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This paper describes several simple models that have helped our un-
derstanding of communication networks, and describes some of the new
problems that arise in connection with the multiservice networks planned
for the future.

1 Introduction

Throughout this century problems that have arisen in the design and anal-
ysis of communication networks have provided motivation for the develop-
ment of stochastic modelling techniques. In this paper we describe some
classical models that have helped our understanding of communication net-
works, and discuss some of the new problems that arise in connection with
the multiservice networks planned for the future.

We begin, in Section 2, by describing Erlang’s formula, and its general-
ization to networks with fixed routing. The classical example of this model
is a telephone network, but the model arises naturally in the study of lo-
cal area networks, multiprocessor interconnection architectures, database
structures, mobile radio and broadband packet networks ([13], [16], [18]).
In computer communication networks, and increasingly in telephone net-
works, the circuits are virtual rather than physical: for example, a fixed
proportion of the transmission capacity of a communication channel. The
term ‘circuit-switched’ is common in some application areas, where it is
used to describe systems in which before a request (which may be a call, a
task or a customer) is accepted it is first checked that sufficient resources
are available to deal with each stage of the request.

The trend of current developments in telecommunication networks is to-
wards systems which will allow a number of widely disparate traffic streams
to share the same broadband channel ([7], [23], [25]). A call, which might
be a mixture of voice, video and data, would appear to the network as a
stream of cells, and the hope is that calls with a broad range of burstiness
characteristics can be efficiently integrated, through statistical multiplex-
ing, to share a common resource. In Section 3 we describe how it is possible
to associate an effective bandwidth with a source type such that, provided
the sum of the effective bandwidths of the sources using a resource is less
than a certain level, then the resource can deliver a performance guarantee,



2 Mathematical models of multiservice networks

expressed in terms of the probability that delay exceeds a threshold or that
a cell is lost.

The effective bandwidth depends on characteristics of the source such
as its peak rate. Current plans [5] are that at call admission a contract
would be made between user and network specifying in more or less detail
the statistical properties of the call, and that policing mechanisms would
enforce the contract. In Section 4 we discuss some of the issues and models
that arise in connection with the policing of peak rates.

Several time-scales are involved in discussions of traffic in multiservice
networks. Thus a call continuing for several minutes may be composed of
bursts that last for less than a second, while bursts themselves are formed
from sequences of cells each lasting only microseconds. It is possible to
view the models of Sections 2, 3 and 4 as addressing respectively the call,
burst and cell time-scales. A theme we begin to develop in this paper (see
also [20]) concerns the integration of these different levels: we shall see how
derived characteristics at one level provide the parameters for models at a
higher level.

2 Loss Networks

In 1917 the Danish mathematician A.K. Erlang published his famous for-
mula
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for the loss probability of a telephone system ([4], p. 139). The problem
considered by Erlang can be phrased as follows. Calls arrive at a link
as a Poisson process of rate v. The link comprises C circuits, and a call
is blocked and lost if all C' circuits are occupied. Otherwise the call is
accepted and occupies a single circuit for the holding period of the call.
Call holding periods are independent of each other and of arrival times,
and are identically distributed with unit mean. Then Erlang’s formula
(2.1) gives the proportion of calls that are lost.

But what happens if the system consists of many links, and if calls of
different types (perhaps voice, video or conference calls) require different
resources? We now describe a generalization of Erlang’s model which allows
a network of links, and which allows the number of circuits required to
depend upon the call. Consider then a network with K links, labelled
1,2,..., K, and suppose that link k comprises C}, circuits. A call on route
r uses Ay, circuits from link k, where Ay, € Z . Let R be the set of possible
routes. Calls requesting route 7 arrive as a Poisson stream of rate v,., and
as r varies it indexes independent Poisson streams. A call requesting route
r is blocked and lost if on any link &, £k = 1,2,... K, there are less than
Ay, circuits free. Otherwise the call is connected and simultaneously holds
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Ay, circuits from link &k, k = 1,2,..., K, for the holding period of the call.
The call holding period is independent of earlier arrival times and holding
periods; holding periods of calls on route r are identically distributed with
unit mean.

