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Abstract We review two areas of recent research linking proportional fairness
with product form networks. The areas concern, respectively, the heavy traffic
and the large deviations limiting regimes for the stationary distribution of
a flow model, where the flow model is a stochastic process representing the
randomly varying number of document transfers present in a network sharing
capacity according to the proportional fairness criterion. In these two regimes
we postulate the limiting form of the stationary distribution, by comparison
with several variants of the fairness criterion. We outline how product form
results can help provide insight into the performance consequences of resource
pooling.

Keywords Processor sharing ·Multi-path routing · Diffusion approximation ·
Large deviations

1 Introduction

The processor sharing discipline has been of great interest to queueing the-
orists since it was first used to model time-shared computer systems (20).
The discipline provides the two basic features desired in a time-shared sys-
tem, namely, rapid service for short jobs, and the appearance of a processor
continuously available, albeit a processor of varying capacity. The discipline
is also remarkably tractable analytically, a feature it shares with other sym-
metric queues such as the last-come-first-served queue and Erlang’s model of
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a loss system (1; 7; 14). Thus, for example, a processor sharing queue with
Poisson arrivals and independent, arbitrarily distributed service requirements
has the property that the mean sojourn time in the queue of an arriving
job is proportional to the service requirement of that job, with a constant of
proportionality that does not depend upon the overall distribution of service
requirements other than through the distribution’s mean (8).

In recent decades the interest in processor sharing disciplines has extended
to communication networks, where the importance of rapid transfers for short
files has been stressed recently by (11). For a system with multiple constrained
resources there exist several candidates for the natural generalization of proces-
sor sharing, reflecting the ambiguity of what might be meant by fair sharing
in the network context. A conveniently parameterized family, that of α-fair
rate allocations, was introduced in (25). The parameter α lies in the range
(0,∞), and the cases α → 0, α = 1 and α → ∞ correspond respectively to
an allocation which achieves maximum throughput, is proportionally fair or is
max-min fair (25; 29).

Max-min is the fairness criterion most commonly discussed for communi-
cation networks, but it is not the only possibility. Proportional fairness, in
particular, has a claim to be the natural network generalization of processor
sharing, with a growing literature showing that it has exact or approximate
insensitivity properties (22; 23) and important efficiency and robustness prop-
erties (3; 21).

One aim of this paper is to further advance this claim, by reviewing two
areas of recent research linking proportional fairness with product form net-
works. We conjecture the heavy traffic and large deviations behaviour of the
stationary distribution of a flow model that describes the randomly varying
number of flows present in a network sharing capacity according to the propor-
tional fairness criterion. This flow level model is introduced by Massoulié and
Roberts (23). In Sections 5 and 6, we provide support for these conjectures
by studying the heavy traffic and large deviations behaviour of networks of
processor sharing queues. Theorems 1, 2 and 3 establish a close relationship
between networks of processor sharing queues and proportional fairness. Net-
works of processor sharing queues have a product form stationary distribution,
and this suggests product form results may hold for other stochastic systems
that more explicitly incorporate proportionally fair optimization. Some limi-
tations are necessary: the topology of the network under study may result in
modifications of the conjectured product form. In Section 7 we study grid net-
works, a class of network with a specific topology for which we can explicitly
calculate the limiting stationary distribution for the proportionally fair flow
model. In Section 8 we study modified proportional fairness, a variant of pro-
portional fairness. These Sections further refine and motivate our conjectures
for proportionally fair flow models. These conjectures are presented in Section
9.

There is currently considerable interest in multi-path routing within the
Internet, because of its potential to improve reliability, flexibility and efficiency
through resource pooling (33). The model of (23) has been generalized by Han
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et al (12) and Key and Massoulié (19) to allow multi-path routing. A second
aim of this paper is to outline how product form results can help provide
insight into the performance consequences of resource pooling. In particular,
these results suggest an approximation for the mean transfer time of a file in
a network operating with multi-path routing under the proportional fairness
criterion. The approximation is expressed as a simple sum of terms, one for
each resource pool traversed by the file. Under the approximation, the network
shares the remarkable property of a processor sharing queue, that the mean
transfer time of an arriving file is proportional to the size of the file.

2 Flow models, multipath routing and resource pooling

In this section we introduce our model of flow through a congested network.
We begin by defining proportional fairness, in both the uni-path and multi-
path setting, following (16). Then we describe the stochastic process which is
the focus of this paper: the process was introduced and studied by Massoulié
and Roberts (23) as a flow-level model of Internet congestion control, and its
generalization to allow multi-path routing has been studied by Han et al (12)
and Key and Massoulié (19).

2.1 Fair sharing

Consider a network with a set J̄ of resources. Let C̄j > 0 be the capacity of
resource j ∈ J̄ . Let R be the set of possible routes, and suppose that a unit
volume of flow on route r consumes an amount ājr ≥ 0 of resource j for each
j ∈ J̄ , where

∑
j∈J̄ ājr > 0 for each r ∈ R. The simplest case is where we

can identify each route r with a non-empty subset of J̄ , and where ājr = 1
if j ∈ r, and ājr = 0 otherwise. In this case Ā = (ājr, j ∈ J̄ , r ∈ R) is a
0− 1 incidence matrix. Let nr be the number of flows on route r. We also let
J̄ = |J̄ | and R = |R|.

How might the capacities C̄ = (C̄j , j ∈ J̄ ) be shared over the routes R?
An allocation policy Λ(n) = (Λr(n), r ∈ R) ∈ RR

+ is called proportionally fair
if ∀n ∈ RR

+, ΛPF
r (n) = 0 when nr = 0 and ΛPF (n) solves1

maximise
∑

r∈R
nr log Λr (2.1)

subject to
∑

r∈R
ājrΛr ≤ C̄j , j ∈ J̄ , (2.2)

over Λr ≥ 0, r ∈ R. (2.3)

More generally, an allocation policy is feasible if each allocation Λ(n) satisfies
constraints (2.2-2.3) ∀n ∈ RR

+.

1 We assume throughout this paper that xlogx = 0 for x = 0, and we adopt the convention
that 00 = 1.
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2.2 Multi-path routing and resource pooling

Next we describe a generalization of the earlier model that allows multi-path
routing. Let S be a set of source-destination pairs where s ∈ S is a non-
empty subset of the set of routes R: we interpret r ∈ s as indicating that the
route r is available to carry flow between the source-destination pair s. Let
Hsr = 1 if r ∈ s, and let Hsr = 0 otherwise. Thus H is an incidence matrix
containing only zeros and ones, and

∑
s∈S Hsr = 1 for each r ∈ R. Here we

consider n = (ns : s ∈ S), where we let ns be the number of flows between
source-destination pair s. We also let S = |S|.

