on route r). Write R for the set of possible
routes. Set Ajr = 1 if resource j lies on route r (i.e. j ∈ r), and set Ajr = 0 otherwise. We
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assume positive finite capacities (Cj , j ∈ J).
Let Nr be the number of flows on route r. Given a fixed parameter α ∈ (0,∞) and strictly

positive weights (wr, r ∈ R), we suppose that the bandwidth allocation to each of the Nr flows on
route r is xr, where x = (xr, r ∈ R) is a solution to the following optimization problem:

maximize
∑

r∈R

wrNr
x1−α
r

1 − α
(1)

subject to
∑

r

AjrNrxr ≤ Cj , j ∈ J (2)

over xr ≥ 0, r ∈ R. (3)

Call the resulting allocation a weighted α-fair allocation [20].
The form of a solution to the problem (1–3) can be given in terms of Lagrange multipliers

(pj , j ∈ J), one for each of the capacity constraints (2), as

xr =

(

wr
∑

j pjAjr

)1/α

, (4)

where

pj ≥ 0, pj

(

Cj −
∑

r

AjrNrxr

)

= 0 j ∈ J. (5)

The strict concavity of the objective function (1) as a function of (xr, r : Nr > 0) ensures that
the component xr is unique if Nr is positive. When wr = 1, r ∈ R, the cases α → 0, α → 1
and α → ∞ correspond respectively to an allocation which achieves maximum throughput, is
proportionally fair or is max-min fair [5, 20]. Weighted α-fair allocations provide a tractable
theoretical abstraction of decentralized packet-based congestion control algorithms such as TCP.

If α = 2 and wr is the reciprocal of the square of the round trip time on route r, then the
formula (4) is a version of the inverse square root law familiar from studies of the throughput
of TCP connections [10, 19, 22]. A flow carrying streaming traffic is termed TCP-friendly if,
inter alia, it adapts its rate to correspond with the steady-state rate of a TCP connection, usually
characterized in terms of a version of the inverse square root law [11].

The relations (2–5), and more refined versions of these relations, can be solved to give pre-
dictions of throughput, given the numbers of flows N present [7, 12, 25]. Given N , network
performance along different routes can be predicted. But what determines the behaviour of N?
One aim of this paper is to better understand how the behaviour of N is influenced by the mix of
traffic types present.

III FLOW LEVEL STOCHASTIC MODEL

We now describe our model of how flows arrive and depart. Our aim is to generalize the stochastic
model for file transfers introduced in [18] to include streaming flows.
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Let Nr be the number of document transfers on route r, and let Mr be the number of streaming
flows on route r. Define the indicator function I[r = s] = 1 if r = s, I[r = s] = 0 otherwise. Let
TsN = (Nr + I[r = s], r ∈ R), with inverse T−1

s N = (Nr − I[r = s], r ∈ R). We suppose that
(N,M) = (Nr, r ∈ R;Mr, r ∈ R) is a Markov process, with state space Z

J
+ ×Z

J
+ and non-trivial

transition rates

q((N,M), (TrN,M)) = νr, q((N,M), (T−1
r N,M)) = µrNrxr(N +M), r ∈ R

q((N,M), (N,TrM)) = κr, q((N,M), (N,T−1
r M)) = Mrηr, r ∈ R

for (N,M) ∈ Z
J
+ × Z

J
+, where x(N) is a solution to the optimization problem (1–3). This corre-

sponds to a model where new file transfers arrive on route r as a Poisson process of rate νr, new
streaming flows arrive on route r as a Poisson process of rate κr, and xr(N +M) is the bandwidth
allocated to each flow on route r, whether it is a file transfer or streaming flow. A file transfer on
route r transfers a file whose size is exponentially distributed with parameter µr, and a streaming
flow on route r has an exponentially distributed holding time with parameter ηr.

