CHAPTER 6 ~
Reversible Migration Processes

In this chapter we shall consider an adaptation of the migration processes
of Chapter 2 which allows the probability intensity that a customer moves
from one colony to another to depend upon the number in the receiving
colony. The adapted process thus permits blocking, but in order to make any
analytical progress reversibility must be assumed. In Section 6.2 we shall
consider an application of the resulting process to the modelling of social
grouping behaviour. Finally in Section 6.3 we shall contrast various proces-
ses, including those introduced in Chapters 2 and 5, in which at most one
individual is allowed in each colony.

6.1 MIGRATION PROCESSES REVISITED

In Section 2.3 we considered a closed migration process with state given by
n=(ny, h,, ..., n;), where n; is the number of individuals in colony j. If the
probability intensity that an individual moves from colony j to k is

qm, Tym) = Ay (ny) 6.1)

then we saw that the equilibrium distribution takes a simple form (Theorem
2.3). A limitation of the transition rate (6.1) is that it does not depend upon
n, the number of individuals already present at colony k. Perhaps the
simplest form incorporating such a dependence is

q(n, Tjkn) = Mkd’;(";)‘l‘k("k) (6.2)

where ¢;(0)=0 and for simplicity A; =0. To ensure that n is irreducible
within the state space

J
={nln,-20,j=1,2,...,]; Y n,=N]
i=1

we require that ¢;(n)>0 if n>0, ¢;(n)>0 if n=0, and that the parameters
A allow an individual to pass between any two colonies, either directly or
indirectly via a chain of other colonies. With transition rates (6.2) the
equilibrium equations become

@ Y, 3 b mn)= 3 3w 5 WA (e + gy (ny — 1)
f=1k=1 i=1 k=1
In general these equations do not have a simple solution. We might hope,
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136 Reversible Migration Processes

however, that we could solve the equations in the special case when the
process n is reversible. The detailed balance conditions are then

a M)A d; (n)d () = (T WAy (i + Dy (n; — 1)

and it is easy to check that a solution to these is '
4 u r—-1
wm)=B[] {a;" I ﬂ———)} (6.3)
j=1 r=1 y(")
provided
aj)ﬂ,k = ak)tk, (6-4)

Thus although the transition rates (6.2) appear more general than (6.1) to
deal with them we have to impose the restriction (6.4) on the parameters Ay.
The normalizing constant B is, as usual, chosen so that the distribution w(n)
sums to unity over the state space ¥. We can summarize the above results in
the following theorem.

Theorem 6.1. A stationary closed migration process with transition rates
(6.2) is reversible if there exist positive constants oy, @, ..., 0y satisfying
condition (6.4). In this case the equilibrium distribution takes the form (6.3).

For an open migration process we need to specify additional transition
rates to complement (6.2). The most obvious choices are

q(n, T;.m) = w;(ny) 6.5)

for the probability intensity that an individual leaves the system from colony
j and

q(n, T.xn) = vty (my) (6.6)

for the probability intensity that an individual enters the system to join
colony k. Assume that the parameters A, p;, and v, allow an individual to
reach any colony from outside the system and to leave the system from any
colony, either directly or indirectly via a chain of other colonies. This,
together with the earlier assumption that ¢;(0)=0, ¢;(n)>0 if n> 0,
¢, (n)>0 if n=0, ensures that the process n is irreducible within the state
space N’. It is easy to check that the form (6.3) will again satisfy the detailed
balance conditions provided

and condition (6.4) are satisfied. We thus have the following resuit.

Theorem 6.2. A stationary open migration process with transition rates
(6.2), (6.5), and (6.6) is reversible if there exist positive constants
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ay, &y, . . ., & satisfying conditions (6.4) and (6.7). In this case the equilib-
rium distribution takes the form (6.3) and in equilibrium ny, n,, ..., n, are
independent.

We shall call the processes introduced in this section reversible migration
processes. This should not cause confusion with the migration processes of
Chapter 2 since if a migration process as defined there is reversible then it is
in fact a reversible migration process as defined here with ;(n)=1 for
n=0,j=12,...,J.

The results obtained in Chapter 3 show that various modifications can be
made to a migration process without affecting the equilibrium distribution
w(n). In particular, suppose that when an individual arrives at colony j he is
assigned a nominal lifetime which has an arbitrary distribution with unit
mean, that he ages through this lifetime at rate ¢;(n;) ¥; A; while there are n;
individuals in colony j, and that when his lifetime in colony j comes to an
end he moves to colony k with probability A,/Y; A;. Suppose for simplicity
that all nominal lifetimes are independent. The case where nominal lifetimes
are exponentially distributed corresponds to a closed migration process with
transition rates (6.1), but the equilibrium distribution 7(n) is the same
whatever the nominal lifetime distributions, since the colonies are examples
of server-sharing queues. Consider now a closed reversible migration pro-
cess with transition rates (6.2). This can be modified to allow arbitrary
nominal lifetimes by supposing that an individual in colony j ages through
his lifetime at rate ¢;(n;) ¥, A;i(n;) and that when his lifetime in colony j
comes to an end he moves to colony k with probability A, (n)/X; A (n;).
Observe that when nominal lifetimes are exponentially distributed the
process n is Markov with transition rates (6.2). In Chapter 9 (Exercises 9.3.2
and 9.4.2) we shall see that provided equations (6.4) have a solution the
equilibrium distribution 7(n) is the same whatever the form of the nominal
lifetime distributions.

