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Abstract

Consider a queue which serves traffic from a number of distinct sources
and which is required to deliver a performance guarantee, expressed in
terms of the mean delay or the probability the delay exceeds a thresh-
old. For various simple models we show that an effective bandwidth
can be associated with each source, and that the queue can deliver
its performance guarantee by limiting the sources served so that their
effective bandwidths sum to less than the capacity of the queue.

Keywords: large deviations, M/G/1 queue, circuit-switched network,
connection acceptance control.

1. Introduction

The traditional model of a circuit-switched network assumes that each link k of
the network has a capacity Ck and that each call carried of class j requires a known
amount of capacity, αjk say, at link k. The network is able to carry nj calls of class j,
j = 1, 2, . . . , J , if

∑

j

njαjk ≤ Ck (1.1)

for each link k of the network. There is a rich theory of such networks (see, for example,
[1], [7], [13], [19]), able to provide insight into such topics as trunk reservation, dynamic
routing and network planning.

What happens if a call’s resource requirements vary randomly over the lifetime
of the call? Hui ([9], [10]; see also [4]) has shown that for a simple model of an un-
buffered resource, the probability of resource overload can be held below a desired level
by requiring that the number of calls nj accepted from sources of class j, j = 1, 2, . . . , J ,
satisfies

∑

j

αjnj ≤ C, (1.2)

where C is interpreted as the capacity of the resource, and αj is the effective bandwidth

at the resource of each source of class j. The effective bandwidth αj depends on char-
acteristics of a source of class j such as its burstiness, and on the degree of statistical
multiplexing possible at the resource. The bandwidth of a source may vary over the
different resources in a network, just as in the traditional model the requirements αjk of
a call may vary over the links k along its route.

Our aim in this paper is to show that the notion of an effective bandwidth,
additive over sources of different classes, generalizes to certain models of a buffered
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resource. This further encourages the prospect (noted already in [4], [8] and [9]) that the
insights available from the traditional model of a circuit-switched network will transfer
to a wide range of newly emerging communication networks.

We now define our model of a buffered resource. Suppose that bursts from a
source of class j arrive in a Poisson stream of rate νj and have lengths with distribution
Gj . Burst lengths and the Poisson streams associated with different sources are assumed
independent. The time taken to serve a burst is equal to its length, and thus the resource
operates as an M/G/1 queue. Suppose the buffer space required by the server at any
instant is simply the time it would take for the server to clear its backlog if no more bursts
were to arrive. The stationary distribution of the buffer space required by the server
is then given by the known distribution for the unfinished work in an M/G/1 queue.
The mean buffer space required, or equivalently the mean queueing delay under a first-
come-first-served discipline, is given by the Pollaczek-Khintchine formula. In Section 3
we show that this measure of performance is held below any given value if and only if
the number of sources of each class satisfies a linear inequality of the form (1.2).

Often constraints on the probability that buffer space or delay exceeds a threshold
are more important than constraints on mean values. Fortunately there exist manageable
estimates and bounds for tail behaviour. In Section 4 we use Cramér’s asymptotic
estimates [5] and the bounds of Kingman [16] and Ross [17] to show that the probability
that required buffer space exceeds a threshold can be held below any given value by
requiring that the numbers of sources of each class satisfy a linear inequality of the form
(1.2). It is interesting to note that the effective bandwidth αj of a source of class j has
a very similar analytical form to that obtained from the earlier model of an unbuffered
resource.

The bounds of Kingman [16] and Ross [17] apply more generally to GI/G/1
queues, and our results on effective bandwidths generalize to renewal arrival streams. A
particular example, the slotted/batch model, is considered in Section 5. The model is
a form of discrete time queue, and has a close formal relationship with the unbuffered
model of Section 2.

We conclude in Section 6 with a simple example indicating how the traditional
model of a circuit-switched link can shed light on the problems of connection acceptance
control.

2. Unbuffered resources

In this section we review Hui’s model of an unbuffered resource ([9],[10]). We begin
by recalling Chernoff’s bound on the tail behaviour of sums of random variables. Let
X1, X2, . . . , Xn be independent, identically distributed random variables with common
logarithmic moment generating function

M(s) = log E[esX1 ].

Now for any random variable Y

P{Y ≥ 0} = P{esY ≥ 1} ≤ E[esY ],

where here and throughout s ≥ 0. Hence

1

n
log P{X1 + X2 + · · ·Xn ≥ 0} ≤ inf

s
M(s).
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This bound is often used as an approximation, the large deviations approximation, and is
asymptotically exact: Chernoff’s theorem ([2], pp.147–149) establishes that if E[Xn] < 0
and P{Xn > 0} > 0 then

lim
n→∞

1

n
log P{X1 + X2 + · · · + Xn ≥ 0} = inf

s
M(s).