If κr = 0, r ∈ R, then this model reduces to the model introduced by Massoulié and Roberts
[18], in which there are no streaming flows, only file transfers. For this case, De Veciana, Lee and
Konstantopoulos [9] and Bonald and Massoulié [5] have shown that a sufficient condition for the
Markov chain (N(t), t ≥ 0) to be positive recurrent is that

∑

r

Ajrρr < Cj , j ∈ J, (6)

where ρr = νr/µr; this condition is also necessary [15]. The condition is natural: ρr is the load on
route r, and we can identify the ratio of the two sides of the inequality (6) as T the traffic intensity
at resource j. Kelly and Williams [15] have explored the behaviour of a fluid model for this case in
heavy traffic, when the inequalities (6) are close to being tight, which is a key step towards proving
state space collapse. The papers [5, 9, 15] all make use of a fluid model of the Markov process, an
approach which we shall use for our analysis of the extended model.

We shall henceforth assume that κr > 0, r ∈ R, and that condition (6) is satisfied. Define the
reduced capacities

C̃j = Cj −
∑

r

Ajrρr, j ∈ J. (7)

Thus the reduced capacity C̃j on resource j is just the amount by which inequality (6) fails to be
tight. The reduced capacities will determine the capacity available to streaming flows in a sense
that will be made precise in the next section.
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IV STABILITY OF FLUID MODELS

Next we describe a fluid model, which can be thought of as a formal law of large numbers approx-
imation under the scaling

(n,m)(t) =

(

Nc(t)

c
,
Mc(t)

c

)

c→ ∞,

where (Nc(t),Mc(t)) is the model of the previous Section but with Cj , j ∈ J , and νr, κr, r ∈ R,
replaced by cCj , j ∈ J , and cνr, cκr, r ∈ R, respectively. The fluid model is an approximation
appropriate for the case where Cj , j ∈ J , and νr, κr, r ∈ R, are all large, an important case in
applications.

The fluid model for the Markov process of the last Section takes the form

d

dt
nr(t) = νr − µrnr(t)xr(n(t) +m(t)), r ∈ R (8)

d

dt
mr(t) = κr − ηrmr(t), r ∈ R. (9)

Note that our assumption that κr > 0, r ∈ R, implies that mr(t) > 0, r ∈ R, t > 0.

Proposition 1. Provided the condition (6) is satisfied, the differential equations (8,9) have a unique
invariant point, (n̂r, m̂r). It takes the form m̂r = κr/ηr and

n̂r =
νr
µr

(

∑

j∈J pjAjr

wr

)1/α

r ∈ R, (10)

for some p ∈ R
J
+. At the invariant point the bandwidth allocation to each flow on route r is

xr =

(

wr
∑

j pjAjr

)1/α

. (11)

The pair (x, p) forms a solution of equation (11) and the conditions

pj ≥ 0, pj

(

C̃j −
∑

r

Ajrm̂rxr

)

= 0 j ∈ J, (12)

and together these relations determine x uniquely.

Proof. At an invariant point mr(t) = m̂r, from equation (9). Further,

n̂rxr(n̂+ m̂) = ρr, (13)
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from equation (8). Now at any time t,

xr(n(t) +m(t)) =

(

wr
∑

j pj(t)Ajr

)1/α

where

pj(t) ≥ 0, pj(t)

(

Cj −
∑

r

Ajr(nr(t) +mr(t))xr(n(t) +m(t))

)

= 0 j ∈ J,

from the characterization of x as a solution to an optimization problem of the form (1–3). Thus, at
an invariant point,

pj ≥ 0, pj



C̃j −
∑

r

Ajrm̂r

(

wr
∑

j pjAjr

)1/α


 = 0 j ∈ J,

using equation (13) and the definition (7). Thus x, given by (11), is the unique optimum to a
problem of the form (1–3), with C replaced by C̃ and N replaced by m̂.

Equation (10) describes the vector n̂, of dimension |R|, in terms of p, a vector which may have
a much smaller dimension, |J |, a phenomenon first noted in the balanced fluid model of [15].

Remark 2. The invariant point can be interpreted as follows. File transfers place an irreducible
load

∑

r Ajrρr on resource j for each j ∈ J . The reduced capacities (C̃j , j ∈ J) that remain
after this load is satisfied are available to be shared amongst streaming traffic, and determine the
bandwidth allocation to flows on route r for both types of traffic.

