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FIG. 1. Instability of blocking probability: 

(i) with one retry (ii) with five retries. 

Then MK is an {17
K 

}-martingale. It is now easy to check the condi­
tions in Ethier and Kurtz (1986, Theorem 1.4, p. 339). Hence, since 
[Mf, Mfl(t) --+ 0 as K --+ 00, we have that MK => o. 

Now along any convergent subsequence of {xK } we can use the con­
tinuous mapping theorem (see, for example, Whitt 1980) to show that 
MK => M for some M. But by the above result we know that M = 0 and 
thus we have (2)-(5) satisfied by the limit of a convergent subsequence. But 
the result now follows since (2)-(5) have a unique solution. (See Arnold 
1973, pp. 50, 57.) • 

From equations (2)-(5) 
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FIG. 2. Trajectories for the limit pr9cess x(·). 

shown is the sample path for a fully connected network starting with the 
same initial configuration as one of the points. The parameters used to 
obtain these simulation results were v = 115, C 120 and the number of 
nodes N = 11. 

Let 

~ { {i (C {j) -} }
.::. = x : Xi =""1 L --:; ; { E (0, 00) , 

t. j=O J. 

a one-dimensional submanifold of the space,6,. The submanifold 2 is a 
natural space to consider: if A(t) is held fixed at a value A then the solution 
to the integral equations (2)-(4) will move exponentially quickly to the 
submanifold 2, to the point parametrised by { v + A. The submanifold 
2 is not closed under the integral equations (2)-(5), but notice the way in 
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FIG. 3. Trajectories for a network with two stable fixed points. 

probability 1 - (1 - B2)2, where B2 is the probability a link is occupied 
above its trunk reservation parameter. 
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FIG. 4. Equilibrium density for the diffusion Z(·). 

blocking state is a lot less stable than the low blocking state for smaller 
values of v but becomes more stable as v increases until finally there is only 
one stable point. In the region of viC for which there are two stable fixed 
points, illustrated in Figure 1(ii), we expect to see tunnelling. Figure 5 
illustrates a sample path for the same network with 1/ = 100.5 where this 

11 
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FIG. 5. Tunnelling between stable fixed points. 

with boundary conditions 

l(y;y) =0 

81(0; y) = 0 x>y
8x 

81(1; y) = 0 y > x.
8x 

So if Xl < X2 < Xa are the three fixed points then we can assess 
stability from I(XliX2) and l(xajx2). 

(19) 

(20) 

as C,K -t 00. 

Equations (19) and (20) show that the low blocking state becomes 
more stable very rapidly as C and K increase. However the high blocking 
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