In this multi-path setting, an allocation policy Λ(n) = (Λs(n), s ∈ S) ∈ RS
+

is called proportionally fair if ∀n ∈ RS
+, ΛPF

s (n) = 0 when ns = 0 and ΛPF (n)
solves

maximise
∑

s∈S
ns log Λs (2.4)

subject to
∑

r∈R
ājryr ≤ C̄j , j ∈ J̄ , (2.5)

∑

r∈R
Hsryr = Λs, s ∈ S, (2.6)

over yr ≥ 0, r ∈ R and Λs ≥ 0, s ∈ S. (2.7)

In this formulation, the variable yr represents the flow on route r, and the
equation (2.6) expresses the flow between source-destination pair s as the sum
of the flows over the routes serving source-destination pair s.

It is possible to rewrite the optimization problem (2.4-2.7) without the
variables yr, r ∈ R. Consider the problem

maximise
∑

s∈S
ns log Λs (2.8)

subject to
∑

s∈S
ajsΛs ≤ Cj , j ∈ J , (2.9)

over Λs ≥ 0, s ∈ S. (2.10)

Then (13, Proposition 5.1) there exists a choice of J , A = (ajs, j ∈ J , s ∈
S), C independent of n such that C has positive elements, A has non-negative
elements and no column of A is identically zero, and such that the unique
solution for (Λs, s : ns > 0) to the optimization problem (2.8-2.10) is also the
unique solution (Λs, s : ns > 0) to the optimization problem (2.4-2.7).

The set J labels a set of virtual resources, or resource pools (33). A resource
pool might, in a simple case, correspond to a cut set of resources. Typically
resource pools correspond to generalizations of cut constraints, and illustrative
examples are described in (13; 17; 33). We define J = |J |, the total number
of resources.

Note that while as in Section 2.1 it may be natural for the matrix Ā to
be a 0 − 1 route-resource incidence matrix, even in that case the elements
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of the matrix A, corresponding to resource requirements at pooled resources,
may be non-integral. Note also that in the case where the matrix H is the
identity matrix, the multi-path routing model reduces to the simpler model of
Section 2.1.

The problem (2.8-2.10) is a straightforward convex optimization problem,
with optimal solution

ΛPF
s (n) =

ns∑
s∈S pjajs

, s ∈ S (2.11)

where the Lagrange multipliers (pj , j ∈ J ) satisfy

pj ≥ 0, pj(Cj −
∑

s∈S
ajsΛ

PF
s (n)) = 0, j ∈ J . (2.12)

2.3 Flow level model

An allocation Λ(n) describes how capacities are shared, for a given number of
flows ns on each source-destination pair s ∈ S. Next we describe a stochastic
model (23; 12; 19) for how the number of flows within the network varies over
time.

For an allocation policy Λ : ZS
+ → RS

+, define a Λ-stochastic flow level
model to be a continuous-time Markov chain on ZS

+ = {0, 1, 2, ...}S with rates

q(n, n′) =





νs if n′ = n + es,

µsΛs(n) if n′ = n− es and ns > 0,

0 otherwise,
(2.13)

∀n, n′ ∈ ZS
+, where es is the s-th unit vector in ZS

+.
This model can be interpreted as follows. Documents (or files) wishing to

be transferred between source-destination pair s arrive as a Poisson process
of rate νs. These documents are assumed to have a size that is independent
and exponentially distributed with mean µ−1

s . If currently the number of doc-
uments in transfer across routes is given by the vector n ∈ ZS

+ then each doc-
ument on route s is transferred at rate Λs(n)/ns. Documents are processed
at this rate until there is a change in the network’s state, caused either by a
document transfer being completed, or by a document arrival occurring.

We can extend the definition of a stochastic flow level model, described in
the last paragraph, so that the sizes of incoming documents are independent
and of any positive distribution. Information on residual document sizes would
be needed for such processes to be Markov. Given this extension, a stochastic
flow level model with mean document sizes given by (µ−1

i : i ∈ I) is insensitive
if the stationary distribution for the number of documents in transfer does not
depend on the distributions of document size other than through the means
(µ−1

i : i ∈ I). For more details please refer to Bonald and Proutiere (4; 5).
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If the allocation policy is proportionally fair, Λ = ΛPF (n), then, defining
ρs = νs

µs
s ∈ S, the stochastic flow level model (2.13) is positive recurrent

provided (2; 10) ∑

s∈S
ajsρs < Cj , j ∈ J . (2.14)

An aim of this paper is to understand better the stationary distribution of the
flow level model when this condition is satisfied.

3 A network of processor sharing queues

In this section we introduce what we call a network of processor sharing queues.
Customers in this network belong to different classes and the load different
customer classes offer at different queues is given by the entries of the matrix A,
from Section 2.2. Thus our queueing network will implicitly share the capacity
constraints (2.14). In this section we collect some well known results about the
product form stationary distribution of queueing networks.

3.1 Definition

We now more precisely define a network of processor sharing queues. We con-
sider a network of queues indexed by the set of resources J . Each queue j ∈ J
operates under a processor sharing service discipline and has service capacity
Cj . Each customer within the network has a class. The set of customer classes
is indexed by the set S, the set of source-destination pairs. A customer of class
s ∈ S at queue j ∈ J has an independent exponentially distributed service
requirement with mean ajs

µs
.2 Customers of each class s ∈ S arrive into the

network as a Poisson process of rate νs and we define traffic intensities by the
notation ρs = νs

µs
. Upon arrival a customer chooses to visit, independently and

with equal probability, a queue from the set J . Similarly a customer which has
just completed its service at queue jk and has visited queues j1, ..., jk−1 ∈ J
will choose its next queue independently with equal probability from the set
J \{j1, ..., jk}. Once a customer has completed its service requirement at all
queues it leaves the network.

3.2 Additional notation

We now introduce some additional notation. The vector n = (ns : s ∈ S) ∈
ZS

+ = {0, 1, 2, ...}S will be used to quantify the number of customers of each
class in our queueing network and the vector m = (mjs : j ∈ J , s ∈ S) ∈ ZJ×S

+

2 If ajs = 0 we assume a customer instantaneously completes its service, thus in effect
never visits the queue. Processor sharing queues are insensitive thus the assumption that the
service requirement of customers is exponentially distributed is not necessary. We include
this assumption for the convenience of our analysis.
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will be used to quantify the number of customers of each class at each queue.
Thus we have that

ns =
∑

j∈J
mjs, s ∈ S.

We let (mj : j ∈ J ) ∈ ZJ
+ give the number of customers at each queue, so that

mj =
∑

s∈S
mjs, j ∈ J .

For each n ∈ ZI
+ we define X (n) = {m ∈ ZJ×S

+ :
∑

j∈J mjs = ns, s ∈ S}, the
set of queue states achievable given the number of customer in each class. 3

We also define for each m ∈ ZJ×S
+

(
mj

mjs : s ∈ S
)

=
mj !∏

s∈S(mjs!)
.

