
MATHEMATICAL TRIPOS: PART II Michaelmas Term 2013

OPTIMIZATION AND CONTROL Frank Kelly

Example Sheet 1

1. Suppose that the matrix Mk is of dimension nk × nk+1, k ∈ {1, . . . , h}. We wish to compute
the product M1M2 · · ·Mh. Notice that the order of multiplication makes a difference. For example,
if (n1, n2, n3, n4) = (1, 10, 1, 10), the calculation (M1M2)M3 requires 20 scalar multiplications, but
the calculation M1(M2M3) requires 200 scalar multiplications. Indeed, multiplying a m × n matrix
by a n × k matrix requires mnk scalar multiplications. Let F (n1, n2, . . . , nh+1; h) be the minimal
total number of scalar multiplications required to compute M1M2 · · ·Mh. Explain why the dynamic
programming equation is

F (n1, n2, . . . , nk+1; k) = min
1<i<k+1

{ni−1nini+1 + F (n1, . . . , ni−1, ni+1, . . . , nk+1; k − 1)} ,

k = 1, . . . , h. Hence describe an algorithm which finds the multiplication order requiring least scalar
multiplications. Solve the problem for

(a) h = 3, (n1, n2, n3, n4) = (2, 10, 5, 1);
(b) h = 4, (n1, n2, n3, n4, n5) = (2, 10, 1, 5, 1).
Show that as h increases the amount of effort required to find the optimal order increases faster

than any polynomial function of h.

2. A deck of cards is thoroughly shuffled and placed face down on the table. You turn over cards one
by one, counting the numbers of reds and blacks you have seen so far. Exactly once, whenever you
like, you may bet that the next card you turn over will be red. If correct you win £1000.

Let F (r, b) be the probability of winning if you play optimally, beginning from a point at which
you have not yet bet and you know that exactly r red and b black cards remain in the face down
pack. Find F (26, 26) and your optimal strategy.

Arguably, it should be possible to win the £1000 with a probability greater than 1/2 because
you can wait until you have seen more black cards than red and then bet that the next card is red.
Explain why this argument is wrong.

3. A gambler has the opportunity to bet on a sequence on N coin tosses. The probability of heads
on the nth toss is known to be pn, n = 1, . . . , N . For the nth toss he may stake any non-negative
amount not exceeding his current capital (which is his initial capital plus his winnings so far) and call
‘heads’ or ‘tails’. If he calls correctly then he retains his stake and wins an amount equal to it, but if
he calls incorrectly he loses his stake. Let X0 ≥ 0 denote his initial capital and XN his capital after
the final toss. Determine how the gambler should call and how much he should stake for each toss in
order to maximize E[logXN ]. How would your answer differ if the aim is to maximize E[XN ]?

4. A man stands in a queue waiting for service, with n people ahead of him. He knows the utility of
waiting out the queue, r, and the constant probability p that the person at the head of the queue will
complete service in the next unit of time (say, 1 minute) independently of what happens in all other
units of time. He incurs a cost c for every unit of time spent waiting for his own service to begin. He
may leave the queue at any time. The problem is to determine the policy that maximizes his expected
return, i.e. r (if he stays in the system until he completes service) minus the cost of waiting.

Let Fn denote the expected return obtained by employing an optimal waiting policy when there
are n people ahead. Show that the optimality equation is

Fn = max[−c + pFn−1 + (1− p)Fn, 0], n > 0, (1)
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with F0 = r. Show that (2) can be re-written as

Fn = max [Fn−1 − c/p, 0] , n > 0. (2)

Hence prove inductively that Fn ≤ Fn−1. Why is this fact intuitive?
Show there exists an integer n∗ such that the form of the optimal policy is to wait only if n ≤ n∗.

Find expressions for Fn and n∗ in terms of r, c and p.
Give an alternative derivation of the optimal policy, without recourse to dynamic programming.

