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Abstract

In recent years the Internet has attracted the attention of many
theoreticians, eager to understand the remarkable success of this di-
verse and complex artefact. A central element of the design philoso-
phy that shaped the Internet is the end-to-end argument, and a key
illustration of the argument is provided by the congestion avoidance
algorithm of the Transmission Control Protocol (TCP). Why does this
algorithm work so well? How might, or should, it evolve in the future?
In this paper we outline some of the mathematical models that have
been developed to help address these questions.

We review the equilibrium and dynamic properties of primal and
dual algorithms, concentrating upon fairness, delay instability and
stochastic instability. Primal algorithms broadly correspond with con-
gestion control mechanisms where noisy feedback from the network is
averaged at endpoints, using increase and decrease rules generalizing
those of TCP. Vinnicombe has shown that delay instability is char-
acterized in terms of the increase rule; Ott has shown that stochastic
instability is primarily influenced by the decrease rule. The need to
control both forms of instability places constraints on possible variants
of TCP, and on attempts to remove TCP’s round-trip time bias.

Dual algorithms broadly correspond with congestion control mech-
anisms where averaging at resources precedes the feedback of more
explicit information to endpoints, and may be especially appropriate
where round-trip times are short, as in ad-hoc networks. Previous
work has concentrated on delay-based dual algorithms, which find
fairness and stability difficult to reconcile. We describe a family of
fair dual algorithms, with attractive stability properties.
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1 Introduction

A central element of the design philosophy that shaped the Internet [8, 46]
is the end-to-end argument [40], summarized as follows [4]: “An end-to-end
protocol design should not rely on the maintenance of state (i.e., informa-
tion about the state of the end-to-end communication) inside the network.
Such state should be maintained only in the endpoints, in such a way that the
state can only be destroyed when the endpoint itself breaks.” Intelligence and
control is end-to-end rather than hidden in the network. The resulting in-
terconnection of communication links is sometimes termed a dumb network,
to emphasise a contrast with the earlier telephony infrastructure where a
smart network connects endpoints (telephones) that have little responsibility
for control. A dumb network allows new applications to be designed, pro-
totyped and deployed without requiring changes to the underlying network,
and has resulted in an extraordinary flowering of innovation. It also places
a considerable responsibility for cooperative behaviour on endpoints.

A key illustration of the end-to-end argument is TCP, the transmission
control protocol of the Internet, and its congestion avoidance algorithm, due
to Jacobson [15]. The rate at which packets enter the network is controlled
by TCP, implemented as software on the computers (the endpoints) that are
the source and destination of the data. The general approach is as follows.
When a link within the network becomes overloaded, one or more packets are
lost; loss of a packet is taken as an indication of congestion, the destination
informs the source, and the source slows down. The TCP then gradually
increases its sending rate until it again receives an indication of congestion.
This cycle of increase and decrease serves to discover and utilize available
bandwidth, and to share it between flows.

Jacobson’s algorithm has been outstandingly successful, as the Internet
has evolved from a small-scale research network to today’s interconnection of
tens of millions of endpoints and links. This in itself is a striking observation.
Each of a large but indeterminate number of flows is controlled by a feedback
loop which can know only of its own experience of congestion and of its own
feedback delay. A flow does not know how many other flows are sharing a
link on its path, or even how many links are on its path. The links vary in
capacity by many orders of magnitude, as do the propagation delays that are
a consequence of geographical diversity and the finite speed of light. That
end-to-end congestion control can have achieved so much, in such a rapidly
growing and heterogeneous network, is remarkable.
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However there are several interrelated developments that pose a challenge.
Buffering at queues within the Internet has been important since the early
days of store-and-forward communication networks [22], to smooth statistical
fluctuations and, it is commonly believed, to help stabilize the network. But
the huge capacity of tomorrow’s links, together with the desire to carry delay-
sensitive traffic, may cause an evolution towards a network with much smaller
queueing delays. Is end-to-end congestion control feasible in such a network,
and, if so, how should TCP evolve?

This paper explores possible answers to this question, and outlines some
of the important insights that have been obtained from simplified mathe-
matical models of congestion control. The selection of material has been
primarily influenced by recent experiments with new, incrementably deploy-
able, TCPs [10, 21, 38], the related modelling advances [35, 37, 43], and by
proposals for variants where more explicit information is returned to end-
points [3, 6, 17, 20, 26].

The organization of the paper is as follows. In the next section we de-
scribe a tractable mathematical model of a network, following the develop-
ment in [19]. An optimization framework leads naturally to two classes of rate
control algorithm: primal algorithms, which broadly correspond with end-to-
end congestion control mechanisms where noisy feedback from the network is
averaged at endpoints; and dual algorithms, which broadly correspond with
averaging at resources prior to the feedback of more explicit information to
endpoints. Both types of algorithm reach an equilibrium which is propor-
tionally fair. Fairness is a central issue in networks where responsibility for
cooperation is devolved to endpoints, and various definitions of fairness have
been suggested as the basis for behavioural norms. Weighted proportional
fairness is a criterion with appealing properties from either an optimization,
a game-theoretic or an economic viewpoint.

In Section 3 we outline how TCP’s congestion avoidance algorithm can
be interpreted within the optimization framework, and discuss the round-
trip time bias of TCP. Through a simple example we describe the potentially
distorting effect of this bias on network structure. It has not proved easy to
remove round-trip time bias: variations to TCP’s algorithm designed to shift
the equilibrium point can easily have the unintended side-effect of destabi-
lizing the equilibrium.

The stability of the equilibrium point may be compromised by two in-
teracting effects [16]: delay instability, due to the combination of high gains
and time delays; and stochastic instability, due to inherent randomness. In
Section 4, we describe the important recent work of Vinnicombe [43] on de-
lay instability, and on a potentially stable and scalable variant of TCP. In
Section 5 we discuss stochastic instability, including Ott’s scale-invariance
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property [35]. Delay instability is characterized in terms of TCP’s increase
rule, while stochastic instability is primarily influenced by the decrease rule.
We use this separation to interpret a proposed TCP variant [20] that aims
to remove round-trip time bias while simultaneously controlling both forms
of instability.

In Section 6 we discuss dual algorithms, starting with the delay-based
scheme of Paganini et al. [37]. This section describes a variety of other dual
algorithms, including a family of fair dual algorithms with attractive stability
properties. Fair dual algorithms have promise in circumstances where more
explicit feedback is available and either: a link can estimate the average
round-trip time of packets passing through it, as in the proposal of Katabi
et al. [17]; or propagation delays are not large, as in home networks [3] or ad
hoc networks [6]. Section 7 concludes.

2 Fairness

How should available bandwidth be shared between competing users of a
network? In this Section we describe a mathematical framework for rate
control which allows us to reconcile potentially conflicting notions of fairness
and efficiency.

Consider a network with a set J of resources . Let a route r be a non-
empty subset of J , and write j ∈ r to indicate that route r passes through
resource j. Let R be the set of possible routes. Set Ajr = 1 if j ∈ r, so that
resource j lies on route r, and set Ajr = 0 otherwise. This defines a 0 − 1
incidence matrix A = (Ajr, j ∈ J, r ∈ R).

Consider the system of differential equations

d

dt
xr(t) = κr

(

wr − xr(t)
∑

j∈r

µj(t)

)

(1)

where

µj(t) = pj

(

∑

s:j∈s

xs(t)

)

. (2)

(Here and throughout we assume that, unless otherwise specified, r ranges
over the set R and j ranges over the set J .) Assume that wr, κr > 0, and that
the function pj(y), y ≥ 0, is a non-negative, continuous, strictly increasing
function of y.

We may motivate the relations (1-2) as follows. Suppose that resource j
marks a proportion pj(y) of packets with a feedback signal when the total
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flow through resource j is y, and that each feedback signal is viewed as a
congestion indication requiring some reduction in the flow xr. Then equa-
tion (1) corresponds to a rate control algorithm for the flow on route r that
comprises two components: a steady increase at rate proportional to wr, and
a steady decrease at rate proportional to the stream of congestion indication
signals received. Following [19], we shall call the system (1-2) the primal
algorithm.