Exercises 6.1

1. Use Kolmogorov’s criteria to show that a stationary migration process
with transition rates (6.2) is reversible only if condition (6.4) can be
satisfied.

2. Consider a Markov process n for which the transition rates (6.5) and (6.6)
are positive, and where these are not the only positive transition rates.
Show that if n is reversible then n,, n,, ..., n, are independent and the
equilibrium distribution is of the form (6.3), whatever the form of the
transition rates other than (6.5) and (6.6).

3. If we regard the open migration process discussed in Section 2.4 as a
model of the movement of particles between cells then the number of
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particles in a cell will have a Poisson distribution if ¢(n)= ¢n, a geomet-
ric distribution if ¢(n)=¢, n>0, and a Bernoulli distribution (i.e. a
distribution on the values of zero or unity) if ¢(1)=¢, d(n)=00, n>1.
Physicists attach the names Maxwell-Boltzmann, Bose-Einstein, and
Fermi-Dirac respectively to these distributions. Observe that the
suggested functions ¢(n) are the only ones which will give rise to these
distributions. Discuss how the distributions could arise from the reversi-
ble migration processes of this section. Observe that there are a variety
of models which could lead to each of the given distributions.

4. In an open migration process with transition rates (6.2), (6.5), and (6.6)
the stream of individuals entering the system at colony j will not in
general be Poisson. Suppose, however, that ¢;(n)<1 for n=0, j=
1,2,..., I In this case the given transition rates could be reconciled with
Poisson streams if it is assumed that an individual arriving at colony j to
find n; individuals already there is lost with probability 1—¢;(n;). If
individuals arriving at and departing from colony j are considered as
customers of class j show that, counting lost customers, the system is
quasi-reversible under the weaker assumptions described in Exercise
3.2.1. The weaker assumptions are needed since the class of a customer
may change as he passes through the system. Observe that in this system
the probability that a customer is lost can depend upon the state of an
individual colony in a way which could not be allowed in Section 3.5.

5. In an open migration process with transition rates (6.2), (6.5), and (6.6)
suppose that if ¥, >0 then ¢ (n)=1, n=0. Show that if individuals
arriving from outside the system at colony j or leaving the system from
colony j are considered as customers of class j then the system is
quasi-reversible under the weaker assumptions described in Exercise
3.2.1. Of course, if all customers are considered to be of the same class
the system is quasi-reversible, and thus Exercise 3.2.4 shows how to
produce a quasi-reversible system in which the class of a customer does
not change.

6.2 SOCIAL GROUPING BEHAVIOUR

One area where reversible migration processes can be useful is in the
modelling of the behaviour of individuals gathering in groups for social
reasons, e.g. monkeys forming sleeping groups or children at play. To
illustrate the results of the previous section we shall consider an open and
closed version of a model which might be appropriate in this context.
Suppose that group j consists of those individuals at a particular geo-
graphical location. Let n; be the number of individuals in group j and suppose
that n=(n,, n,, ..., n;) is a migration process with the following transition
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rates:
qm, T..n) = a, +c.n,
q(n, T, n)=dn; (6.8)
qa(m, Tyem) = Apdini(ay +cny)

where Ay = Ay, @, >0, and d, > ¢, >0. Here a, can be thought of as the
attractiveness to an outsider of belonging to group k, ¢, as the attractiveness
to an outsider of an individual in group k, d, as the propensity to departfrom
group j of an individual in group j, and A, as a measure of the proximity of
groups j and k. The transition rates (6.8) are of the form discussed in the
previous section with

¢ (n)=dn; and Y () = ai + ey

and a solution to equations (6.4) and (6.7) is a;=a,=-+-=a; =1. Thus
Theorem 6.2 gives the form of the equilibrium distribution. To calculate the
normalizing constant is not difficult, and the conclusion is that in equilibrium
n, n,, ..., n, are independent, each with a negative binomial distribution;

+n—1
w(n) = (f’ n’ )(l—g,-)"g;" n=0,1,...
i
where f; = a)/c; and g; = ¢;/d;. The expected number of individuals in group j
is thus a;/(d; — ;).
Consider now the closed version of the above model with transition rates

q(n, Tym) = Aiding(a, + ey ) (6.9)

where Ay =Ay, a, ¢, di. >0, and the total number of individuals in the
system is N. Theorem 6.1 allows us to deduce the form of the equilibrium
distribution but the normalizing constant is in general an awkward expres-
sion. It simplifies when ¢/d; =g for j=1,2,...,J. Then the equilibrium
distribution can be written
_(~X fk)—l n (—f;)

m(n) ( N ,l:[l . (6.10)
for n such that ¥ n; =N, where f; = aj/c;.