Let

S =
J

∑

j=1

nj
∑

i=1

Xji (2.1)

where Xji are independent random variables, with logarithmic moment generating func-
tions

Mj(s) = log E
[

esXji
]

. (2.2)

Interpret Xji as the load placed on an unbuffered resource by a source of class j, and nj

as the number of sources of class j. Let C be the capacity of the resource and suppose
E[S] < C and P{S > C} > 0. Then Chernoff’s bound gives

log P{S ≥ C} ≤ log E
[

es(S−C)
]

=
J

∑

j=1

njMj(s) − sC,

and the large deviations approximation is

log P{S ≥ C} ≈ inf
s





J
∑

j=1

njMj(s) − sC



 .

The constraint on tail behaviour log P{S ≤ C} ≤ −γ will certainly be satisfied if

inf
s





J
∑

j=1

njMj(s) − sC



 ≤ −γ. (2.3)

Note that the term in square brackets is linear in n = (n1, n2, . . . , nJ). Here the ac-
ceptance region A, consisting of values n ∈ RJ

+ satisfying condition (2.3), has a convex
complement in RJ

+, since this complement is defined as the intersection of RJ
+ with a

family of half spaces. The tangent plane at a point n∗ on the boundary of the region A
is

J
∑

j=1

njMj(s
∗) − s∗C = −γ (2.4)

where s∗ attains the infimum in (2.3) with n replaced by n∗. Thus the acceptance region

A(n∗) =







n :
J

∑

j=1

α∗

jnj +
γ

s∗
≤ C







(2.5)
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where

α∗

j =
Mj(s

∗)

s∗
(2.6)

will assure satisfaction of the constraint log P{S ≤ C} ≤ −γ, and this linearly con-
strained region touches the boundary of the acceptance region A defined by (2.3) at
the point n∗ defining s∗. One could, for example, define n∗ in terms of the expected
mix of source classes. The acceptance region A(n∗) assures satisfaction of the tail prob-
ability constraint whatever the mix of source classes, and is the best possible linearly
constrained region for the expected mix. For many realistic examples of source classes
the region A(n∗) is not that sensitive to the precise choice of n∗ – the boundary of A is
approximately a hyperplane – see [4], [8], [9].

3. Constraints on the mean workload

Consider the M/G/1 queue described in the Introduction, with arrival rate ν and
service time distribution G, where

G(x) =
J

∑

j=1

pjGj(x) (3.1)

ν =
J

∑

j=1

νjnj , pj = νjnj/ν. (3.2)

Here nj is the number of sources of class j, and Gj is the distribution of burst length from
sources of class j. The Pollaczek-Khintchine formula gives the stationary distribution of
B, the buffer space required by the server, as

P{B ≤ b} = (1 − νµ)
∞
∑

r=0

(νµ)rG(r)
e (b) (3.3)

where µ(< ν−1) is the mean of the distribution G, and G
(r)
e (b) is the distribution function

of the sum of r independent random variables each with distribution function

Ge(b) =
1

µ

∫ b

0

(1 − G(x))dx. (3.4)

¿From (3.3), or directly,
P{B = 0} = 1 − νµ

= 1 −

J
∑

j=1

νjnjµj .

The utilization of the resource, U , is thus
∑

j νjnjµj . Hence a condition of the form
U ≤ K becomes a linear constraint

J
∑

j=1

αjnj ≤ K
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where
αj = νjµj (3.5)

is the effective bandwidth of each source of class j. Of course αj is just the traffic
intensity due to a source of class j. This (near trivial) result clearly extends far beyond
the M/G/1 setting: we include it since it will emerge as a limiting form from later
constraints on queue behaviour. Next we turn to a less obvious case of exact linearity.

A consequence of the distributional form (3.3) is that

E(B) =
ν(µ2 + σ2)

2(1 − νµ)
(3.6)

where µ and σ2 are the mean and variance respectively of the distribution G (see, for
example, [11], p.81). Let µj and σ2

j be the mean and variance respectively of Gj , the
burst size distribution for sources of class j. Then

µ =

J
∑

j=1

pjµj , µ2 + σ2 =

J
∑

j=1

pj(µ
2
j + σ2

j ),

and so

νµ =

J
∑

j=1

νjnjµj , ν(µ2 + σ2) =

J
∑

j=1

νjnj(µ
2
j + σ2

j ).

Thus a condition E(B) ≤ L is, from (3.6), exactly the condition

J
∑

j=1

νjnj(µ
2
j + σ2

j ) ≤ 2



1 −

J
∑

j=1

νjnjµj



 L.