Define the dual algorithm

d

dt
µj(t) = κj

(

∑

r:j∈r

xr(t) − qj(µj(t))

)

(3)

where
xr(t) =

wr
∑

k∈r µk(t)
, (4)

κj > 0, and qj(η) = p−1
j (η) is a strictly increasing function. Again the

algorithm has a straightforward interpretation. If we view pj(y) as a load-
dependent price at resource j, then qj(η) is the flow through resource j which
generates a price at resource j of η. Thus an economist would describe the
right hand side of equation (3) as the vector of excess demand at prices
µ = (µj(t), j ∈ J), and would recognise equations (3-4) as a tatonnement
process [41] by which prices adjust according to supply and demand.

Both the primal algorithm (1-2) and the dual algorithm (3-4) have a
unique stable point (x, µ), which is the same for both algorithms, and to
which all trajectories of either algorithm converge. At the stable point

xr =
wr

∑

j∈r µj

. (5)

This equation has a simple interpretation in terms of a charge per unit flow:
the variable µj is the shadow price per unit of flow through resource j. The
allocation x = (xr, r ∈ R) given by equation (5) has an interpretation in
terms of a weighted proportional fairness criterion [7, 18], satisfying certain
natural assumptions from cooperative game theory as to what constitutes
fairness [31, 34]. The weight wr is the aggregate shadow price of the flow xr,
and the vector of weights (wr, r ∈ R) is proportional to the share of scarce
resources obtained by different flows.

Suppose that route r is associated with a user, representing a higher level
entity served by the flow on route r. Suppose if a rate xr > 0 is allocated
to the flow on route r then this has utility Ur(xr) to the user. Assume that
the utility Ur(xr) is an increasing, strictly concave function of xr over the
range xr > 0. To simplify the statement of results, we shall assume further
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that Ur(xr) is continuously differentiable, with U ′

r(xr) → ∞ as xr ↓ 0 and
U ′

r(xr) → 0 as xr ↑ ∞. Let Cj(y) be defined by

Cj(y) =

∫ y

0

pj(z) dz.

From our assumptions on pj(y), the function Cj(y) is strictly convex. We
might view Cj(y) as a form of cost incurred at resource j, that increases more
rapidly as the resource becomes more heavily loaded.

Next suppose that user r is able to monitor its rate xr(t) continuously,
and to vary smoothly the parameter wr(t) so as to satisfy

wr(t) = xr(t)U
′

r(xr(t)) : (6)

this would correspond to a user who observes a charge per unit flow of λr =
wr(t)/xr(t), and chooses wr = wr(t) to solve the optimization problem

maximize Ur

(

wr

λr

)

− wr

over wr ≥ 0.

This in turn corresponds to price-taking behaviour on the part of user r, who
does not anticipate the impact of its own choice of wr(t) on the system.

If wr is replaced in (1) and (4) by the time-varying form (6) then both the
resulting algorithms have a unique stable point, which is the same for both
algorithms, and to which all trajectories of either algorithm converge [19].
The stable point is proportionally fair, i.e. it is of the form (5), with wr =
wr(∞). The stable point maximizes the function

U(x) =
∑

r∈R

Ur(xr) −
∑

j∈J

Cj

(

∑

s:j∈s

xs

)

. (7)

Thus if each user is able to choose its own weight, wr(t), and does this so as
to optimize its own utility less payment, then either algorithm will converge
to the rate allocation x maximizing the net utility (7). The parameter wr(t)
may be viewed as the willingness to pay of user r. Alternatively, in a network
of co-operative users, wr(t) may be viewed as a time-varying weight chosen
by user r with resource, but no monetary, implications. The distinction will
not be important in this paper.

Define the demand function Dr(λr) = (U ′

r)
−1(λr), a continuous, strictly

decreasing function. Then, at the stable point, xr = Dr(
∑

j∈r µj). Mo and
Walrand [33] have introduced a class of utility functions

Ur(xr) = wr
x1−α

r

1 − α
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(= wr log xr if α = 1) with derived demand functions

Dr(λr) =

(

wr

λr

)1/α

. (8)

Term the resulting allocations (xr = Dr(
∑

j∈r µj), r ∈ R) weighted α-fair: if
wr = 1, r ∈ R, the cases α → 0, α = 1 and α → ∞ correspond respectively
to an allocation which achieves maximum throughput, is proportionally fair
or is max-min fair, and we shall refer to a weighted version of the α = 2 case
in the next Section on TCP. The interpretation of the weights (wr, r ∈ R)
as proportional to the share of scarce resources obtained by different flows is
lost if α 6= 1.

An attractive case of the dual algorithm, considered by Low and Laps-
ley [25], sets

qj(η) = CjI[η > 0],

where the scalar Cj is the capacity of link j. Although this choice of qj(.)
violates our simplifying assumption that qj(.) is strictly increasing, there is
again an identification of equilibrium points with maxima of the function (7),
where now Cj(y) = 0 if y ≤ Cj, and Cj(y) = ∞ otherwise. The identification
fixes the vector x uniquely, but now the equilibrium vector µ may not be
unique. A sufficient condition for uniqueness of µ is that the incidence matrix
A have full row rank.

None of the above results depend upon the gains κr, r ∈ R, κj, j ∈ J,
which could indeed have been fairly general positive functions of the state
(x(t), µ(t)). The choice of gains is, of course, constrained by stability con-
ditions, the subject of Sections 4, 5 and 6. The primal algorithm (1-2) is a
simple but crude caricature of an end-to-end congestion control mechanism.
In the next Section we refine the caricature, and study the fairness of TCP.

3 Modelling TCP

Packets transferred by TCP across the Internet are acknowledged. If a packet
is lost then the destination detects this; the detection of loss prompts the
resending of the lost packet, and is interpreted as an indication of congestion.
Using lost packets to signal congestion has obvious drawbacks. First, it is
wasteful, since a dropped packet may have already consumed resources at
earlier stages of its route and needs to be resent. Second, there are limits
upon the quality that can be provided by a network if damage to packets
(e.g. loss or delay) is an essential part of the network’s control mechanism.
These considerations have led naturally to proposals for the introduction of
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congestion marking, whereby a packet that encounters incipient congestion
has a bit set in its header. The procedure is called Explicit Congestion
Notification, or ECN [9]. Endpoints detecting ECN marks should respond
by reducing their transmission rates. The result will be a system that can
share resources without recourse to dropped packets, except in periods of
exceptionally heavy use. ECN has now been made a “Proposed Standard”
by the Internet Engineering Task Force (IETF), the body concerned with
the evolution of the Internet architecture [39]. In this paper our models will
make little distinction between whether a dropped or a marked packet is used
to indicate congestion: in either case a packet crossing the Internet generates
a single bit of information concerning congestion along its route.

Jacobson’s algorithm [15] is self-clocking : the sender uses the acknowl-
edgement from the receiver to prompt a step forward. The source maintains
a window of sent but not yet acknowledged packets; the rate x and the win-
dow size cwnd satisfy the approximate relation cwnd = xT . We shall outline
a general class of increase and decrease rules (first considered in [2, 32, 35])
for the window – Jacobson’s algorithm will be a special case. We suppose
the congestion window is incremented by a cwnd

n for each positive acknowl-
edgement, and decremented by b cwndm for each congestion indication, where
n < m.

The expected change in the congestion window cwnd per update step is
approximately

a (xT )n (1 − p) − b (xT )m p

where p is the probability of congestion indication at the update step. Since
the time between update steps is about T/cwnd = 1/x, the expected change
in the rate x per unit time is approximately

x

T

(

a (xT )n (1 − p) − b (xT )m p
)

.

Motivated by this calculation, we model the algorithm by the system of
differential equations

d

dt
xr(t) =

xr(t)

Tr

·
(

ar (xr(t)Tr)
n (1 − λr(t)) − br (xr(t)Tr)

m λr(t)
)

, (9)

where
λr(t) = 1 −

∏

j∈r

(1 − µj(t)), (10)

µj(t) is again given by equation (2), and Tr is the round-trip time for the
connection of user r. We again view pj(y) as the probability a packet col-
lects a congestion indication signal at resource j when the total load through
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Figure 1: Round-trip time bias and cache location. Suppose the round-trip
time over each of the short links is TS, and the round-trip time over the long
link is TL. Better TCP throughput will be received from the nearer cache if
TL > (2

√
3 − 1)TS, even though this cache uses two congested links.

resource j is y. Equation (10) models the situation where congestion in-
dication is provided by a dropped packet or a single bit, and corresponds
to an approximation that packet drops or marks at different resources are
independent.