A drawback of the model described is that it assumes a group is based at
one of J geographical locations. Often this assumption is inappropriate,
and in Chapter 8 we shall consider models which do not restrict the groups
in this way.

Exercises 6.2

1. Show that if ¢, =0 in transition rates (6.8) then in equilibrium n, has a
Poisson distribution. Deduce that if ¢, =0 in transition rates (6.9) then in
equilibrium n has a multinomial distribution.
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2. Deduce from the distribution (6.10) that the marginal distribution for n;
is the Polya distribution

no= () GO

Suppose now that f; =f,= - =f;. Show that if N, J—  with N/J held
constant the marginal distribution for n; approaches a negative binomial
distribution,

3. In the open model with transition rates (6.8) determine the probabxhty
flux that an individual moves from group j to group k. Use Little’s result
to deduce the mean time an individual stays in group j.

6.3 CONTRASTING FLOW MODELS

Section 5.2 discussed a flow model in which each site could hold at most one
individual. This restriction can also be imposed on the migration processes
of Chapter 2 or of this chapter, with rather different effects. In this section
we shall comment briefly on the resulting flow models and introduce a
further one.

Consider an open migration process with transition rates (2.8) in which

¢(n)={:° :zi

In this process site j can hold at most one individual. If an individual arrives
at site j when it is already occupied he is immediately ejected from the site
and moves on to site k with probability Ay/A; or leaves the system with
probability u/A;. Thus there is no blocking in this system—the reverse in
fact, since the more likely site j is to be occupied the faster an individual
needing to visit site j will pass through the system. If a;, a5, ..., a; is the
solution to equations (2.9) then in equilibrium site j is occupied with
probability

a;
1+a

(6.11)

independently of the state of the rest of the system.
Consider now an open migration process with transition rates given by
(6.2), (6.5), and (6.6) where

o(n)=1 n>0
n=0

_{1
Y=o n>o0
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In this process site j can again hold at most one individual. While site j is
occupied transitions which would bring another individual to site j are
forbidden. Provided conditions (6.4) and (6.7) are satisfied we can determine
the equilibrium distribution, and in equilibrium site j is again occupied with
probability (6.11), independently of the rest of the system. A drawback of
the model is that since it is reversible there can be no net flow of individuals
in a given direction through the system. Note that in both this mode! and in
the flow model of Section 5.2 an individual unable to move to site j from
site k because site j is occupled may well end up moving from k to a site
other than j.

There is a further flow model for which analytical results are available,
and a closed version of it can be described as follows. Suppose that while
site j is occupied and site k is free the probability intensity that the
individual at j moves to k is Ay (j,k=1,2,...,J) where the parameters A,
satisfy

Lhe=Xhg  j=1,2,...,J (6.12)
k k
The equilibrium equations for this process are
@) XY A= Y Y m(Tumhy (6.13)
jing=1k:in =0 j:ny=1k:n,=0

A solution to these equations is (Exercise 6.3.3)

rw=(y)" (6.14)

for each n representing a state where there are N individuals present in the
system, all at different sites. Thus all possible states are equally likely.

An open version of the above model can be obtained by appending to the
system a large number of additional sites, each connected to the previously
existing sites in the same way. The details are given in Exercise 6.3.5 and
the resulting model can be described as follows. If site j is occupied then the
individual there leaves the system with probability intensity W ; if site k is
free an individual arrives there from outside the system with probability
intensity v, ; and if site j is occupied and site k is free then the individual at j
moves to k with probability intensity A,. In place of restriction (6.12)
assume that the rates satisfy the equations

Z)\,k —ZM+—‘; i=1,2,...,7 (6.15)

where

p= (6.16)

¥|s
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and

YL 6.1
e Z;IM (6.17)

The equilibrium equations for the process are

’"(“)[ Y X Mt Xomt L Vk]

jiy=1k:n=0 jny=1 k:in =0

o= Z z w(Tum)A; + Z (T, m)y, + Z (T om)

jimyy=1kin =0 jimy=1 k:n =0
The equilibrium equations are satisfied by
ar(n)= Bp>™ (6.18)

and hence in equilibrium a site is occupied with probability p, and whether
the site is occupied or not is independent of the state of the rest of the
system. This is an intriguing result: we are accustomed to such independence
in open networks of quasi-reversible queues and in reversible migration
processes, but this flow model shows that it can occur in other systems as
well.

