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In the design of large scale communication networks, a major practical concern

is the extent to which control can be decentralized. A decentralized approach to

flow control has been very successful as the Internet has evolved from a small

scale research network to today’s interconnection of hundreds of millions of hosts;

but, it is beginning to show signs of strain. In developing new end-to-end pro-

tocols, the challenge is to understand just which aspects of decentralized flow

control are important. One may start by asking how should capacity be shared

among users? Or, how should flows through a network be organized, so that

the network responds sensibly to failures and overloads? Additionally, how can

routing, flow control and connection acceptance algorithms be designed to work

well in uncertain and random environments?

One of the more fruitful theoretical approaches has been based on a framework

that allows a congestion control algorithm to be interpreted as a distributed

mechanism solving a global optimization problem; for some overviews see [1, 2, 3].

Primal algorithms, such as the Transmission Control Protocol (TCP), broadly

correspond with congestion control mechanisms where noisy feedback from the

network is averaged at endpoints, using increase and decrease rules of the form

first developed by Jacobson [4]. Dual algorithms broadly correspond with more

explicit congestion control protocols where averaging at resources precedes the

feedback of relatively precise information on congestion to endpoints. Examples

of explicit congestion control protocols include the eXplicit Control Protocol

(XCP) [5] and the Rate Control Protocol (RCP) [6, 7, 8].

Currently, there is considerable interest in explicit congestion control. A major

motivation is that it may allow the design of a fair, stable, low loss, low delay

and high utilization network. In particular, explicit congestion control should

allow short flows to complete quickly, and also provides a natural framework

for charging. In this Chapter we review some of the theoretical background on

explicit congestion control, and provide some new results focused especially on

admission management.

In Section 1.1 we describe the notion of proportional fairness, within a math-

ematical framework for rate control which allows us to reconcile potentially con-

flicting notions of fairness and efficiency, and exhibits the intimate relationship

between fairness and charging. RCP uses explicit feedback from routers to allow

fast convergence to an equilibrium and in Section 1.2 we outline a proportionally
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fair variant of the Rate Control Protocol designed for use in a network where

queues are small. In Section 1.3 we focus on admission management of flows

where we first describe a step-change algorithm that allows new flows to enter

the network with a fair, and high, starting rate. We then study the robustness

of this algorithm to sudden, and large, changes in load. In particular, we explore

the key trade-off in the design of an admission management algorithm: namely

the trade-off between the desired utilization of network resources and the scale

of a sudden burst of newly arriving traffic that the network can handle without

buffer overload. Finally, in Section 1.4, we provide some concluding remarks.

1.1 Fairness

A key question in the design of communication networks is just how should

available bandwidth be shared between competing users of a network? In this

Section we describe a mathematical framework which allows us to address this

question.

Consider a network with a set J of resources . Let a route r be a non-empty

subset of J , and write j ∈ r to indicate that route r passes through resource

j. Let R be the set of possible routes. Set Ajr = 1 if j ∈ r, so that resource j

lies on route r, and set Ajr = 0 otherwise. This defines a 0 − 1 incidence matrix

A = (Ajr , j ∈ J, r ∈ R).

Suppose that route r is associated with a user, representing a higher level

entity served by the flow on route r. Suppose if a rate xr > 0 is allocated to

the flow on route r then this has utility Ur(xr) to the user. Assume that the

utility Ur(xr) is an increasing, strictly concave function of xr over the range

xr > 0 (following Shenker [9], we call traffic that leads to such a utility function

elastic traffic). To simplify the statement of results, we shall assume further that

Ur(xr) is continuously differentiable, with U ′
r(xr) → ∞ as xr ↓ 0 and U ′

r(xr) → 0

as xr ↑ ∞.

Assume further that utilities are additive, so that the aggregate utility of

rates x = (xr , r ∈ R) is
∑

r∈R Ur(xr). Let U = (Ur(·), r ∈ R) and C = (Cj , j ∈

J). Under this model the system optimal rates solve the following problem.

SY STEM(U, A, C):

maximize
∑

r∈R

Ur(xr)

subject to Ax ≤ C

over x ≥ 0.