Let n,(t) be the number of calls in progress at time ¢ on route r, and
define the vectors n(t) = (n,(t),r € R) and C = (C1,Cs,...,Ck). Then
the stochastic process (n(t),t > 0) has a unique stationary distribution and
under this distribution 7(n) = P{n(t) = n} is given by

w(n) =GO [ ’:L—Tl' n € S(C) (2.2)
rerR
where
S(C)={neZf:An<C} (2.3)

and G(C) is the normalizing constant (or partition function)

o=\ X I v (2.4)

neS(C) TGR

This result is easy to check in the case where holding times are B ex-
ponentially distributed: then (n(t),t > 0) is a Markov process and the
distribution (2.2) satisfies the detailed balance conditions

mn) v, =w(n+e.) (n+1) n,n+ e, € S(C) (2.5)

where e, = (I[r' =r],7" € R) is the unit vector describing just one call in
progress on route 7.

Most quantities of interest can be written in terms of the distribution
(2.2) or the partition function (2.4). For example let L, be the stationary
probability that a call requesting route r is lost. Since the arrival stream
of calls requesting route r is Poisson, B

1-L,= Y  @(n)=G(C)'G(C - Ae,). (2.6)

neS(C—Aey)

Observe that the distribution (2.2) is simply that of independent Poisson
random variables truncated to a linearly constrained region (2.3): thus
from expression (2.6) we obtain Erlang’s formula (2.1) in the case of a single
truncated Poisson random variable. For more complex networks the explicit
form (2.6) may be hard to compute [22], but there now exist many methods
of approximation and analysis: these extend to generalizations of the model
which allow more complex routing choices, and permit consideration of
issues such as dynamic routing and network planning. For recent reviews
see [18], [19].
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3 Effective Bandwidths

What happens if a call’s resource requirement can vary randomly over the
lifetime of a call? Hui ([12], [13]) has shown that, for a simple model of an
unbuffered resource, the probability of resource overload can be held below
a desired level by requiring that B the number of calls n; accepted from
sources of class j, 7 =1,2,...,J, satisfies

> am; <C, (3.1)
i

where C is interpreted as the capacity of the resource, and «; is the effective
bandwidth at the resource of each source of class j. The effective bandwidth
«; lies between the mean and the peak resource requirement of a source of
class j: it depends on characteristics of the source such as its burstiness,
and on the degree of statistical multiplexing possible at the resource. The
bandwidth of a source may vary over the different resources in a network,
just as in the classical model of the last Section the requirements Ay, of a
call may vary over the links k along its route. The linearity of the constraint
(3.1) encourages the prospect that the insights available from the classical
model may readily transfer to the case where a call’s resource requirement
may vary over the lifetime of a call.

We now review Hui’s model of an unbuffered resource. We begin by
recalling Chernoff’s bound on the tail behaviour of sums of random vari-
ables. Let X, X5,...,X,, be independent, identically distributed random
variables with common logarithmic moment generating function

M(s) = log E[e**]. (3.2)
Now for any random variable Y
P{Y >0} = P{e*¥ > 1} < E[e*Y], (3.3)

where here and throughout s > 0. Hence
1
—logP{X; + X5 +---X,, > 0} <inf M(s). (3.4)
n s

This bound is often used as an approximation, the large deviations approxi-
mation, and is asymptotically exact: Chernoff’s theorem ([1], pp. 147-149)
establishes that if E[X,,] < 0 and P{X,, > 0} > 0 then

1
lim —logP{X; + Xy +---+ X,, > 0} = inf M(s). (3.5)

n—oo N

Let



F.P. Kelly 5

J nj
S=>"> X (3.6)
j=11i=1

where X;; are independent random variables, with logarithmic moment
generating functions
M;(s) = logE [e**5] . (3.7)

Interpret X;; as the load placed on an unbuffered resource by a source of
class j, and n; as the number of sources of class j. Let C be the capacity
of the resource and suppose E[S] < C and P{S > C'} > 0. Then Chernoff’s
bound gives
log P{S > C} <logE [e*(5=C)]
= 307y nMy(s) = sC,

and the large deviations approximation is

J
logP{S > C} ~ inf anMj(s) —-sC| . (3.8)

j=1

The constraint on tail behaviour logP{S > C} < —~v will certainly be
satisfied if

J
II;f anMj(s) —sC| < —. (3.9)
j=1
Note that the term in square brackets is linear in n = (n1,n2,...,ny).

