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This paper describes several simple models that have helped our un�
derstanding of communication networks� and describes some of the new
problems that arise in connection with the multiservice networks planned
for the future�

� Introduction

Throughout this century problems that have arisen in the design and anal�
ysis of communication networks have provided motivation for the develop�
ment of stochastic modelling techniques� In this paper we describe some
classical models that have helped our understanding of communication net�
works� and discuss some of the new problems that arise in connection with
the multiservice networks planned for the future�
We begin� in Section �� by describing Erlang�s formula� and its general�

ization to networks with �xed routing� The classical example of this model
is a telephone network� but the model arises naturally in the study of lo�
cal area networks� multiprocessor interconnection architectures� database
structures� mobile radio and broadband packet networks ���	
� ���
� ���
�
In computer communication networks� and increasingly in telephone net�
works� the circuits are virtual rather than physical� for example� a �xed
proportion of the transmission capacity of a communication channel� The
term �circuit�switched� is common in some application areas� where it is
used to describe systems in which before a request �which may be a call� a
task or a customer is accepted it is �rst checked that su�cient resources
are available to deal with each stage of the request�
The trend of current developments in telecommunication networks is to�

wards systems which will allow a number of widely disparate tra�c streams
to share the same broadband channel ���
� ��	
� ���
� A call� which might
be a mixture of voice� video and data� would appear to the network as a
stream of cells� and the hope is that calls with a broad range of burstiness
characteristics can be e�ciently integrated� through statistical multiplex�
ing� to share a common resource� In Section 	 we describe how it is possible
to associate an e�ective bandwidth with a source type such that� provided
the sum of the e�ective bandwidths of the sources using a resource is less
than a certain level� then the resource can deliver a performance guarantee�

�
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expressed in terms of the probability that delay exceeds a threshold or that
a cell is lost�
The e�ective bandwidth depends on characteristics of the source such

as its peak rate� Current plans ��
 are that at call admission a contract
would be made between user and network specifying in more or less detail
the statistical properties of the call� and that policing mechanisms would
enforce the contract� In Section � we discuss some of the issues and models
that arise in connection with the policing of peak rates�
Several time�scales are involved in discussions of tra�c in multiservice

networks� Thus a call continuing for several minutes may be composed of
bursts that last for less than a second� while bursts themselves are formed
from sequences of cells each lasting only microseconds� It is possible to
view the models of Sections �� 	 and � as addressing respectively the call�
burst and cell time�scales� A theme we begin to develop in this paper �see
also ���
 concerns the integration of these di�erent levels� we shall see how
derived characteristics at one level provide the parameters for models at a
higher level�

� Loss Networks

In ���� the Danish mathematician A�K� Erlang published his famous for�
mula
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�
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���
����

for the loss probability of a telephone system ���
� p� �	�� The problem
considered by Erlang can be phrased as follows� Calls arrive at a link
as a Poisson process of rate �� The link comprises C circuits� and a call
is blocked and lost if all C circuits are occupied� Otherwise the call is
accepted and occupies a single circuit for the holding period of the call�
Call holding periods are independent of each other and of arrival times�
and are identically distributed with unit mean� Then Erlang�s formula

���� gives the proportion of calls that are lost�
But what happens if the system consists of many links� and if calls of

di�erent types �perhaps voice� video or conference calls require di�erent
resources� We now describe a generalization of Erlang�s model which allows
a network of links� and which allows the number of circuits required to
depend upon the call� Consider then a network with K links� labelled
�� �� � � � �K� and suppose that link k comprises Ck circuits� A call on route
r uses Akr circuits from link k� whereAkr � Z�� LetR be the set of possible
routes� Calls requesting route r arrive as a Poisson stream of rate �r� and
as r varies it indexes independent Poisson streams� A call requesting route
r is blocked and lost if on any link k� k � �� �� � � �K� there are less than
Akr circuits free� Otherwise the call is connected and simultaneously holds
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Akr circuits from link k� k � �� �� � � � �K� for the holding period of the call�
The call holding period is independent of earlier arrival times and holding
periods� holding periods of calls on route r are identically distributed with
unit mean�
Let nr�t be the number of calls in progress at time t on route r� and

de�ne the vectors n�t � �nr�t� r � R  and C � �C�� C�� � � � � CK� Then
the stochastic process �n�t� t � � has a unique stationary distribution and
under this distribution ��n � Pfn�t � ng is given by