The system (2), (9) and (10) has a unique equilibrium point, to which all
trajectories converge (Appendix I). The equilibrium point has the form

xr =
1

Tr

(

ar

br

· 1 − λr

λr

)1/α

, (11)

where α = m − n. The case a = 1, b = 1

2
,m = 1, n = −1 corresponds to Ja-

cobson’s TCP; the case ar = Mr, br = 1/(2Mr),m = 1, n = −1 corresponds
to Crowcroft and Oechslin’s MulTCP [7], where Mr is a parameter influenc-
ing the share of resources achieved by flow r. In either case, α = 2: thus
equation (11) recovers the inverse square root dependence on the probability
of packet loss familiar from the literature on TCP [30]. And if λr is small
enough that λr ≈

∑

j∈r µj, then the equilibrium is approximately weighted

α-fair, with weight wr = ar/(brT
2
r ). The weights, and the form (11), exhibit

round-trip time bias [11]: for a given packet loss probability, λr, the flow on
route r is inversely proportional to the round-trip time Tr. Several variants
of TCP have been proposed to correct this bias against flows with larger
values of Tr, some of which we will discuss later in Section 5.

A less than obvious consequence of round-trip time bias is illustrated
in Figure 1. Suppose that a cache is to be placed at one of two locations.
One location is connected to a large body of potential users via two short
congested links, on each of which the packet loss probability is p < 1

2
and the

round-trip time is TS. The other location is connected via a short congested
link and a long uncongested link, over which there is no packet loss and the
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round-trip time is TL. The flow rate achieved to a user from the two locations
will be proportional to

1

2TS

(

(1 − p)2

1 − (1 − p)2

)1/2

,
1

TS + TL

(

1 − p

p

)1/2

respectively, from relation (11). It follows that better TCP throughput will
be received from the nearer cache if TL > (2

√
3 − 1)TS, even though this

cache makes twice the use of scarce resources.1 Decisions on cache location,
capacity expansion, the topology of overlay networks, are often based on
such local, decentralized optimizations. Thus we should expect the round-
trip time bias to have consequences for the efficiency of the evolving network
structure, as well as for the short-term fairness of the rates achieved by
competing flows. In particular, round-trip time bias will encourage underuse
and underdevelopment of long links, and overuse and overdevelopment of
short links, relative to an efficient network structure.

Next suppose that α = 1, and that λr is small enough that λr ≈
∑

j∈r µj.
Then equation (11) becomes approximately the proportionally fair alloca-
tion (5), with weight wr = ar/(brTr). Might it be possible to design a variant
of TCP with these features, so that the parameters ar, br could compensate
for the round-trip time bias, or more generally provide a straightforward
control over the share of resources achieved by a flow? We return to this
question, after looking at the influence of the increase and decrease rules
upon stability.

4 Delay stability

In the last Section we have seen how the self-clocking feature of the algorithm
can cause the round-trip time of a flow to have an important effect on the
share of resources allocated to the flow. Next we consider how the differential
equations of the last Section should be amended to model delayed feedback,
following Vinnicombe [43].

4.1 Propagation delays

For each j, r such that j ∈ r let Trj be the propagation delay from the source
of flow on route r to the resource j, and let Tjr be the return delay from

1In this simple example, a halving of distance can compensate for as much as a qua-
drupling of packet loss probability. The discussion assumes that TCP’s performance is
primarily determined by its congestion avoidance phase, rather than its initial slow start
phase. There are clearly advantages in using nearby caches for the transfer of short files.
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resource j to the source. In the current Internet

Trj + Tjr = Tr j ∈ r, r ∈ R, (12)

where Tr is the round-trip propagation delay on route r: the identity (12) is
a direct consequence of the end-to-end nature of the signalling mechanism,
whereby congestion on a route is perceived by the destination, which then
informs the source. In the current Internet the total round-trip time is com-
posed of not just propagation delays, but also queueing delays at resources
and delays at endpoints. But these additional delays may not be fundamen-
tal to the end-to-end model: higher capacities reduce queueing delays, and
ECN marking and faster processors will further reduce delays at endpoints.
An aim of this paper is to explore the end-to-end model when Tr is reduced
to the inescapable minimum, the propagation delay. We shall return to dis-
cuss queueing delays later, but until then we assume that delays other than
propagation delays are negligible.

Consider, then, how the system (2), (9) and (10) should be amended
to include the effect of delayed feedback. The argument leading to equa-
tion (9) used the approximation2 that the time between update steps is about
T/cwnd = 1/x(t). But the time between update steps at the source for route
r is determined by the flow that left the source a time Tr previously, and
hence the time between update steps is about 1/x(t − Tr), giving instead

d

dt
xr(t) =

xr(t − Tr)

Tr

·
(

ar (xr(t)Tr)
n (1−λr(t))−br (xr(t)Tr)

m λr(t)
)

. (13)

The feedback seen at the source for route r at time t is carried on a flow that
passed through resource j a time Tjr previously: hence

λr(t) = 1 −
∏

j∈r

(1 − µj(t − Tjr)). (14)

Similarly the flow on route s that is seen at resource j at time t left the
source for route s a time Tsj previously: hence

µj(t) = pj

(

∑

s:j∈s

xs(t − Tsj)

)

. (15)

Given the round-trip times Tr, r ∈ R, the delays Trj, Tjr do not affect
the equilibrium point (x(t), λ(t)) = (x, λ), at which equation (11) remains

2A more refined model of a window algorithm could be developed; the model discussed
here corresponds more closely to a rate-paced version of such an algorithm.
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satisfied. Next we analyze the local stability of the equilibrium point. Let
xr(t) = xr + ur(t), λr(t) = λr + (1 − λr)νr(t), and write yj =

∑

s:j∈s xs,
pj = pj(yj), p

′

j = p′j(yj). Then, linearizing the system (13-15) about (x, λ),
and using the relation (11), we obtain the equations

Tr
d

dt
ur(t) = −ar (xrTr)

n(1 − λr)

(

αur(t) +
xr

λr

νr(t)

)

(16)

where

νr(t) =
∑

j∈r

p′j
1 − pj

∑

s:j∈s

us(t − Tsj − Tjr). (17)

Vinnicombe has shown ([42, 43], Appendix II) that the system (16-17) is
stable if for r ∈ R

ar (xrTr)
n 1 − λr

λr

∑

j∈r

yjp
′

j

1 − pj

<
π

2
. (18)

Suppose next that

yp′j(y) ≤ βpj(y), j ∈ J, (19)

a relation that will hold with equality if pj(y) = (y/Cj)
β. Then

1 − λr

λr

∑

j∈r

yjp
′

j

1 − pj

≤ β

λr

∑

j∈r

pj
1 − λr

1 − pj

= β
Prob(packet on route r marked exactly once)

Prob(packet on route r marked at least once)
≤ β,

and hence a sufficient condition for stability is

ar (xrTr)
n <

π

2β
(20)

for r ∈ R, a simple decentralized condition expressed in terms of the window
increase rule. Further, if n = 0, so that the increment upon a positive
acknowledgement is just a constant, the condition becomes simpler still, and
independent of the window size xrTr.

The condition (20) becomes tight when α is small, there is a single con-
gested resource, and the routes using this resource all share the same round-
trip time T – in this case ur(t) = xr sin(πt/2T ) solves equations (16-17)
(with α = 0, β = yjp

′

j/pj, and ar(xrTr)
n = π/2β), an oscillatory solution

with period 4T .
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Recall that Jacobson’s algorithm corresponds to the choice ar = 1, n =
−1. Condition (18) or (20) then becomes a lower bound on the size of the
congestion window xrTr. This may seem counter-intuitive, but note that
small congestion windows may indicate a large number of flows through a
congested resource, a more intuitively plausible cause of instability.