While this optimization problem is mathematically fairly tractable (with a

strictly concave objective function and a convex feasible region), it involves utili-

ties U that are unlikely to be known by the network. We are thus led to consider

two simpler problems.
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Suppose that user r may choose an amount to pay per unit time, wr, and

receives in return a flow xr proportional to wr, say xr = wr/λr, where λr could

be regarded as a charge per unit flow for user r. Then the utility maximization

problem for user r is as follows.

USERr(Ur; λr):

maximize Ur

(

wr

λr

)

− wr

over wr ≥ 0.

Suppose next that the network knows the vector w = (wr , r ∈ R), and attempts

to maximize the function
∑

r wr log xr. The network’s optimization problem is

then as follows.

NETWORK(A, C; w):

maximize
∑

r∈R

wr log xr

subject to Ax ≤ C

over x ≥ 0.

It is known [10, 11] that there always exist vectors λ = (λr , r ∈ R), w = (wr, r ∈

R) and x = (xr , r ∈ R), satisfying wr = λrxr for r ∈ R, such that wr solves

USERr(Ur; λr) for r ∈ R and x solves NETWORK(A, C; w); further, the vec-

tor x is then the unique solution to SY STEM(U, A, C).

A vector of rates x = (xr, r ∈ R) is proportionally fair if it is feasible, that

is x ≥ 0 and Ax ≤ C, and if for any other feasible vector x∗, the aggregate of

proportional changes is zero or negative:

∑

r∈R

x∗
r − xr

xr
≤ 0. (1.1)

If wr = 1, r ∈ R, then a vector of rates x solves NETWORK(A, C; w) if and

only if it is proportionally fair. Such a vector is also the natural extension of

Nash’s bargaining solution, originally derived in the special context of two users

[12], to an arbitrary number of users, and, as such, satisfies certain natural axioms

of fairness [13, 14].

A vector x is such that the rates per unit charge are proportionally fair if x is

feasible, and if for any other feasible vector x∗

∑

r∈R

wr
x∗

r − xr

xr
≤ 0. (1.2)

The relationship between the conditions (1.1) and (1.2) is well illustrated when

wr , r ∈ R, are all integral. For each r ∈ R, replace the single user r by wr identical

sub-users, construct the proportionally fair allocation over the resulting
∑

r wr

users, and provide to user r the aggregate rate allocated to its wr sub-users; then

the resulting rates per unit charge are proportionally fair. It is straightforward
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to check that a vector of rates x solves NETWORK(A, C; w) if and only if the

rates per unit charge are proportionally fair.

1.1.1 Why proportional fairness?

RCP approximates the processor-sharing queueing discipline when there is a

single bottleneck link, and hence allows short flows to complete quickly [15, 7].

For the processor-sharing discipline at a single bottleneck link, the mean time

to transfer a file is proportional to the size of the file, and is insensitive to

the distribution of file sizes [16, 15]. Proportional fairness is the natural network

generalization of processor-sharing, with a growing literature showing that it has

exact or approximate insensitivity properties [17, 18] and important efficiency

and robustness properties [19, 20].

In their study of multihop wireless networks, Le Boudec and Radunovic [20]

highlight that proportional fairness achieves a good trade-off between efficiency

and fairness, and recommend that metrics for the rate performance of mobile ad

hoc networking protocols be based on proportional fairness. We also highlight

the two-part paper series [21] that study the use of proportional fairness as the

basis for resource allocation and scheduling in multi-channel multi-rate wireless

networks. Among numerous aspects of their study, the authors conclude that the

proportional fairness solution simultaneously achieves higher system throughput,

better fairness, and lower outage probability with respect to the default solution

given by today’s 802.11 commercial products.

Briscoe [22] has eloquently made the case for cost fairness, that is, rates per

unit charge that are proportionally fair. As Briscoe discusses, it does not nec-

essarily follow that users should pay according to the simple model described

above; for example if users prefer ISPs to offer flat rate subscriptions. But to

avoid perverse incentives, accountability should be based on cost fairness. For

example, ISPs might want to limit the congestion costs their users can cause,

not just charge them for whatever unlimited costs they cause.