Hence the acceptance region A, consisting of values n € ]R-IJ- satisfying
condition (3.9), has a convex complement in ]Ri, since this complement is
defined as the intersection of ]Ri with a family of half spaces. The tangent
plane at a point n* on the boundary of the region A is

7
anMj(s*) —-s"C=—v (3.10)
j=1

where s* attains the infimum in (3.9) with n replaced by n*. Thus the
acceptance region

J
A =n: Y i, + sl <C (3.11)
j=1
B where A
o = i(57) (3.12)
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will assure satisfaction of the constraint logP{S > C} < —~, and this
linearly constrained region touches the boundary of the acceptance region A
defined by (3.9) at the point n* defining s*. One could, for example, define
n* in terms of the expected mix of source classes. The acceptance region
A(n*) assures satisfaction of the tail probability constraint whatever the
mix of source classes, and is the best possible linearly constrained region for
the expected mix. For many realistic examples of source classes the region
A(n*) is not that sensitive to the precise choice of n* — the boundary of A
is approximately a hyperplane — see for example [10].

Next we show, following [17], that the notion of an effective bandwidth,
additive over sources of different classes, generalizes to certain models of a
buffered resource. Our first model of a buffered resource is as follows. Sup-
pose that bursts from a source of class j arrive in a Poisson stream of rate
v; and have lengths with distribution G;. Burst lengths and the Poisson
streams associated with different sources are assumed independent. The
time taken to serve a burst is equal to its length, and thus the resource op-
erates as an M/G/1 queue with arrival rate v and service time distribution

G, where
J

G(z) = p;Gj(x) (3.13)

=1

v= Z ving, pj =vin;/v. (3.14)

Here n; is the number of sources of class j, and G is the distribution of
burst length from sources of class j. The Pollaczek—Khintchine formula
gives the stationary distribution of B, the buffer space required by the
server, as

P{B <b}=(1—-wvpu) Z (vu)" G (b (3.15)
r=0

where (< v~1) is the mean of the distribution G, and G'"(b) is the
distribution function of the sum of r independent random variables each
with distribution function

1 b
Gy =L / (1 - G(2))da. (3.16)
H Jo
(From (3.16), or directly,
J
P{B=0}=1—-vu= 1—Zujnj,uj. (3.17)

j=1



F.P. Kelly 7

The wutilization of the resource, U, is thus Ej vjn;pu;. Hence a condition of
the form U < K becomes a linear constraint

J
> am; <K (3.18)
j=1
where
aj = Vil (3.19)

is the effective bandwidth of each source of class j. Of course o; is just the
traffic intensity due to a source of class j. This (near trivial) result clearly
extends far beyond the M/G/1 setting: we include it since it will emerge
as a limiting form from later constraints on queue behaviour. Next we turn
to a less obvious case of exact linearity.

A consequence of the distributional form (3.15) is that

2 2

E(B) = v +07) (3.20)
2(1—wvp)

where p and o2 are the mean and variance respectively of the distribution

G (see, for example, [14], p. 81). Let p; and (7]2~ be the mean and variance

respectively of G, the burst size distribution for sources of class j. Then

J J
p=> pipj, wto>=> pipi+a}) (3.21)
j=1 j=1
and so
J J
vp ="y vinjnj, vipt+0%) = vin;(pi +03). (3.22)
j=1 j=1

Thus a condition E(B) < L is, from (3.20), exactly the condition

J J
> vini(uy +03) <2 | 1= vnp; | L. (3.23)

j=1 j=1
Rearranging terms, this is equivalent to

J
an (5 +03) + 2vp; L] < 2L. (3.24)
j=1
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Thus the effective bandwidth of a source of type j can be defined to be
el L2 o2
aj =vj |1+ 2L(Mj +05) (3.25)

since under this identification the constraint E(B) < L becomes the linear
constraint

J
> am; <1 (3.26)
j=1

The analytical expression (3.25) for bandwidth «; is illuminating. Observe,
for example, the dependence of bandwidth on L, the constraint on mean
workload. If L is large enough «; reduces to (3.19), the effective bandwidth
in the utilization constrained formulation. If L is small the burst size dis-
tribution, as well as its mean, is important. For example if the distribution
G is exponential, then 032. = ,u?, and so the bandwidth a; has a quadratic
dependence, proportional to yu; + L~'y3, on the mean burst size. If burst
sizes are constant, so that 032. = 0, then bandwidth again has a quadratic
dependence on burst size, but now proportional to p; + (2L)*1,u?.