3.3 Stationary distributions

Let Mjs(t) record the number of class s customers at queue j at time t in a
network of processor sharing queues, and let M(t) = (Mjs(t), j ∈ J , s ∈ S).
Note that (M(t), t ∈ R+) is not Markov: but a Markov description could be
constructed by augmenting M(t) with information on which queues each cus-
tomer has already visited. From standard results (1; 7; 8; 14) on product form
queueing networks we readily deduce the following proposition and corollaries.

Proposition 1 A network of processor sharing queues has stationary distri-
bution

P(M = m) = B−1
∏

j∈J

((
mj

mjs : s ∈ S
) ∏

s∈S

(
ajsρs

Cj

)mjs
)

, (3.1)

for each m ∈ ZJ×S
+ , where

B :=
∏

j∈J

(
Cj

Cj −
∑

s∈S ajsρs

)
, (3.2)

provided ∑

s∈S
ajsρs < Cj , j ∈ J . (3.3)

We can also consider the stationary distribution of the number of customers
of each class.

3 In Section 6 when referring to large deviations characteristics n, m and (mj : j ∈ J )
will be used to refer to proportions of customers within the network.
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Corollary 1 The number of customer in each class, N = (Ns : s ∈ S), has
stationary distribution

P(N = n) =
Bn

B

∏

s∈S
ρns

s , n ∈ ZS
+, (3.4)

where

Bn :=
∑

m∈X (n)

∏

j∈J

((
mj

mjs : s ∈ S
) ∏

s∈S

(
ajs

Cj

)mjs
)

, n ∈ ZS
+. (3.5)

From this we will be interested in the stationary distribution of a network
of processor sharing queues conditional on the number of customers of each
class within the network being given by a fixed vector n = (ns : s ∈ S) ∈ ZS

+.
From the last two results we can deduce that the conditional distribution is
given by

P(M = m|N = n) = B−1
n

∏

j∈J

((
mj

mjs : s ∈ S
) ∏

s∈S

(
ajs

Cj

)mjs
)

(3.6)

for all m ∈ X (n). We will be specifically interested in the rate class s customers
are processed by a network of processor sharing queues given that the number
of customers of each class is equal to n.

Corollary 2 For a queue j ∈ J and a class s ∈ S with ajs > 0, and condi-
tional on there being n ∈ ZS

+ customers of each class, the rate class s customers
are processed through queue j in a network of processor sharing queues is given
by

µs
Bn−es

Bn
,

where Bn is defined by (3.5) and es is the s-th unit vector in ZS
+.

Proof The probability the network is in state m ∈ ZJ×S
+ is given by (3.6).

Thus the throughput of class s customers at queue j is

∑

m∈X (n):
mj>0

Cjmjsµs

ajsmj

1
Bn

∏

l∈J

((
ml

mls′ : s′ ∈ S
) ∏

s′∈S

(
als′

Cl

)mls′
)

=
∑

m′∈X (n−es)

µs

Bn

∏

l∈J

((
m′

l

m′
ls′ : s′ ∈ S

) ∏

s′∈S

(
als′

Cl

)m′
ls′

)
= µs

Bn−es

Bn
.

Above we cancelled terms and substituted m′
ls′ = mls′−1 if (l, s′) = (j, s) and

m′
ls′ = mls′ otherwise. ut
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4 The spinning network

We next define a stochastic flow level model motivated by the network of
processor sharing queues considered in the last section. In Corollary 2 we
determined the throughput of customers passing through a network of proces-
sor sharing queues condition on the number of customers in each class. From
this, for n ∈ ZS

+, we define the spinning allocation to be the allocation policy
ΛSN (n) = (ΛSN

s (n) : s ∈ S) where

ΛSN
s (n) =

{
Bn−es

Bn
if ns > 0,

0 otherwise,
s ∈ S, (4.1)

where Bn is defined by (3.5). We call the stochastic flow level model defined
by (2.13) and operating under the spinning allocation Λ = ΛSN , the spinning
network. The spinning network is essentially the flow level generalization of a
network of processor sharing queues.

An allocation policy of this type was first considered by Massoulié, and was
consequently discussed in the thesis of Proutière (27, Section 3.4). Bonald and
Proutière (5; 27) showed that the spinning network is insensitive to different
document size distributions. Walton (30) has established the weak convergence
of a sequence of processor sharing queueing networks to the spinning network.

Balanced fairness is a further allocation policy that has received atten-
tion (5; 27). Balanced fairness has the unique property of being both insensitive
and Pareto efficient amongst the set of feasible allocation policies. As we shall
discuss in Theorem 3, in addition to being insensitive, the spinning allocations
asymptotically approaches the set of Pareto efficient allocations. In particular,
we shall see it converges to a proportionally fair allocation (30). It has been
conjectured that the balanced fair policy convergences to the proportional fair
policy, in the sense described in Theorem 3, see Massoulié (22).

The spinning network is reversible. By checking the detailed balance con-
ditions for the spinning network one can verify that its stationary distribution
is

P(N = n) =
Bn

B

∏

s∈S
ρns

s , n ∈ ZS
+.

From Corollary 1, this is also the stationary distribution for the number of
customers of each class in a network of processor sharing queues, which is
as we would expect, given the motivation for the definition of the spinning
network.

5 Heavy traffic and product form

In this section we consider a network of processor sharing queues as the sys-
tem approaches overload. We consider a sequence of networks, each in equilib-
rium, and explore the connection in heavy traffic between proportionally fair
stochastic flow level models and product form queueing networks.
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For each h ∈ N = {1, 2, ...}, let M (h) be a stationary network of processor
sharing queues of the form described in Section 3, with traffic intensities ρ

(h)
s =

ρs − σs

h for s ∈ S. We assume that σs > 0 for s ∈ S. We also assume that
ρ ∈ RS

+ = [0,∞)S is Pareto efficient, that is that Aρ ≤ C and ∀δ ∈ RS
+,

A(ρ + δ) ≤ C implies δ = 0. We shall say that queue j is in heavy traffic if
(Aρ)j = Cj . Thus M (h) has a stationary distribution given by Proposition 1
with its consequence Corollary 1. Thus by definition we have that

N (h)
s =

∑

j∈J
M

(h)
js , s ∈ S, (5.1)

where for all j ∈ J and s ∈ S

M
(h)
js |M (h)

j ∼ Binomial(Mj ,
ajsρ

(h)
s

Cj
) (5.2)

and M
(h)
j , j ∈ J , are independent with

M
(h)
j ∼ Geometric(h

∑
j∈J ajsσs

Cj
).

Letting h →∞,

(
M

(h)
j

h
: j ∈ J ) ⇒ (M̂j : j ∈ J )

where M̂j is exponentially distributed with parameter
P

s∈S ajsσs

Cj
if queue j is

in heavy traffic, M̂j = 0 otherwise, and M̂j , j ∈ J , are independent. By the
strong law of large numbers for the binomial distribution (5.2), as h →∞,

(
M

(h)
js

h
: j ∈ J , s ∈ S) ⇒ (ajsρs

M̂j

Cj
: j ∈ J , s ∈ S).