5. The Greek adventurer Theseus is trapped in a room from which lead n passages. Theseus knows
that if he enters passage i (i = 1, . . . , n) one of three fates will befall him: he will escape with
probability pi, he will be killed with probability qi, and with probability ri (= 1− pi − qi) he will find
the passage to be a dead end and be forced to return to the room. The fates associated with different
passages are independent. Establish the order in which Theseus should attempt the passages if he
wishes to maximize his probability of eventual escape.

6. At the beginning of each day a certain machine can be either working or broken. If it is broken then
the whole day is spent repairing it, and this costs 8c in labour and lost production. If the machine is
working, then it may be run unattended or attended, at costs of 0 or c respectively. In either case there
is a chance that the machine will breakdown and need repair the following day, with probabilities p
and p′ respectively, where p′ < (7/8)p. Costs are discounted by factor β, 0 < β < 1, and it is desired
to minimize the total-expected discounted-cost over the infinite horizon. Let F (0) and F (1) denote
the minimal value of such cost, starting from a morning on which the machine is broken or working
respectively. Show that it is optimal to run the machine unattended only if β ≤ 1/(7p− 8p′).

7. A hunter earns £1 for each member of an animal population captured, but hunting costs him £c
per unit time. The number r, of animals remaining uncaptured is known, and will not change by
natural causes on the relevant time scale. The probability of a single capture, in the next time unit,
is λ(r), where λ is a known increasing function. The probability of more than one capture per unit
time is 0. The hunter wishes to maximize his net expected profit. What should be his stopping rule?

8. Consider a burglar who loots some house every night. His profit from successive crimes forms a
sequence of independent random variables, each having the exponential distribution with mean 1/λ.
Each night there is a probability q, 0 < q < 1, of his being caught and forced to return his whole
profit. If he has the choice, when should the burglar retire so as to maximize his total expected profit?

The next question is about solving the optimality equations using linear programming.

9. Consider the following infinite-horizon discounted-cost optimality equation for a Markov decision
process with, 0 < β < 1, a finite state space, x ∈ {1, . . . , N}, and u ∈ {1, . . . ,M}:

F (x) = min
u

[

c(x, u) + β

N
∑

x1=1

F (x1)P (x1 | x0 = x, u0 = u)

]

. (3)

Consider also the linear programming problem

LP: maximize
G(1),...,G(N)

N
∑

i=1

G(i)

with

G(x) ≤ c(x, u) + β
∑N

x1=1G(x1)P (x1 | x0 = x, u0 = u), for all x, u.
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This LP has N variables and N ×M constraints. Suppose F is a solution to (5). Show that F is a
feasible solution to LP. Suppose G is also a feasible solution to LP. Show that for each x there exists
a u such that,

F (x)−G(x) ≥ βE[F (x1)−G(x1) | x0 = x, u0 = u],

and hence that F ≥ G.
Argue finally, that F is the unique optimal solution to LP. What is the use of this result?

The next question is about proving a structural property of an optimal policy. Many

research papers in the field are about results like this.

10. In lecture 2 we considered a problem about exercising a call option. We proved the the value
function Fs(·) has the property that Fs(x) − x is non-decreasing in x. We used this to prove that
the optimal policy is of threshold type, i.e. exercise the option if x ≥ as, where as increases with the
time-to-go, s. The following problem is of similar type.

Each morning at 9 am a barrister has a meeting with his instructing solicitor. With probability
θ, independently of other mornings, he will be offered a new case, which he may either decline or
accept it. If he accepts it he will be paid R when it is complete. However, for each day that the case
is unfinished he will incur a charge of c and so it is expensive to have too many cases outstanding.
Following the meeting he spends the rest of the day working on a single case, which he finishes by
the end of the day with probability p, p < 1/2. If he wishes he can hire a temporary assistant for the
day, at cost a, and by working on a case together they can finish it with probability 2p.