In the next Section we show that the Rate Control Protocol may be adapted

to achieve cost fairness, and further that it is possible to show convergence, to

equilibrium, on the rapid time scale of round-trip times.

1.2 Proportionally fair rate control protocol

In this Section we recapitulate the proportionally fair variant of RCP introduced

in [23]. The framework we use is based on fluid models of packet flows where the

dynamics of the fluid models allows the machinery of control theory to be used

to study stability on the fast time scale of round-trip times.

Buffer sizing is an important issue in the design of end-to-end protocols. In

rate controlled networks, if links are run close to capacity, then buffers need to

be large, so that new flows can be given a high starting rate. However, if links
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are run with some spare capacity, then this may be sufficient to cope with new

flows, and allow buffers to be small. Towards the goal of a low delay and low

loss network, it is imperative to strive to keep queues small. In such a regime,

the queue size fluctuations are very fast – so fast that it is impossible to control

the queue size. Instead, as described in [24, 25], protocols act to control the

distribution of queue size. Thus, on the time-scale relevant for convergence of the

protocol it is then the mean queue size that is important. This simplification of

the treatment of queue size allows us to obtain a model that remains tractable

even for a general network topology. Next we describe our network model of RCP

with small queues, designed to allow buffers to be small.

Recall that we consider a network with a set J of resources and a set R of

routes. A route r is identified with a non-empty subset of J , and we write j ∈ r to

indicate that route r passes through resource j. For each j, r such that j ∈ r, let

Trj be the propagation delay from the source of flow on route r to the resource

j, and let Tjr be the return delay from resource j to the source. Then

Trj + Tjr = Tr j ∈ r, r ∈ R, (1.3)

where Tr is the round-trip propagation delay on route r: the identity (1.3) is a

direct consequence of the end-to-end nature of the signalling mechanism, whereby

congestion on a route is conveyed via a field in the packets to the destination,

which then informs the source. We assume queueing delays form a negligible

component of the end-to-end delay - this is consistent with our assumption of

the network operating with small queues.

Our small queues fair RCP variant is modelled by the system of differential

equations

d

dt
Rj(t) =

aRj(t)

CjT j(t)
(Cj − yj(t) − bjCjpj(yj(t))) (1.4)

where

yj(t) =
∑

r:j∈r

xr(t − Trj) (1.5)

is the aggregate load at link j, pj(yj) is the mean queue size at link j when the

load there is yj , and

T j(t) =

∑

r:j∈r xr(t)Tr
∑

r:j∈r xr(t)
(1.6)

is the average round-trip time of packets passing through resource j. We suppose

the flow rate xr(t) leaving the source of route r at time t is given by

xr(t) = wr





∑

j∈r

Rj(t − Tjr)
−1





−1

. (1.7)
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We interpret these equations as follows. Resource j updates Rj(t), the nominal

rate of a flow which passes through resource j alone, according to equation (1.4).

In this equation the term Cj − yj(t) represents a measure of the rate mismatch,

at time t, at resource j, while the term bjCjpj(yj(t)) is proportional to the mean

queue size at resource j. Equation (1.7) gives the flow rate on route r as the

product of the weight wr and reciprocal of the sum of the reciprocals of the

nominal rates at each of the resources on route r. Note that equations (1.5) and

(1.7) make proper allowance for the propagation delays, and the average round-

trip time (1.6) of packets passing through resource j scales the rate of adaptation

(1.4) at resource j.

The computation (1.7) can be performed as follows. If a packet is served by

link j at time t, Rj(t)
−1 is added to the field in the packet containing the indi-

cation of congestion. When an acknowledgement is returned to its source, the

acknowledgement feedbacks the sum, and the source sets its flow rate equal to

the returning feedback to the power of −1.