Thus we have that, N(h)

h ⇒ N̂ , where

N̂s =
∑

j∈J
ajsρs

M̂j

Cj
, ∀s ∈ S. (5.3)

Thus the (scaled) number of customers on route s is distributed as the sum
of independent exponential random variables. In addition by comparison with
(5.3) and our conditions on the positivity of Mj , j ∈ J , we can see that the
conditions (2.11-2.12) are satisfied and thus, almost surely, ΛPF

s (N̂) = ρs,
s ∈ S.

Let J ∗ = {j ∈ J :
∑

s∈S ajsρs = Cj}. So that each route s traverses a
queue in heavy traffic we assume no column of the matrix (ajs, j ∈ J ∗, s ∈ S) is
identically zero. We also let J∗ = |J ∗|. Our argument above can be formalized
to give the next theorem.
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Theorem 1 Let M (h) have the stationary distribution (3.1) of a network of
processor sharing queues with parameters ρ(h) = (ρs − σs

h : s ∈ S), and let
N (h) be given by (5.1). Then as h →∞

(M (h)

h
,
N (h)

h

) ⇒ (M̂, N̂)

where M̂j , j ∈ J , are independent, M̂j is exponentially distributed with pa-
rameter

∑
s∈S

ajsσs

Cj
, j ∈ J ∗, and M̂j = 0, j ∈ J \J ∗, and where N̂ is defined

by (5.3).

Moreover, almost surely the pair (p, n) = (( M̂j

Cj
)j∈J , (N̂s)s∈S) satisfies the

proportional fairness optimality conditions (2.11-2.12) and

ΛPF
s (N̂) = ρs, s ∈ S.

The proof of this theorem can be found in the Appendix A.1.
A connection between multi-class networks of single server queues and

the optimization formulation (2.8-2.10) has been noted several times in the
literature (15; 24; 28), and the above theorem provides a formalization, in
heavy traffic, of the connection.

The support of N̂ is the manifold

N = {n ∈ RS
+ : Λs(n) = ρs, s ∈ S}

= {n : ∃q ∈ RJ ∗+ s.t. ns =
∑

j∈J ∗
qjAjsρs, for s ∈ S}. (5.4)

The second equality above can be deduced from expressions (2.11-2.12) or
alternatively seen in (18, Theorem 5.1). In (18) it is shown that the propor-
tionally fair stochastic flow level model (2.13) has a fluid model in heavy traffic
which converges to exactly the manifold (5.4). Observe that there is a form of
state space collapse: the dimension of the manifold (5.4) is the row rank of the
matrix AJ ∗ = (ajs : j ∈ J ∗, s ∈ S), at most J∗. In (13) a diffusion approxima-
tion is established for the proportionally fair stochastic flow level model, under
certain additional conditions, and the stationary distribution for the diffusion
approximation matches the distribution for N̂ found above. These additional
conditions are that J ∗ = J , so that all resources are in heavy traffic, and a
local traffic condition. This condition requires that amongst the columns of the
matrix A there are the columns of a diagonal matrix, so that for each resource
j ∈ J there is a traffic stream s ∈ S which uses just resource j.

The local traffic condition implies that A has full row rank, and that the
dimension of the manifold N is J ∗. In Section 7 we shall discuss an example
where the matrix A is not of full row rank, and where, in heavy traffic, there is a
distinction between the limiting stationary distributions of the proportionally
fair stochastic flow level model and the corresponding product form processor
sharing queueing network.
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6 Large deviations and convergence of throughput

In the previous section we considered the stationary behaviour of a network of
processor sharing queues in a heavy traffic regime. We found in this analysis
that a network of processor sharing queues was able to capture certain aspects
related to the multi-path proportionally fair optimization problem.

In this section we continue to pursue this relationship. We now consider a
network of processor sharing queues in a large deviations regime. We will show
in Theorem 2 that for a network of processor sharing queues the stationary
distribution of the number of customers in each class obeys a large deviation
principle with good rate function

αρ(n) = max
Λ∈RS

+

∑
s:ns>0

ns log
Λs

ρs
subject to

∑

s∈S
ajsΛs ≤ Cj , j ∈ J .

(6.1)
Note that, apart from a constant term added to the objective function, the
optimization problem (6.1) is identical to the earlier problem (2.8-2.10).

We also state but do not prove an additional theorem, Theorem 3. The-
orem 3 considers the throughput of a network of processor sharing queues
conditional on the number of customers of each class being large but propor-
tional to some fixed vector n ∈ RS

+. Theorem 3 demonstrates that this quan-
tity converges to a solution of the multi-path proportionally fair optimization
problem (2.8-2.10).

The results in this section are proven in (30), with the main distinction
being that the paper (30) only allows a customer to have exponentially dis-
tributed mean 1 service requirement at each queue it visits. Here we allow
customers to have service requirements given by values in the matrix A; this
is important in the context of multi-path routing. The large deviations prop-
erties of the stationary distributions of product form queueing networks were
first considered by Pittel (26). Massoulié (22) first established the rate func-
tion (6.1) as the large deviations limit of stochastic flow level models operating
under modified proportional fairness.

To prove Theorem 2, first we prove a large deviation principle for the
stationary distribution of a network of processor sharing queues (3.1). Stirling’s
formula is used to find a rate function: label the rate function βρ(·). Applying
the contraction principle gives the large deviation principle for the number of
customers in each class and finds αρ(·) expressed as the primal form of a convex
optimization problem. We calculate the dual of this optimization problem and
find it to be of the form of (6.1).

We start by finding the rate function βρ(·).

Lemma 1 Suppose random variable M in ZJ×S
+ has the stationary distribu-

tion of the number of customers of each class at queues in a network of proces-
sor sharing queues (3.1). If we take a vector m ∈ RJ×S

+ and take {d(h)}h∈N a
sequence of vectors in RJ×S such that hm + d(h) ∈ ZJ×S

+ and suph |d(h)| < ∞
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then
lim

h→∞
1
h

logP(M = hm + d(h)) = −βρ(m),

where we define

βρ(m) :=
∑

j∈J ,s∈S:
mj>0, ajs>0

mjs log
mjsCj

mjajsρs
. (6.2)

Proof For all j ∈ J define, d
(h)
j =

∑
s∈S d

(h)
js . By Stirling’s formula

lim
h→∞

1
h

logP(M = hm + d(h))

= lim
h→∞

1
h

[ ∑

j∈J
log (hmj + d

(h)
j )!−

∑

j∈J ,s∈S
log (hmjs + d

(h)
js )!

