
Real time alpha-fairness based traffic engineering

Bill McCormick
Huawei Technologies Canada

Kanata Ontario, Canada
bill.mccormick@huawei.com

Frank Kelly
University of Cambridge

Cambridge, UK
f.p.kelly@statslab.cam.ac.uk

Patrice Plante
Huawei Technologies Canada

Kanata, Ontario, Canada
patrice.plante@huawei.com

Paul Gunning
BT Research & Innovation
Adastral Park, Ipswich, UK
paul.gunning@bt.com

Peter Ashwood-Smith
Huawei Technologies Canada

Kanata, Ontario, Canada
peter.ashwoodsmith@huawei.com

ABSTRACT
Software defined networking (SDN) traffic engineering has
proved to be a computationally difficult problem, resulting
in long execution times to compute large scale flow assign-
ments. Other authors have taken approximate approaches to
achieving fairness to improve computational scalability. We
derive a solution to the general alpha-fairness problem that
scales near-linearly with the problem size and is well suited
to a massively parallel implementation. CPU based results
compare scalability and accuracy with proportional fair and
max min fair solutions on a simulation of BT’s production
network. Results from our FPGA implementation show a
three order of magnitude reduction in execution time, allow-
ing large scale flow assignment computations to take place
in times measured in milliseconds instead of seconds or min-
utes. We believe that these techniques will finally enable real
time traffic engineering in SDN.

1. INTRODUCTION
One of the objectives of SDN is to remove the more

complex functions from routers and virtualize them in
a data center. In today’s networks, routers implement
shortest path based routing protocols which are used
to route traffic through the network and provide either
de jure traffic engineering (as in MPLS-TE) or de facto
traffic engineering (as in OSPF). When these shortest
path first (SPF) routing functions are no longer present
in the router, a new traffic engineering function is re-
quired. Instead of being distributed through the net-
work, this function can be centralised. This central
function can have global knowledge of the network that
is not available to the distributed SPF routing in to-
day’s network.

Two key network attributes related to traffic engi-
neering are network throughput and fairness. (Another
key attribute is delay, however we do not address delay
directly in this paper.) We balance these attributes us-
ing the concept of alpha fairness introduced by Mo and
Walrand in [11] where α is a parameter in the range

[0,∞] to denote fairness.
There are three specific values of α which are of in-

terest. Setting α = 0 corresponds to a flow assignment
which maximizes the network throughput, but makes
no attempt to ensure fairness among flow assignments.

As α → ∞, the flow assignment becomes max-min
fair. A flow assignment is max-min fair when the band-
width assigned to a flow can only be increased by de-
creasing the bandwidth assigned to some other flow
with an equal or smaller assignment. Thus max-min
fairness is focused on making the minimum flow assign-
ment as large as possible without regard to the impact
on total throughput.

Setting α = 1 corresponds to a proportional fair so-
lution. Proportional fair solutions were first described
by Nash [12] as the solution to a negotiation problem.
They provide an appealing compromise between max-
min fairness - which allocates flows fairly without regard
for network resource usage - and maximal throughput -
which allocates flows without regard for fairness.

Optimization programs to solve these flow assignment
problems are given in [13]. The maximum throughput
problem can be solved with a single linear program. The
proportional fair problem requires a convex program, so
a traditional linear solver will not suffice here. The max-
min fair problem requires the solution of a sequence
of linear programs which grows polynomially with the
problem size. Techniques for solving these problems
all exhibit polynomial computation scalability, as tra-
ditional solutions require the repeated factoring of a
matrix which grows with the problem size.

Recent papers [9] and [10] describe practical traffic
engineering implementations on data center networks
with less than one hundred nodes. In [9], the authors
relax the max-min fairness constraints to reduce the
number of linear programs needed to solve the optimiza-
tion problem. In [10], the authors describe a greedy al-
gorithm which approximates max-min fairness without
the cost of executing a sequence of linear programs.

The focus of our work is on large carrier networks,

1



ranging in size from one hundred to a few thousand
nodes. We present a new method for solving these
problems which scales near-linearly with the problem
size and is also well suited to a massively parallel im-
plementation.

2. ALGORITHM DERIVATION
Model the network as a set of J directed links, indi-

vidually identified as j ∈ J . Each link has capacity Cj .
The term r is used to identify a specific path through
the network. An individual flow is identified by the term
s. The bandwidth assigned to a specific flow is identi-
fied by xs, and the bandwidth from flow s assigned to
path r is identified by yr. We use the terminology r ∈ s
to denote the paths that are used by a specific flow and
r ∈ j to denote the paths that use link j. When we are
referring to a specific path r, we use the expression s(r)
to denote the parent flow of the path.