A simple approximation for the mean queue size is as follows. Suppose that

the workload arriving at resource j over a time period τ is Gaussian, with mean

yjτ and variance yjτσ2
j . Then the workload present at the queue is a reflected

Brownian motion [26], with mean under its stationary distribution of

pj(yj) =
yjσ

2
j

2(Cj − yj)
. (1.8)

The parameter σ2
j represents the variability of resource j’s traffic at a packet

level. Its units depend on how the queue size is measured: for example, packets

if packets are of constant size, or Kilobits otherwise.

At the equilibrium point y = (yj , j ∈ J) for the dynamical system (1.4-1.8) we

have

Cj − yj = bjCjpj(yj). (1.9)

From equations (1.8-1.9) it follows that at the equilibrium point

p′j(yj) =
1

bjyj
. (1.10)

Observe that in the above model formulation there are two forms of feedback:

rate mismatch and queue size.

1.2.1 Sufficient conditions for local stability

For the RCP dynamical system, depending on the form of feedback that is

incorporated in the protocol definition one may exhibit two simple sufficient

conditions for local stability; for the requisite derivations and associated analysis

see [23].
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Local stability with feedback based on rate mismatch and queue size. A sufficient

condition for the dynamical system (1.4-1.8) to be locally stable about its equi-

librium point is that

a <
π

4
. (1.11)

Observe that this simple decentralized sufficient condition places no restriction

on the parameters bj, j ∈ J , provided our modelling assumptions are satisfied.

The parameter a controls the speed of convergence at each resource, while

the parameter bj controls the utilization of resource j at the equilibrium point.

From (1.8-1.9) we can deduce that the utilization of resource j is

ρj ≡
yj

Cj
= 1 − σj

(

bj

2
·

yj

Cj

)1/2

and hence that

ρj =





(

1 +
σ2

j bj

8

)1/2

−

(

σ2
j bj

8

)1/2




2

= 1 − σj

(

bj

2

)1/2

+ O(σ2
j bj).

(1.12)

For example, if σj = 1, corresponding to Poisson arrivals of packets of

constant size, then a value of bj = 0.022 produces a utilization of 90%.

Local stability with feedback based only on rate mismatch. One may also derive

an alternative sufficient condition for local stability. If the parameters bj are all

set to zero, and the algorithm uses as Cj not the actual capacity of resource j,

but instead a target, or virtual, capacity of say 90% of the actual capacity, then

this too will achieve an equilibrium utilization of 90%. In this case the equivalent

sufficient condition for local stability is

a <
π

2
. (1.13)

Although the presence of a queueing term is associated with a smaller choice for

the parameter a − note the factor two difference between conditions (1.11) and

(1.13) − nevertheless the local responsiveness is comparable, since the queueing

term contributes roughly the same feedback as the term measuring rate mis-

match.

1.2.2 Illustrative simulation

Next we illustrate our small queue variant of the RCP algorithm with a simple

packet level simulation in the case where there is feedback based only on rate

mismatch.
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The network simulated has a single resource, of capacity one packet per unit

time and a 100 sources that each produce Poisson traffic. Let us motivate a

simple calculation. Assume that the round-trip time is 10000 units of time. Then

assuming a packet size of 1000 bytes, this would translate into a service rate of

100Mbytes/s, and a round-trip time of 100ms, or a service rate of 1 Gbyte/s

and a round-trip time of 10ms. The figures bearing observations or traces from

packet-level simulations were produced using a discrete event simulator of packet

flows in RCP networks where the links are modelled as FIFO queues. The round-

trip times that are simulated are in the range of 1000 to 100, 000 units of time.

In our simulations, as the queue term is absent from the feedback, i.e. b = 0, we

set a = 1 and replace C with γC for γ ∈ [0.7, · · · , 0.90] in the protocol definition.

The simulations were started close to equilibrium.

Figure 1.1 show the comparison between theory and the simulation results,

when the round-trip times are in the range of 1, 000 to 100, 000 units of time.

Observe the variability of the utilization, measured over one round-trip time,

for shorter round-trip times. This is to be expected, since there would remain

variability in the empirical distribution of queue size. This source of variability

decreases as the bandwidth-delay product increases, and in such a regime there

is excellent agreement between theory and simulations.
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Figure 1.1 Utilization, ρ, measured over one round-trip time, for different values of the
parameter γ with a 100 RCP sources that each produce Poisson traffic.