Rearranging terms, this is equivalent to

J
∑

j=1

nj [νj(µ
2
j + σ2

j ) + 2νjµjL] ≤ 2L.

Thus the effective bandwidth of a source of type j can be defined to be

αj = νj

[

µj +
1

2L
(µ2

j + σ2
j )

]

(3.7)

since under this identification the constraint E(B) ≤ L becomes the linear constraint

J
∑

j=1

αjnj ≤ 1.

The analytical expression (3.7) for bandwidth αj is illuminating. Observe, for example,
the dependence of bandwidth on L, the constraint on mean workload. If L is large enough
αj reduces to (3.5), the effective bandwidth in the utilization constrained formulation.
If L is small the burst size distribution, as well as its mean, is important. For example
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if the distribution Gj is exponential, then σ2
j = µ2

j , and so the bandwidth αj has a

quadratic dependence, proportional to µj +L−1µ2
j , on the mean burst size. If burst sizes

are constant, so that σ2
j = 0, then bandwidth again has a quadratic dependence on burst

size, but now proportional to µj + (2L)−1µ2
j .

4. Constraints on tail probabilities

Next we consider constraints on the tail behaviour of the distribution (3.3): in
many circumstances such constraints are more appropriate than constraints on utilization
or mean workload.

Cramér’s estimate [5], originally derived for a related ruin problem, describes the
tail behaviour of the distribution (3.3). Suppose there exists a finite constant κ such
that

ν

∫

∞

0

eκx(1 − G(x))dx = 1 (4.1)

and suppose that

η = ν

∫

∞

0

eκx(1 − G(x))xdx (4.2)

is finite. Then Cramér’s estimate is

P{B > b} ∼
1 − νµ

κη
e−κb as b → ∞. (4.3)

Kingman [16] and Ross [17] discuss closely related bounds for the more general
GI/G/1 queue. If A is a random variable with the interarrival time distribution, X a
random variable with the service time distribution G, and κ a positive constant such
that

E(eκX)E(e−κA) = 1 (4.4)

then the stationary distribution of B, the unfinished work found by an arriving customer,
satisfies

a1e
−κb ≤ P{B > b} ≤ a2e

−κb b ≥ 0 (4.5)

for constants a1, a2 ≤ 1.

If traffic intensity νµ is close to 1 the bound a2 is close to 1 and the constant κ
is approximately

2(EA − EX)

Var(A) + Var(X)
. (4.6)

This is consistent with heavy traffic results for the GI/G/1 queue, which show that the
stationary distribution of B is approximately exponential with parameter (4.6), although
the limiting regime is different ([15],[18]). Simple bounds on the constant a1 are given
by Kingman [16]. For example, if P{X ≤ M} = 1 then

e−κ(b+M) ≤ P{B > b} ≤ e−κb b ≥ 0. (4.7)

Equation (4.4) reduces to equation (4.1) when A has an exponential distribution
with parameter ν. Consider further this case, the M/G/1 queue. The constraint on tail
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behaviour log P{B > b} ≤ −γ will certainly be satisfied if κ, the solution to equation
(4.1), satisfies κb ≥ γ, or equivalently

ν

∫

∞

0

eγx/b(1 − G(x))dx ≤ 1. (4.8)

Suppose again that G is defined by (3.1) and (3.2). Then (4.8) becomes

J
∑

j=1

νjnj

∫

∞

0

eγx/b(1 − Gj(x))dx ≤ 1,

or equivalently
J

∑

j=1

αjnj ≤ 1 (4.9)

where

αj = νj

∫

∞

0

eγx/b(1 − Gj(x))dx. (4.10)

Again we obtain a linearly constrained acceptance region, and again the analytical form
(4.10) for the bandwidth is illuminating. Observe that as γ shrinks to zero, αj reduces
to (3.5), the effective bandwidth in the utilization constrained formulation. As γ in-
creases, the tail of the distribution Gj becomes more and more important. Note that
the expression (4.10) can also be written as

αj =
νjb

γ

∫

∞

0

(eγx/b − 1)dGj(x)

=
νjb

γ

[

exp
(

Mj

(γ

b

))

− 1
]

, (4.11)

using expression (2.2).

The more refined approximation (4.3) will not in general produce a linearly con-
strained acceptance region, but the region it does produce is usually only slightly larger
than that defined by (4.9) and (4.10).