When κr = 0, r ∈ R, the unique invariant point of the fluid model is n̂ = 0 [9, 5]. It is
notable that the inclusion of streaming traffic within the fluid model forces the components of n̂ to
be positive.

We now discuss convergence to the equilibrium point of the above dynamics. In order to do
so, it is convenient to introduce a modification for the dynamics of file transfers. This is naturally
described in terms of the quantities λr, which represent the total capacity allocated to type r file
transfers, and thus with the previous notation, λr = nrxr. Let the function ψ(λ) be a penalty
function. Then the modified dynamics are as follows:

d

dt
nr(t) = νr − µrλr(n(t)), r ∈ R, (14)

where the vector λ of service rates λr is defined as the solution to the optimisation problem

maximize φ(λ) :=
∑

r∈R

wrn
α
r

λ1−α
r

1 − α
+ ψ(λ) (15)

subject to
∑

r

Ajrλr ≤ Cj , j ∈ J (16)

over λr ≥ 0, r ∈ R. (17)
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In the case where ψ is identically zero, this reduces to the previous dynamics for the file transfers in
the absence of streaming traffic. The function ψ is assumed to be concave and strictly monotonic
decreasing in each coordinate on the domain of the optimisation problem. This latter condition
implies that the rate λr goes to zero as nr goes to zero, and hence the trajectories nr stay away
from the boundary of the orthant R

R
+. Let us prove stability of the above dynamics.

Theorem 3. Under the stability conditions (6), the function L(n) defined by

L(n) =
∑

r

1

µr

{

wr
n1+α
r

(1 + α)ραr
+ nrψ

′
r(ρ)

}

, (18)

where ψ′
r(ρ) stands for the r-th partial derivative ∂ψ

∂λr

evaluated at the vector of loads ρr, is a Lya-
punov function for the dynamics (14–17). Hence these dynamics converge to the unique minimiser
of L on the orthant R

R
+, that is

n̂r = ρr

(

−ψ′
r(ρ)

wr

)1/α

. (19)

Proof. Under the condition (6), the vector ρ = (ρr, r ∈ R) lies in the interior of the domain (16–
17) of the optimisation problem defining the vector λ. The function φ is strictly concave on this
domain, since both terms in its definition (15) are concave, with strict concavity of the first term.
Hence

∑

r

φ′r(ρ)(ρr − λr) ≤ 0,

and this inequality is strict unless λ = ρ. The left-hand side also reads

∑

r

{

wr

(

nr
ρr

)α

+ ψ′
r(ρ)

}

(ρr − λr),

and is thus equal to
∑

r

∂L

∂nr
(n(t))

d

dt
nr(t) =

d

dt
L(n(t)).

Thus the value of L(n) decreases strictly along the trajectories of the system, except at the equi-
librium point specified by (19), which is the only point for which the corresponding rate vector λ
equals the load vector ρ.

Remark 4. If the concave function ψ fails to be differentiable at ρ, by adapting the above proof it
can be shown that the dynamics (14–17) converge to the set of points n̂ satisfying (19), where the
vector (−ψ′

r(ρ), r ∈ R) spans the set of sub-gradients of the convex function −ψ at ρ. We refer the
reader to [24], p.214 for a definition and basic properties of sub-gradients of convex functions.

We now apply this result to establish stability of the dynamics (8–9).

Corollary 5. Under the stability condition (6), the dynamics (8–9) are asymptotically stable.
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Proof. We shall only treat the special case where the mr have already converged to their equilib-
rium values, m̂r. As the convergence of m(t) to m̂ does not depend on the evolution of n(t), the
general case can be deduced by continuity arguments. We now show that the nr evolve according
to (14–17) for some suitable choice of a penalty function ψ. Indeed, (14) holds, with the service
rates λr solving

maximize φ(λ, γ) :=
∑

r∈R

wr

{

nαr
λ1−α
r

1 − α
+ m̂α

r

γ1−α
r

1 − α

}

subject to
∑

r

Ajr(λr + γr) ≤ Cj , j ∈ J

over λr, γr ≥ 0, r ∈ R.