Often constraints on the probability that buffer space or delay exceeds a
threshold are more important than constraints on mean values. Fortunately
there exist manageable estimates and bounds for tail behaviour, provided
by Kingman [21] and Ross [26] for the more general GI/G/1 queue. If A
is a random variable with the interarrival time distribution, X a random
variable with the service time distribution G, and & a positive constant
such that

E(e"X)E(e ") =1 (3.27)

then the stationary distribution of B, the unfinished work found by an
arriving customer, satisfies

ajert < P{B > b} < ase P b>0 (3.28)

for constants ay,as < 1.

Consider the M/G/1 queue. The constraint on tail behaviour B log P{B >
b} < —~ will certainly be satisfied if «, the solution to equation (3.27), sat-
isfies kb > -, or equivalently

o0
,,/ /(1 — G(z))da < 1. (3.29)
0
Suppose again that G is defined by (3.13) and (3.14). Then (3.29) becomes
o0
0

J
Zujnj/ (1 Gy(e))da < 1, (3.30)
j=1
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or equivalently

J
> am; <1 (3.31)
j=1
where
o0
a; = v, / /01 — Gj(x))dx. (3.32)
0

Again we obtain a linearly constrained acceptance region, and again the
analytical form (3.23) for the bandwidth is illuminating. Observe that as
shrinks to zero, o; reduces to (3.19), the effective bandwidth in the utiliza-
tion constrained formulation. As « increases, the tail of the distribution
Gj becomes more and more important.

Our model assumes that arriving bursts are not lost when the buffer
level exceeds b: they may for example be held at resources leading to the
particular resource under consideration, and forwarded later. The provi-
sion of a buffer area is intended to prevent this happening too often: if
such blocking is indeed an infrequent occurrence and if our assumption
concerning arrival streams is valid, perhaps in a network with sufficiently
diverse routing, then it should be possible to analyse different resources as
independent systems and to use the loss network results from Section 2.
Of course buffers arranged strictly in series exhibit a quite different be-
haviour, owing to the strong dependence between the service mechanism
at one buffer and the arrival stream at the next ([3], [15]).

For other and more general models of buffered resources that allow a
similar analysis, see [8], [9] and [27].

4 Policing Peak Rates

One of the interesting issues that arises in connection with multiservice
networks concerns the policing of peak rates. Suppose that a user declares
that the greatest load it will put on the network will be a regular periodic
stream of cells with period d. By the time this stream enters the net-
work it may well have been subjected to some perturbation, perhaps by a
multiplexing stage. How can the network effectively police the perturbed
stream?

A natural model is illustrated in Figure 1. We consider a FIFO queue
handling the superposition of a periodic stream of cells of period d, and a
Poisson stream of rate A, where the unit of time is the cell transmission
time (Figure 1). The load (traffic intensity) is thus p = A+ 1/d. The
Poisson stream represents the perturbing traffic, and after passage through
the queue the nominally periodic stream passes through a leaky bucket
policer [24], that is a queue with constant service time a and a finite buffer
of depth b where cells that overflow the buffer are discarded. How should a
and b be chosen so that test streams which initially conform to the user’s
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Figure 1. An M+D/D/1 multiplexer

declaration of period d, but are perturbed by the FIFO queue, do not
suffer?

The squared coefficient of variation of the inter-exit time distribution
for cells from the periodic stream has been calculated by Guillemin and
Roberts [11] for the cases p = 0.7,0.85 and is shown in Table 1. As p ap-
proaches 1 the exit times of the periodic stream approach a renewal process,
with inter-exit time distribution 14+ P(d—1), where P()) represents a Pois-
son distribution with mean A. This inter-exit time distribution has squared
coefficient of variation (d — 1)/d?, and this simple expression provides the
case p =1 in Table 1.