The barrister wishes to maximize his expected total-profit over s days. Let Gs(x) and Fs(y) be the
maximal such profit he can obtain, given that his number of outstanding cases are x and y ∈ {x, x+1}
respectively, just before and just after the meeting on the first day. It is a reasonable to conjecture
that the optimal policy is a ‘threshold policy’, i.e.,

Conjecture C. There exist integers n(s) and m(s) such that it is optimal to accept a new case if

and only if x ≤ n(s) and to employ the assistant if and only if y ≥ m(s).

By writing Gs in terms of Fs, and writing Fs in terms of Gs−1, show that the optimal decisions do
indeed take this form provided both Fs(x) and Gs−1(x) are concave functions of x.

Now suppose that conjecture C is true for all s ≤ t, and that Ft and Gt−1 are concave functions
of x. First show that for x > 0,

Gt(x+ 1)− 2Gt(x) +Gt(x− 1)

= (1− θ)
{

Ft(x+ 1)− 2Ft(x) + Ft(x− 1)
}

+ θ
{

max[Ft(x+ 1), Ft(x+ 2)]

−2max[Ft(x), Ft(x+ 1)] + max[Ft(x− 1), Ft(x)]
}

. (4)

Now, by considering the values of terms on the right have side of this expression, separately in the
three cases x + 1 ≤ n(t), x − 1 > n(t) and x − 1 ≤ n(t) < x + 1, show that Gt is also concave and
hence that it is also true that the optimal hiring policy is of threshold form when the horizon is t+1.

In a similar manner, one can next show that Ft+1 is concave, and so inductively push through a
proof of Conjecture C for all finite-horizon problems.

3



The final question is optional but you might it interesting. It concerns a famous

unsolved problem in dynamic programming. We do a bit of it that can be solved.

11. A trapper has been disabled with a broken leg in the Canadian wilderness and his aim is to
survive t nights until his partner returns to camp. On certain nights, which occur independently with
probability p, he hears wolves howl as he gets ready for bed. If on such a night he leaves u candles
burning around his camp, then he will survive the night with probability 1 − θu, 0 < θ < 1. On
the other hand, with probability θu, the wolves will attack and he will be savaged to death while
he sleeps. Unfortunately, he has only x candles left. Let Fs(x) be his survival probability under an
optimal policy. Explain why, with q = 1− p,

Fs(x) = qFs−1(x) + p max
u∈{1,...,x}

(1− θu)Fs−1(x− u), 1 ≤ s ≤ t,

where F0(x) = 1. Suppose that if he hears the wolves howl and there are s nights and x candles left
then he burns us(x) candles. Explain why it is intuitively reasonable to conjecture that an optimal
policy lies in the class of policies having properties that

Conjecture A. us(x) is non-increasing in s,

Conjecture B. us(x) is non-decreasing in x,

Conjecture C. x− us(x) is non-decreasing in x.

Conjecture C is easy to prove. You might like to try it. Klinger and Brown (1968) proved that
Conjecture A is true if Conjecture B is true. Seeing as no one could prove Conjecture B, this is not
much help. However, this unsatisfactory state of affairs was relieved by Samuel (1970) who showed
that Conjecture A is true, whether or not Conjecture B is true.

Conjecture B has been verified numerically for a wide range of values for p, θ and t. Many top
notch researchers have tried to prove Conjecture B, but no one has succeeded. If you can prove (or
disprove) Conjecture B you will attain fame.

Let us examine Klinger and Brown’s proof that Conjecture B =⇒ Conjecture A. Suppose π is the
uniquely optimal policy, but that for some given x and s, s > 1, we have us(x) = a, us−1(x) = b,
us−1(x− a) = c where b < a < x, a + c < x. In other words, π is a counterexample to Conjecture A.
However, suppose Conjecture B holds for π, so that b ≥ c.

Consider an alternative policy π̄ with ūs(x) = b, ūs−1(x) = a, ūs−1(x − b) = a − b + c and ū = u
otherwise. Let the survival probabilities under the two policies be Ps(x) and P̄s(x) respectively. By
writing Ps(x) and P̄s(x) in terms of Ps−2, prove that π̄ is at least as good as π.