Performing the optimisation over the γr first, this is of the form (15–17), with

ψ(λ) := sup

{

∑

r

wrm̂
α
r

γ1−α
r

1 − α

}

, (20)

over γ ∈ S(λ) :=

{

γ ∈ R
R
+,
∑

r

Ajrγr ≤ Cj −
∑

r

Ajrλr, j ∈ J

}

.

It is readily seen that ψ is decreasing in each coordinate: given λ, λ′, such that λ′r ≤ λr for all r,
the inequality being strict for some r, any vector γ in S(λ) is such that γ ′ := (γr + λr − λ′r) is in
S(λ), so that ψ(λ) < ψ(λ′). Concavity of ψ also holds: given λ, λ′ and ε in [0, 1], denote by γ and
γ′ the maximising vectors in the definition of ψ(λ), ψ(λ′) respectively. Then εγ+ (1− ε)γ ′ lies in
S(ελ+ (1 − ε)λ′), and hence

ψ(ελ+ (1 − ε)λ′) ≥
∑

r

wrm̂
α
r

(εγr + (1 − ε)γ′r)
1−α

1 − α
≥ εψ(λ) + (1 − ε)ψ(λ′),

where concavity of the function maximised in the definition of ψ gives the second inequality.

Remark 6. Under the particular choice (20) of penalty function, and comparing equations (10)
and (19), we deduce that

∑

j∈J pjAjr = −ψ′
r(ρ). Notice the identification between the sensitivity

of the penalty function ψ with respect to the load ρr and the sum of the Lagrange multipliers along
route r.

V EXTENSIONS: PACKET MODELS AND ADMISSION CONTROL

V.1 Constraint relaxation

The formulation (14–17) is also useful to model situations where the hard capacity constraints
described by the intersection of half-spaces (2) are relaxed. If the optimization problem (1–3) is
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replaced by

maximize
∑

r

wrNr
x1−α
r

1 − α
−
∑

j

Cj

(

∑

r

AjrNrxr

)

over x ≥ 0,

where Cj(·), j ∈ J , are convex, strictly increasing, differentiable functions, then an optimum is
again given by equation (4), but where now pj , j ∈ J , satisfy

pj = C ′
j

(

∑

r

AjrNrxr

)

.

This formulation arises naturally from packet level models, with xr the mean rate of a stochastic
packet generation process. For example, if the resources j correspond to output ports of routers,
then there is a limited amount of buffering available, and packets will be dropped if the capacity is
exceeded, or more generally marked according to some active queue management technique. We
may interpret pj(yj) as the probability of dropping (or marking) a packet at resource j when the
load on the resource is yj .

Stability of the corresponding fluid model can be deduced from the formulation (14–17), by
setting

ψ(λ) = −
∑

j

Cj

(

∑

r

Ajrλr

)

.

V.2 Admission controlled traffic

Streaming may need some minimal non-zero rate for the application to function adequately. For ex-
ample in the case of streaming multimedia, even with adaptive codecs, some minimal transmission
rate is often required for acceptable performance. Suppose that type r streaming traffic only enters
if xr ≥ xminr : then in both the flow level stochastic model and in the fluid limit, κr is replaced by
κrI[xr ≥ xminr ]. At an invariant point, either mr > 0 and xr ≥ xminr or mr = 0. The condition
xr ≥ xminr is equivalent to

∑

j

pjAjr ≤
wr

(xminr )α
r ∈ R. (21)

If the parameters pj , j ∈ J , satisfy the linear constraints (21) with strict inequality, then the fluid
model predicts there will be no call admission blocking.

A more extreme case is when real-time streaming traffic cannot adapt its rate at all. We now
describe a sharing model relevant for such a scenario, according to which streaming flows either
proceed at their target rate, or are rejected, in such a way that the equilibrium points are the same
as for the previous model (at least in a situation of interest).
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More specifically, type r streaming flows have a target rate πr. At a given time t, they measure
the current TCP-friendly rate they would get under the previous sharing model, say λr; they then
proceed at full target rate πr with probability min(1, λr/πr), and are rejected with the complemen-
tary probability. Once started, they no longer adapt to the network state. Such an approach has
been proposed by Karlsson [13].