1.2.3 Two forms of feedback?

Rate controlled communication networks may contain two forms of feedback: a

term based on rate mismatch and another term based on the queue size.
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It has been a matter of some debate whether there is any benefit in including

feedback based on rate mismatch and on queue size. The systems with and

without feedback based on queue size give rise to different nonlinear equations;

but, notwithstanding an innocuous-looking factor of two difference, they both

yield decentralized sufficient conditions to ensure local stability.

Thus far, as methods based on linear systems theory have not offered a pre-

ferred design recommendation – note the simple factor two difference between

conditions (1.11) and (1.13) – for further progress it is quite natural to employ

nonlinear techniques. For a starting point for such an investigation see [27], where

the authors investigate some nonlinear properties of RCP with a conclusion that

favours the system whose feedback is based only on rate mismatch.

1.2.4 Tatonnement processes

Mechanisms by which supply and demand reach equilibrium have been a cen-

tral concern of economists, and there exists a substantial body of theory on

the stability of what are termed tatonnement processes [28]. From this view-

point, the rate control algorithm described in this Section is just a particu-

lar embodiment of a Walrasian auctioneer searching for market clearing prices.

The Walrasian auctioneer of tatonnement theory is usually considered a rather

implausible construct; however, we showed that the structure of a communica-

tion network presents a rather natural context within which to investigate the

consequences for a tatonnement process.

In this Section, we showed how the proportionally fair criteria could be imple-

mented in a large scale network. In particular, it was highlighted that a simple

rate control algorithm can provide stable convergence to proportional fairness

per unit charge, and be stable even in the presence of random queuing effects

and propagation time delays.

A key issue, however, is how new flows should be admitted to such a network,

a theme that we pursue in the next Section. The issue of buffer sizing in rate

controlled networks is a topical one and the reader is referred to [29], and ref-

erences therein, for some recent work in this regard. However, our focus in this

Chapter will be on developing the admission management process of [23].

1.3 Admission management

In explicit congestion controlled networks when a new flow arrives, it expects to

learn, after one round-trip time, of its starting rate. So an important aspect in

the design of such networks is the management of new flows; in particular, a key

question is the scale of the step-change in rate that is necessary at a resource to

accommodate a new flow. We show that, for the variant of RCP considered here,

this can be estimated from the aggregate flow through the resource, without

knowledge of individual flow rates.
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We first describe, in Section 1.3.1, how a resource should estimate the impact

upon it of a new flow starting. This suggests a natural step-change algorithm

for a resource’s estimate of its nominal rate. In the remainder of this Section

we explore the effectiveness of the admission management procedure based on

the step-change algorithm to large, and sudden, variations in the load on the

network.

1.3.1 Step-change algorithm

In equilibrium, the aggregate flow through resource j is yj, the unique value

such that the right hand side of (1.4) is zero. When a new flow, r, begins trans-

mitting, if j ∈ r, this will disrupt the equilibrium by increasing yj to yj + xr.

Thus, in order to maintain equilibrium, whenever a flow, r, begins Rj needs to

be decreased, for all j with j ∈ r.

According to (1.5)

yj =
∑

r:j∈r

wr

(

∑

k∈r

R−1

k

)−1

and so the sensitivity of yj to changes in the rate Rj is readily deduced to be

∂yj

∂Rj
=

yjxj

R2
j

(1.14)

where

xj =

∑

r:j∈r xr

(
∑

k∈r R−1

k

)−1

∑

r:j∈r xr
.

This xj is the average, over all packets passing through resource j, of the

unweighted fair share on the route of a packet.

Suppose now that when a new flow r, of weight wr, arrives, it sends a request

packet through each resource j on its route, and suppose each resource j, on

observation of this packet, immediately makes a step-change in Rj to a new

value

Rnew
j = Rj ·

yj

yj + wrRj
. (1.15)

The purpose of the reduction is to make room at the resource for the new flow.