Hence deduce that if the optimal policy is unique and satisfies Conjecture B then it must also
satisfy Conjecture A.

A continuous-time version of this problem was originally posed by researchers at the RAND
Corporation in 1965, motivated by a cold-war problem about a nuclear bomber that is armed with
anti-aircraft missiles and wishes to reach its target while fending off potential attacks by enemy fighter
jets. For this reason the problem is commonly known as ‘the bomber problem’. You can read more
about it in these slides for a talk that Professor Richard Weber gave to the Adams Society:
www.statslab.cam.ac.uk/~rrw1/talks/adams.pdf
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1. A financial advisor can impress his clients if immediately following a week in which the FTSE
index moves by more than 5% in some direction he correctly predicts that this is the last week during
the calendar year that it moves more that 5% in that direction.

Suppose that in each week the market change is up > 5%, down > 5%, or neither of these, with
probabilities p, p, 1 − 2p, respectively, (p < 1/2). He makes at most one prediction this year. With
what strategy does he maximize the probability of impressing his clients?

2. Jobs 1, 2, 3, 4 are to be processed in some order by a single machine. Once a job has been started
its processing cannot be interrupted. Job i has a known processing time si. If it completes at time
ti then a discounted reward of rie

−αti is obtained, α > 0. There are precedence constraints amongst
jobs such that job i cannot be started until job i− 2 is complete, i = 3, 4. We wish to maximize the
total discounted reward obtained from the 4 jobs. E.g. a possible schedule is 1, 2, 4, 3, with reward

r1e
−αs1 + r2e

−α(s1+s2) + r4e
−α(s1+s2+s4) + r3e

−α(s1+s2+s4+s3)

Use the Gittins index theorem (appropriately generalized to continuous time) to show that job 1
should be processed first (rather than job 2) if

max

{

r1e
−αs1

1− e−αs1
,
r1e

−αs1 + r3e
−α(s1+s3)

1− e−α(s1+s3)

}

≥ max

{

r2e
−αs2

1− e−αs2
,
r2e

−αs2 + r4e
−α(s2+s4)

1− e−α(s2+s4)

}

.

Let us modify the problem so that initially we pay a fee of
∑

i ri, but that rie
−αti is refunded when

job i completes. Thus the net cost is
∑

i [ri − rie
−αti ] = α

∑

i riti + o(α).

Use this idea to address a problem in which there are no rewards, but a waiting cost ci is incurred
per unit of time until job i completes. Show that the total waiting cost is minimized by processing
job 1 first (rather than job 2) if

max

{

c1
s1
,
c1 + c3
s1 + s3

}

≥ max

{

c2
s2
,
c2 + c4
s2 + s4

}

.

3. A motorist has to travel an enormous distance along a newly open motorway. Regulations insist
that filling stations can be built only at sites at distances 1, 2, . . . from his starting point. The
probability that there is a filling station at any particular point is p, independently of the situation
at other sites. On a full tank of petrol, the motorist’s car can travel a distance of exactly G units
(where G is an integer greater than 1), so that it can just reach site G when starting full at site 0.
The petrol gauge on the car is extremely accurate. Since he has to pay for the petrol anyway, the
motorist ignores its cost. Whenever he stops to fill his tank, he incurs an ‘annoyance’ cost A. If he
arrives with an empty tank at a site with no filling station, he incurs a ‘disaster’ cost D and has to
have the tank filled by a motoring organization. Prove that if the following condition holds:

(1− qG)A < pqG−1D,

then the policy: ‘On seeing a filling station, stop and fill the tank’ minimizes the expected long-run
average cost. Calculate this cost when the policy is employed.
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4. Suppose that at time t a machine is in state x (where x is a non-negative integer.) The machine
costs cx to run until time t + 1. With probability a = 1 − b the machine is serviced and so goes
to state 0 at time t + 1. If it is not serviced then the machine will be in states x or x + 1 at time
t+ 1 with respective probabilities p and q = 1− p. Costs are discounted by a factor β per unit time.
Let F (x) be the expected discounted cost over an infinite future for a machine starting from state x.
Show that F (x) has the linear form φ+ θx and determine the coefficients φ, θ.