As an example of the result consider the one-dimensional flow model
illustrated in Fig. 6.1, where jumps take place between adjacent sites with
the probability intensities shown. If

A1=A2+M+V

then restriction (6.15) is satisfied and in equilibrium a site is occupied with
probability v/(n + v), independently of the other sites. The same model was
considered in Exercise 5.2.2 under the restriction A, =A,.

Exercises 6.3

1. Observe that in the first flow model considered in this section the
probability that site j is occupied, given by expression (6.11), remains
unaltered when the time a particle remains at site j is arbitrarily distri-
buted with mean A;!. In the case where the distribution is exponential
observe that the model is unaltered if it is the previous occupant of site j
who is expelled when a second individual arrives there.

2. The organizational hierarchy illustrated in Fig. 6.2 consists of J posts,
each of which is held by at most one individual. At points in time which

v X1 )‘1 )‘1 n
A2 A2 A

Fig. 6.1 A one-dimensional flow model
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Fig. 6.2 An organizational hierarchy

form a Poisson process of rate v the most senior individual in the
organization leaves (to join the Head Office). This causes promotions
within the organization in the following way. When post j becomes
vacant there is a delay, exponentially distributed with mean A], before a
replacement takes up the post. The replacement comes from the next
most junior post in the organization which is occupied, or from outside
the organization if all the more junior posts are vacant. By considering the
movement of vacancies show that in equilibrium the posts are vacant or
not independently and the probability post j is vacant is ¥/(v + A;). Show
that this remains true if the delay before a replacement is appointed to
post j is arbitrarily ditributed with mean A

Extend the model to allow K individuals to hold positions at level j.
Show that the probability level j has its complete complement of K|

individuals is
(2 56T
Lo

. Consider a Markov process with states 1,2,...,J and transition rates
satisfying equation (6.12). Observe that in equilibrium each state is
equally likely. Deduce from Lemma 1.4 that

Z Z A = Z Z Ay

jest kesd jesd ket
and hence that expression (6.14) satisfies equations (6.13).
. Consider the model of a mining operation discussed in Section 2.3.
Suppose now that a machine cannot start work on a face until the next
face is free. Show that machine j operates as a queue with ¢;(1)=0,
&;(n)=¢;, n> 1. Deduce that in equilibrium the probability machine j is
working is

Bn_s
&;Bn_y—1
where By is as defined for the original model of Section 2.3. Observe
that if ¢, =¢,="-*=d¢,; =¢ the system can be represented by a flow

model satisfying condition (6.12). Show that in this case the average time
for a machine to complete one cycle of faces is

N(N-1)

(N-D¢
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An alternative amendment to the model would be to suppose that after a
machine has finished work on a face it cannot move on until the next face
is free. None of the flow models considered can represent this behaviour,
and indeed analytical results are generally unavailable for networks
involving this fairly common form of blocking,.

5. An open flow model satisfying (6.15) can be obtained as the limiting case
of a closed flow model formed as follows. The closed flow model consists
of the given J sites together with M appended sites. The flow rate from
site j to each appended site is u;/M(1—p), and from each appended site
to site j is »,/Mp. Show that for this closed flow model condition (6.12)
becomes (6.15) provided p satisfies (6.16) and (6.17). Now let the
number of appended sites M and the number of individuals N tend to
infinity in such a way that N/M tends to p. Show that in the limit the open
flow model leading to distribution (6.18) is obtained.

6. Using the transition rates (5.14), (5.15), and (5:16) show how the flow
models leading to the equilibrium distributions (6.14) and (6:18) can be
extended to allow a site to contain more than one individual. Observe
that in equilibrium the number of individuals at a site in the open version
will be binomially distributed. -

7. Let n(t) be the state at time ¢ of the flow model leading to equation
(6.14). Show that the reversed process n(—t) corresponds to a similar flow
model, but with A; replaced by Ay If n(f) is the state at time ¢ of the
open flow model leading to equation (6.18) show that n(—t) corresponds
to a similar flow model with Ay, v, and w; replaced by Ay, p;, and v/p
respectively. Deduce that the one-dimensional flow model considered at
the end of this section is dynamically reversible,

8. A further example of an open flow model satisfying (6.15) is given by the
following choice of parameters:

A =0 unless k=j+1
Ajje1=A

for j=1,2,...,J-1
: Ay =0 unless k=1

AJ'l
b=

and forj=1,2,...,J
y=v

Check that in equilibrium the probability that a given site is occupied
is v/u and hence does not depend upon A. Show that the process is
dynamically reversible. Following Exercise 6.1.4 discuss how the system
might be rendered quasi-reversible.
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