A current major concern for TCP is that it is slow to adapt when the
window size is large, for example on long distance routes with large capaci-
ties [21, 38]. And indeed, for n = −1, condition (18) suggests that adaptation
will be unnecessarily slow when the window xrTr is large. Following Vinni-
combe’s work the natural suggestion is to let n = 0: but in an evolving
network this would raise concerns over fairness between different forms of
TCP. In [10, 21] there is proposed a variant of TCP where the increment
upon a positive acknowledgement becomes a constant, rather than 1/cwnd,
but only when the window size on a route exceeds a threshold: experiments
reported in [21] suggest a substantial improvement for transfers over long
distance routes with large capacities, with negligible impact on other traffic.

4.2 Queueing delays

Next we briefly consider how the analysis would be affected if queueing delays
at resources could be substantial. Suppose that the round-trip time is

Tr = T prop
r +

∑

j∈r

Qj(µj) r ∈ R (21)

where T prop
r is the round-trip propagation delay, and Qj(µj) is the queueing

delay at resource j when the loss probability there is µj. Suppose that Qj(µj)
is an increasing continuous function of µj ∈ [0, 1]. Then substitution from
equations (10), (21) into equation (11), followed by substitution from this
equation into equation (2), defines a continuous mapping from the compact
convex set {µ ∈ [0, 1]J} into itself: hence, by the Brouwer fixed point the-
orem, there exists a solution µ, λ, x to the equations (2), (10-11), (21). It
may not be unique: for the following discussion we fix on one solution and
assume that it may be perturbed continuously, the generic case.

The first point to note is that Tr as well as λr acts to limit the equilibrium
flow xr, through equation (11). Thus Qj(µj) as well as µj acts to limit
the load on resource j, allowing generally lower packet loss probabilities at
equilibrium than if queueing delays were negligible.

The second point concerns dynamic properties when n = −1, correspond-
ing to current TCP. Suppose that capacities and buffers are such that queue-
ing delays can be substantial: further, as a crude model of the current In-
ternet, suppose that a resource either is not fully utilized, in which case the
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packet loss and queueing delay are near zero, or is fully utilized, in which
case the packet loss is variable but the queueing delay is near constant, at
the time taken for a packet to pass through a near full buffer. Then the
round-trip time on a route will depend upon which resources along the route
are fully utilized, but not sensitively upon the packet loss probabilities at
these resources. The analysis leading to equation (18) will apply approxi-
mately: hence the presence of a full buffer at a resource will, by increasing
the congestion windows of all flows through that resource, help stabilize the
equilibrium point. 3

In summary, within the current Internet, we should expect queueing de-
lays at resources not only to allow lower loss probabilities at an equilibrium,
but also to help stabilize an equilibrium. Conversely, if queueing delays
within the Internet are to be reduced, then algorithms will be needed, such
as the n = 0 variants of the last subsection, that maintain stability without
the help of queueing delays.

3The deduction presented here is incorrect. It implicitly assumes the functions p(.)
satisfy equation (19) with approximate equality. But for the resource model considered in
this paragraph, where p(.) is the proportion of packets overflowing a large buffer, a more
reasonable approximation is the form p(y) = [y−C]+/y, introduced by S. Kunniyur and R.
Srikant, End-to-end congestion control: utility functions, random losses and ECN marks,
IEEE/ACM Transactions on Networking. I am very grateful to R. Srikant for pointing
out the problem with this paragraph.

If
pj(y) = [y − Cj ]

+/y

then, using equation (11), we can rewrite the sufficient condition (18) as

br (xrTr)
m Mr <

π

2

where Mr =
∑

j∈J I[pj > 0]Ajr, the number of saturated resources on route r. For TCP,
br = 1/2,m = 1, and so larger congestion windows will make it harder to satisfy the
sufficient condition. (Throughout the paper we ignore the fact that a dropped packet is
not seen at later resources on its route - see, for example, equation (2). This is likely
to matter for the model of heavily saturated resources considered in the paragraph in
question.)

In the current Internet, it seems plausible that queueing delays may help stabilize an
equilibrium not by improving the delay stability of the differential equation models, but
rather by keeping the congestion windows large enough and the packet loss probabilities
low enough to avoid time-outs. If ECN were used to keep the load on a resource less than
its capacity, then there are a wide range of possible functions p(.) that could be realized,
including functions p(.) that satisfy equation (19) with approximate equality [20].
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5 Stochastic stability

Variability about the equilibrium will be caused by two interacting effects:
oscillations caused by the combination of high gains and time delays, and
perturbations caused by the random nature of packet loss or packet marking.
In Section 4.1 we analysed the first effect in isolation: in this section we
analyse the second effect in isolation.

If packets on route r are marked independently, each with probability
λr, then the number of marks received on route r in unit time will be ap-
proximately binomially distributed with mean xrλr and variance xrλr(1−λr)
(when xr is measured in packets per unit time). The corresponding Brownian
perturbation of equation (9) is

dxr(t) =
xr(t)

Tr

ar (xr(t)Tr)
n dt − 1

Tr

(

ar (xr(t)Tr)
n + br (xr(t)Tr)

m
)

·
(

xr(t)λr(t) dt − (xr(t)λr(t)(1 − λr(t))
1

2 dBr(t)
)

, (22)

where (Br(t), r ∈ R) are independent standard Brownian motions: we have
replaced a deterministic term xr(t)λr(t) in equation (9), giving the rate at
which marks are received on route r, by a Brownian perturbation with the
same mean and the required variance.

The linearization of this stochastic differential equation has, as its solu-
tion, a multidimensional Ornstein-Uhlenbeck process, centred on the equilib-
rium point of the differential equations (9-10). The stationary distribution
for (xr(t), r ∈ R) under the linearization is, in consequence, a multivari-
ate normal distribution, N(x, Σ), whose covariance matrix Σ is determined
explicitly in terms of the parameters of the network (Appendix III).

5.1 Delay invariance

If
ar = ārT

1−n
r , br = b̄rT

1−m
r r ∈ R (23)

then neither x nor Σ depend upon (Tr, r ∈ R): we can deduce this from
Appendix III, or directly from the observation that equations (22), under the
substitution (23), lose their dependence upon (Tr, r ∈ R). The equilibrium
point is given by

xr =

(

ār

b̄r

· 1 − λr

λr

)1/α

;

the parameters ār, b̄r control the share of resources achieved by route r.
We next describe three examples where condition (23) is met.
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The case n = −1,m = 1, ar = āT 2
r , br = b̄, r ∈ R, was explored in [11, 13],

as a mechanism to remove round-trip time bias in the allocation x. As noted
in [11], the parameters n, ar cause a source, in the absence of congestion
feedback, to increase its throughput by a constant ā packets per second in
one second, regardless of the round-trip time (expressed in seconds). Since
the parameters also satisfy (23), the covariance matrix Σ, as well as the
mean vector x, is independent of (Tr, r ∈ R). However, in view of the
condition (18), we should expect possible delay instability on routes r where
the ratio Tr/xr is large, or convergence that is slower than necessary on routes
where the ratio is small.

The case n = −1,m = 0, ar = ārT
2
r , br = b̄Tr, r ∈ R, was considered

in [12]. The parameters m, br ensure that the effect of a single congestion
indication bit is predictable: each marked packet will reduce the flow through
a resource by b̄, regardless of the round-trip time of the packet carrying
the mark. The parameters satisfy (23), and so again both x and Σ are
independent of (Tr, r ∈ R). And again, in view of condition (18), we should
expect instability or unnecessary sluggishness on a route r where the ratio
ārTr/xr is, respectively, especially large or small.

A third example satisfying (23) is provided by the choice

n = 0, ar = āTr, m = 1, br = b̄r, r ∈ R. (24)

In this case the covariance matrix Σ has the relatively simple form

Σ =
ā

2
X(αΛX + XAT P ′AX)−1X, (25)

where X = diag(xr, r ∈ R), Λ = diag(λr, r ∈ R) and P ′ = diag(p′j/(1 −
pj), j ∈ J). In view of condition (18), we should expect instability or unnec-
essary sluggishness on a route r where Tr is, respectively, especially large or
small.

5.2 Scale invariance

Next we explore some properties of the covariance matrix Σ, for general
n,m, ar, br, for the very special case where the network comprises a single
resource.