A maintenance engineer must divide his time between n such machines, the i the machine having
parameters ci, pi and state variable xi. Suppose he allocates his time randomly, in that he services
machine i with a probability ai at a given time, independently of machines states or of the previous
history,

∑

i ai = 1. The expected cost starting from state variables xi under this policy will be
∑

i Fi(xi) =
∑

i(φi + θixi) if one neglects the coupling of machine-states introduced by the fact that
the engineer can only be in one place at once (a coupling which vanishes in continuous time.)

Consider one application of the policy improvement algorithm. Show that under the improved
policy the engineer should next service the machine whose label i maximizes ci(xi + qi)/(1− βbi).

5. Customers arrive at a queue as a Poisson process of rate λ. They are served at rate u = u(x),
where x denotes the current size of the queue. Suppose that cost is incurred as rate ax + bu where
a, b > 0. The service rate u is the control variable. The dynamic programming equation in the infinite
horizon limit is then

γ = inf
u
{ax+ bu(x) + λ[f(x+ 1)− f(x)] + u(x)1x>0[f(x− 1)− f(x)]}

where γ denotes the average rate at which cost is incurred under the optimal policy and where f(x)
denotes the extra cost associated with starting from state x. (Here 1x>0 = 0 if x = 0, and 1x>0 = 1 if
x = 1, 2, 3, . . . .) Give a brief justification of this equation.

Show that under the constraint that u is a fixed constant, independent of x, and greater that λ
then, for some C, there is a solution of the form

γ =
aλ

u− λ
+ bu, f(x) = C +

ax(x+ 1)

2(u− λ)
.

i.e., such that f(x) does not grow exponentially in x (which is needed to ensure that (1/t)Ef(xt) → 0
as t → ∞ and hence, similarly as in the proof for a discrete time model, that γ can be shown to be
the time-average cost.) What is the optimal constant service rate?

Suppose now that we allow u to vary with x, subject to the constraint m ≤ u ≤ M , where M > λ.
What is the policy which results if we carry out one stage of policy improvement to the optimal
constant service policy?

6. Consider a scalar deterministic linear system, xt = Axt−1+But−1, with cost function
∑h−1

t=0 Qu2
t+x2

h.
Show from first principles (i.e., not simply by substituting values into the Riccati equation), that in
terms of the time to go s, Π−1

s obeys a linear recurrence and that

Πs =

[

B2

Q(A2 − 1)
+

(

1− B2

Q(A2 − 1)

)

A−2s

]−1

.

Under what conditions does Πs tend to a limit as s → ∞? What are the limiting forms of Πs and Γs?

7. Successive attempts are made to regulate the speed of a clock, but these introduce also a random
change whose size tends to increase with the size of the intended change. Explicitly, let xn be the error
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in the speed of the clock after n corrections. On the basis of the observed value of xn one attempts
to correct the speed by an amount un. The actual error in speed then becomes

xn+1 = xn − un + ǫn+1

where, conditional on events up to the choice of un, the variable ǫn+1 is normally distributed with
zero mean and variance αu2

n. If, after all attempts at regulation, one leaves the clock with an error
x, then there is a cost x2.

Suppose exactly s attempts are to be made to regulate the clock with initial error x. Determine
the optimal policy and the minimal expected cost.

8. Consider the scalar-state control problem with plant equation xt+1 = xt+ut+ ǫt and cost function
∑h−1

t=0 u2
t +Dx2

h. Here current state is observable, the horizon point h is prescribed, and the distur-
bances ǫt are i.i.d. with zero mean and variance v. Show that the open-loop form of the optimal
control in the deterministic case v = 0 is ut = −Dx0/(1 + hD) and that the closed-loop form of the
optimal control is ut = −Dxt/[1 + (h− t)D], whatever v.