��n � G�C��
Y
r�R

�nr
r

nr�
n � S�C ����

where
S�C � fn � Z

R
� � An � Cg ���	

and G�C is the normalizing constant �or partition function

G�C �

�
� X
n�S�C�

Y
r�R

�nr
r

nr�

�
A � ����

This result is easy to check in the case where holding times are B ex�
ponentially distributed� then �n�t� t � � is a Markov process and the
distribution ���� satis�es the detailed balance conditions

��n��r � ��n� er��nr � � n� n� er � S�C ����

where er � �I�r
� � r
� r� � R  is the unit vector describing just one call in

progress on route r�
Most quantities of interest can be written in terms of the distribution

���� or the partition function ����� For example let Lr be the stationary
probability that a call requesting route r is lost� Since the arrival stream
of calls requesting route r is Poisson� B

�� Lr �
X

n�S�C�Aer�

��n � G�C��G�C �Aer� ����

Observe that the distribution ���� is simply that of independent Poisson
random variables truncated to a linearly constrained region ���	� thus
from expression ���� we obtain Erlang�s formula ���� in the case of a single
truncated Poisson random variable� For more complex networks the explicit
form ���� may be hard to compute ���
� but there now exist many methods
of approximation and analysis� these extend to generalizations of the model
which allow more complex routing choices� and permit consideration of
issues such as dynamic routing and network planning� For recent reviews
see ���
� ���
�
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� E�ective Bandwidths

What happens if a call�s resource requirement can vary randomly over the
lifetime of a call� Hui ����
� ��	
 has shown that� for a simple model of an
unbu�ered resource� the probability of resource overload can be held below
a desired level by requiring that B the number of calls nj accepted from
sources of class j� j � �� �� � � � � J � satis�es

X
j

�jnj � C� �	��

where C is interpreted as the capacity of the resource� and �j is the e�ective
bandwidth at the resource of each source of class j� The e�ective bandwidth
�j lies between the mean and the peak resource requirement of a source of
class j� it depends on characteristics of the source such as its burstiness�
and on the degree of statistical multiplexing possible at the resource� The
bandwidth of a source may vary over the di�erent resources in a network�
just as in the classical model of the last Section the requirements Akr of a
call may vary over the links k along its route� The linearity of the constraint
�	�� encourages the prospect that the insights available from the classical
model may readily transfer to the case where a call�s resource requirement
may vary over the lifetime of a call�
We now review Hui�s model of an unbu�ered resource� We begin by

recalling Cherno��s bound on the tail behaviour of sums of random vari�
ables� Let X�� X�� � � � � Xn be independent� identically distributed random
variables with common logarithmic moment generating function

M�s � log E �esX� 
� �	��

Now for any random variable Y

PfY � �g � PfesY � �g � E �esY 
� �	�	

where here and throughout s � �� Hence

�

n
logPfX� �X� � � � �Xn � �g � inf

s
M�s� �	��

This bound is often used as an approximation� the large deviations approxi�
mation� and is asymptotically exact� Cherno��s theorem ���
� pp� �������
establishes that if E �Xn 
 � � and PfXn � �g � � then

lim
n��

�

n
logPfX� �X� � � � ��Xn � �g � inf

s
M�s� �	��

Let
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S �
JX
j��

njX
i��

Xji �	��

where Xji are independent random variables� with logarithmic moment
generating functions

Mj�s � log E
�
esXji

�
� �	��

Interpret Xji as the load placed on an unbu�ered resource by a source of
class j� and nj as the number of sources of class j� Let C be the capacity
of the resource and suppose E �S
 � C and PfS � Cg � �� Then Cherno��s
bound gives

logPfS � Cg � log E
�
es�S�C�

�
�
PJ

j�� njMj�s� sC�

and the large deviations approximation is

logPfS � Cg � inf
s

�
� JX
j��

njMj�s� sC

	