Keeping the same notations as in the previous sections, the fluid equations describing the evo-
lution of the numbers of flows are now

d

dt
nr = νr − µrnrxr(n;C −Aπm), r ∈ R (22)

d

dt
mr = κr min

(

1,
xr(n;C −Aπm)

πr

)

− ηrmr, r ∈ R. (23)

In the above we denote by xr(n,C) the solution to the optimisation problem (1–3), where we have
made explicit both the numbers of flows n and the capacity constraints C. Note that the capacity
allocations are now defined based on the numbers of file transfers n, and the reduced capacities
C − Aπm, where A is the link-flow incidence matrix (as before), π is the diagonal matrix with
diagonal entries πr, and m = (mr). We now characterize the equilibrium points under these
dynamics.

Proposition 7. Provided the condition (6) is satisfied, any invariant point (n̂r, m̂r) of the differ-
ential equations (22,23) takes the form m̂r = κr/ηr min(1, xr/πr), n̂r = (νr/µr)x

−1
r , where xr

satisfies (11), for some for some p ∈ R
J
+, and is the equilibrium bandwidth allocation to each flow

on route r. The pair (x, p) forms a solution of equation (11) and the conditions

pj ≥ 0, pj

(

C̃j −
∑

r

Ajrm̂rπr

)

= 0 j ∈ J. (24)

The quantities yr := min(πr, xr) solve the optimisation problem

maximize
∑

r∈R

wr
κr
ηr

y1−α
r

1 − α
(25)

subject to
∑

r

Ajr
κr
ηr
yr ≤ C̃j , j ∈ J, yr ≤ πr, r ∈ R, (26)

over yr ≥ 0, r ∈ R, (27)

and the pj’s constitute a set of Lagrange multipliers associated with the capacity constraint C̃j in
the above. The yr’s are thus uniquely determined. The xr’s are not necessarily uniquely deter-
mined.
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Proof. The expressions of the quantities of interest at any invariant point are obtained exactly as in
the proof of Proposition 1. Rewriting (24) as

pj ≥ 0, pj

(

C̃j −
∑

r

Ajr
κr
ηr

min(πr, xr)

)

= 0 j ∈ J,

we can readily interpret the quantities yr := min(πr, xr) as the solutions to the optimisation prob-
lem (25–27). By strict concavity of the function (25) being maximised, y is indeed uniquely de-
fined. That x is in general not uniquely defined can be on the following counter-example: Consider
a network with two links {1, 2} of equal capacities C, and three routes {1}, {2}, {1, 2}. Routes
{1} and {2} carry traffic with exactly the same characteristics. It is then easy to select parameters
such that streaming traffic along route {1, 2} experiences admission control, while streaming traffic
along the two other routes is always accepted. In that case, only the sum of multipliers p1 + p2 is
determined, not the individual multipliers. As a result the corresponding rates x{1}, x{2} are not
uniquely defined either.

We can again provide an interpretation for invariant points, in particular when for all r it holds
that yr < πr. This is the case where admission control is active along each route. Note that in this
specific situation, x is now uniquely determined and coincides with y.

Remark 7. In the case the admission control is active along each route, i.e. for all r it holds that
yr < πr, the equilibrium allocation x is the same under the present admission control mechanism
as under the previous rate adaptation scheme, the invariant numbers of file transfers n̂r are also
unchanged, and the load used up by streaming traffic, here m̂rπr, is also unchanged. In this sense,
the present admission control mechanism may be deemed “TCP-fair” at the level of detail captured
by the present fluid flow models.

Remark 8. Consider the following modified admission rule: instead of choosing to proceed with
probability min(1, xr/πr), type r streaming flows will instead chose to proceed with probability
min(1, εxr/πr), where ε > 0 is some fixed parameter. Denote by xεr, m

ε
r and pεj the corresponding

equilibrium variables. It is readily seen that a valid solution is provided by chosing εxεr = x1
r ,

mε
r = m1

r , and pεj = εαp1
j . The interpretation is as follows: by basing their admission decision

on the scaled down TCP-friendly rate εxr rather than xr, the real-time flows ensure that the rate
obtained by file transfers in equilibrium is scaled up by ε−1, but this comes at no cost for them, as
they have the same admission probability in equilibrium.