Although a step-change in Rj will take time to work through the network, the

scale of the change anticipated in traffic from existing flows can be estimated

from (1.14) and (1.15) as

(Rj − Rnew
j ) ·

∂yj

∂Rj
= wrxj ·

yj

yj + wrRj
.

Thus the reduction aimed for from existing flows is of the right scale to allow one

extra flow at the average of the wr-weighted fair share through resource j. Note
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that this is achieved without knowledge at the resource of the individual flow

rates through it, (xr, r : j ∈ r): only knowledge of their equilibrium aggregate yj

is used in expression (1.15), and yj may be determined from the parameters Cj

and bj as in (1.9).

We now describe an important situation of interest.

Large and sudden changes in the number of flows. It is quite natural to ask about

the robustness of any protocol to sudden, and large, changes in the number of

flows. A network should be able to cope sensibly to local surges in traffic. Such

surges in traffic could simply be induced by a sudden increase in the number of

users wishing to use a certain route. Or, such a surge may be induced by the

failure of a link, where a certain fraction, or all of the load is transferred to a

link which is still in operation.

1.3.2 Robustness of the step-change algorithm

In this subsection we briefly analyse the robustness of the admission control

process based on the above step-change algorithm against large, and sudden,

increases in the number of flows.

Consider the case where the network consists of a single link j with equi-

librium flow rate yj. If there are n identical flows, then at equilibrium Rj =

yj/n. When a new flow begins, the step-change (1.15) is performed and Rj

becomes Rnew
j = yj/(n + 1). Hence equilibrium is maintained. Now suppose

that m new flows begin at the same time. Once the m flows have begun,

Rj should approach yj/(n + m). However, each new flow’s request for band-

width will be received one at a time. Thus the new flows will be given rates

yj/(n + 1), yj/(n + 2), . . . , yj/(n + m). So when the new flows start transmit-

ting, after one round-trip time, the new aggregate rate through j, ynew
j will

approximately be

ynew
j ≈ n

yj

n + m
+

∫ n+m

n

yj

u
du.

If we let ǫ = m/n, we have

ynew
j ≈ yj

(

1

1 + ǫ
+ log(1 + ǫ)

)

. (1.16)

For the admission control process to be able to cope when the load is increased

by a proportion ǫ, we simply require ynew
j to be less than the capacity of link

j. Direct calculation shows that if the equilibrium value of yj is equal to 90%

of capacity, then (1.16) allows an increase in the number of flows of up to 66%.

Furthermore, if at equilibrium yj is equal to 80% of capacity, then the increase in

the number of flows can be as high as 122% without ynew
j exceeding the capacity

of the link.
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Figure 1.2 Utilization one can expect to achieve and still be robust against an ǫ%
sudden increase in load; numerical values computed from (1.16).

1.3.3 Guidelines for network management

Figure 1.2 highlights the trade-off between the desired utilization of network

resources and the scale of a sudden burst of newly arriving traffic that the

resource can absorb. The above analysis and discussion revolves around a single

link, but it does provide a simple rule of thumb guideline for choosing parameters

such as bj or Cj . If one takes ǫ to be the largest plausible increase in load that

the network should be able to withstand, then from (1.16), one can calculate

the value of yj which gives ynew
j equal to capacity. This value of yj can then be

used to choose bj or Cj , using the equilibrium relationship Cj − yj = bjCjpj(yj).

There are two distinct regimes that are possible after a sudden increase in the

number of flows:

1. If, after the increase, the load yj remains less than the capacity Cj , then we

are in a regime where the queue remains stable. Its stationary distribution

(1.8) will have an increased mean and variance, but will not depend on the

bandwidth-delay product.

2. If, after the increase, the load yj exceeds Cj , then we are in a regime where

the queue is unstable, and in order to prevent packet drops it is necessary for

the buffer to store an amount proportional to the excess bandwidth times the

delay.