+
∑

j∈J ,s∈S
(hmjs + d

(h)
js ) log

ajsρs

Cj

]

= lim
h→∞

1
h

[ ∑

j∈J :
mj>0

(
(hmj + d

(h)
j ) log(hmj + d

(h)
j )− (hmj + d

(h)
j )

)

−
∑

j∈J ,s∈S:
mjs>0

(
(hmjs + d

(h)
js ) log(hmjs + d

(h)
js )− (hmjs + d

(h)
ji )

)

+
∑

j∈J ,s∈S
(hmjs + d

(h)
js ) log

ajsρs

Cj

]

= − lim
h→∞

∑

j∈J ,s∈S:
mjs>0

mjs log
(mjs +

d
(h)
js

h )Cj

(mj +
d
(h)
j

h )ajsρs

= −βρ(m).

ut
From this result one can more formally establish the following large deviation
principle. For details of how to formalize the following proposition please see
(30, Section 6).

Proposition 2 If random variable M in ZJ×S
+ has the stationary distribution

of the number of customers of each class at queues in a network of processor
sharing queues (3.1) then, as h →∞, {M

h }h∈N obeys a large deviation principle
on RJ×S

+ with convex, continuous, good rate function βρ(·). That is for all
D ⊂ RJ×S

+ Borel measurable

− inf
m∈D◦

βρ(m) ≤ lim inf
h→∞

P(
M

h
∈ D) ≤ lim sup

h→∞
P(

M

h
∈ D) ≤ − inf

m∈D̄
βρ(m),

where D◦ is the interior of D and D̄ is the closure of D.
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To prove Theorem 2 we require two technical lemmas about the function βρ(·).

Lemma 2 For all Λ ∈ (0,∞)S

inf
m∈RJ×S

+

βΛ(m) =

{
0 if

∑
s∈S ajsΛs ≤ Cj , ∀j ∈ J

−∞ otherwise.

Proof Consider two probability distributions p and q with the same sup-
port on S. One can verify with calculus that the relative entropy D(p||q) =∑

s ps log ps

qs
of the two probability distributions p and q is such that

min
p

D(p||q) = 0

and is minimized by p = q. Thus,

inf
m∈RJ×S

+

βΛ(m) = inf
m∈RJ×S

+

∑

j:mj>0

mj

∑

s∈S

mjs

mj
log

mjsCj

mjajsΛs

= inf
m′∈RJ

+

∑

j:m′
j>0

m′
j log

Cj∑
s∈S ajsΛs

=

{
0 if

∑
s∈S ajsΛs ≤ Cj ,

−∞ otherwise.

ut
Lemma 3 For all Λ ∈ (0,∞)I , βΛ(·) is a convex continuous function.

See (30, Lemma 6.3) for a proof of this lemma.
We now prove Theorem 2. The theorem helps explain how the collapse of

our original queueing model is related to the multi-path proportionally fair op-
timisation problem. On the one hand the expression (6.3) can be interpreted as
saying that a network of processor sharing queues wishes to minimize the en-
tropy of queue sizes subject to constraints on the number of customers in each
class. On the other hand the dual (6.4) can be interpreted as saying, given the
number of customers of each class, flows wish to maximize the proportionally
fair optimization problem.

Theorem 2 If N is a random variable in ZS
+ has the stationary distribution

of the number of customers of each class in a network of processor sharing
queues (3.4) then, as h →∞, {N

h }h∈N obeys a large deviation principle on RS
+

with good rate function

αρ(n) := min
m∈RJ×S

+

∑

j∈J ,s∈S:
mj>0, ajs>0

mjs log
mjsCj

mjajsρs
subject to

∑

j∈J
mjs = ns, s ∈ S

(6.3)

= max
Λ∈RS

+

∑

s∈S
ns log

Λs

ρs
subject to

∑

s∈S
ajsΛs ≤ Cj , j ∈ J . (6.4)
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That is, for all Borel measurable D ⊂ RS
+ we have that

− inf
n∈D◦

αρ(n) ≤ lim inf
h→∞

P(
N

h
∈ D) ≤ lim sup

h→∞
P(

N

h
∈ D) ≤ − inf

n∈D̄
αρ(n).

Proof Applying the contraction principle (9, page 126) to Proposition 2 using
the continuous map f : RJ×S

+ → RS
+ such that f(m) = (

∑
j∈J mjs : s ∈ S)

shows that {N
h }h∈N obeys a large deviation principle with good rate function

αρ(n) = min
m∈RJ×S

+

∑

j∈J ,s∈S:
mj>0

mjs log
mjsCj

mjajsρs
subject to

∑

j∈J
mjs = ns, s ∈ S.

As βρ is convex, this is a convex optimisation problem. Let us calculate its
dual formulation. Using Lagrange multipliers λ ∈ RS , its Lagrangian is

L(m, λ) =
∑

j∈J ,s∈S:
mj>0,ns>0

mjs log
mjsCj

mjajsρs
+

∑
s:ns>0

λs


ns −

∑

j∈J
mjs




=
∑

j∈J ,s∈S:
mj>0,ns>0

mjs log
mjsCj

mjajsρseλs
+

∑
s:ns>0

λsns.

By Lemma 2

min
m∈RJ×S

+

L(m,λ) =

{∑
s:ns>0 nsλs if

∑
s∈S ajsρse

λs ≤ Cj , j ∈ J ,

−∞ otherwise.

Thus we find its dual is

αρ(n) = max
λ∈RS

∑
s:ns>0

nsλs subject to
∑

s∈S
ajsρse

λs ≤ Cj , j ∈ J .

Substituting Λs = ρse
λs gives

αρ(n) = max
Λ∈RS

+

∑
s:ns>0

ns log
Λs

ρs
subject to

∑

s∈S
ajsΛs ≤ Cj , j ∈ J .

ut

An important consequence of this result is given in the next result, Theorem
3. We state the result here, but refer the reader to (24, Section C) for an
accessible justification of the result and to (30, Section 7) for a proof. In
Theorem 3 we consider ΛSN

s (bhnc), the throughput of class s customers in a
network of processor sharing queues conditional on the number of customers of
each class being given by bhnc = (bhnsc : s ∈ S). Theorem 3 states that as h →
∞ this throughput converges to a proportionally fair bandwidth allocation.
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Theorem 3 For all n ∈ RS
+ and s ∈ S

ΛSN
s (bhnc) −−−−→

h→∞
ΛPF

s (n),

where we define bnc = (bnsc : s ∈ S).

We note that this connection between the stationary behaviour of a product
form queueing network and a multi-path proportionally fair stochastic flow
level model has not required any rank condition on the matrix A.

7 Grid networks

In Section 5 we studied the stationary distribution of processor sharing queue-
ing networks in heavy traffic. For grid networks the stationary distribution
of proportionally fair stochastic flow level models is known. Therefore we can
form an analogous heavy traffic analysis to Section 5. We know from Theorem
3 that asymptotically the throughput of network of processor sharing queues
converges to a proportionally fair allocation. Therefore we might expect the
two models to agree in heavy traffic. In fact, despite this, we find that under a
heavy traffic scaling, the limit distributions of these two models do not agree.