Show that if the open-loop control is used in the stochastic case then a total expected costDx2
0/(1+

hD) + hDv is incurred, while use of the closed-loop control leads to a smaller expected cost of

F (x0, 0) =
Dx2

0

1 + hD
+Dv

h−1
∑

s=0

1

1 + sD
.

9. Consider the real-valued system defined by

xn+1 = axn + ξnun (n = 0, 1, . . . ),

where ut is the control at time n and {ξn;n = 0, 1, . . . } is a sequence of independent random variables
with mean b and variance σ2. Suppose that the cost incurred at time n is x2

n + u2
n, and that there

are no terminal costs. Find the recursions satisfied by the finite-horizon optimal cost function. Is the
optimal control certainty-equivalent control?

[

Hint: The answer is Fs(x) = Πsx
2, where Πs = 1 +

a2Πs−1(1 + σ2Πs−1)

1 + (b2 + σ2)Πs−1

.

]

10. Consider the linear system, (xt, vt) ∈ R
2,

xt+1 = xt + vt

vt+1 = vt + ut + ǫt,

whose state represents the position and velocity of a body, {ut} is a sequence of control variables and
{ǫt} is a sequence of independent zero-mean disturbances, with variance N . We wish to minimize the
expected value of

∑T−1
t=0 u2

t + P0x
2
T . Show that the optimal choice of ut from state (xt, vt) is

ut = −(s− 1)Ps(xt + svt),

where s = T − t and
P−1
s = P−1

0 + 1
6
s(s− 1)(2s− 1).

[Hint: reduce this problem to LQ regulation of the scalar variable zt = xt + (T − t)vt. Re-write the
plant equation and cost in terms of this quantity and in terms of time to go. ]
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11. A one-dimensional model of the problem faced by a juggler trying to balance a light stick with a
weight on top is given by the equation

ẍ1 = α(x1 − u)

where x1 is the horizontal displacement of the top of the stick from some fixed point and u is the
horizontal displacement of the bottom. (The stick is assumed to be nearly upright and stationary and
α > 0 is inversely proportional to the length.) Show that the juggler can control x1 by manipulating
u.

If he tries to balance n such weighted sticks on top of one another, the equations governing stick
k (k = 2, . . . , n) are (provided the weights on the sticks get smaller fast enough as n increases)

ẍk = α(xk − xk−1)

Show that the n-stick system is controllable. [You may find it helpful to take the state vector as
(ẋ1, x1, ẋ2, x2, . . . , ẋn, xn)

⊤. Example F. ]
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1. Consider the system xt+1 = Axt +But, xt ∈ R
n, ut ∈ R

m, and let

Ft(x0) = min
u0,...,ut−1

t−1
∑

s=0

x⊤
s Rxs + x⊤

t Π0xt, ,

where R is positive definite. Assuming that the optimal control is of the form us = Ksxs, and
Ft(x) = x⊤Πtx, show that

Πt = f(R,A,B,Πt−1) ≡ min
K

{

R + (A+BK)⊤Πt−1(A+BK)
}

.

Explain what is meant by saying the system is controllable.
State necessary and sufficient condition for controllability in terms of A and B.
Show that if the system is controllable and Π0 = 0, then Ft(x) is monotone increasing in t and

tends to the finite limit x⊤Πx, where Π = f(R,A,B,Π).
Suppose now that xt+1 = Axt + But + ǫt, where {ǫt} is noise, Eǫt = 0, Eǫtǫ

⊤
t = N , and ǫs and

ǫt are independent for s 6= t. Moreover, x0 is known, but x1, x2, . . . cannot be observed. Instead, we
observe y1, y2, . . . ∈ R

r, where yt = Cxt−1. Consider the estimate of xt given by

x̂t = Ax̂t−1 +But−1 −Ht(yt − Cx̂t−1)

where x̂0 = x0 and Ht is chosen to minimize, Vt, the covariance matrix of x̂t. Show that x̂t is unbiased
and that, with V0 = 0,

Vt = f(N,A⊤, C⊤, Vt−1) = min
H

{

N + (A +HC)Vt−1(A+HC)⊤
}

.