Our model assumes that arriving bursts are not lost when the buffer level exceeds
b: they may for example be held at resources leading to the particular resource under
consideration, and forwarded later. The provision of a buffer area is intended to prevent
this happening too often: if such blocking is indeed an infrequent occurrence and if our
assumption concerning arrival streams is valid, perhaps in a network with sufficiently
diverse routing, then it should be possible to analyse different resources as independent
systems. Of course buffers arranged strictly in series exhibit a quite different behaviour,
owing to the strong dependence between the service mechanism at one buffer and the
arrival stream at the next ([3], [12]).

5. A slotted/batch model

Suppose that time is divided into slots of unit length, and that independent
batches of bursts arrive at the start of each slot. The model we consider is thus the
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special case of the GI/G/1 queue where the renewal process describing the arrival stream
is deterministic. An attraction of the model, introduced and discussed further in [6], is
its close formal relationship with the unbuffered model of Section 2. In the unbuffered
model each slot is treated independently: excessive arrivals are lost. In the buffered
model excessive arrivals are held over to be dealt with in the next, or following, slots.

Equation (4.4) becomes
E

(

eκX
)

= eκ, (5.1)

since slots are of unit length. The random variable X now describes the batch of arriving
bursts. Thus if there are nj sources of class j, we can set

X =
J

∑

j=1

nj
∑

i=1

Yji

where, parallelling equations (2.1) and (2.2), the random variables Yji are independent
and Yji has logarithmic moment generating function Mj(s). Equation (5.1) becomes

J
∑

j=1

njMj(κ) = κ.

Thus, using the bound (4.5), the constraint log P{B > b} ≤ −γ on the workload found
at the end of a slot will certainly be satisfied if κb ≥ γ, or equivalently

J
∑

j=1

njMj

(γ

b

)

≤
γ

b
.

But this is just the inequality (4.9) with

αj =
b

γ
log

∫

∞

0

eγx/bdG(x)

=
b

γ
Mj

(γ

b

)

. (5.2)

It is interesting to compare the form (5.2) with our earlier results. First, note that
in an M/G/1 queue the stationary distribution of unfinished work found by an arriving
customer is the same as the stationary distribution of work at the server at integer time
points. But in an M/G/1 queue the arriving workload from a single source of class j
over a unit time interval, Yji say, has the compound Poisson distribution

log E[esYji ] = νj [exp(Mj(s)) − 1] :

here Mj(s) is, as in Section 4, the logarithmic moment generating function of a single
burst from a source of class j. This confirms the necessary correspondence between the
expressions (4.11) and (5.2). Secondly, the form (5.2) parallels the earlier form (2.6) aris-
ing from the model of an unbuffered resource. The similarity is perhaps to be expected
in view of the close formal relationship between the models. Note also the similarity
between the asymptotic regimes involved: the large deviations approximation of Section
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2 becomes more accurate as the number of sources increases and the tail probability
decreases; the bounds (4.5) and (4.7) determine κ, and hence effective bandwidths, more
precisely as the buffer size increases and the tail probability decreases.

6. Concluding remarks

For various simple models of a multi-class queue we have seen that there exists a
notion of effective bandwidth, such that the queue can deliver its performance guarantee
by limiting the sources served so that the inequality (1.2) is satisfied. To illustrate the
utility of this concept, we briefly mention two issues of current interest. First, how
finely should sources be classified? For example, if the sources of a particular class could
be identified as belonging to distinct subclasses, then this is likely to be worthwhile
only if the subclasses have substantially differing effective bandwidths. The analysis of
earlier sections helps quantify and explore this issue. Secondly, consider the problem of
connection acceptance control. Suppose that new sources of class j request connection in
a Poisson stream of rate gj and that, if accepted, a source of class j remains connected
for a holding period with mean hj . One possible connection acceptance control is to
accept a new source provided the vector n = (n1, n2, . . . , nJ ) remains such that equation
(1.2) is satisfied. This connection acceptance control will certainly ensure that the queue
delivers its performance guarantee. However it can have a serious drawback in overload:
if the capacity C is large, but the effective offered traffic

∑

j gjhjαj is larger still, then the
sources accepted will be biased towards those with low effective bandwidths. Indeed the
probability of connection for a new source of class j will be approximately exp(−yαj),
for some positive constant y, and thus will decay rapidly with the effective bandwidth
αj (see [14]). This difficulty is well understood in circuit-switched networks, and is dealt
with by the technique known as trunk reservation : accept a call of class j if and only if
the vector n remains such that

J
∑

i=1

αini ≤ C − rj ,

where rj ≥ 0. By choosing higher values of rj to accompany lower values of αj , for
example, high bandwidth connections can be protected in overload. Work in progress
concerns how such connection acceptance controls can be generalized to deal with sources
and queues whose parameters are dynamically estimated.
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