A K × L grid network is a network with uni-path routing, that is the set
of routes can be identified with the set of source-sink pairs. A K × L grid
network has links J = {(k, l) : k = 1, ...,K, l = 1, ..., L} and routes R = S =
{k}K

k=1 ∪ {l}L
l=1 where k = {(k, l) : l = 1, ..., L} and l = {(k, l) : k = 1, ..., K}.

We refer to routes indexed by k as vertical routes and routes indexed by l as
horizontal routes. We let nxk denote the number of horizontal flows on route
k and we let nyl denote the number of vertical flows on route l. In addition we
use the shorthand nx and ny to denote the total number of horizontal flows
and vertical flows respectively. We assume all capacities are equal to 1, as are
all non-zero entries of the matrix A. For the proportionally fair stochastic flow
level model we assume that documents arrive as a Poisson process, of rate νx for
each vertical route and of rate νy for each horizontal route and that document
sizes are independent and exponentially distributed, with parameter µx for
each vertical route and of rate µy for each horizontal route. Finally we define
ρx = νx

µx
and ρy = νy

µy
.

We can calculate the rates and stationary distribution of a proportionally
fair stochastic flow level model on a grid network. The following proposition
is due to Bonald and Massoulié (2).

Proposition 3 For all n ∈ ZK+L
+ , a K × L grid network operating under

proportional fairness has an allocation

ΛPF
k (n) =

∑K
k=1 nxk∑K

k=1 nxk +
∑L

l=1 nyl

, k = 1, ...,K

ΛPF
l (n) =

∑L
l=1 nyl∑K

k=1 nxk +
∑L

l=1 nyl

, l = 1, ..., L. (7.1)
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Fig. 1 2× 2 grid network.

Its proportionally fair stochastic flow level model has stationary distribution,

P(N = n) =
1

C(ρ)

(∑K
k=1 nxk +

∑L
l=1 nyl∑K

k=1 nxk

)
ρ
PK

k=1 nxk
x ρ

PL
l=1 nyl

y , (7.2)

for n ∈ ZK+L
+ where

C(ρx, ρy) =
K−1∑

k=1

L−1∑

l=1

(
k + l

k

)
ρk

xρl
y

(1− ρx − ρy)k+l+1
. (7.3)

Proof We first confirm (7.1). Note given we hold all vertical rates fixed then
the optimal horizontal rates must satisfy Λk = 1 − maxl Λl ∀k = 1, ..., K.
So the optimal choice of horizontal rates has all horizontal rates equal. By
symmetry the same must hold for all vertical routes: Λl = Λl′ ∀l, l′ = 1, ..., L.
Also the capacity constraint gives that Λk = 1 − Λl. These equalities reduce
the proportionally fair optimisation problem to a problem in two variables
which can be solved to give (7.1).

The detailed balance conditions can be checked to show that the process
n is reversible, with stationary distribution (7.2).

Finally, the normalizing constant (7.3) is found in Lemma 5 in the Ap-
pendix. ut

Consider a network of processor sharing queues from Section 3, with the
topology of a K ×L grid network. We know, as shown in Theorem 1, that the
geometrically distributed queue sizes approach exponential distributions under
a heavy traffic scaling. Thus the total number of customers in the processor
sharing queueing network, under the same scaling, will approach an Erlang
distribution with parameters K×L and σx +σy. If the heavy traffic stationary
distributions of both the queueing model and the proportionally fair model
were the same then the distribution of the total number of documents in
transfer in the proportionally fair model would be Erlang(K × L, σx + σy).
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The next resultshows that this is not the case and that the distribution is in
fact Erlang(K + L− 1, σx + σy).

Theorem 4 For each h ∈ N, let N (h) have the stationary distribution of a
proportionally fair stochastic flow level model on a K × L grid network with
traffic intensities ρ

(h)
x = ρx − σx

h , ρ
(h)
y = ρy − σy

h and ρx + ρy = 1. Let N ′(h)

be the total number of documents in transfer in this model, then

N ′(h)

h
⇒ N̂ ′

where N̂ ′ has an Erlang distribution with parameters K + L− 1 and σx + σy.

Proof The moment generating function of distribution of the total number of
documents in a K × L grid network (7.3) is given by,

C(ρxeθ, ρyeθ)
C(ρ)

, θ ∈ C.

The highest order term in (7.3) is from k = K − 1 and l = L− 1, in that

C(ρ(h)
x e

θ
h , ρ(h)

y e
θ
h ) =

ρK−1
x ρL−1

y

(σx + σy − θ)K+L−1
hK+L−1 + o(hK+L+1) as h →∞

Thus,

Eeθ N′(h)
h =

(σx + σy)K+L−1

(σx + σy − θ)K+L−1
+ o(1)

−−−−→
h→∞

(σx + σy)K+L−1

(σx + σy − θ)K+L−1
= EeθN̂ ′

Thus by Lévy’s Convergence Theorem the result holds (32). ut

7.1 The 2× 2 grid network

We now consider more explicitly the behaviour of 2 × 2 grid networks. The
limiting distribution of a 2 × 2 grid network is characterized in the following
proposition. This distribution differs from the distribution found in Theorem
1 and does not have the same heavy traffic limit as the queueing model. In-
terestingly we find that the limiting distribution can be expressed in terms
of K ×L independent exponential random variables conditioned on belonging
to a certain linear subspace. This suggests a stronger form of collapse occurs
for the proportionally fair stochastic flow level model. The following result is
proved in Appendix A.2.
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Proposition 4 For each h ∈ N, let N (h) have the stationary distribution of
a proportionally fair stochastic flow level model on a 2 × 2 grid network with
traffic intensities ρ

(h)
x = ρx − σx

h , ρ
(h)
y = ρy − σy

h and ρx + ρy = 1. Then

N (h)

h
⇒ Ñ

where

Ñ = (ρx[Q̃(1,1)+Q̃(1,2)], ρx[Q̃(2,1)+Q̃(2,2)], ρy[Q̃(1,1)+Q̃(2,1)], ρy[Q̃(1,2)+Q̃(2,2)])

and Q̃ has the distribution of four independent exponential random variables
constrained to the space {q ∈ R4

+ : q(1,1) + q(2,2) = q(2,1) + q(1,2)}, with density
function

p(q) = C ′I[q(1,1) + q(2,2) = q(2,1) + q(1,2)]e−(σx+σy)(q(1,1)+q(2,1)+q(1,2)+q(2,2))

where C ′ is a scaling constant and integration is taken over q(1,1), q(1,2) and
m := q(1,1) + q(2,2) = q(2,1) + q(1,2) with respect to the Lebesgue measure on
R3

+.

Even though the stationary heavy traffic behaviour of the processor shar-
ing queueing network and the proportionally fair flow model differ, the large
deviations behaviour of both stationary distributions is the same.