Consider the case of N flows through a single resource, where all flows
share the same values of ar, br, Tr, as well as m and n, and let β = yjp

′

j/pj.
Then the variance of a flow is

Var(xr(t)) =
brx

m+1
r Tm−1

r

2N

(

1

α(1 − λr) + β
+

N − 1

α(1 − λr)

)

. (26)
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If N is large or β is small, then there will be little interaction between two
flows. In either of the limits N → ∞ or β → 0 the expression (26) becomes

Var(xr(t)) =
brx

m+1
r Tm−1

r

2α(1 − λr)
. (27)

This is also the stationary distribution of the system (22) in the case where
λr(t) is replaced by a constant λr, which corresponds with the model analysed
in some detail by Ott [35] (Ott assumes the marking probability is fixed and
small, and provides a precise analysis of the stationary distribution of the
congestion window).

A key feature of the choice m = 1 is that it causes the expressions (26-27)
to scale with x2

r. Hence the coefficient of variation (i.e. the ratio: standard
deviation/mean) of xr(t) does not depend upon xr – an important scale
invariance property first identified by Ott [35].

The scale invariance property of the choice m = 1 extends to more general
networks, although care must be taken with its formulation since the equilib-
rium value of a single flow will affect the variance of other flows with which
it shares resources, a coupling captured in the general covariance matrix Σ
calculated in Appendix III. We illustrate the coupling, and the impact of br

on the coefficient of variation, with a simple example where xr varies with r.
Consider the case of N flows through a single resource, where m = 1, n =

0, ar = āTr, r ∈ R. Allow br, and hence xr, to vary with r, and let β =
yjp

′

j/pj. (Observe this is a special case of the third example of Section 5.1.)
Then

Var(xr(t)) =
1

2
brx

2
r

(

xr
∑

s xs

.
1

1 − λr + β
+

(

1 − xr
∑

s xs

)

.
1

1 − λr

)

. (28)

There is now heterogeneity amongst xr, but note that the final term of ex-
pression (28) will be approximately the same for all r, unless a single flow
occupies a large proportion of the resource. If we ignore the dependence of
this final term on r, then the coefficient of variation of xr(t) is proportional

to b
1/2
r . This illustrates a phenomenon, again identified by Ott [35], that

occurs more generally when n = 0,m = 1: if xr is a small proportion of the
flow through each of the resources on route r, and if λr is not large, then the
coefficient of variation of xr(t) is approximately equal to (br/2)1/2.

5.3 Discussion

We have seen in Section 4 that delay stability is characterized in terms of
the increase parameters n and ar, and in this Section we have explored the
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impact of the decrease parameters m and br on stochastic stability. We now
compare and contrast these insights.

The choice n = 0 is suggested by delay stability considerations: this choice
leaves the condition (20) independent of window size. The choice m = 1 is
suggested by stochastic stability considerations: this choice has Ott’s scale-
invariance property. The combined choice n = 0 and m = 1 gives α = 1, and
hence weighted proportional fairness.

But when we look more closely, at the choices of the parameters ar, br,
we see that there is a tension between delay and stochastic stability. If
ar is given by the form (23) we should, in view of condition (20), expect
delay instability or unnecessary sluggishness on a route r where ārx

n
r Tr is,

respectively, especially large or small, as we have seen in the examples of
Section 5.1.

In a network with heterogeneous delays, some of which may be substan-
tial, we have seen that the choices n = 0,m = 1, ar = ā < π/2β, br = b̄/Tr

seem very desirable from the point of view of earlier sections: these choices
remove the round-trip bias from the equilibrium point of the system (13-15),
and stabilize the equilibrium point within the deterministic model. But these
choices may lead to overly high variances for routes r with low values of Tr.

In contrast, in a network where random effects predominate, the choices
n = 0,m = 1, ar = āTr, br = b̄ have the effect of removing the round-trip
bias from the equilibrium point, and of making variances independent of
round-trip times.

For the Internet, where delays are highly heterogeneous and random ef-
fects are ever present, the above discussion helps us understand the compro-
mise advocated in [20]. If n = 0,m = 1, and

ar = wrTrb̄r, br = b̄r if Tr ≤
ā

wrb̄r

ar = ā, br =
ā

wrTr

otherwise

then the round-trip time bias is removed from the equilibrium point, and
the speed of adaptation is delay limited on long routes and variance limited
on short routes. The parameter wr controls the share of resources allocated
to flow r. Provided λr is not too large, flow r receives approximately wr

marks per unit time, resulting in a weighted proportionally fair allocation,
with weights (wr, r ∈ R). If wr = w̄, r ∈ R, then we obtain approximate
proportional fairness. The parameter b̄r expresses flow r’s trade-off between
speed of convergence and variance. If flow r occupies a small proportion
of each resource on its route, then the coefficient of variation of xr(t) is
approximately (br/2)1/2, where br depends upon Tr but is bounded above by
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b̄r.

6 Dual algorithms

We have seen that there are several families of primal algorithms, with vary-
ing fairness and stability properties. Similarly, there are many variants of
dual algorithm, and we shall discuss two families in this Section. Dual al-
gorithms were initially motivated by the possibility of using queueing de-
lay, rather than packet loss, as the feedback signal from resources to end-
points [27], and the first family we consider will be the delay-based dual
algorithms analysed in detail by Paganini et al. [37]. More generally, dual
algorithms correspond with averaging at resources prior to the feedback of
more explicit information to endpoints, and we shall see that there are ad-
vantages in using feedback with a different scaling from delay.

6.1 Delay-based dual algorithms

Following [37], let

d

dt
µj(t) = κj

(

∑

s:j∈s

xs(t − Tsj) − CjI[µj(t) > 0]

)

(29)

where
xr(t) = Dr (λr(t)) , λr(t) =

∑

j∈r

µj(t − Tjr) (30)

and Dr(η), η ≥ 0, is a non-negative continuous, strictly decreasing function.
Assume that the matrix A has full row rank. These conditions are sufficient
to allow the construction of a strictly concave Lyapunov function, and hence
to deduce (cf [19, 36]) that the system (29-30) has a unique equilibrium point
(x(t), µ(t)) = (x, µ). Assume that link j is saturated, that is µj > 0, for each
j ∈ J : thus

∑

j

Ajsxs = Cj, j ∈ J. (31)

In what follows we could, equivalently, assume that the set J is reduced to
include only the saturated links, and that there are no almost saturated links,
at which both µj = 0 and condition (31) holds.

Let xr(t) = xr + ur(t). Then, linearizing the system (29-30) about x, we
obtain

d

dt
ur(t) = D′

r(λr)
∑

j∈r

κj

∑

s:j∈s

us(t − Tsj − Tjr). (32)
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A sufficient condition for the system (32) to be stable is (Appendix II) that

−Tr

xr

D′

r(λr)
∑

j∈J

Ajrκj

∑

s∈R

Ajsxs <
π

2
. (33)

The algorithm (29-30), with κj = C−1
j , has a natural interpretation in

terms of queueing delays. Suppose that link j is modelled as a buffer with
a fluid inflow at rate

∑

s:j∈s xs(t − Tsj), a queue size of Cjµj(t), and an
outflow rate of Cj whenever the queue size is positive. For example, in TCP
Vegas [27], a variant of TCP, the endpoints for route r estimate the sum
of the queueing delays along the route,

∑

j∈r µj(t − Tjr), as the difference
between measurements of round-trip times, including queueing delay, and
longer term estimates of propagation delay. The model (29-30) ignores the
impact of queueing delays on round-trip times: this may be reasonable if
queueing delays are small compared with propagation delays. Alternatively,
Paganini et al. [37] use the variable µj(t) to represent virtual queueing delay,
obtained by setting Cj to be slightly lower than the outflow rate of the
link, so that real queueing delays are zero at the equilibrium point of the
deterministic model (29-30).

