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1. Introduction
In a recent paper of the first three authors (Anderson
et al. 2006), a contract and balancing mechanism was
proposed as a method for sharing capacity in a com-
munication network. It was shown that, with n ≥ 2
players contracting for capacity on a single link over a
time period �0�1�, there is a unique Nash equilibrium
for the contract quantities:

Proposition 2 (Anderson et al. 2006). Under price
complementarity, and assuming that all players follow a
price-taking policy, there is a unique Nash equilibrium for
the contract quantities yi, i = 1�2� � � � �n. At the Nash
equilibrium, the time-averaged expected price is equal to
the cost per unit of capacity,∫ 1

0
Ɛ�p	t��dt = c� (1)

and player i’s optimal choice of contract quantity yi satis-
fies the following equation:

yi =
∫ 1
0 Ɛ�p	t�Di	t� p	t���dt∫ 1

0 Ɛ�p	t��dt
� (2)

Here, Di	t� p	t�� is the price-dependent demand
function for player i. Later, a stylized network model

was discussed, with a set of links J , and each player
associated with a route r which is a subset of J .
The following partial generalization of Proposition 2
was stated:

Proposition 3 (Anderson et al. 2006). If yr , r ∈R,
is a Nash equilibrium at which yr > 0, r ∈R, then yr sat-
isfies the equation

yr =
∫ 1
0 Ɛ�wr	t�Dr	t� pr 	t���dt∫ 1

0 Ɛ�wr	t��dt
� (3)

where wr	t� = �pr 	t�/�yr . Further, the time-averaged ex-
pected price on link j is equal to cj , the cost per unit of
capacity on link j , i.e.,∫ 1

0
Ɛ�pj 	t��dt = cj � (4)

However, as found by the fourth author of this
note, a crucial step in the proof of Proposition 3 is
flawed, and in fact the result does not hold in gen-
eral. The purpose of this note is to prove that, when
demand is deterministic and does not vary with time,
Proposition 3 does hold. Furthermore, we present two
counterexamples to the original Proposition 3 to show
that these two additional assumptions are necessary.
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We recall some results and assumptions in Ander-
son et al. (2006). The set of routes R includes �j� for
each j ∈ J , which ensures that the link-route incidence
matrix has rank J . The demand on each link j ∈ J can-
not exceed the total capacity, that is,

∑
r� j∈r

Dr	t� pr 	t��≤
∑
r� j∈r

yr� (5)

and the price complementarity assumption asserts that if
strict inequality holds in (5), then pj = 0 and �pj	t�/
�yj = 0. Also, on each route r ∈ R, the price pr	t�
satisfies

pr	t�=
∑
j∈r

pj 	t�� (6)

The demand functions Dr	t� pr 	t�� for each r ∈ R
are decreasing and continuously differentiable func-
tions of the respective prices pr	t�. Finally, following
Anderson et al. (2006), we shall use the approxima-
tions that

�pr 	t�

�yr
=∑

j∈r

�pj 	t�

�yj
� r ∈R� (7)

�pr 	t�

�yj
= �pj	t�

�yj
� r ∈R� j ∈ r� (8)

We will need to make use of an additional property
of the derivatives �pj	t�/�yj , which did not appear in
Anderson et al. (2006) Suppose that for each j ∈ J ,
equality holds in (5); differentiating with respect to yj ,
and noting that yj = y�j� appears once in the sum on
the right-hand side of (5), we have

∑
r� j∈r

D′
r 	t� pr 	t��

�pr 	t�

�yj
= 1� (9)

and using assumption (8),

∑
r� j∈r

D′
r 	t� pr 	t��

�pj	t�

�yj
= 1�

Because the demand functions Dr are decreasing, this
implies that �pj	t�/�yj < 0. On the other hand, if
equality does not hold in (5), then by price comple-
mentarity, �pj	t�/�yj = 0. It follows that

�pj	t�

�yj
≤ 0� j ∈ J � t ∈ �0�1�� (10)

Finally, let us explicitly state that on each link j ∈ J ,
the cost per unit of capacity cj is strictly positive:

cj > 0� j ∈ J � (11)