 � �	��

The constraint on tail behaviour logPfS � Cg � �� will certainly be
satis�ed if

inf
s

�
� JX
j��

njMj�s� sC

	

 � ��� �	��

Note that the term in square brackets is linear in n � �n�� n�� � � � � nJ�
Hence the acceptance region A� consisting of values n � R

J
� satisfying

condition �	��� has a convex complement in RJ� � since this complement is
de�ned as the intersection of RJ� with a family of half spaces� The tangent
plane at a point n� on the boundary of the region A is

JX
j��

njMj�s
�� s�C � �� �	���

where s� attains the in�mum in �	�� with n replaced by n�� Thus the
acceptance region

A�n� �

��
n �

JX
j��

��jnj �
�

s�
� C

��
� �	���

B where

��j �
Mj�s

�

s�
�	���
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will assure satisfaction of the constraint logPfS � Cg � ��� and this
linearly constrained region touches the boundary of the acceptance regionA
de�ned by �	�� at the point n� de�ning s�� One could� for example� de�ne
n� in terms of the expected mix of source classes� The acceptance region
A�n� assures satisfaction of the tail probability constraint whatever the
mix of source classes� and is the best possible linearly constrained region for
the expected mix� For many realistic examples of source classes the region
A�n� is not that sensitive to the precise choice of n� � the boundary of A
is approximately a hyperplane � see for example ���
�
Next we show� following ���
� that the notion of an e�ective bandwidth�

additive over sources of di�erent classes� generalizes to certain models of a
bu�ered resource� Our �rst model of a bu�ered resource is as follows� Sup�
pose that bursts from a source of class j arrive in a Poisson stream of rate
�j and have lengths with distribution Gj � Burst lengths and the Poisson
streams associated with di�erent sources are assumed independent� The
time taken to serve a burst is equal to its length� and thus the resource op�
erates as an M�G�� queue with arrival rate � and service time distribution
G� where

G�x �

JX
j��

pjGj�x �	��	

� �

JX
j��

�jnj � pj � �jnj��� �	���

Here nj is the number of sources of class j� and Gj is the distribution of
burst length from sources of class j� The Pollaczek�Khintchine formula
gives the stationary distribution of B� the bu�er space required by the
server� as

PfB � bg � ��� �	
�X
r��

��	rG�r�
e �b �	���

where 	�� ��� is the mean of the distribution G� and G
�r�
e �b is the

distribution function of the sum of r independent random variables each
with distribution function

Ge�b �
�

	

Z b

�

���G�xdx� �	���

�From �	���� or directly�

PfB � �g � �� �	 � ��

JX
j��

�jnj	j � �	���
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The utilization of the resource� U � is thus
P

j �jnj	j � Hence a condition of
the form U � K becomes a linear constraint

JX
j��

�jnj � K �	���

where

�j � �j	j �	���

is the e�ective bandwidth of each source of class j� Of course �j is just the
tra�c intensity due to a source of class j� This �near trivial result clearly
extends far beyond the M�G�� setting� we include it since it will emerge
as a limiting form from later constraints on queue behaviour� Next we turn
to a less obvious case of exact linearity�
A consequence of the distributional form �	��� is that

E�B �
��	� � 
�

���� �	
�	���

where 	 and 
� are the mean and variance respectively of the distribution
G �see� for example� ���
� p� ��� Let 	j and 


�
j be the mean and variance

respectively of Gj � the burst size distribution for sources of class j� Then

	 �

JX
j��

pj	j � 	� � 
� �

JX
j��

pj�	
�
j � 
�j � �	���

and so

�	 �
JX
j��

�jnj	j � ��	� � 
� �
JX
j��

�jnj�	
�
j � 
�j � �	���

Thus a condition E�B � L is� from �	���� exactly the condition

JX
j��

�jnj�	
�
j � 
�j  � �

�
��� JX

j��

�jnj	j

�
AL� �	��	

Rearranging terms� this is equivalent to

JX
j��

nj ��j�	
�
j � 
�j  � ��j	jL
 � �L� �	���
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Thus the e�ective bandwidth of a source of type j can be de�ned to be

�j � �j

�
	j �

�

�L
�	�j � 
�j 

�
�	���

since under this identi�cation the constraint E�B � L becomes the linear
constraint