In TCP Vegas the demand function of user r is [27, 33] Dr(λr) = 1/λr,
corresponding to a proportionally fair equilibrium. With this demand func-
tion, and with κj = C−1

j , the stability condition (33) becomes the bound

λr ≥
2

π
TrMr,

where
Mr =

∑

j∈J

Ajr,

the number of saturated resources on route r.
Might it be possible to choose a demand function that ensures stability

for all values of λr? Observe that condition (33) will be satisfied if

−D′

r(λr)

Dr(λr)
≤ π

2TrMr

, r ∈ R, κj <
1

Cj

, j ∈ J. (34)

The first condition will be satisfied with equality by

Dr(λr) = Dmax
r exp

(

− πλr

2TrMr

)

, (35)

the form identified by Paganini et al. [37]. This demand function has an
undesirable dependence on Tr as well as Mr, with fairness consequences we
return to discuss in Section 6.4.
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With more information available at resources, there are other ways to en-
sure stability of the system (32). For example, a different sufficient condition
for stability is that

− 1

Mr

∑

j∈J

Ajrκj

∑

s∈R

AjsD
′

s(λs)MsTs <
π

2
(36)

(Appendix II). Let

Nj =
∑

s∈R

Ajs,

the number of flows passing through resource j, and let

Dr(λr) =

[

Dmax
r − λr

TrMr

]+

.

Then condition (36) will be satisfied if

κjNj <
π

2
, j ∈ J,

a bound on a link’s gain in terms of the number of flows through it. Or if

Dr(λr) =

[

Dmax
r − λr

Mr

]+

. (37)

then condition (36) will be satisfied if

κj

∑

s∈R

AjsTs <
π

2
, j ∈ J.

In this example, the demand function (37) has the attractive feature that it
has no dependence on Tr, and a link’s gain is bounded in terms of the sum
of the round-trip times of the flows through it.

6.2 Fair dual algorithms

The algorithm (29-30) allowed a natural interpretation of µj(t) as either a
real or virtual queueing delay. It was, however, difficult to reconcile fairness
with stability. We now show that it is possible to design dual algorithms
that can achieve weighted α-fairness, and have straightforward delay and
stochastic stability properties.

Consider
d

dt
µj(t) = κjµj(t)

(

∑

s:j∈s

xs(t − Tsj) − Cj

)

(38)
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where again xr(t) is defined by (30), Dr(η), η ≥ 0, is a non-negative continu-
ous, strictly decreasing function. Let (x(t), µ(t)) = (x, µ) be an equilibrium
point of the system (30), (38), and assume µj > 0 for j ∈ J .

Let xr(t) = xr + ur(t). Then, linearizing the system (30), (38) about x,
we obtain

d

dt
ur(t) = D′

r(λr)
∑

j∈r

κjµj

∑

s:j∈s

us(t − Tsj − Tjr). (39)

A sufficient condition for the system (39) to be stable is (Appendix II) that

−Tr

xr

D′

r(λr)
∑

j∈J

Ajrκjµj

∑

s∈R

Ajsxs <
π

2
. (40)

Condition (40) will be satisfied if

Dr(λr) = Dr(1)λ−1/Tr

r , r ∈ R, κjCj <
π

2
, j ∈ J,

an example that parallels the earlier case (34-35).
But an alternative and preferable sufficient condition for the system (39)

to be stable is (Appendix II) that

−D′

r(λr)

xr

∑

j∈J

Ajrκjµj

∑

s∈R

AjsxsTs <
π

2
. (41)

Now suppose that Dr(λr) is defined by equation (8), corresponding to weighted
α-fairness, so that Dr(λr) = −αλrD

′

r(λr). Then condition (41) will be satis-
fied if

κjCjT̄j <
π

2
α, j ∈ J (42)

where

T̄j =

∑

s∈R AjsxsTs
∑

s∈R Ajsxs

,

the average round trip time of packets through resource j.
We term the system (8), (30), (38) the fair dual algorithm: it is able to

achieve weighted α-fairness with a natural delay stability condition (42) on
resource gains. We shall see in the next subsection that it also possesses
scale-invariant stochastic stability properties.

The proposal of Katabi et al. [17] for more explicit feedback from resource
to endpoints requires that a packet should contain the sending endpoint’s
estimate of its round-trip time: we note this as a possible mechanism that
would allow each resource to estimate its own value of T̄j.
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6.3 Stochastic stability of dual algorithms

For the primal algorithms we considered, each packet crossing the network
provided a single bit of information concerning congestion along its route:
this noisy feedback was averaged at endpoints, a process whose variance was
analysed in Section 5. We idealize dual algorithms as providing enough bits
of information per packet that there is essentially no averaging necessary at
endpoints. This will leave the estimation process at a resource as a possible
source of randomness, and in this subsection we study its variance.

Suppose that packets flowing along route r form a random stream, with
the number in unit time having mean xr(t) and variance εrxr(t). For example,
if packets form a Poisson stream then εr = 1. Consider the system

dµj(t) = κjµj(t)
m

(

∑

s:j∈s

(xs(t) dt + (εsxs(t))
1

2 dBs(t)) − CjI[µj(t) > 0] dt

)

,

(43)
where xr(t) = Dr(

∑

j∈r µj), and (Bs(t), s ∈ R) are independent standard
Brownian motions. The cases m = 0 and m = 1 describe Brownian pertur-
bations of delay-based and fair dual algorithms respectively. In each case we
ignore the time delays Tsj, Tjr. The linearization of this stochastic differential
equation has, as its stationary distribution for (µj(t), j ∈ J), a multivariate
normal distribution, N(µ, Σ), whose covariance matrix Σ is determined ex-
plicitly, in terms of the parameters of the network, in Appendix III.

As a very special case, consider a single resource, J = {j}, where Ajr =
1, εr = ε, r ∈ R, and Dr(λr), r ∈ R, takes the form (8). Allow wr, and hence
xr, to vary with r. Then (Appendix III)

Var (µj(t)) =
εακj

2
µm+1

j , Var (xr(t)) =
εκj

2α
µm−1

j x2
r. (44)

If m = 1, corresponding to the fair dual algorithm, then the coefficient
of variation of neither µj(t) nor xr(t) depends on µj, an attractive scale-
invariance property.

As for primal algorithms, there is a tension between delay and stochastic
stability. If κj is chosen to satisfy the delay stability condition (42) with
equality then the variance of xr(t) will not depend upon α, and the variance
of both µj(t) and xr(t) will be inversely proportional to both the capacity
of resource j and the average round-trip time of packets through resource j.
A resource may prefer a smaller value of κj in order to control its coefficient
of variation, especially if its capacity or its average round-trip time is small.
In home networks [3] or ad hoc networks [6] where propagation delays are
small, stochastic instability may dominate delay stability. The choice α =
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1, κj = κ̄/Cj was used in [6], a choice that makes comparable the rate of
convergence across different resources and causes variances to be inversely
related to capacities. From equation (42), a sufficient condition for delay
stability is then that

κ̄T̄j <
π

2
, j ∈ J,

an upper bound, uniform over resources, on the average round-trip time of
packets through a resource.

6.4 Discussion

The constraints imposed by delay stability take different forms for primal and
dual algorithms: for primal algorithms there are restrictions, such as (19),
on resource behaviour; while for dual algorithms there are restrictions, such
as (34), on demand functions.

Delay-based dual algorithms are effective at fully utilizing resources, but
are less effective at fairly sharing resources when delays are heterogeneous.
In contrast primal algorithms can achieve fairness, but are less effective at
utilizing resources fully. Kunniyur and Srikant [23, 24] have shown that by
slowly adapting the marking function pj(y) at resources, primal algorithms
can also control resource utilization; and Paganiniet al. [38] have shown that
by slowly adapting the demand function Dr(λ) at sources, delay-based dual
algorithms can also control fairness. For a discussion of the resulting primal-
dual schemes, which aim to achieve both fairness and high utilization, see
Low and Srikant [28]. Without propagation delays, global stability can be
obtained for primal-dual schemes [1, 45]. With heterogeneous delays and
averaging at both sources and resources, Vinnicombe [42] has established an
important robust stability result, briefly mentioned in Appendix II.

For the primal algorithm Johari and Tan [16] observe that the form
pj(y) = (y/Cj)

β, for β integral, is the probability that a packet arriving
at an M/M/1 queue will find β or more packets already present; more gen-
erally, the restriction (19) may be plausible in connection with queueing
phenomena. For the fair dual algorithm, the restriction upon demand func-
tions, that Dr(λr) = −αλrD

′

r(λr), corresponds precisely with the definition
of weighted α-fairness, and hence this algorithm’s ability to achieve fairness
and full utilization.