The approach we advise is to select buffer sizes and utilizations to cope with

the first regime, and to allow packets to be dropped rather than stored in the

second regime. The second regime should occur rarely if the target utilization is

chosen to deal with plausible levels of sudden overload.
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1.3.4 Illustrating the utilization-robustness trade-off

We first recapitulate the processes involved in admitting a new flow into an RCP

network. A new flow first transmits a request packet through the network. The

links, on detecting the arrival of the request packet, perform the step-change

algorithm to make room at the respective resources for the new flow. After one

round-trip time the source of the flow receives back acknowledgement of the

request packet, and starts transmitting at the rate (1.7) that is conveyed back.

This procedure allows a new flow to reach near equilibrium within one round-

trip time. We now illustrate, via some simulations, the admission management

procedure for dealing with newly arriving flows.

We wish to exhibit the trade-off between a target utilization, and the impact

at a resource of a sudden and large increase in load. Consider a simple network,

depicted in Figure 1.3, consisting of 5 links where we do not include feedback

based on queue size in the RCP definition and the end-systems produce Poisson

traffic. In our simulations, as the queue term is absent from the feedback, i.e.

b = 0, we replace Cj with γjCj for γj < 1, in the protocol definition, in order to

aim for a target utilization. The value of a was set at 0.367 ≈ 1/e, to ensure that

the system is well within the sufficient condition for local stability. In our exper-

iments, links A, B, C and D each start with 20 flows operating in equilibrium.

Each flow uses link X and one of links A, B, C or D. So, for example, a request

packet originating from flows entering link C, would first go through link C and

then link X before returning back to the source.

A

B

C

D

X

Figure 1.3 Toy network used, in packet-level simulations, to illustrate the process of
admitting new flows into a RCP network The links labelled A, B, C, D and X have a
capacity of 1, 10, 1, 10 and 20 packets per unit time, respectively. The physical
transmission delays on links A, B and X are 100 time units and on links C and D are
1000 time units.

The experiment we conduct is as follows. The target utilization at all the links

is set at 90%, and the scenarios we consider are a 50%, a 100%, and then a 200%

instantaneous increase in the number of flows. The choice of these numbers is

guided by the robustness analysis above, which is illustrated in Figure 1.2. Since

our primary interest is to explore the impact at the resource of a sudden, and
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instantaneous, increase in load we shall exhibit the impact at one of the ingress

links, i.e. link C.

When dealing with new flows there are two quantities that we wish to observe

at the resource: the impact on the rate, and the impact on the queue size. In

Figure 1.4 (a) (b) (c), the necessary step-change in rate required to accommodate

the new flows is clearly visible. The impact on the queue sizes is, however, more

subtle. In Figure 1.4 (a), which corresponds to a 50% increase in the number of

flows, observe the minor spike in the queue at approximately 4000 time units.

The spike in queue size gets more visible when we have a 100% increase in the

number of flows; see Figure 1.4 (b). The spike lasts for approximately 2200 time

units which is twice the sum of the physical propagation delays along links C

and X; the round-trip time of flows originating at link C. With a 200% increase

in the number of flows, this spike is extremely pronounced and in fact pushes the

peak of the queue close to 300 packets; see Figure 1.4 (c). However, the queue

does return to its equilibrium state, approximately one round-trip time later.

Figure 1.4 (a) illustrates the first regime described in Section 1.3.3: after the

increase in load the queue remains stable, albeit with an increased mean and

variance. Figures 1.4 (b) and (c) illustrate the second regime, where after the

increase the load yj exceeds the capacity Cj . In Figure 1.4 (b) the excess load is

relatively small, and there is only a gentle drift upwards in the queue size, with

random fluctuations still prominent. In Figure 1.4 (c) the excess load, Cj − yj ,

causes an approximately linear increase in the queue size over a period of length

one round-trip time. Recall that these two cases correspond with respectively a

doubling and a tripling of the number of flows.

The above experiments serve to illustrate the trade-off between a target uti-

lization and the impact a large and sudden load would have at a resource. The

step-change algorithm helps to provide a more resilient network; one that is

capable of functioning well even when faced with large surges in localised traffic.

A comprehensive performance evaluation of the step-change algorithm, which

forms an integral part of the admission management process, to demonstrate its

effectiveness in rate controlled networks is left for further study.