This stems from the fact that in the current model, file transfers contribute an incompressible
load on the system, independent of their performance. If we were to consider an Engset-like model
for file transfers, this property would no longer hold.

We expect the dynamical system (22–23) to be stable under the stability condition (6), however
we have not proven this yet.
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Figure 1: Impact of streaming traffic on file transfers. The substantial amount of streaming traffic
present in mix (a) relative to mix (b) has a stabilizing effect on the number of flows in progress.
Impact du trafic temps-réel sur les transferts de fichiers. La quantité importante de trafic temps-réel
dans (a) relativement à (b) un effet stabilisant sur le nombre de flots en cours.

VI EXAMPLE: A STAR NETWORK

As a concrete example, consider a star network of 10 links connected to a core. This example is
motivated by the current Internet, where the back-bone is relatively uncongested, and congestion
occurs mainly on the access links. Flows use two links, with traffic spread randomly across links.

For the example, J = {1, 2, ..., 10}, R = {(i, j) : i < j, i, j ∈ J}. The capacity of each link
Cj was chosen equivalent to a T3 link (45 Mbit/s), for j ∈ J . The mean holding time of streaming
traffic (1/ηr, r ∈ R) was taken to be 200 seconds, corresponding to voice traffic, with the mean
file size (1/µr, r ∈ R) taken to be 600kB. The arrival rates for the two types of traffic (νr, and κr)
were chosen to be identical, giving a file-transfer traffic intensity of 0.5 on each link, and such that
in equilibrium each flow has rate 25kbit/s (xr). Under this regime the equilibrium number of flows
of each type is 100 (m̂r = n̂r = 100) per route r, giving 900 flows of each type on each link j.

Figure 1(a) shows the evolution of the number of each type
∑

r Ajrnr and
∑

r Ajrmr on a
typical link, obtained by simulation of the Markov chain of Section 3. Note that the two curves
look very similar and have a mean of 900. The number of streaming flows in progress has a
standard deviation of 30, while the number of file transfers has a slightly higher standard deviation
of just over 40.

We now alter the offered load of each type of traffic, to keep the nominal quality (xr) seen by
the flows fixed while significantly altering the proportions of the two types of traffic. We make
the file-transfer traffic intensity 0.995 on each link, with a very small amount of streaming traffic.
The load was such that the equilibrium of the fluid model has n̂r = 199, m̂r = 1. (With so little
streaming traffic we do not expect our fluid model to be a good approximation; as the amount of
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streaming traffic decreases to zero, we expect the behaviour of the system to be better described
by the Brownian model of [15].) In Figure 1(b) we plot the behaviour of

∑

r Ajrnr on two typical
links: observe the different vertical scale in this figure, and the marked variability of the number of
flows in progress. Comparing the two figures, we see that the substantial proportion of streaming
traffic present, in Figure 1(a), has the effect of reducing the variability of the number of flows in
progress. Of course Figure 1(b) concerns a fairly extreme case where there is a very small amount
of streaming traffic. More generally, the larger the proportion of streaming traffic (for a given
nominal quality) the lower the variability of the number of flows in progress, and hence the lower
the variability of the bandwidth received by flows.

VII CONCLUSION

We have studied a flow level model of Internet congestion control, that represents the randomly
varying number of flows present in a network. Bandwidth was assumed to be dynamically shared
between file transfers and streaming traffic, according to a fairness criterion that includes TCP
friendliness as a special case. Through the construction of an appropriate Lyapunov function we
have established stability, under conditions, for a fluid model of the system. The presence of fair-
sharing streaming traffic results in a non-degenerate fluid model. Analysis of the model suggests
that file transfers are seen by streaming traffic as reducing the available capacity, whereas for file
transfers the presence of streaming traffic amounts to replacing sharp capacity constraints by re-
laxed constraints. Simulations show that the integration of streaming traffic and file transfers has a
stabilizing effect on the variability of the number of flows present in the system.
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