JX
j��

�jnj � �� �	���

The analytical expression �	��� for bandwidth �j is illuminating� Observe�
for example� the dependence of bandwidth on L� the constraint on mean
workload� If L is large enough �j reduces to �	���� the e�ective bandwidth
in the utilization constrained formulation� If L is small the burst size dis�
tribution� as well as its mean� is important� For example if the distribution
Gj is exponential� then 


�
j � 	�j � and so the bandwidth �j has a quadratic

dependence� proportional to 	j � L��	�j � on the mean burst size� If burst

sizes are constant� so that 
�j � �� then bandwidth again has a quadratic

dependence on burst size� but now proportional to 	j � ��L
��	�j �

Often constraints on the probability that bu�er space or delay exceeds a
threshold are more important than constraints on mean values� Fortunately
there exist manageable estimates and bounds for tail behaviour� provided
by Kingman ���
 and Ross ���
 for the more general GI�G�� queue� If A
is a random variable with the interarrival time distribution� X a random
variable with the service time distribution G� and � a positive constant
such that

E�e�X E�e��A � � �	���

then the stationary distribution of B� the un�nished work found by an
arriving customer� satis�es

a�e
��b � PfB � bg � a�e

��b b � � �	���

for constants a�� a� � ��
Consider the M�G�� queue� The constraint on tail behaviour B logPfB �

bg � �� will certainly be satis�ed if �� the solution to equation �	���� sat�
is�es �b � �� or equivalently

�

Z �

�

e�x�b���G�xdx � �� �	���

Suppose again that G is de�ned by �	��	 and �	���� Then �	��� becomes

JX
j��

�jnj

Z �

�

e�x�b���Gj�xdx � �� �	�	�
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or equivalently
JX
j��

�jnj � � �	�	�

where

�j � �j

Z �

�

e�x�b���Gj�xdx� �	�	�

Again we obtain a linearly constrained acceptance region� and again the
analytical form �	��	 for the bandwidth is illuminating� Observe that as �
shrinks to zero� �j reduces to �	���� the e�ective bandwidth in the utiliza�
tion constrained formulation� As � increases� the tail of the distribution
Gj becomes more and more important�
Our model assumes that arriving bursts are not lost when the bu�er

level exceeds b� they may for example be held at resources leading to the
particular resource under consideration� and forwarded later� The provi�
sion of a bu�er area is intended to prevent this happening too often� if
such blocking is indeed an infrequent occurrence and if our assumption
concerning arrival streams is valid� perhaps in a network with su�ciently
diverse routing� then it should be possible to analyse di�erent resources as
independent systems and to use the loss network results from Section ��
Of course bu�ers arranged strictly in series exhibit a quite di�erent be�
haviour� owing to the strong dependence between the service mechanism
at one bu�er and the arrival stream at the next ��	
� ���
�
For other and more general models of bu�ered resources that allow a

similar analysis� see ��
� ��
 and ���
�

� Policing Peak Rates

One of the interesting issues that arises in connection with multiservice
networks concerns the policing of peak rates� Suppose that a user declares
that the greatest load it will put on the network will be a regular periodic
stream of cells with period d� By the time this stream enters the net�
work it may well have been subjected to some perturbation� perhaps by a
multiplexing stage� How can the network e�ectively police the perturbed
stream�
A natural model is illustrated in Figure �� We consider a FIFO queue

handling the superposition of a periodic stream of cells of period d� and a
Poisson stream of rate �� where the unit of time is the cell transmission
time �Figure �� The load �tra�c intensity is thus  � � � ��d� The
Poisson stream represents the perturbing tra�c� and after passage through
the queue the nominally periodic stream passes through a leaky bucket
policer ���
� that is a queue with constant service time a and a �nite bu�er
of depth b where cells that over�ow the bu�er are discarded� How should a
and b be chosen so that test streams which initially conform to the user�s
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Figure �� An M�D�D�� multiplexer

declaration of period d� but are perturbed by the FIFO queue� do not
su�er�
The squared coe�cient of variation of the inter�exit time distribution