The optimization program we use for a weighted α
fair flow assignment is given by

maximize
∑
s∈S w

α
s
x1−α
s

1−α
subject to

∑
r∈s yr = xs,∑
r∈j yr ≤ Cj

over x, y > 0

The term ws is a weight assigned to each flow, allowing
the user to request that some flows be assigned propor-
tionally more or less bandwidth than others.

This program has unique values for x, however the
solution for y is usually non-unique. If we define

xs =

(∑
r∈s

yqr

) 1
q

where q is some constant close to, but less than, one,
then the optimization problem has a unique solution for
both the x values and the y values. With this change,
our objective function becomes the convex function

maximize
∑
s∈S

wαs

(∑
r∈s y

q
r

) 1−α
q

1− α

Returning to first principles, we can construct the
Lagrangian for this problem as

L(y, z;µ) =
∑
s w

α
s

(
∑
r∈s yr

q)
1−α
q

1−α +∑
j µj

(
Cj −

∑
r∈j yr − zj

)
Here zj and µj are slack variables and shadow prices
for link j respectively. From complementary slackness,
we know that for a given j, either µj = 0 or zj = 0
[6]. In other words, at the solution to our optimization
problem, if the shadow price is non-zero then link j

is saturated, and if link j is under committed then its
shadow price is 0.

We can differentiate L with respect to yr to develop
a relationship between y, x and µ.

∂L

∂yr
= wαs(r)y

q−1
r

 ∑
r′∈s(r)

yqr′


1−α
q −1

−
∑
j∈r

µj .

At the optimum point this derivative will be equal to
zero. Setting ∂L

∂yr
= 0 and rearranging we find that

yr =

((
ws(r)

xs(r)

)α
· 1∑

j∈r µj

) 1
1−q

xs(r)

Update rules for Xs and µj should be of the form

µj(t+ 1) = µj(t) + kjµ̇j(t)∆t

xs(t+ 1) = xs(t) + ksẋs(t)∆t

where kj and ks are gain parameters for the update rules
for µ and x respectively, and the dot notation denotes
the time derivative.

In [14], Thomas Voice shows that this class of sys-
tem converges to the optimal value provided that the
gain parameters are constrained appropriately. Follow-
ing [14] and setting the gain parameters to their maxi-
mum stable values gives the optimization algorithm as

yr =

((
ws(r)

xs(r)

)α
· 1∑

j∈r µj

) 1
1−q

xs(r) (1)

µj(t+ 1) = µj(t) +
1− q

2
µj(t)

[∑
r∈j yr(t)− Cj

Cj

]
(2)

xs(t+ 1) = xs(t) +
1− q

2(α+ q − 1)
xs(t) ·[∑

r∈s yr(t)
q − xs(t)q

xs(t)q

]
(3)

Note carefully that each of the update rules in equa-
tions (1), (2) and (3) can be implemented in parallel. In
other words, all of the yr values in (1) can be computed
in parallel, then all of the µj values in (2) can be com-
puted and so on. This property makes it straightfor-
ward to implement the algorithm on massively parallel
hardware.

3. SIMULATION RESULTS
In order to assess the performance of this algorithm,

we have run simulations comparing the algorithm re-
sults to reference implementations for max-min fairness
and proportional fairness. Our Lagrangian based al-
gorithm is implemented in Java 7. For the reference
implementations we use general purpose open source
solvers written in C and FORTRAN as detailed below.

2



Figure 1: BT 21CN network

The simulations are run on an x86 based virtual ma-
chine. We aren’t concerned with making absolute per-
formance comparisons at this time - the purpose of this
step is to assess accuracy and to obtain a general feel
for the computational complexity of the algorithm as
compared to the traditional implementations.

We have used BT’s 21CN network topology (Figure
1) comprising 106 nodes and 234 links within the United
Kingdom as a reference for these simulations. Flows are
generated using a pseudo-random number generator so
that the end points for each flow are randomly selected.
All flows are treated as elastic, so they will consume all
network bandwidth available to them.

3.1 Max-min Fairness
Our max-min fairness reference implementation uses

the GNU linearing programming kit [1]. This is a scal-
able open source linear solver written in C. The ref-
erence algorithm is Algorithm 8.3 from [13]. For our
Lagrangian algorithm, we choose q = 0.9 and α = 4 as
an approximation for max-min fairness.

The simulation results are shown in Figures 2 and
3. As expected, the execution time grows rapidly with
the problem size for the reference algorithm as larger
problems require execution of a growing number of lin-
ear programs. Our algorithm shows a roughly linear
increase in execution time with problem size. Choice of
q = 0.9 provides a good approximation of max-min fair,
holding the root mean square error from the reference
implementation at around 1%.