2. Two Counterexamples
In the original proof of Proposition 3, the error pro-
ceeds that the fact that the fourth displayed equa-
tion from the end cannot be written in the form
ATz= 0 as claimed. We first present a counterexample
to the proposition in the case where demand is time
dependent.
We consider a network with two links, J = �1�2�,

and three routes R= ��1�� �2�� �1�2��; this corresponds
to three nodes connected together in a path. For
each r ∈ R, we take the demand function to be
Dr	t� pr 	t��= �r	t�/pr 	t�, recalling that p12	t� = p1	t�+
p2	t�, and set up the costs c1, c2 and parameters �1	t�,
�2	t�, �12	t� as follows:

c1 = 8 �1	t�=
{
4� 0≤ t ≤ 1

2�

72� 1
2 < t ≤ 1�

c2 = 2 �2	t�=
{
0� 0≤ t ≤ 1

2�

16� 1
2 < t ≤ 1�

�12	t�=
{
16� 0≤ t ≤ 1

2�

0� 1
2 < t ≤ 1�

The first-order conditions for a Nash equilibrium are

∑
j∈r

(
cj −

∫ 1
0
pj	t�dt

)

=∑
j∈r

∫ 1
0

[
�yr −Dr	t� pr 	t���

�pj	t�

�yj

]
dt� r ∈R� (12)

The form of the demand functions together with price
complementarity ensure that equality holds in rela-
tion (5) for j = 1�2. We solve (5) for the prices p1, p2
and (9) for the derivatives, giving

p1	t�=
{
2� 0≤ t≤ 1

2�

12� 1
2<t≤1� p2	t�=

{
2� 0≤ t≤ 1

2�

4� 1
2<t≤1�

�p1	t�

�y1
=
{
−1� 0≤ t≤ 1

2�

−2� 1
2<t≤1�

�p2	t�

�y2
=
{
−2� 0≤ t≤ 1

2�

−1� 1
2<t≤1�

and find that conditions (12) are met with contract
quantities

y1 = 4� y2 = 2� y12 = 2�

However, we can check that the conclusion of Propo-
sition 3, essentially that both sides of (12) are zero for
each r ∈R, is not satisfied.
We next construct a counterexample to Proposi-

tion 3 in which demand is stochastic but constant over
the time period �0�1�. In this case, the conditions for
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a Nash equilibrium are

∑
j∈r

	cj − Ɛ	pj ��=
∑
j∈r

Ɛ

[
�yr −Dr	pr ��

�pj

�yj

]
� r ∈R� (13)

In fact, all that is needed is to take the previous coun-
terexample and re-interpret t as a uniform random
variable on �0�1�; so that, for example, �	�1 = 4� =
�	�1 = 72� = 1

2 . Conditions (13) are then seen to be
equivalent to (12), and the demonstration that Propo-
sition 3 does not hold proceeds as before.

3. Stationary Deterministic Demand
In this section, we use relation (10) to demonstrate
that, in the absence of time dependence and stochastic
effects, the conclusions of Proposition 3 are valid.

Proposition 3A. Suppose that each player’s demand
is deterministic and does not vary with time. If yr , r ∈R,
is a Nash equilibrium at which yr > 0, r ∈ R, then Equa-
tions (3) and (4) hold, and simplify to

yr =Dr	pr � (14)

and

pj = cj � (15)

Proof. For each j ∈ J , from (5) we have

cj
∑
r� j∈r

�yr −Dr	pr ��≥ 0

because cj ≥ 0, and
pj

∑
r� j∈r

�yr −Dr	pr ��= 0

by price complementarity. It follows that

∑
j∈J

(
	cj − pj�

∑
r� j∈r

�yr −Dr	pr ��

)
≥ 0�

which we can rearrange to obtain

∑
r∈R

(
�yr −Dr	pr ��

∑
j∈r

	cj − pj�

)
≥ 0� (16)

The first-order conditions for a Nash equilibrium, as
derived in Anderson et al. (2006), require that

∑
j∈r

	cj − pj�= �yr −Dr	pr ��
�pr
�yr

� r ∈R� (17)

substituting this into (16), and applying (7), we de-
duce that

∑
r∈R

∑
j∈r

�yr −Dr	pr ��
2
�pj

�yj
≥ 0�

However, relation (10) means that all the terms in this
double sum are nonpositive, and hence must all be
zero. This means that for all r ∈ R and j ∈ r , either
yr =Dr	pr � or �pj/�yj = 0. Because the set R includes
�j� for each j ∈ J , it follows from Equation (17) that
cj = pj for each j ∈ J .
It remains to show that yr = Dr	pr � for each r ∈R;

this will now follow from (17) provided that �pr/
�yr 	= 0. Because, for each link j ∈ J , pj = cj , which
by assumption (11) is strictly positive, we can use
price complementarity to show that equality holds
in (5). This means that �pj/�yj < 0 as shown above,
and finally, by (7), we have �pr/�yr < 0 for each r ∈R
as required. �
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