Lemma 4 If N has the stationary distribution of a proportionally fair stochas-
tic flow level model on a 2× 2 grid network with traffic intensities ρx, ρy and
ρx + ρy < 1 then

lim
h→∞

1
h

logP(N = bhnc)

= − max
Λ∈R4

+

nx1 log
Λx1

ρx
+ nx2 log

Λx2

ρx
+ ny1 log

Λy1

ρy
+ ny2 log

Λy2

ρy

subject to Λxk + Λyl ≤ 1 for k = 1, 2, l = 1, 2.

Proof Using Stirling’s approximation on the distribution of N gives

lim
h→∞

1
h

logP(N = bhnc)

= lim
h→∞

1
h

log
( bhnx1c+ bhnx2c+ bhny1c+ bhny2c

bhnx1c+ bhnx2c
)

ρbhnx1c+bhnx2c
x ρbhny1c+bhny2c

y

= lim
h→∞

1
h

[
h(nx1 + nx2 + ny1 + ny2) log(h(nx1 + nx2 + ny1 + ny2))

− h(nx1 + nx2) log
h(nx1 + nx2)

ρx
− h(ny1 + ny2) log

h(ny1 + ny2)
ρy

]

= −(nx1 + nx2) log
nx1 + nx2

ρx(nx1 + nx2 + ny1 + ny2)

− (ny1 + ny2) log
ny1 + ny2

ρy(nx1 + nx2 + ny1 + ny2)
.

We know from Proposition 3 that this solves the proportional fair optimisation
problem for a 2× 2 grid network. ut
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8 Performance of modified proportional fairness

As we have seen for grid networks, product form networks of processor sharing
queues do not capture the heavy traffic behaviour of proportional fairness. In
order to study this behaviour in more detail we turn our attention to modified
proportional fairness, an alternative allocation policy introduced in (22).

8.1 Modified proportional fairness

To define modified proportional fairness, we first let

α(n) =

{∑
s∈S ns log ΛPF

s (n), n ∈ ZS
+

∞, otherwise.

Also from expression (6.1) recall αρ(n). We define the modified proportionally
fair allocation by

ΛMP
s (n) = exp{α(n)− α(n− es)}, n ∈ RS

+. (8.1)

In the following theorem we collect several results found in Massoulié (22) that
relate modified proportional fairness and proportional fairness.

Theorem 5 i) A stochastic flow level model operating under modified propor-
tional fairness is reversible and has an invariant measure given by

πMP
ρ (n) = e−αρ(n), n ∈ ZS

+. (8.2)

ii) The following large deviations relationship holds

lim
h→∞

1
h

log πMP
ρ (bhnc) = −αρ(n).

iii) For s ∈ S such that ns > 0,

ΛMP
s (hn) −−−−→

h→∞
ΛPF

s (n).

Proof i) This can be verified with the detailed balance equations.
ii) This holds noting that αρ(·) is continuous and that αρ(hn) = hαρ(n).
iii) This can be verified using Lemmas 1 and 2 of Massoulié (22).
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8.2 Modified proportional fairness in heavy traffic

We next explore how the invariant measure (8.2) behaves in heavy traffic. Let
ρ
(h)
s = ρs − σs

h for s ∈ S where as in Section 5 ρ ∈ RS
+ is Pareto efficient.

First note

αρ(h)(hn)− αρ(hn) = α(hn)− α(hn)−
∑

s∈S
hns log

ρ
(h)
s

ρs

= −h
∑

s∈S
ns log(1− σs

hρs
).

Therefore
e
−α

ρ(h) (hn) = e−hαρ(n)
∏

s∈S
(1− σs

hρs
)hns . (8.3)

Now we consider the e−hαρ(n) term in the above expression. We know that
αρ(n) ≥ 0 since αρ is a rate function. Further,

αρ(n) = 0 ⇐⇒
∑

s∈S
ns log

ΛPF
s (n)
ρs

= 0

⇐⇒
∑

s∈S
ns log ΛPF

s (n) =
∑

s∈S
ns log ρs

⇐⇒ ΛPF
s (n) = ρs,

the final equivalence follows from the fact that ρ is feasible and achieves the
optimal value of the objective function, and is therefore the unique optimum.
Thus the only values of n ∈ RS

+ without a leading exponential decay term in
expression (8.3) are those on the manifold N given by (5.4). From (8.3),

e
−α

ρ(h) (hn) = e−hαρ(n)
∏

s∈S
(1− σs

hρs
)hns

−−−−→
h→∞

f(n) = I[n ∈ N ]e−
P

s∈S ns
σs
ρs .

Note that the support of the density f(n), the manifold N , may well have
dimension less than J . The density f(n) is consistent with the results found
for grid networks operating under proportional fairness in heavy traffic. Thus
it seems plausible that the stationary distribution of proportional fairness in
heavy traffic will agree with the above distribution. We present this as a con-
jecture in the following section.

9 Conjectures

The results from Sections 5 and 6 suggest a close relationship between the sta-
tionary behaviour of networks of processor sharing queues and proportionally
fair stochastic flow level models, but the results in Section 7 put limitations on
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any such relationship. Based on these results we state a heavy traffic conjecture
and a large deviations conjecture for the asymptotic behaviour of proportion-
ally fair stochastic flow level models.

As in Theorem 1 we choose ρ(h) to be such that ρ
(h)
s = ρs − σs

h for s ∈ S
where ρ ∈ RS

+ is Pareto efficient. We also define J ∗ = {j ∈ J :
∑

s∈S ajsρs =
Cj}. Define AJ ∗ = (ajs : j ∈ J ∗, s ∈ S), the submatrix of A formed by
removing the j-th row for each j ∈ J \J ∗. Consider Ker(At

J ∗), the kernel of
the transpose of AJ ∗ and let K = Ker(At

J ∗)
⊥ be its orthogonal complement.

Note K is chosen so that the map K → N , q 7→ (n : ns =
∑

j∈J ∗ qjAjsρs) is
bijective.

Conjecture 1 If, for each h ∈ N, N (h) has the stationary distribution of a
proportionally fair stochastic flow level model with traffic intensities
ρ(h) = (ρs − σs

h : s ∈ S) then, as h →∞,

N (h)

h
⇒ Ñ ,

where
Ñs =

∑

j∈J ∗
ajsρsQ̃j s ∈ S.

Here, for each j ∈ J \J ∗, Q̃j = 0, and (Q̃j : j ∈ J ∗) are independent exponen-
tial random variables with parameters

∑
s∈S ajsσs conditioned on belonging to

the subspace K; that is (Q̃j : j ∈ J ∗) has density

p(q) = C ′I[q ∈ K]e−
P

j∈J∗
P

s∈S qjajsσs

where C ′ is a scaling constant and integration is taken with respect to the
Lebesgue measure on K.