In a network comprising a single resource that knows the number of flows
through it, much more can be done: see Hollot et al. [14] for an analysis of
several schemes, including some which correspond to classical proportional
and proportional-integral control.
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7 Conclusion

In this paper we have reviewed recent work on the fairness and stability of
end-to-end congestion control. We have described models that provide some
insight into the success of the congestion avoidance algorithm of TCP, and
into how it might, or should, evolve in the future. In particular, we have seen
that it is in principle possible for an arbitrary collection of overlapping flows
to share resources in a fair, stable and scalable manner, using end-to-end
mechanisms where each flow knows only of its own experience of congestion
and of its own feedback delay.

The heterogeneity of the Internet makes it important to understand what
can be achieved with minimal, incrementably deployable, changes. We have
seen that in networks with long propagation delays, a single bit of conges-
tion information per packet may be ample: delay stability requires relatively
slow adaptation at endpoints, slow enough to allow averaging of congestion
information over many packets. For home or ad-hoc networks different issues
arise. Homogeneity of equipment may allow substantial changes in protocols,
and when round-trip times are short more explicit feedback can substantially
reduce variances.

We have not discussed work on the initial phase of TCP, i.e. Jacobson’s
slow-start algorithm [15], or work on the dynamics of flow arrivals and depar-
tures, both areas which give complementary insights into network behaviour.
And it is salutary to note that in the Linux source, less than 1% of the TCP
code concerns congestion window updates. These are important lines, gov-
erning the way the network shares resources in a fair and stable manner; but
they are not all there is to TCP.
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8 Appendix I: global stability

Consider the system of differential equations

d

dt
xr(t) =

xr(t)

Tr

(

ar(xr(t)Tr) (1 − λr(t)) − br(xr(t)Tr) λr(t)
)

, (45)

for r ∈ R, where λr(t) is defined by equations (2) and (10). Assume that,
for r ∈ R, ar(w) and br(w) are continuous functions on (0,∞), and that
ar(w)/br(w) is a strictly decreasing function, with ar(w)/br(w) → ∞ as
w ↓ 0 and ar(w)/br(w) → 0 as w ↑ ∞. Assume that, for j ∈ J , the function
pj(y), y ≥ 0, is a continuous, non-decreasing function, taking values in the
interval [0, 1] and not identically either zero or one.

Theorem 8.1 The form (7) is a Lyapunov function for the system of dif-
ferential equations (2), (10), (45) under the choices

Ur(xr) =
1

Tr

∫ xrTr

0

log

(

1 +
ar(w)

br(w)

)

dw,

Cj(y) = −
∫ y

0

log (1 − pj(z)) dz.
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The unique value x maximizing the form (7) is a stable point of the system,
to which all trajectories converge. At the stable point

ar(xrTr)(1 − λr) = br(xrTr)λr. (46)

Proof. The assumptions on ar(w), br(w), r ∈ R, and on pj, j ∈ J , ensure that
U(x), given by expression (7), is strictly concave on the positive orthant with
an interior maximum; the maximizing value of x is thus unique. Observe that

∂

∂xr

U(x) =
∑

j∈r

log

(

1 − pj

(

∑

s:j∈s

xs

)

)

− log
br(xrTr)

ar(xrTr) + br(xrTr)
; (47)

setting these derivatives to zero identifies the maximum. Further, the ex-
pression (47) has the same sign as

∏

j∈r

(

1 − pj

(

∑

s:j∈s

xs

)

)

− br(xrTr)

ar(xrTr) + br(xrTr)
. (48)

Now, from equation (45),

d

dt
xr(t) =

xr(t)

Tr

(

ar(xr(t)Tr) + br(xr(t)Tr)
)

·
(

(1 − λr(t)) −
br(xr(t)Tr)

ar(xr(t)Tr) + br(xr(t)Tr)

)

. (49)

We can deduce that the partial derivative (47) has the same sign as the
derivative (49), and they are zero together. Now

d

dt
U

(

x(t)
)

=
∑

r∈R

∂U
∂xr

· d

dt
xr(t) (50)

and so U(x(t)) is strictly increasing with t unless x(t) = x, the unique x
maximizing U(x). The strict concavity of U(x) and the continuity of the
derivative (45) implies that the derivative (50) is bounded away from zero
outside any open neighbourhood of x, and the result follows.

¤

The choices

ar(w) = ar wn, br(w) = br wm r ∈ R
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with α = m − n > 0 correspond to equations (9). Given a strictly concave
continuously differentiable function Ur(xr) with U ′

r(xr) → ∞ as xr ↓ 0 and
U ′

r(xr) → 0 as xr ↑ ∞, choices satisfying the conditions of the Theorem are

ar(w) = a, br(w) = a
(

exp(U ′

r(wr/Tr)) − 1
)

−1

,

or
ar(w) = b

(

exp(U ′

r(wr/Tr)) − 1
)

, br(w) = b.

The interpretation of congestion control as a distributed algorithm solving
a global optimization problem is reviewed in [18, 26, 28]. The above theorem
generalizes Theorem 4 of [18].

9 Appendix II: local stability under time de-

lays

Consider the linear system

Tr
d

dt
ur(t) = −γrur(t) − κrxrνr(t) (51)

for r ∈ R, where

νr(t) =
∑

j∈J

Ajrκj

∑

s∈R

Ajsus(t − Tsj − Tjr). (52)

Theorem 9.1 Suppose that γr, κr, xr ≥ 0 for r ∈ R; κj ≥ 0 for j ∈ J ;
Ajr, Tjr, Trj ≥ 0 for j ∈ J, r ∈ R, and the identity (12) is satisfied. Then the
system (51-52) is stable if

κr

∑

j∈J

Ajrκj

∑

s∈R

Ajsxs <
π

2
r ∈ R. (53)

There are two striking aspects of this result. Firstly, the condition (53) is
local, in the sense that it involves κj only for resources j for which Ajr > 0
and, for these resources, it involves xs only for routes s for which Ajs > 0.
Secondly, the delays Tjr, Tsj are not part of the condition: the term Tr in
equation (51) is sufficient to scale the gain on route r.

That a result of the above form might be possible was first conjectured
by Johari and Tan [16]. They showed that the identity (12) leads to an ele-
gant decomposition of the transfer function into a product of a diagonal and
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an Hermitian matrix, and used this to establish their conjecture in the case
where all round-trip times are the same. The clear formulation in [16] of the
essential problem stimulated considerable interest, and three independent
papers reported exciting further results [29, 37, 42]. Massoulié [29] estab-
lished the above result in the case where γ = 0 and the right-hand side of
condition (53) has π/2 replaced by 1; an alternative form of the same result
was proved by Paganini, Doyle and Low [37], who established condition (34),
with π/2 replaced by 1, as a sufficient condition for local stability of the dual
algorithm (29-30). Vinnicombe’s lemma [42], a key bound on the eigenvalues
of the product of a matrix and a diagonal matrix, allows the result as stated
to be proved [42, 43].