Hence, quoting a condition in terms of A and C for the noiseless system to be observable, show
that observability is a sufficient condition for Vt to tend to a finite limit as t → ∞.

2. Consider the controlled system xt+1 = xt+ut+3ǫt+1, where the ǫt are independent N(0, 1) variables.
The instantaneous cost at time t is x2

t + 2u2
t . Assuming that xt is observable at time t, calculate the

optimal control under steady-state (stationary) conditions and find the expected cost per unit time
incurred when this control is used.

Suppose now that at time t one observes, not xt, but yt = xt−1 + 2ηt, where the ηt are again
independent N(0, 1) variables independent of the ǫt. Show that the law of x̂t conditional on (y1, . . . , yt)
has steady-state variance 12.

Find the optimal control and a recursion for the optimal state estimate under stationary conditions.

3. Consider the continuous-time system with scalar state variable, plant equation ẋ = u and cost func-
tion Q

∫ h

0
u2dt+ x(h)2. By writing the DP equation in infinitesimal form and taking the appropriate

limit, show that the value function satisfies

0 =
∂F

∂t
+ inf

u

[

Qu2 +
∂F

∂x
u

]

, s > 0.

Show that F and the optimal control with time s to go are

F =
Qx2

Q + s
, u = − x

Q + s
.
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4. Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the vintage year
1959. If she releases it at rate u (in continuous time) she realises a unit price p(u). She holds an
amount x at time 0 and wishes to release this in such a way as to maximize her total discounted
return,

∫∞

0
e−αtup(u) dt. Consider the particular case p(u) = u−γ, where the constant γ is positive

and less than one. Show that the value function is proportional to a power of x and determine the
optimal release rule in closed-loop form (i.e., as a function of the present stock level.)

[Hint: The answers are F (x) = (γ/α)γx1−γ , u = αx/γ. Try to derive these answers from the DP
equation; not simply substitute them into the DP equation and check that they work.]

5. Let the vector x denote the Cartesian co-ordinates of a particle moving in R
d. When at position

x the particle moves with speed v(x) and in a direction that can be chosen. The equation of motion
is thus ẋ = v(x)u, where u is a unit vector to be chosen afresh at each position x. Let F (x) denote
the minimal time taken for the particle to reach a set D from a point x outside it. Show that after
minimizing over u the dynamic programming equation for F implies that |∇F (x)| = v(x)−1; i.e.,

d
∑

j=1

(

∂F

∂xj

)2

= v(x)−2.

This is the eikonal equation of geometric optics; a short-wavelength form of the wave equation. How
is the optimal direction at a given point determined from F ?

[Hint: Show that the DP equation is infu:|u|=1[1 + v(x)u⊤∇F ] = 0. Then use a Cauchy-Schwartz
inequality to show that the infimum is achieved by u = −∇F/|∇F |.]

6. Consider the optimal control problem:

minimize

∫ T

0

1
2
u(t)2 dt subject to ẋ1 = −x1 + x2 , ẋ2 = −2x2 + u ,

where u is unrestricted, x1(0) and x2(0) are known, T is given and x1(T ) and x2(T ) are to be made
to vanish. Rewrite the problem in terms of new variables, z1 = (x1 + x2)e

t and z2 = x2e
2t and then

show that the optimal control takes the form u = λ1e
t + λ2e

2t, for some constants λ1 and λ2. Find
equations for x1(0), x2(0) in terms of λ1, λ2, and T , which you could in principle solve for λ1, λ2 in
terms of x1(0), x2(0) and T .