0

5

10

15

20

25

0 100 200 300

E
x

e
cu

ti
o

n
 t

im
e

 (s
e

co
n

d
s)

Number of flows

GLPK Lagrangian

Figure 2: Max-min fair execution time

0

0.01

0.02

0 100 200 300

R
e

la
ti

v
e

 R
M

S
 e

rr
o

r

Number of flows

Figure 3: Max-min fair RMS error

3.2 Proportional Fairness
Our proportional fairness reference implementation

requires a convex optimizer as it has a non-linear ob-
jective function. For this simulation we have used the
interior point optimizer Ipopt [3], an open source library
known for its good scalability properties. This library
is written in C and FORTRAN and we have configured
it with the MUMPS linear solver [4]. The reference
algorithm here is from section 8.1.3 of [13].

The proportional fair simulation results are shown in
Figures 4 and 5. In this case, the reference implemen-
tation requires the execution of a single non-linear opti-
mization program, so it doesn’t exhibit the higher order
polynomial growth of the max-min fair implementation.
Our Lagrangian based method generally matches the
performance of the reference implementation. As with
the max-min fair example, choice of q = 0.9 keeps the
RMS error to approximately 0.5%.

4. FPGA IMPLEMENTATION
We have implemented our Lagrangian based algo-

rithm in a Xilinx FPGA Virtex-7 XC7VX485T-3. The

3



0

1

2

3

4

5

6

7

0 500 1000 1500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Number of flows

Ipopt

Lagrangian

Figure 4: Proportional fair execution time

0

0.01

0.02

0.03

0 500 1000 1500

R
e

la
ti

ve
 R

M
S 

e
rr

o
r

Number of flows

Figure 5: Proportional fair RMS error

goal of the hardware implementation is to take advan-
tage of the parallelism that can be found in the algo-
rithm design to evaluate how we can improve the con-
vergence time by executing concurrently as many oper-
ations as possible.

As illustrated in the block diagram of Figure 7, the
hardware implementation consists of 1024 parallel adders
that feed 32 parallel Deep Pipelines. Pipelining is a
powerful concept that allows multiple operations to be
executed sequentially and simultaneously on large inde-
pendent data samples.

In our implementation, each Deep Pipeline is made
of 180 pipeline stages consisting of 12 Divide, 15 Multi-
ply, 4 Square Root, 44 Add and 2 Subtract operations.
When a Deep Pipeline is fully populated, that single
pipeline can produce one partial result of equation (1),
(2) and (3) every clock cycle. With a core clock run-
ning at 200MHz, the FPGA produces 500G fixed point
operations per second.

Performance results for our FPGA implementation
are shown in Figure 6. This figure shows flow compu-
tation results for flow assignment with q = 0.75 and
α = 4.0 to provide a reasonable approximation of max-

0

0.5

1

1.5

2

2.5

3

0 5000 10000

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)

Number of flows

Figure 6: FPGA max-min fair execution time

min fair flow assignment. The notable difference be-
tween these results and those in Figure 2 are that the
execution time has dropped from seconds to millisec-
onds.

Comparing the two results, we attribute the 3 or-
der of magnitude improvement to hardware pipelining.
In order to benefit from hardware pipelining, the net-
work size must be large enough to keep the pipeline full
most of the time. This effect is illustrated in Figure
6, where performance reaches a steady state for greater
than 1000 active flows by avoiding the penalty cost of
filling and emptying a partially filled pipeline.

5. DISCUSSION

5.1 Performance
When we began work on this project, it was clear

that solving flow assignment problems is a compute in-
tensive task. Modern processors have lots of processing
power, but its available in a highly parallel form. For
example, a NVIDIA K20 has 3.52 TFLOPs spread over
2496 cores [5]. An Intel CoreTM i7-980 has 80 GFLOPs
available over 6 cores [2]. The compute throughput of
a field programmable gate array is not specified in this
manner, however in [7], the authors demonstrated 180
GFLOPS of practical compute throughput on a Virtex-
7 FPGA.

In order to make effective use of these compute en-
vironments, it was necessary that the algorithm design
map directly to a highly parallel architecture. We feel
that the dramatic performance gains of our hardware
implementation validates our approach.

5.2 Convergence
A significant factor in execution time is the number

of iterations required to converge. We detect conver-
gence by measuring the relative change in the norm of

4



Fixed Point Operation Pipeline

180 Pipeline Stages x32bit 200MHz

Configuration

Table

20 Mbit

QPI

PHY

Path Table

6 Mbit

Flow Table

1 Mbit

Link Table

1 Mbit

CPU

Interface

FPGA

1024

Adders
Combiner

Deep Pipeline #0

Deep Pipeline #1

Deep Pipeline #30

Deep Pipeline #31

...