Theorem 9.1 is really a family of sufficient conditions for stability. Given
the vector (κrxr, r ∈ R), different choices for the vectors (κr, r ∈ R), (xr, r ∈
R) will leave the system (51-52) unaltered, but will give different condi-
tions (53). Thus the system (32) is an example of equations (51-52) with
the choice γr = 0, κrxr = −D′

r(λr)Tr. The stability condition (33) corre-
sponds to the choice κr = −D′

r(λr)Tr/xr, while the stability condition (36)
has κr = 1/Mr, xs = −D′

s(λs)MsTs. Similarly the system (39) is an example
of equations (51-52) but with κj replaced by κjµj. The stability condi-
tion (40) corresponds to the choice κr = −D′

r(λr)Tr/xr, while the stability
condition (41) has κr = −D′

r(λr)/xr.
To obtain condition (18) consider the system

d

dt
xr(t) =

xr(t − Tr)

Tr

·
(

ar(xr(t)Tr) (1 − λr(t)) − br(xr(t)Tr) λr(t)
)

, (54)

together with equations (14), (15). Let xr(t) = xr + ur(t), λr(t) = λr + (1 −
λr)νr(t), and write yj =

∑

s:j∈s xs, pj = pj(yj), p
′

j = p′j(yj). Let

nr =
wa′

r(w)

ar(w)
mr =

wb′r(w)

br(w)
,

both evaluated at w = xrTr, at which argument we assume ar(.), br(.) are
differentiable. Then linearizing the system (14), (15), (54) about its unique
equilibrium point (x, λ), and using relation (46), we obtain the equations

Tr
d

dt
ur(t) = −ar(xrTr)(1 − λr)

(

(mr − nr)ur(t) +
xr

λr

νr(t)

)

together with equations (17). Then a sufficient condition for stability is that
mr > nr and

ar(xrTr)
1 − λr

λr

∑

j∈r

yjp
′

j

1 − pj

<
π

2
,
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as can be seen by setting κr = ar(xrTr)(1 − λr)/λr and κj = p′j/(1 − pj) in
Theorem 9.1.

In the model (14), (15), (54) the equation (15) represents the marking
probability at a resource as a function of the instantaneous flow through
the resource. Vinnicombe has also considered a variant where the marking
probability at a resource is a function of an exponentially weighted average of
the flow through the resource. Consider the system (14), (54) where, instead
of equation (15),

µj(t) = pj(zj(t)), δj
d

dt
zj(t) =

∑

s:j∈s

xs(t − Tsj) − zj(t).

In Vinnicombe [43, 44] it is shown that the linearization of this system about
its equilibrium point is locally stable if

j ∈ r ⇒ ar(xrTr) ·
yjp

′

j

pj

< 1; (55)

if, further,
j ∈ r ⇒ δj < 2Tr (56)

then the stability is robust to perturbations of the link and source dynamics.
Now if j ∈ r then the propagation delay through link j is a lower bound
on Tr: condition (56) will thus be satisfied if the flow averaging at link j
has a time constant δj less than twice the propagation delay through link
j. Vinnicombe’s results [43, 44] provide a family of sufficient conditions: for
a given guarantee of robust stability, the coefficient of Tr appearing in the
right hand side of the inequality in (56) may be increased, at the cost of a
reduction of the right hand side of the inequality in (55).

10 Appendix III: variance calculations

In the previous Appendix the linearization faithfully represented feedback
delays, and ignored random perturbations. In this appendix the linearization
will model stochastic effects, but will ignore feedback delays.

Again let xr(t) = xr+ur(t), write yj =
∑

s:j∈s xs, and let pj = pj(yj), p
′

j =
p′j(yj). Then, linearizing the system (2),(9-10) about the unique equilibrium
point (x, λ), we obtain the equations

Tr
d

dt
ur(t) = −br(xrTr)

m

(

αλrur(t) + xr

∑

j∈r

p′j
1 − pj

∑

s:j∈s

us(t)

)

(57)
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Next let vr(t) = ur(t)/(brx
m+1
r Tm−1

r )
1

2 , so that xr(t) = xr+(brx
m+1
r Tm−1

r )
1

2 vr(t).
Let v(t) = (vr(t), r ∈ R)T : then we may rewrite equation (57) in matrix
form as

d

dt
v(t) = −B

1

2 X
m−1

2 T
m−1

2 [αΛX + XAT P ′AX]T
m−1

2 X
m−1

2 B
1

2 v(t)

where B = diag(br, r ∈ R), X = diag(xr, r ∈ R), Λ = diag(λr, r ∈ R),
P ′ = diag(p′j/(1 − pj), j ∈ J), and (leaving the context to make clear this is
not the transpose operator) T = diag(Tr, r ∈ R). Let

ΓT ΦΓ = B
1

2 X
m−1

2 T
m−1

2 [αΛX + XAT P ′AX]T
m−1

2 X
m−1

2 B
1

2 (58)

where Γ is an orthogonal matrix, ΓT Γ = I, and Φ = diag(φr, r ∈ R) is the
matrix of eigenvalues, necessarily positive, of the real, symmetric, positive
definite matrix (58). Then

d

dt
v(t) = −ΓT ΦΓv(t).

The corresponding linearization of equation (22) is

dv(t) = −
(

ΓT ΦΓv(t)dt + FdB(t)
)

(59)

where F = diag(fr, r ∈ R) and

f 2
r =

ar

Tr

(xrTr)
n =

br

Tr

λr

1 − λr

(xrTr)
m. (60)

Under the stationary solution to the system (59), v(t) has a multivariate
normal distribution, whose covariance matrix is calculated in [19]. From this
covariance matrix we can deduce that the linearization of the system (22)
has, as its stationary solution, x(t) ∼ N(x, Σ) where

Σ = B
1

2 X
m+1

2 T
m−1

2 ΓT [ΓF ; Φ]ΓT
m−1

2 X
m+1

2 B
1

2

and

[ΓF ; Φ]rs =
[ΓFF T ΓT ]rs

φr + φs

. (61)

First observe that under condition (23) the matrix F , given by (60), does
not depend upon the various round-trip times T : it follows that expres-
sion (61), and hence the covariance matrix Σ, does not depend upon T . (If
br = b̄rT

1−m
r , r ∈ R then from (60) and (61) we can write Σ in terms of X,
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with no explicit dependence on T , but of course X will itself depend upon
T .)

Under the choice (24), F = āI, and so [ΓF ; Φ] = (ā/2)Φ−1. Now
ΓT Φ−1Γ = (ΓT ΦΓ)−1, and hence we deduce the form (25). More generally, if
m = 1 then

Σ = B
1

2 XΓT [ΓF ; Φ]ΓXB
1

2 , (62)

and so Σ does not depend upon T other than through X. The matrix
ΓT [ΓF ; Φ]Γ captures coupling between routes. Its pre- and post-multiplication
by X in expression (62) is a generalization to a network of Ott’s scale-
invariance property. The expression (28) gives the diagonal entries of the
matrix (62) in a simple example that illustrates the scaling impact of X and
B.

Next we calculate the covariance matrix Σ for some of the dual algorithms
of Section 6, following [19]. Consider the system (43), and let µj(t) = µj +
(κjµ

m
j )1/2η(t). Assume A has full row rank, and µj > 0, j ∈ J . Linearizing

about the equilibrium point (x, µ), we obtain

d η(t) = −ΘT ΨΘη(t) + GdB(t)

where
ΘT ΨΘ = −κ1/2µm/2AD′AT µm/2κ1/2, (63)

κ = diag(κj, j ∈ J), µ = diag(µj, j ∈ J), D′ = diag(D′

r(λr), r ∈ R), Θ
is an orthogonal matrix, ΘT Θ = I, Ψ = diag(ψj, j ∈ J) is the matrix
of eigenvalues, necessarily positive (since A has full row rank), of the real,
symmetric matrix (63), and

Gjr = (κjµ
m
j )1/2Ajr(εrxr)

1/2.

Define the symmetric matrix [ΘG; Ψ] by

[ΘG; Ψ]jk =
[ΘGGT ΘT ]jk

ψj + ψk

.

Then
Σ = κ1/2µm/2ΘT [ΘG; Ψ]Θµm/2κ1/2.

For example, if J = {j}, Ajr = 1, εr = ε, r ∈ R, and Dr(λr), r ∈ R, takes
the form (8), then Σ evaluates to the scalar 1

2
εακjµ

m+1
j , giving the first part

of equation (44); the second part then follows from the form of the assumed
demand function (8). More generally, the matrix ΘT [ΘG; Ψ]Θ captures cou-
pling between resources.
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We remark that one could attempt to combine the analyses of this and
the previous appendix, and consider a linearized model that incorporates
both feedback delays and Gaussian noise. The stationary solution would
again be Gaussian, and the results of this and the previous appendix would
presumably emerge as boundary cases. Similarly, we have assumed that the
primary source of randomness in primal algorithms is the averaging process
at endpoints, while the primary source of randomness in dual algorithms
is the averaging process at resources. It would be interesting to study the
interaction of both averaging processes, and to explore whether our variance
analyses emerge as boundary cases.
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