1.3.5 Buffer sizing and the step-change algorithm

TCP is today the de facto congestion control standard that is used in most

applications. It’s success, in part, has been due to the fact that it has mainly

operated in wired networks where losses are mainly due to the overflow of a

router’s buffer. TCP has been designed to react to, and cope with, losses; the

multiplicative decrease component in the congestion avoidance phase of TCP

provides a risk averse response when it detects the loss of a packet. Losses, how-

ever, constitute damage to packets. This concern is expected to get compounded

in environments where bit error rates may not be negligible; a characteristic

usually exhibited in wireless networks.
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(a) Impact on link C of a 50% instantaneous increase in the number of flows.
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(b) Impact on link C of a 100% instantaneous increase in the number of flows.
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(c) Impact on link C of a 200% instantaneous increase in the number of flows.

Figure 1.4 Illustration of a scenario with a 50%, 100% then and a 200% increase in the
flows which instantaneously request to be admitted into the network depicted in
Figure 1.3. The target utilization for all the links in the simulated network is 90%.

In rate controlled networks, loss gets decoupled from flow control and it is

possible to maintain small queues in equilibrium and also in challenging situa-

tions. A consequence of this is that buffers, in routers, can be dimensioned to be

much smaller than the currently used bandwidth-delay product rule of thumb

[25] without incurring losses. The role played by the step-change algorithm in

ensuring that the queue size remains bounded is exhibited, and so it forms a

rather natural component of system design; for example, in developing buffer

sizing strategies to minimize packet loss and hence provide a high grade quality

of service.
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1.4 Concluding remarks

Traditionally, stability has been considered an engineering issue, requiring an

analysis of randomness and feedback operating on fast time-scales. On the other

hand, fairness has been considered an economic issue, involving static compar-

isons of utility. In networks of the future this distinction, between engineering

and economic issues, is likely to lessen and will increase the importance of an

inter-disciplinary perspective. Such a perspective was pursued in this Chapter

where we explored issues relating to fairness, charging, stability, feedback and

admission management in a step towards the design of explicit congestion con-

trolled networks.

A key concern in the development of modern communication networks is charg-

ing and the mathematical framework described enabled us to exhibit the inti-

mate relationship between fairness and charging. Max-min fairness is the most

commonly discussed fairness criteria in the context of communication networks.

However, it is not the only possibility and we highlighted the role played by

proportional fairness in various design considerations ranging from charging,

stability and admission management.

Analysis of the fair variant of RCP on the time scale of round-trip times reveals

an interesting relationship between the forms of feedback and stability. Incorpo-

rating both forms of feedback, i.e. rate mismatch and queue size, is associated

with a smaller choice for the RCP control parameter. Nevertheless, close to the

equilibrium we expect the local responsiveness of the protocol to be compara-

ble, since the queueing term contributes approximately the same feedback as the

term measuring rate mismatch. Analysis of the system far away from equilibrium

certainly merits attention; however, it is debatable if both forms of feedback are

indeed essential and this issue needs to be explored in greater detail.

As networks grow in both scale and complexity, mechanisms that may allow

the self regulation of large scale communication networks are especially appeal-

ing. In a step towards this goal, the automated management of new flows plays

an important role in rate controlled networks and the admission management

procedure outlined does appear attractive. The step-change algorithm that is

invoked at a resource to accommodate a new flow is simple, in the sense that the

requisite computation is done without knowledge of individual flow rates. It is

also scalable, in that it is suitable for deployment in networks of any size. Addi-

tionally, using both analysis and packet level simulations, we developed insight

into a fundamental design aspect of an admission management process: there is

a trade-off between the desired utilization and the ability of a resource to absorb,

and hence be robust towards, sudden and large variations in load.

In the design of any new end-to-end protocol there is considerable interest in

how simple, local and microscopic rules, often involving random actions, can

produce coherent and purposeful behaviour at the macroscopic level. Towards

the quest for desirable macroscopic outcomes, the architectural framework
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described in this Chapter may allow the design of a fair, stable, low loss, low

delay, high utilization and a robust communication network.
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