Figure 7: FPGA block diagram

the vector of yr values. When this change drops below
a threshold (10−6 in our examples), the algorithm is
stopped.

Empirically the number of iterations to convergence
has varied in the range [200, 2400]. There appears to
be a direct relationship between the iterations to con-
verge and the number of link constraints that are active
or almost active. As the number of active constraints
increases, the algorithm takes more time to explore the
problem structure and converge to a solution. This is a
topic for further study.

5.3 Further FPGA design considerations
The hardware implementation is limited by the sil-

icon area of the FPGA. The algorithm could be fur-
ther accelerated by adding even more Deep Pipelines
in parallel in a larger FPGA device. To reduce sili-
con consumption by the Deep Pipeline, our hardware
implementation uses fixed point operations instead of
floating point operations. To avoid floating point op-
erations, the Deep Pipeline is divided in two distinct
regions. The two regions use different fixed point repre-
sentation and are merged by a multiplication operation.

The bulk of the FPGA real estate is consumed in
maintaining the configuration table that holds the net-
work definition. This information could be stored in
external RAM which would allow us to increase the size
of the Link, Flow and Path tables which are currently
configured to support 512 links, 32K flows, 96K paths
and 12 links per path.

The latest FPGA offerings support a core clock fre-
quency of 400Mhz, while our implementation uses a
200Mhz core clock. Migrating to one of these FPGAs
would double the computational performance.

6. CONCLUSION
Our FPGA implementation is by far the fastest im-

plementation of the max-min fair and the more gen-
eral α-fairness problem we have seen published. It ex-
hibits near-linear computational and memory scalabil-
ity which makes it an excellent choice for use on large
carrier scale networks.

The algorithm has desirable implementation proper-
ties in terms of simplicity. Instead of the complicated
matrix factorization used in interior point methods [3]
[4] [6], we use straightforward vector operations for up-
date rules. The implementation team does not need to
be versed in arcane rules for matrix computations and
can focus on the more practical problems of identifying
performance bottlenecks.

Our solution runs in millisecond times, making it fast
enough to be part of the real time control loop in the
network instead of an off-line tool. This means that we
finally have line of sight into real time traffic engineering
as originally envisaged for Software Defined Networking
[8].

7. REFERENCES
[1] Gnu linear programming kit.

http://www.gnu.org/software/glpk. Accessed:

5



2014-03-06.
[2] Intel microprocessor export compliance metrics.

http://www.intel.com/support/processors/sb/CS-
032814.htm. Accessed:
2014-03-20.

[3] Interior point optimizer.
http://project.coin-or.org/Ipopt. Accessed:
2014-03-06.

[4] Mumps: a multifrontal massively parallel sparse
direct solver. http://mumps.enseeiht.fr. Accessed:
2014-03-06.

[5] Tesla Kepler GPU accelerators.
http://www.nvidia.com/content/tesla/pdf/Tesla-
KSeries-Overview-LR.pdf. Accessed:
2014-03-06.

[6] S. Boyd and L. Vandenberghe. Convex
Optimization. Cambridge University Press, New
York, 2004.

[7] J. Capello and D. Strenski. A practical measure of
FPGA floating point acceleration for high
performance computing. In 2013 IEEE 24th
International Conference on Application-Specific
Systems, Architectures and Processors, pages
160–167, 2013.

[8] S. Das, N. McKeown, et al. Application-aware
aggregation and traffic engineering in a coverged
packet-circuit network. In Proceedings of
OFC/NFOEC 2011, pages 1–3, 2011.

[9] C.-Y. Hong et al. Achieving high utilization with
software-driven wan. In Proceedings of the ACM
SIGCOMM 2013, pages 15–26, 2013.

[10] S. Jain et al. B4: Experience with a
globally-deployed software defined wan. In
Proceedings of the ACM SIGCOMM 2013, pages
3–14, 2013.

[11] J. Mo and J. Walrand. Fair end-to-end
window-based congestion control. IEEE/ACM
Transactions on Networking, 8(5):556–567,
October 2000.

[12] J. Nash. The bargaining problem. Econometrica,
18(2):155–162, April 1950.

[13] M. Pioro and D. Medhi. Routing, Flow, and
Capacity Design in Communication and
Computer Networks. Morgan Kaufmann
Publishers, 2004.

[14] T. Voice. Stability of multi-path dual congestion
control algorithms. IEEE/ACM Transactions on
Networking, 15(6):1231–1239, December 2007.

6