Compare a linear feedback controller of the form u(t) = −k1x1(t) − k2x2(t), where k1 and k2 are
constants. Show that with this controller x1 and x2 cannot be made to vanish in finite time. Discuss
the choice of optimal control with a quadratic performance criterion as opposed to linear feedback
control, indicating which is likely to be more appropriate in given circumstances.

7. A princess is jogging with speed r in the counterclockwise direction around a circular running
track of radius r, and so has a position whose horizontal and vertical components at time t are
(r cos t, r sin t), t ≥ 0. A monster who is initially located at the centre of the circle can move with
velocity u1 in the horizontal direction and u2 in the vertical direction, where both velocities have a
maximum magnitude of 1. The monster wishes to catch the princess in minimal time.

Analyse the monster’s problem using Pontryagin’s maximum principle. By considering feasible
values for the adjoint variables, show that whatever the value of r the monster should always set at
least one of |u1| or |u2| equal to 1. Show that if r = π/

√
8 then the monster catches the princess in

minimal time by adopting the uniquely optimal policy u1 = 1, u2 = 1. Is the optimal policy always
unique?

[Hint: Let x1 and x2 be the differences in the horizontal and vertical directions between the
positions of the monster and princess.]
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8. An aircraft flies in straight and level flight at height h, so that lift L balances weight mg. The
mass rate of fuel consumption is proportional to the drag, and may be taken as q = av2 + b(Lv)−2,
where a and b are constants and v is the speed. Thus

ṁ = −q = −av2 − b

(mgv)2
.

Find a rule for determining v in terms of m if (i) the distance flown is to be maximized, (ii) the time
spent flying at height h (until fuel is exhausted) is to be maximized.

[

Hint: Answers are (i) v =

(

3b

a(mg)2

)1/4

, and (ii) v =

(

b

a(mg)2

)1/4
]

.

9. In Zermelo’s navigation problem (proposed in 1931) a straight river has current c(y), where y is
the distance from the bank from which a boat is leaving. A boat is to cross the river at constant
speed v relative to the water, so that its position (x, y) satisfies ẋ = v cos θ + c(y), ẏ = v sin θ, where
θ is the heading angle indicated in the diagram.

x

y

P

c(y)

θ

Figure 1: Zermelo’s navigation problem

(i) Suppose c(y) > v for all y and the boatman wishes to be carried downstream as little as possible
in crossing. Show that he should follow the heading

θ = cos−1(−v/c(y)).

(ii) Suppose the boatman wishes to reach a given point P on the opposite bank in minimal time.
Show that he should follow the heading

θ = cos−1

(

λ1v

1− λ1c(y)

)

,

where λ1 is a parameter chosen to make his path pass through the target point.

10. In the neoclassical economic growth model, x is the existing capital per worker and u is consump-
tion of capital per worker. The plant equation is

ẋ = f(x)− γx− u, (5)

where f(x) is the production per worker, and −γx represents depreciation of capital and change in
the size of the workforce. We wish to choose u to maximize

∫ T

t=0

e−αtg(u) dt,
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where g(u) measures utility, is strictly increasing and concave, and T is prescribed. It is convenient
to take a Hamiltonian

H = e−αt [g(u) + λ(f(x)− γx− u)] ,

thereby including a discount factor in the definition of λ and expressing F in terms of present value.
Show that the optimal control satisfies g′(u) = λ (assuming the maximum is at a stationary point)

and
λ̇ = (α+ γ − f ′)λ. (6)

Hence show that the optimal consumption obeys

u̇ =
1

σ(u)
[f ′(x)− α− γ], where σ(u) = −g′′(u)

g′(u)
> 0. (7)

(σ is called the ‘elasticity of marginal utility.’)
Characterise an equilibrium solution, i.e., an x(0) = x̄ such that the optimal trajectory is x(t) = x̄,

t ≥ 0, and show that this x̄ is independent of g.
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