for cells from the periodic stream has been calculated by Guillemin and
Roberts ���
 for the cases  � ���� ���� and is shown in Table �� As  ap�
proaches � the exit times of the periodic stream approach a renewal process�
with inter�exit time distribution ��P �d��� where P �� represents a Pois�
son distribution with mean �� This inter�exit time distribution has squared
coe�cient of variation �d � ��d�� and this simple expression provides the
case  � � in Table ��
For  � � the exit times of the periodic stream do not form a renewal

process� as discussed by Blaabjerg ��
 the exit stream appears more regular
over large intervals� and thus approximating the stream by a renewal pro�
cess with the calculated inter�exit time distribution will be conservative�
As  increases to �� the variability of the stream increases� and the degree
of conservatism decreases� For both reasons we should expect the renewal
stream obtained when  � � to be a worst case bound�
We have seen that a bound on the waiting time for the GI�G�� queue

is

PfW � wg � e��w ����

where � is the positive constant solving equation �	���� In the case
where  � � and the input stream is a renewal process with inter�arrival
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distribution � � P �d� ��

E�e��A  � e��gd���e
�� ����

where
g��z � e�����z� ���	

is the probability generating function of a Poisson random variable with
mean �� Thus equation �	��� becomes

��a� � � �d� ���� e��� ����

Let � � �w� so that the bound ���� is� as before� exp���� Then equation
���� becomes

a� �

d� �
� f

� �
ba

�
B ����

where
f�� � ��� e���� � ����

a function decreasing from � to � as � increases from � to in�nity� Equation
���� is thus a relationship between a� b� d and � that ensures the leaky
bucket policer loses less than � in e� cells from an initially periodic stream
of period d that has been perturbed by a critically loaded M�D�D�� queue�
If we �x w � ba� the time taken to empty the leaky bucket� then we

can use equation ���� to give the required leak rate�

a� � � �d� �f
� �
w

�
� ����

For example� if � � ��� w � ���

a� � � ��� e���d� �� ����

or if � � �	 �a loss probability of ����� and w � ����

a� � � �����d� �� ����

This suggests a natural policing strategy� Fix the time taken to empty a
leaky bucket� w � ba � ���� say� with leak rate a�� given by equation
����� and use this leaky bucket to police a source of declared rate d���
Thus dimensioned� the leaky bucket loses less than one cell in ���� if input
comes from a deterministic stream of rate d�� perturbed by a critically
loaded FIFO M�D�D�� queue� A stream of rate up to a�� could pass
through the leaky bucket� but this will only increase the nominal rate d��

of the stream by a factor d��� � �����d� �� a percentage increase of at
most � �
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Table �� Squared coe�cient of variation of inter�exit time
load � d � � d � � d � �� d � ��
���� ����� ����� ����� �����
���� ����� ����� ����� ���	�
���� ����� ����� ����� �����

In practice ��
 leaky bucket policers may be virtual rather than real� a
virtual leaky bucket discards the same cells as a real leaky bucket� but does
not delay the other cells� It is interesting to consider the next multiplexing
stage in a network� where the output from several leaky buckets �real or
virtual may form the arrival process at a queue which we may represent
as a �real leaky bucket� Consider a leaky bucket with parameters �ai� bi�
The number of cells output in the period ��� t is bounded above by

bi � bta��i c � �����

Thus the number of cells output in the period ��� t by a collection of leaky
buckets with parameters �ai� bi� for i � �� �� � � � � I � will be bounded above
by

IX
i��

�
bi � bta��i c

�
�

IX
i��

bi � bt

IX
i��

a��i c � �����

But the latter bound is enough for those cells to pass without loss through
a leaky bucket with parameters�

�� IX
i��

a��i

���
�

IX
i��

bi

�
A � �����

�For a very full analysis of this form of deterministic bounding see Cruz ��
�
Thus if

B
IX
i��

a��i �  �
IX
i��

bi � bB ����	

then the next multiplexer stage� modelled as a leaky bucky with parame�
ters ���� b will lose no cells�
If aibi � w for i � �� �� � � � � I � and if b � w then constraints ����	

become the single constraint

IX
i��

a��i �  � �����

In either case the linearity of constraints ����	 or ����� allows use� at
higher levels� of the classical model of Section �� B
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