For p < 1 the exit times of the periodic stream do not form a renewal
process: as discussed by Blaabjerg [2] the exit stream appears more regular
over large intervals, and thus approximating the stream by a renewal pro-
cess with the calculated inter-exit time distribution will be conservative.
As p increases to 1, the variability of the stream increases, and the degree
of conservatism decreases. For both reasons we should expect the renewal
stream obtained when p =1 to be a worst case bound.

We have seen that a bound on the waiting time for the GI/G/1 queue
is

P{W > w} <e ™™ (4.1)

where k is the positive constant solving equation (3.27). In the case
where p = 1 and the input stream is a renewal process with inter-arrival
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distribution 1 + P(d — 1),
E(e ") = e "gg_1(e” ") (4.2)

where
Jga(2) = ema(1=2) (4.3)

is the probability generating function of a Poisson random variable with
mean «. Thus equation (3.27) becomes

Kla—1) = (d—1)(1—e"). (4.4)

Let v = kw, so that the bound (4.1) is, as before, exp(—~). Then equation
(4.4) becomes

ENGL =
where
f(r)=(1-e")/x, (4.6)

a function decreasing from 1 to 0 as & increases from 0 to infinity. Equation
(4.5) is thus a relationship between a, b, d and v that ensures the leaky
bucket policer loses less than 1 in e” cells from an initially periodic stream
of period d that has been perturbed by a critically loaded M+D/D/1 queue.

If we fix w = ba, the time taken to empty the leaky bucket, then we
can use equation (4.5) to give the required leak rate:

a—1:(d—1)f(1). (4.7)

w

For example, if v = 20, w = 20,
a—1=(1—-e1)(d-1), (4.8)
or if v = 23 (a loss probability of 1071%) and w = 200,
a—1=094(d—1). (4.9)

This suggests a natural policing strategy. Fix the time taken to empty a
leaky bucket, w = ba = 200, say, with leak rate a~! given by equation
(4.9), and use this leaky bucket to police a source of declared rate d—'.
Thus dimensioned, the leaky bucket loses less than one cell in 100 if input
comes from a deterministic stream of rate d~! perturbed by a critically
loaded FIFO M+D/D/1 queue. A stream of rate up to a™' could pass
through the leaky bucket, but this will only increase the nominal rate d—!
of the stream by a factor d/(1 + 0.94(d — 1)), a percentage increase of at
most 6%.
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Table 1. Squared coefficient of variation of inter-exit time
load (p) d=2 d=5 d=10 d=15
0.70 0.100 0.064 0.027 0.014
0.85 0.175 0.104 0.050 0.030
1.00 0.250 0.160  0.090 0.062

In practice [5] leaky bucket policers may be virtual rather than real: a
virtual leaky bucket discards the same cells as a real leaky bucket, but does
not delay the other cells. It is interesting to consider the next multiplexing
stage in a network, where the output from several leaky buckets (real or
virtual) may form the arrival process at a queue which we may represent
as a (real) leaky bucket. Consider a leaky bucket with parameters (a;, b;).
The number of cells output in the period (0,t) is bounded above by

bi + [ta]']. (4.10)

Thus the number of cells output in the period (0,t) by a collection of leaky
buckets with parameters (a;,b;), for i = 1,2,...,I, will be bounded above

by
1

I I
S i+ [ta;t]) <Y b+ [t at]. (4.11)
i=1 i=1 i=1

But the latter bound is enough for those cells to pass without loss through
a leaky bucket with parameters

T Lo
(Z a;1> > bi - (4.12)
i=1 i=1
(For a very full analysis of this form of deterministic bounding see Cruz [6].)
Thus if
I I
BY a;'<p, > b <bB (4.13)
i=1 i=1

then the next multiplexer stage, modelled as a leaky bucky with parame-
ters (p~1,b) will lose no cells.

If a;b; = w for i = 1,2,...,1, and if b = pw then constraints (4.13)
become the single constraint

ZG;I <p. (4.14)

In either case the linearity of constraints (4.13) or (4.14) allows use, at
higher levels, of the classical model of Section 2. B
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