Note that if AJ ∗ is of full row rank then K = RJ
∗

+ and the conditioned
random variables (Q̃j : j ∈ J ∗) of the conjecture remain independent expo-
nentially distributed random variables.

It is interesting to compare this with a conjecture of Massoulié (22).

Conjecture 2 If N has the stationary distribution of a proportionally fair
stochastic flow level model with traffic intensities given by ρ ∈ RS

+ then, as
h →∞, {N

h }h∈N obeys a large deviation principle with good rate function

αρ(n) = max
Λ∈RS

+

∑

s∈S
ns log

Λs

ρs
subject to

∑

s∈S
ajsΛs ≤ Cj , j ∈ J . (9.1)

That is for all Borel measurable D ⊂ RS
+ we have that

− inf
n∈D◦

αρ(n) ≤ lim inf
h→∞

P(
N

h
∈ D) ≤ lim sup

h→∞
P(

N

h
∈ D) ≤ − inf

n∈D̄
αρ(n).

This conjecture suggests that the large deviations behaviour of the station-
ary distribution of a proportionally fair stochastic flow level model is unaffected
by the row rank of the matrix A and that it agrees with the results found for
networks of processor sharing queues in Section 6.
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10 Concluding remarks

We conclude by recalling one of our aims, to provide insight into the perfor-
mance consequences of resource pooling. A network of processor sharing queues
has the remarkable property that the mean sojourn time in the network of an
arriving document of class s is

∑

j∈J

Cj

Cj − ρj

ajs

µs

where ρj =
∑

s∈S ajsρs is the load on resource j, even when service require-
ments have arbitrary distributions (8; 14). The results we have reviewed are
motivated by the possibility that an approximation of this form may be jus-
tified under proportionally fair multi-path routing, where J labels the set of
pooled resources.

The heavy traffic results of (13) are suggestive, but the results concern the
stationary distribution of a diffusion limit, rather than the limiting form of a
stationary distribution, and also require the local traffic condition. The local
traffic condition is, unfortunately, difficult to verify with multi-path routing.
We have studied an example where the condition is not satisfied, the grid
network of Section 7, and where the number of documents in the system has
approximately an Erlang distribution, but arising from the sum of K + L− 1,
rather than KL, independent exponential random variables. Nevertheless, the
behaviour of modified proportional fairness suggests a simple heavy traffic
description of stationary proportionally fair flow models. This description co-
incides with that found in networks of processor sharing queues, under the less
restrictive assumption that the matrix A is of full row rank.

A Appendix

A.1 Proof of Theorem 1

The characteristic function of (M
(h)
js : j ∈ J , s ∈ S) is

Ee
i
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j,s θjsM
(h)
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Y

j∈J
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P
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(h)
s

Cj −
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s∈S ajsρ
(h)
s eiθjs

!
θ ∈ RJ×S

+ .

The characteristic function of (M̂j : j ∈ J ) is

Eei
P

j∈J φjM̂j =
Y

j∈J ∗

 P
s∈S ajsσsP

s∈S ajsσs − iCjφj

!
φ ∈ RJ

+.
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Thus (N
(h)
s
h

: s ∈ S) has a characteristic function that converges in the following way

Eei
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N

(h)
s
h =

Y
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0
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P
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h
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s∈S ajs(ρs − σs
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)ei
θjs
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1
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−−−−→
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s∈S ajsσsP
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s∈S ajsθs

!

=Ee
i
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s∈S,j∈J ajsθs
M̂j
Cj = Eei

P
s∈S θsN̂s .

Thus by Lévy’s Convergence theorem (32) N(h)

h
⇒ N̂ as h →∞.

Now consider the proportionally fair optimisation problem

max
Λ∈RS

+

X

s:N̂s>0

N̂s log Λs subject to
X

s∈S
ajsΛs ≤ Cj , j ∈ J .

The proportional fairness optimality conditions (2.11-2.12) are satisfied by Λs = ρs for s ∈ S
and qj =

M̂j

Cj
for j ∈ J . Therefore

ρs = ΛPF
s (N̂) s ∈ S.

ut

A.2 Proofs for grid networks

First we calculate the scaling constant for a K × L grid network.

Lemma 5

C(ρ) =
X
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. (A.2)

Proof From (A.1) we can deduce the following.
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as required. ut

To establish Proposition 4 we calculate the prelimit and limit characteristic functions
and then prove convergence.

Lemma 6 The characteristic function of the stationary distribution of a 2×2 grid network
operating under proportional fairness with intensities ρx, ρy such that ρx + ρy < 1 is
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where the 4 cases above correspond respectively to the cases: θx1 6= θx2 and θy1 6= θy2;
θx1 = θx2 and θy1 = θy2; θx1 = θx2 and θy1 6= θy2, and θx1 6= θx2 and θy1 = θy2.

Proof Suppose θx1 6= θx2 and θy1 6= θy2.
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This gives the θx1 6= θx2 and θy1 6= θy2 case. The θx1 = θx2 and θy1 = θy2 case is given by
Lemma 5. The remaining cases have a proof that is very similar to these two cases. ut

Lemma 7 Let Ñ be a random variable in R4
+ with a density given by exponential random

variables constrained to a linear subspace
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where the four cases above correspond respectively to the cases: θx1 6= θx2 and θy1 6= θy2;
θx1 = θx2 and θy1 = θy2; θx1 = θx2 and θy1 6= θy2, and θx1 6= θx2 and θy1 = θy2.
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Proof Once again we only consider θx1 6= θx2, θy1 6= θy2 case (the other cases follow
similarly).
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as required. ut

Proof (of Proposition 4) We consider the limit behaviour of the characteristic function of
Nh

h
. We only consider the case where θx1 6= θx2 and θy1 6= θy2. The other cases follow

similarly. For θ ∈ R4 with θx1 6= θx2 and θy1 6= θy2,
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Thus comparing these two expressions gives that

Eeiθ·N(h)
h −−−−→
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Eeiθ·Ñ

for all θx1 6= θx2 and θy1 6= θy2. The other cases follow similarly. Thus, by Lévy’s Conver-

gence Theorem (32), N(h)

h
⇒ Ñ where Ñ has density as given in Lemma 7.
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The linear map given by matrix

0
BB@

nx1

nx2

ny1

ny2

1
CCA =

0
BB@

ρx ρx 0 0
0 0 ρx ρx

ρy 0 ρy 0
0 ρy 0 ρy

1
CCA

0
BB@

q(1,1)

q(1,2)

q(2,1)

q(2,2)

1
CCA

is bijective from {q ∈ R4
+ : q(1,1) + q(2,2) = q(1,2) + q(2,2)} to {n ∈ R4
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}. Therefore we can express the density function from Lemma 7 in the form given

in Proposition 4. ut
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22. Massoulié, L.: Structural properties of proportional fairness: stability and insensitivity.
Ann. Appl. Probab. 17, 809–839 (2007)
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